151
|
Dynamic changes in size distribution of emulsion droplets during ethyl acetate-based microencapsulation process. AAPS PharmSciTech 2000. [DOI: 10.1007/bf02830520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
152
|
Abstract
In an effort to substitute methylene chloride with a less toxic solvent, this study was aimed at developing new ethyl formate-based emulsion processes to fabricate poly-D,L-lactide-co-glycolide (PLGA) microspheres. To do so, a polymeric dispersed phase was emulsified in a 1% polyvinyl alcohol aqueous solution at an ethyl formate to aqueous volume ratio of 8:20. Microsphere hardening was then achieved by solvent evaporation and quenching techniques. The average encapsulation efficiency of a model drug progesterone amounted to 95.2+/-2.7%. When the tendency of ethyl formate and methylene chloride to evaporate to air was compared, the evaporation rate of ethyl formate was 2.1 times faster than that of methylene chloride. The ease with which ethyl formate evaporated to air was beneficial in shortening the microsphere hardening step. For the solvent quenching process, only 80 ml of additional water was required to extract ethyl formate to the aqueous phase, due to its considerable water miscibility. In particular, the timing of ethyl formate quenching affected to a great extent dynamic processes of the breakup of elementary microdroplets into smaller ones. Therefore, variations in quenching time affected microsphere characteristics such as the degree of solvation, size distribution, and tendency to aggregate on drying. The results of this study showed that PLGA microspheres were successfully prepared using the new ethyl formate-based processes.
Collapse
Affiliation(s)
- H Sah
- Department of Pharmaceutical Sciences, The University of Tennessee College of Pharmacy, Memphis, TN 38163, USA.
| |
Collapse
|
153
|
Tunçay M, Caliş S, Kaş HS, Ercan MT, Peksoy I, Hincal AA. Diclofenac sodium incorporated PLGA (50:50) microspheres: formulation considerations and in vitro/in vivo evaluation. Int J Pharm 2000; 195:179-88. [PMID: 10675695 DOI: 10.1016/s0378-5173(99)00394-4] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recently, considerable interest has been focused on the use of biodegradable polymers for specialized applications such as controlled release of drug formulations; meanwhile, microsphere drug-delivery systems using various kinds of biodegradable polymers have been studied extensively during the past two decades. Poly (lactide-co-glycolide) (PLGA) polymers have been proven to be excellent drug carriers for microparticulate systems due to their advantages, e.g. biocompatibility and regulatory approval. The administration of nonsteroidal anti-inflammatory drugs (NSAIDs) into the intra-articular cavity in patients with chronic inflammatory disease is complicated due to the short duration of effect. In the present study, controlled-release parenteral formulations of diclofenac sodium (DS), a commonly used NSAID, were prepared for intra-articular administration, and evaluated in vitro for particle size, yield, drug loading, surface morphology and release characteristics. For in vivo studies, Technetium-99m labelled polyclonal human immunogammaglobulin (99m Tc-HIG) was used as the radiopharmaceutical to demonstrate arthritic lesions by gamma scintigraphy. Evaluation of arthritic lesions post-therapy in rabbits showed no significant difference in the group treated with PLGA (50:50) (mw 34000) DS microspheres compared to control groups.
Collapse
Affiliation(s)
- M Tunçay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Sihhiye/Ankara, Turkey
| | | | | | | | | | | |
Collapse
|
154
|
Kim HK, Park TG. Microencapsulation of human growth hormone within biodegradable polyester microspheres: protein aggregation stability and incomplete release mechanism. Biotechnol Bioeng 1999; 65:659-67. [PMID: 10550772 DOI: 10.1002/(sici)1097-0290(19991220)65:6<659::aid-bit6>3.0.co;2-9] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recombinant human growth hormone (rhGH) was encapsulated within poly(D,L-lactic-co-glycolic acid) microspheres by a double emulsion solvent evaporation method. A mixture of methylene chloride and ethyl acetate in varying volume ratios was used for the microsphere preparation. Protein release profiles from three different microsphere formulations demonstrated initial burst effects ranging from 28.2% to 54.7% after a 1-day incubation and exhibited no further significant releases up to 19 days. This was because the encapsulated rhGH with the microspheres was largely aggregated in a noncovalent fashion during the formulation. Nonaggregated water soluble rhGH species within the microspheres are likely to be responsible for the rapid release upon incubation. The initially released rhGH in the incubation medium, however, was composed of mostly monomer species with a small amount of dimer as probed by size-exclusion chromatography. Circular dichroism spectra of the initially released rhGH in the medium revealed that the conformation of the released rhGH was correctly folded relative to that of native rhGH, with little variation in alpha-helix contents depending on the formulations. The "nonrelease" mechanism after the initial burst release was attributed to nonspontaneously dissociable noncovalent protein aggregation and surface adsorption of rhGH present within the microspheres.
Collapse
Affiliation(s)
- H K Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Taejon, 305-701, South Korea
| | | |
Collapse
|
155
|
Nam YS, Park TG. Protein loaded biodegradable microspheres based on PLGA-protein bioconjugates. J Microencapsul 1999; 16:625-37. [PMID: 10499842 DOI: 10.1080/026520499288816] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Biodegradable poly(D,L-lactic-co-glycolic acid) (PLGA) was chemically conjugated to lysozyme, a model protein drug, by coupling a terminal carboxylic acid in PLGA with primary amine groups present in lysozyme. The conjugation was carried out in dimethylsulphoxide (DMSO) by using carbodiimide as a coupling agent. The PLGA-lysozyme conjugate, dissolved in a co-solvent system of DMSO and methylene chloride, was directly formulated into microspheres by an oil-in-water (O/W) single emulsion solvent evaporation technique. Morphological characteristics of the resultant microspheres, loading efficiencies, and protein release behaviours with protein instability problems were investigated in comparison with those of the microspheres prepared by water-in-oil-water (W/O/W) double emulsion and O/W single emulsion techniques which employed PLGA with unconjugated lysozyme for the formulation.
Collapse
Affiliation(s)
- Y S Nam
- Department of Biological Sciences and Technology, Yusong-gu, Taejon, Korea
| | | |
Collapse
|
156
|
Viswanathan NB, Thomas PA, Pandit JK, Kulkarni MG, Mashelkar RA. Preparation of non-porous microspheres with high entrapment efficiency of proteins by a (water-in-oil)-in-oil emulsion technique. J Control Release 1999; 58:9-20. [PMID: 10021485 DOI: 10.1016/s0168-3659(98)00140-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Emulsification-solvent removal methods have been widely used for encapsulating bioactive macromolecules like proteins and polypeptides in biodegradable polymers. We report, a (water-in-oil)-in-oil emulsion technique wherein proteins and polypeptides differing in molecular weight and shape were encapsulated in polymers of current biomedical interest. When an oil was used as the processing medium in combination with a carefully selected mixed solvent system such that a stable (w/o1/o2 emulsion is formed and solvents are removed by a combination of extraction and evaporation, the entrapment efficiency was high and the product nonporous. The entrapment efficiency of globular proteins exceeded 90% while that of fibrous proteins was around 70%. Fracture studies revealed that the polymer matrix was dense. The mechanism of entrapment involved solvent-induced precipitation of the protein as the microspheres were being formed. The principle of the method will find use in preparation of non-porous polymer microparticles with reduced burst effect.
Collapse
Affiliation(s)
- N B Viswanathan
- Polymer Science and Engineering Group, Chemical Engineering Division, National Chemical Laboratory, Pune 411 008, India
| | | | | | | | | |
Collapse
|
157
|
|
158
|
Park TG, Yong Lee H, Sung Nam Y. A new preparation method for protein loaded poly(D, L-lactic-co-glycolic acid) microspheres and protein release mechanism study. J Control Release 1998; 55:181-91. [PMID: 9795050 DOI: 10.1016/s0168-3659(98)00050-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A new method for encapsulating a model protein, lysozyme into hydrophilic uncapped poly(d,l-lactic-co-glycolic acid) (PLGA) microspheres was developed using an oil/water (O/W) single emulsion technique. Lysozyme powder, which was prepared from lyophilization after adjusting a lysozyme solution pH at 3, was molecularly dissolved in a co-solvent system composed of dimethylsulfoxide (DMSO) and methylene chloride. The resulting organic solution containing PLGA was directly emulsified into an aqueous phase, and the organic solvent phase was extracted and evaporated. Various lysozyme-loaded PLGA microspheres having different morphologies were obtained depending on the relative mixing ratio of the two co-solvents used. In vitro release experiments indicated that an initial lysozyme release rate from the microspheres was mainly controlled by ionic interaction between basic amino acid residues in lysozyme and free carboxylate groups in PLGA polymer chain ends, which was probed by incubating the microspheres in a series of media having different NaCl concentrations. However, the protein release leveled off after about 15 days' incubation. To determine the reason for the protein 'no-release' from biodegradable microspheres, a systematic analysis was carried out. By separately adding 0.5 M NaCl, 5 M guanidine HCl, or 5 mM sodium dodecyl sulfate into the release media during the non-release period, it was possible to selectively identify a specific protein non-release mechanism: ionic interaction, non-covalent aggregation, and/or surface adsorption, respectively. It was found that non-covalent aggregation and surface adsorption of lysozyme within the microspheres were the main cause of no further release, whereas ionic interaction between degrading polymer and protein played an insignificant role in the later stage of the release period. The greater amount of additional lysozyme release by sodium dodecyl sulfate than by guanidine hydrochloride suggested that protein surface adsorption was a more critical factor in protein release than aggregation.
Collapse
Affiliation(s)
- T G Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1 Kusong-dong Yusong-gu, Taejon 305-701, South Korea.
| | | | | |
Collapse
|
159
|
Crotts G, Park TG. Protein delivery from poly(lactic-co-glycolic acid) biodegradable microspheres: release kinetics and stability issues. J Microencapsul 1998; 15:699-713. [PMID: 9818948 DOI: 10.3109/02652049809008253] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this review paper, a variety of critical factors in the PLGA microsphere formulation which might affect the release kinetic rate as well as the protein stability will be examined in detail. Three model proteins, carbonic anhydrase, bovine serum albumin, and lysozyme, which were encapsulated within PLGA microspheres by using the water/oil/water (W/O/W) double emulsion solvent evaporation method are used for the study.
Collapse
Affiliation(s)
- G Crotts
- Warner-Lambert Parke-Davis, Pharmaceutical Delivery Systems R&D, Morris Plains, NJ 07950, USA
| | | |
Collapse
|
160
|
Donath E, Sukhorukov GB, Caruso F, Davis SA, Möhwald H. Neuartige Polymerhohlkörper durch Selbstorganisation von Polyelektrolyten auf kolloidalen Templaten. Angew Chem Int Ed Engl 1998. [DOI: 10.1002/(sici)1521-3757(19980817)110:16<2323::aid-ange2323>3.0.co;2-z] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
161
|
Jain R, Shah NH, Malick AW, Rhodes CT. Controlled drug delivery by biodegradable poly(ester) devices: different preparative approaches. Drug Dev Ind Pharm 1998; 24:703-27. [PMID: 9876519 DOI: 10.3109/03639049809082719] [Citation(s) in RCA: 191] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There has been extensive research on drug delivery by biodegradable polymeric devices since bioresorbable surgical sutures entered the market two decades ago. Among the different classes of biodegradable polymers, the thermoplastic aliphatic poly(esters) such as poly(lactide) (PLA), poly(glycolide) (PGA), and especially the copolymer of lactide and glycolide referred to as poly(lactide-co-glycolide) (PLGA) have generated tremendous interest because of their excellent biocompatibility, biodegradability, and mechanical strength. They are easy to formulate into various devices for carrying a variety of drug classes such as vaccines, peptides, proteins, and micromolecules. Most importantly, they have been approved by the United States Food and Drug Administration (FDA) for drug delivery. This review presents different preparation techniques of various drug-loaded PLGA devices, with special emphasis on preparing microparticles. Certain issues about other related biodegradable polyesters are discussed.
Collapse
Affiliation(s)
- R Jain
- Department of Applied Pharmaceutical Sciences, The University of Rhode Island, Kingston 02881, USA.
| | | | | | | |
Collapse
|
162
|
Bittner B, Morlock M, Koll H, Winter G, Kissel T. Recombinant human erythropoietin (rhEPO) loaded poly(lactide-co-glycolide) microspheres: influence of the encapsulation technique and polymer purity on microsphere characteristics. Eur J Pharm Biopharm 1998; 45:295-305. [PMID: 9653634 DOI: 10.1016/s0939-6411(98)00012-5] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recombinant human erythropoietin (EPO) and fluorescein isothiocyanate-labelled dextran (FITC-dextran) loaded biodegradable microspheres were prepared from poly(lactide-co-glycolide) (PLG) by a modified spray-drying technique. This microencapsulation method was compared with the water-in-oil-in-water (w/o/w) double-emulsion method. As expected, microsphere morphology, particle size and particle size distribution strongly depended on the production process. The spray-drying method was found to have a number of advantages compared to the w/o/w double-emulsion technique. The content of residual dichloromethane (DCM) in the final product was significantly lower in case of the microspheres prepared by spray-drying. Concerning EPO loaded microspheres, spray-drying yielded higher encapsulation efficiencies. Although the microspheres obtained by spray-drying are subjected to intensive mechanical and thermal stress during the preparation, the amount of aggregates of EPO in PLG microspheres were not increased compared to the w/o/w technique. Depending on the manufacturing method, addition of cyclic DL-lactide dimers (referred to as monomers in the following) affected the in vitro release profiles of EPO and FITC-dextran from PLG microspheres. Using differential scanning calorimetry it was shown that these low molecular weight substances only seem to be present inside the microspheres produced by spray-drying. DL-Lactide significantly reduced the initial burst release of both EPO and FITC-dextran. While the following release period of EPO was not affected by the DL-lactide content, a more linear FITC-dextran release pattern could be achieved. It can be concluded that the spray-drying technique provides a number of advantages compared to the w/o/w method. The modulation of protein release using low molecular weight additives is of particular interest for parenteral depot systems.
Collapse
Affiliation(s)
- B Bittner
- Philipps-University, Marburg, Germany
| | | | | | | | | |
Collapse
|
163
|
McGinity JW, O'Donnell PB. Preparation of microspheres by the solvent evaporation technique. Adv Drug Deliv Rev 1997; 28:25-42. [PMID: 10837563 DOI: 10.1016/s0169-409x(97)00049-5] [Citation(s) in RCA: 484] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The microencapsulation process in which the removal of the hydrophobic polymer solvent is achieved by evaporation has been widely reported in recent years for the preparation of microspheres and microcapsules based on biodegradable polymers and copolymers of hydroxy acids. The properties of biodegradable microspheres of poly(lactic acid) (PLA) and poly(lactic-co-glycolic acid) (PLGA) have been extensively investigated. The encapsulation of highly water soluble compounds including proteins and peptides presents formidable challenges to the researcher. The successful encapsulation of such entities requires high drug loading in the microspheres, prevention of protein degradation by the encapsulation method, and predictable release of the drug compound from the microspheres. To achieve these goals, multiple emulsion techniques and other innovative modifications have been made to the conventional solvent evaporation process.
Collapse
Affiliation(s)
- JW McGinity
- Drug Dynamics Institute, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712-1074, USA
| | | |
Collapse
|
164
|
Sah H. Microencapsulation techniques using ethyl acetate as a dispersed solvent: effects of its extraction rate on the characteristics of PLGA microspheres. J Control Release 1997. [DOI: 10.1016/s0168-3659(97)01647-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
165
|
Crotts G, Sah H, Park TG. Adsorption determines in-vitro protein release rate from biodegradable microspheres: quantitative analysis of surface area during degradation. J Control Release 1997. [DOI: 10.1016/s0168-3659(96)01624-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
166
|
Rafati H, Coombes A, Adler J, Holland J, Davis S. Protein-loaded poly(dl-lactide-co-glycolide) microparticles for oral administration: formulation, structural and release characteristics. J Control Release 1997. [DOI: 10.1016/s0168-3659(96)01475-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
167
|
Abstract
The in vitro degradation behaviour of a wide range of poly(D,L-lactic-co-glycolic acid) (PLGA) has been examined in terms of degree of degradation and morphological change during an incubation period of up to 53 d. Gel permeation chromatography and differential scanning calorimetry were employed to characterize their degradation profiles. It was found that amorphous PLGA exhibited a transient multiple crystallization behaviour of D- or L-lactic acid oligomers during degradation. This indicated that the hydrolytic scission of ester bonds tends to primarily target the linkage between glycolic acid and D- or L-lactic acid or glycolic acid. In addition, two distinctive glass transition temperatures appeared when these crystallization phenomena occurred, suggesting the transient presence of fast and slowly eroding polymer domains within microspheres during the degradation. This study supports the heterogeneous bulk degradation for PLGA microspheres which has been proposed recently for a large specimen.
Collapse
Affiliation(s)
- T G Park
- School of Pharmacy, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|