151
|
Factorial design formulation optimization and in vitro characterization of curcumin-loaded PLGA nanoparticles for colon delivery. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.01.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
152
|
Allahyari M, Mohit E. Peptide/protein vaccine delivery system based on PLGA particles. Hum Vaccin Immunother 2016; 12:806-28. [PMID: 26513024 PMCID: PMC4964737 DOI: 10.1080/21645515.2015.1102804] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 09/15/2015] [Accepted: 09/27/2015] [Indexed: 12/19/2022] Open
Abstract
Due to the excellent safety profile of poly (D,L-lactide-co-glycolide) (PLGA) particles in human, and their biodegradability, many studies have focused on the application of PLGA particles as a controlled-release vaccine delivery system. Antigenic proteins/peptides can be encapsulated into or adsorbed to the surface of PLGA particles. The gradual release of loaded antigens from PLGA particles is necessary for the induction of efficient immunity. Various factors can influence protein release rates from PLGA particles, which can be defined intrinsic features of the polymer, particle characteristics as well as protein and environmental related factors. The use of PLGA particles encapsulating antigens of different diseases such as hepatitis B, tuberculosis, chlamydia, malaria, leishmania, toxoplasma and allergy antigens will be described herein. The co-delivery of antigens and immunostimulants (IS) with PLGA particles can prevent the systemic adverse effects of immunopotentiators and activate both dendritic cells (DCs) and natural killer (NKs) cells, consequently enhancing the therapeutic efficacy of antigen-loaded PLGA particles. We will review co-delivery of different TLR ligands with antigens in various models, highlighting the specific strengths and weaknesses of the system. Strategies to enhance the immunotherapeutic effect of DC-based vaccine using PLGA particles can be designed to target DCs by functionalized PLGA particle encapsulating siRNAs of suppressive gene, and disease specific antigens. Finally, specific examples of cellular targeting where decorating the surface of PLGA particles target orally administrated vaccine to M-cells will be highlighted.
Collapse
Affiliation(s)
- Mojgan Allahyari
- Department of Recombinant Protein Production, Research & Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
153
|
Huang L, Tao K, Liu J, Qi C, Xu L, Chang P, Gao J, Shuai X, Wang G, Wang Z, Wang L. Design and Fabrication of Multifunctional Sericin Nanoparticles for Tumor Targeting and pH-Responsive Subcellular Delivery of Cancer Chemotherapy Drugs. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6577-6585. [PMID: 26855027 DOI: 10.1021/acsami.5b11617] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The severe cytotoxicity of cancer chemotherapy drugs limits their clinical applications. Various protein-based nanoparticles with good biocompatibility have been developed for chemotherapy drug delivery in hope of reducing drugs' side effects. Sericin, a natural protein from silk, has no immunogenicity and possesses diverse bioactivities that have prompted sericin's application studies. However, the potential of sericin as a multifunctional nanoscale vehicle for cancer therapy have not been fully explored. Here we report the successful fabrication and characterization of folate-conjugated sericin nanoparticles with cancer-targeting capability for pH-responsive release of doxorubicin (these nanoparticles are termed "FA-SND"). DOX is covalently linked to sericin through pH-sensitive hydrazone bonds that render a pH-triggered release property. The hydrophobicity of DOX and the hydrophilicity of sericin promote the self-assembly of sericin-DOX (SND) nanoconjugates. Folate (FA) is then covalently grafted to SND nanoconjugates as a binding unit for actively targeting cancer cells that overexpress folate receptors. Our characterization study shows that FA-SND nanoparticles exhibit negative surface charges that would reduce nonspecific clearance by circulation. These nanoparticles possess good cytotoxicity and hemocompatibiliy. Acidic environment (pH 5.0) triggers effective DOX release from FA-SND, 5-fold higher than does a neutral condition (pH 7.4). Further, FA-SND nanoparticles specifically target folate-receptor-rich KB cells, and endocytosed into lysosomes, an acidic organelle. The acidic microenvironment of lysosomes promotes a rapid release of DOX to nuclei, producing cancer specific chemo-cytotoxicity. Thus, FA-mediated cancer targeting and lysosomal-acidity promoting DOX release, two sequentially-occurring cellular events triggered by the designed components of FA-SND, form the basis for FA-SND to achieve its localized and intracellular chemo-cytotoxicity. Together, this study suggests that these FA-SND nanoparticles may be a potentially effective carrier particularly useful for delivering hydrophobic chemotherapeutic agents for treating cancers with high-level expression of folate receptors.
Collapse
Affiliation(s)
- Lei Huang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, §Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, ⊥Medical Research Center, Union Hospital, Tongji Medical College, ∥Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Kaixiong Tao
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, §Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, ⊥Medical Research Center, Union Hospital, Tongji Medical College, ∥Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, §Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, ⊥Medical Research Center, Union Hospital, Tongji Medical College, ∥Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Chao Qi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, §Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, ⊥Medical Research Center, Union Hospital, Tongji Medical College, ∥Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Luming Xu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, §Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, ⊥Medical Research Center, Union Hospital, Tongji Medical College, ∥Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Panpan Chang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, §Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, ⊥Medical Research Center, Union Hospital, Tongji Medical College, ∥Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Jinbo Gao
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, §Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, ⊥Medical Research Center, Union Hospital, Tongji Medical College, ∥Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Xiaoming Shuai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, §Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, ⊥Medical Research Center, Union Hospital, Tongji Medical College, ∥Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Guobin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, §Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, ⊥Medical Research Center, Union Hospital, Tongji Medical College, ∥Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, §Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, ⊥Medical Research Center, Union Hospital, Tongji Medical College, ∥Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, §Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, ⊥Medical Research Center, Union Hospital, Tongji Medical College, ∥Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan 430022, China
| |
Collapse
|
154
|
Self-assembly PEGylation assists SLN-paclitaxel delivery inducing cancer cell apoptosis upon internalization. Int J Pharm 2016; 501:180-9. [DOI: 10.1016/j.ijpharm.2016.01.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 12/11/2022]
|
155
|
Abstract
During the last decades significant progress has been made in the field of cancer immunotherapy. However, cancer vaccines have not been successful in clinical trials due to poor immunogenicity of antigen, limitations of safety associated with traditional systemic delivery as well as the complex regulation of the immune system in tumor microenvironment. In recent years, nanotechnology-based delivery systems have attracted great interest in the field of immunotherapy since they provide new opportunities to fight the cancer. In particular, for delivery of cancer vaccines, multifunctional nanoparticles present many advantages such as targeted delivery to immune cells, co-delivery of therapeutic agents, reduced adverse outcomes, blocked immune checkpoint molecules, and amplify immune activation via the use of stimuli-responsive or immunostimulatory materials. In this review article, we highlight recent progress and future promise of multifunctional nanoparticles that have been applied to enhance the efficiency of cancer vaccines.
Collapse
Affiliation(s)
- Tayebeh Saleh
- a Department of Nanobiotechnology , Faculty of Biological Sciences, Tarbiat Modares University , Tehran , Iran
| | - Seyed Abbas Shojaosadati
- b Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University , Tehran , Iran
| |
Collapse
|
156
|
Nanoparticle-Mediated Targeting of Cyclosporine A Enhances Cardioprotection Against Ischemia-Reperfusion Injury Through Inhibition of Mitochondrial Permeability Transition Pore Opening. Sci Rep 2016; 6:20467. [PMID: 26861678 PMCID: PMC4748220 DOI: 10.1038/srep20467] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/05/2016] [Indexed: 12/16/2022] Open
Abstract
Myocardial ischemia-reperfusion (IR) injury limits the therapeutic effects of early reperfusion therapy for acute myocardial infarction (MI), in which mitochondrial permeability transition pore (mPTP) opening plays a critical role. Our aim was to determine whether poly-lactic/glycolic acid (PLGA) nanoparticle-mediated mitochondrial targeting of a molecule that inhibits mPTP opening, cyclosporine A (CsA), enhances CsA-induced cardioprotection. In an in vivo murine IR model, intravenously injected PLGA nanoparticles were located at the IR myocardium mitochondria. Treatment with nanoparticles incorporated with CsA (CsA-NP) at the onset of reperfusion enhanced cardioprotection against IR injury by CsA alone (as indicated by the reduced MI size at a lower CsA concentration) through the inhibition of mPTP opening. Left ventricular remodeling was ameliorated 28 days after IR, but the treatment did not affect inflammatory monocyte recruitment to the IR heart. In cultured rat cardiomyocytes in vitro, mitochondrial PLGA nanoparticle-targeting was observed after the addition of hydrogen peroxide, which represents oxidative stress during IR, and was prevented by CsA. CsA-NP can be developed as an effective mPTP opening inhibitor and may protect organs from IR injury.
Collapse
|
157
|
Optical and electron microscopy study of laser-based intracellular molecule delivery using peptide-conjugated photodispersible gold nanoparticle agglomerates. J Nanobiotechnology 2016; 14:2. [PMID: 26745990 PMCID: PMC4706709 DOI: 10.1186/s12951-015-0155-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/29/2015] [Indexed: 12/25/2022] Open
Abstract
Background Cell-penetrating peptides (CPPs) can act as carriers for therapeutic molecules such as drugs and genetic constructs for medical applications. The triggered release of the molecule into the cytoplasm can be crucial to its effective delivery. Hence, we implemented and characterized laser interaction with defined gold nanoparticle agglomerates conjugated to CPPs which enables efficient endosomal rupture and intracellular release of molecules transported. Results Gold nanoparticles generated by pulsed laser ablation in liquid were conjugated with CPPs forming agglomerates and the intracellular release of molecules was triggered via pulsed laser irradiation (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\lambda$$\end{document}λ = 532 nm, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\tau _{pulse}$$\end{document}τpulse = 1 ns). The CPPs enhance the uptake of the agglomerates along with the cargo which can be co-incubated with the agglomerates. The interaction of incident laser light with gold nanoparticle agglomerates leads to heat deposition and field enhancement in the vicinity of the particles. This highly precise effect deagglomerates the nanoparticles and disrupts the enclosing endosomal membrane. Transmission electron microscopy images confirmed this rupture for radiant exposures of 25 mJ/cm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{2}$$\end{document}2 and above. Successful intracellular release was shown using the fluorescent dye calcein. For a radiant exposure of 35 mJ/cm\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$^{2}$$\end{document}2 we found calcein delivery in 81 % of the treated cells while maintaining a high percentage of cell viability. Furthermore, cell proliferation and metabolic activity were not reduced 72 h after the treatment. Conclusion CPPs trigger the uptake of the gold nanoparticle agglomerates via endocytosis and co-resident molecules in the endosomes are released by applying laser irradiation, preventing their intraendosomal degradation. Due to the highly localized effect, the cell membrane integrity is not affected. Therefore, this technique can be an efficient tool for spatially and temporally confined intracellular release. The utilization of specifically designed photodispersible gold nanoparticle agglomerates (65 nm) can open novel avenues in imaging and molecule delivery. Due to the induced deagglomeration the primary, small particles (~5 nm) are more likely to be removed from the body. Electronic supplementary material The online version of this article (doi:10.1186/s12951-015-0155-8) contains supplementary material, which is available to authorized users.
Collapse
|
158
|
Current applications of nanoparticles in infectious diseases. J Control Release 2016; 224:86-102. [PMID: 26772877 DOI: 10.1016/j.jconrel.2016.01.008] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 01/03/2016] [Accepted: 01/05/2016] [Indexed: 02/06/2023]
Abstract
For decades infections have been treated easily with drugs. However, in the 21st century, they may become lethal again owing to the development of antimicrobial resistance. Pathogens can become resistant by means of different mechanisms, such as increasing the time they spend in the intracellular environment, where drugs are unable to reach therapeutic levels. Moreover, drugs are also subject to certain problems that decrease their efficacy. This requires the use of high doses, and frequent administrations must be implemented, causing adverse side effects or toxicity. The use of nanoparticle systems can help to overcome such problems and increase drug efficacy. Accordingly, there is considerable current interest in their use as antimicrobial agents against different pathogens like bacteria, virus, fungi or parasites, multidrug-resistant strains and biofilms; as targeting vectors towards specific tissues; as vaccines and as theranostic systems. This review begins with an overview of the different types and characteristics of nanoparticles used to deliver drugs to the target, followed by a review of current research and clinical trials addressing the use of nanoparticles within the field of infectious diseases.
Collapse
|
159
|
Sadat SMA, Jahan ST, Haddadi A. Effects of Size and Surface Charge of Polymeric Nanoparticles on <i>in Vitro</i> and <i>in Vivo</i> Applications. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/jbnb.2016.72011] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
160
|
Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. APPLIED NANOSCIENCE 2015. [DOI: 10.1007/s13204-015-0510-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
161
|
Sun M, Yang C, Zheng J, Wang M, Chen M, Le DQS, Kjems J, Bünger CE. Enhanced efficacy of chemotherapy for breast cancer stem cells by simultaneous suppression of multidrug resistance and antiapoptotic cellular defense. Acta Biomater 2015; 28:171-182. [PMID: 26415776 DOI: 10.1016/j.actbio.2015.09.029] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 09/02/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022]
Abstract
While chemotherapy is universally recognized as a frontline treatment strategy for breast cancer, it is not always successful; among the leading causes of treatment failure is existing and/or acquired multidrug resistance. Cancer stem cells (CSCs), which constitute a minority of the cells of a tumor, are acknowledged to be responsible for increased resistance to chemo-drugs through a combination of increased expression of ATP-binding cassette transporters (ABC transporters), an increased anti-apoptotic defense, and/or the ability for extensive DNA repair like normal stem cells. Consequently, more effective therapy, especially targeted to CSCs, is urgently required. We studied the characteristics of 231-CSCs (CD44+/CD24-) sorted from human MDA-MB-231 breast cancer cells and demonstrated that 231-CSCs exhibited enhanced capacities for proliferation, migration, tumorigenesis and chemotherapy resistance. To address these multifunctional facets of CSCs, we devised a non-ionic surfactant-based vesicle (niosome) co-delivery system to simultaneously deliver siRNAs, targeted to both the ABC transporter (ABCG2) and the anti-apoptosis defense gene (BCL2), and doxorubicin (DOX) to CSCs. The rationale is to sensitize CSCs to DOX by down regulating the drug-resistance gene ABCG2 and simultaneously induce apoptosis by lowering BCL2 expression. The co-delivery system (CDS) successfully delivered siRNAs and DOX to the cytoplasm and nuclei, respectively, and resulted in a down-regulation of ABCG2- and BCL2 mRNAs in CSCs by 60% and 65%, respectively, compared to the control. A corresponding decrease in protein expression was observed using Western blotting. The IC50 of DOX in CSCs concurrently decreased significantly. Our result established CDS as a promising multi-drug delivery platform for cancer treatment. STATEMENT OF SIGNIFICANCE Cancer stem cells (CSCs) are acknowledged to be responsible for increased resistance to chemo-drugs through a combination of increased expression of ABC transporters, an increased anti-apoptotic defense, and/or the ability for extensive DNA repair like normal stem cells. Consequently, effective therapy, especially to CSCs, is urgently required. In current study, we studied the characteristics of 231-CSCs sorted from human MDA-MB-231 breast cancer cells and found that 231-CSCs possessed enhanced proliferation, migration, tumorigenesis, and DOX resistance. We employed a non-ionic surfactant-based vesicle (niosome) delivery system to simultaneously deliver siRNAs targeted to multi-drug resistance genes, and DOX to kill 231-CSCs. The CDS showed an enhanced therapeutic effect by resensitizing 231-CSCs to DOX and may constitute a promising candidate for cancer chemotherapy.
Collapse
Affiliation(s)
- Ming Sun
- Orthopaedic Research Laboratory, Aarhus University Hospital, Denmark.
| | - Chuanxu Yang
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark.
| | - Jin Zheng
- Department of Biomedicine, Aarhus University, Denmark
| | - Miao Wang
- Orthopaedic Research Laboratory, Aarhus University Hospital, Denmark
| | - Muwan Chen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark
| | | | - Jørgen Kjems
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Denmark.
| | - Cody Eric Bünger
- Orthopaedic Research Laboratory, Aarhus University Hospital, Denmark
| |
Collapse
|
162
|
Shape-directed compartmentalized delivery of a nanoparticle-conjugated small-molecule activator of an epigenetic enzyme in the brain. J Control Release 2015; 217:151-9. [DOI: 10.1016/j.jconrel.2015.08.043] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 08/17/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022]
|
163
|
Platel A, Carpentier R, Becart E, Mordacq G, Betbeder D, Nesslany F. Influence of the surface charge of PLGA nanoparticles on their in vitro genotoxicity, cytotoxicity, ROS production and endocytosis. J Appl Toxicol 2015; 36:434-44. [PMID: 26487569 DOI: 10.1002/jat.3247] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/17/2022]
Abstract
With the ongoing commercialization of nanotechnology products, human exposure to nanoparticles (NPs) is set to increase dramatically and an evaluation of their potential adverse effects is essential. Surface charge, among other physico-chemicals parameters, is a key criterion that should be considered when using a definition for nanomaterials in a regulatory context. It has recently been recognized as an important factor in determining the toxicity of NPs; however, a complete understanding of the mechanisms involved is still lacking. In this context, the aim of the present study was to investigate the influence of the surface charge modification of NPs on in vitro toxicity assays. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles bearing different surface charges, positive(+), neutral(n) or negative(-), were synthesized. In vitro genotoxicity assays (micronucleus and comet assays) coupled with an assessment of cytotoxicity, were performed in different cell lines (L5178Y mouse lymphoma cells, TK6 human B-lymphoblastoid cells and 16HBE14o- human bronchial epithelial cells). Reactive oxygen species (ROS) production and endocytosis studies were also performed. Our results showed that PLGA(+) NPs were cytotoxic. They are endocytosed by the clathrin pathway and induced ROS in the three cell lines. They led to chromosomal aberrations without primary DNA damage in 16HBE14o- cells, suggesting that aneuploidy may be considered as an important biomarker when assessing the genotoxic potential of NPs. Moreover, 16HBE14o- cells seem to be more suitable for the in vitro screening of inhaled NPs than the regulatory L5178Y and TK6 cells.
Collapse
Affiliation(s)
- Anne Platel
- Université de Lille 2, 59000, Lille, France.,Institut Pasteur de Lille, Laboratoire de Toxicologie Génétique, 1 rue du Professeur Calmette, BP 245, 59019, Lille, France.,EA4483, Université Lille 2, Faculté de Médecine Pôle Recherche, 1 Place de Verdun, 59045, Lille, France
| | - Rodolphe Carpentier
- CHRU de Lille, Inserm U995-LIRIC, 59000, Lille, France.,Université d'Artois, 62300, Lens, France
| | - Elodie Becart
- Université de Lille 2, 59000, Lille, France.,Institut Pasteur de Lille, Laboratoire de Toxicologie Génétique, 1 rue du Professeur Calmette, BP 245, 59019, Lille, France
| | - Gwendoline Mordacq
- Université de Lille 2, 59000, Lille, France.,Institut Pasteur de Lille, Laboratoire de Toxicologie Génétique, 1 rue du Professeur Calmette, BP 245, 59019, Lille, France
| | - Didier Betbeder
- Université de Lille 2, 59000, Lille, France.,CHRU de Lille, Inserm U995-LIRIC, 59000, Lille, France.,Université d'Artois, 62300, Lens, France
| | - Fabrice Nesslany
- Université de Lille 2, 59000, Lille, France.,Institut Pasteur de Lille, Laboratoire de Toxicologie Génétique, 1 rue du Professeur Calmette, BP 245, 59019, Lille, France.,EA4483, Université Lille 2, Faculté de Médecine Pôle Recherche, 1 Place de Verdun, 59045, Lille, France
| |
Collapse
|
164
|
Niazi JH, Verma SK, Niazi S, Qureshi A. In vitro HER2 protein-induced affinity dissociation of carbon nanotube-wrapped anti-HER2 aptamers for HER2 protein detection. Analyst 2015; 140:243-9. [PMID: 25365825 DOI: 10.1039/c4an01665c] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new in vitro assay was developed to detect human epidermal growth factor receptor 2 (HER2) protein, based on affinity dissociation of carbon nanotube (CNT)-wrapped anti-HER2 ssDNA aptamers. First, we selected an anti-HER2 ssDNA aptamer (H2) using an in vitro serial evolution of ligands by an exponential enrichment (SELEX) process. Then the fluorescently labelled H2 ssDNAs were tightly packed on CNTs that had previously been coupled with magnetic microbeads (MBs), forming MB-CNT-H2 hybrids. The loading capacity of these MB-CNTs heterostructures (2.8 × 10(8)) was determined to be 0.025 to 3.125 μM of H2. HER2 protein-induced H2 dissociation occurred from MB-CNT-H2 hybrids, which was specifically induced by the target HER2 protein, with a dissociation constant (Kd) of 270 nM. The stoichiometric affinity dissociation ratio with respect to H2-to-HER2 protein was shown to be approximately 1 : 1. Our results demonstrated that the developed assay can be an effective approach in detecting native forms of disease biomarkers in free solutions or in biological samples, for accurate diagnosis.
Collapse
Affiliation(s)
- Javed H Niazi
- Sabanci University Nanotechnology Research and Application Center, Orta Mah, 34956 Istanbul, Turkey.
| | | | | | | |
Collapse
|
165
|
Jhaveri A, Torchilin V. Intracellular delivery of nanocarriers and targeting to subcellular organelles. Expert Opin Drug Deliv 2015; 13:49-70. [DOI: 10.1517/17425247.2015.1086745] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
166
|
Tripathi P, Dwivedi P, Khatik R, Jaiswal AK, Dube A, Shukla P, Mishra PR. Development of 4-sulfated N-acetyl galactosamine anchored chitosan nanoparticles: A dual strategy for effective management of Leishmaniasis. Colloids Surf B Biointerfaces 2015; 136:150-9. [PMID: 26381698 DOI: 10.1016/j.colsurfb.2015.08.037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/14/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022]
Abstract
The present investigation reports the modification of chitosan nanoparticles with a ligand 4-sulfated N-acetyl galactosamine (4-SO4GalNAc) for efficient chemotherapy in leishmaniasis (SCNPs) by using dual strategy of targeting. These (SCNPs) were loaded with amphotericin B (AmB) for specific delivery to infected macrophages. Developed AmB loaded SCNPs (AmB-SCNPs) had mean particle size of 333 ± 7 nm, and showed negative zeta potential (-13.9 ± 0.016 mV). Flow cytometric analysis revealed enhanced uptake of AmB-SCNPs in J774A.1, when compared to AmB loaded unmodified chitosan NPs (AmB-CNPs). AmB-SCNPs provide significantly higher localization of AmB in liver and spleen as compared to AmB-CNPs after i.v. administration. The study stipulates that 4-SO4GalNAc assures of targeting, resident macrophages. Highly significant anti-leishmanial activity (P<0.05 compared with AmB-CNPs) was observed with AmB-SCNPs, causing 75.30 ± 3.76% inhibition of splenic parasitic burdens. AmB-CNPs and plain AmB caused only 63.89 ± 3.44% and 47.56 ± 2.37% parasite inhibition, respectively, in Leishmania-infected hamsters (P<0.01 for AmB-SCNPs versus plain AmB and AmB-CNPs versus plain AmB).
Collapse
Affiliation(s)
- Priyanka Tripathi
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Pankaj Dwivedi
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Renuka Khatik
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anil Kumar Jaiswal
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anuradha Dube
- Parasitology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Poonam Shukla
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Prabhat Ranjan Mishra
- Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.
| |
Collapse
|
167
|
Park JS, Suryaprakash S, Lao YH, Leong KW. Engineering mesenchymal stem cells for regenerative medicine and drug delivery. Methods 2015; 84:3-16. [PMID: 25770356 PMCID: PMC4526354 DOI: 10.1016/j.ymeth.2015.03.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 02/19/2015] [Accepted: 03/02/2015] [Indexed: 12/14/2022] Open
Abstract
Researchers have applied mesenchymal stem cells (MSC) to a variety of therapeutic scenarios by harnessing their multipotent, regenerative, and immunosuppressive properties with tropisms toward inflamed, hypoxic, and cancerous sites. Although MSC-based therapies have been shown to be safe and effective to a certain degree, the efficacy remains low in most cases when MSC are applied alone. To enhance their therapeutic efficacy, researchers have equipped MSC with targeted delivery functions using genetic engineering, therapeutic agent incorporation, and cell surface modification. MSC can be genetically modified virally or non-virally to overexpress therapeutic proteins that complement their innate properties. MSC can also be primed with non-peptidic drugs or magnetic nanoparticles for enhanced efficacy and externally regulated targeting, respectively. Furthermore, MSC can be functionalized with targeting moieties to augment their homing toward therapeutic sites using enzymatic modification, chemical conjugation, or non-covalent interactions. These engineering techniques are still works in progress, requiring optimization to improve the therapeutic efficacy and targeting effectiveness while minimizing any loss of MSC function. In this review, we will highlight the advanced techniques of engineering MSC, describe their promise and the challenges of translation into clinical settings, and suggest future perspectives on realizing their full potential for MSC-based therapy.
Collapse
Affiliation(s)
- Ji Sun Park
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Smruthi Suryaprakash
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Yeh-Hsing Lao
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States.
| |
Collapse
|
168
|
Jong T, Pérez-López AM, Johansson EMV, Lilienkampf A, Bradley M. Flow and Microwave-Assisted Synthesis of N-(Triethylene glycol)glycine Oligomers and Their Remarkable Cellular Transporter Activities. Bioconjug Chem 2015; 26:1759-65. [PMID: 26155805 DOI: 10.1021/acs.bioconjchem.5b00307] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- ThingSoon Jong
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| | - Ana M. Pérez-López
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| | - Emma M. V. Johansson
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| | - Annamaria Lilienkampf
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| | - Mark Bradley
- School
of Chemistry, EaStCHEM, University of Edinburgh, Joseph Black Building, King’s
Buildings,
West Mains Road, EH9 3FJ Edinburgh, United Kingdom
| |
Collapse
|
169
|
Kariminezhad H, Habibi M, Mirzababayi N. Nanosized ZSM-5 will improve photodynamic therapy using Methylene blue. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 148:107-112. [DOI: 10.1016/j.jphotobiol.2015.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 02/21/2015] [Accepted: 03/08/2015] [Indexed: 12/19/2022]
|
170
|
Su F, Shen X, Hu Y, Darcos V, Li S. Biocompatibility of thermo-responsive PNIPAAm-PLLA-PNIPAAm triblock copolymer as potential drug carrier. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3582] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Feng Su
- College of Chemical Engineering; Qingdao University of Science and Technology; 53 Zhengzhou Road Qingdao 266042 China
| | - Xin Shen
- College of Chemical Engineering; Qingdao University of Science and Technology; 53 Zhengzhou Road Qingdao 266042 China
| | - Yanfei Hu
- Institut des Biomolécules Max Mousseron, UMR CNRS 5247 - Equipe Biopolymères Artificiels; Université de Montpellier; Montpellier 34093 France
| | - Vincent Darcos
- Institut des Biomolécules Max Mousseron, UMR CNRS 5247 - Equipe Biopolymères Artificiels; Université de Montpellier; Montpellier 34093 France
| | - Suming Li
- Institut Européen des Membranes, UMR CNRS 5635; Université de Montpellier; Montpellier 34095 France
| |
Collapse
|
171
|
Leite PEC, Pereira MR, Granjeiro JM. Hazard effects of nanoparticles in central nervous system: Searching for biocompatible nanomaterials for drug delivery. Toxicol In Vitro 2015; 29:1653-60. [PMID: 26116398 DOI: 10.1016/j.tiv.2015.06.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/10/2015] [Accepted: 06/23/2015] [Indexed: 12/19/2022]
Abstract
Nanostructured materials are widely used in many applications of industry and biomedical fields. Nanoparticles emerges as potential pharmacological carriers that can be applied in the regenerative medicine, diagnosis and drug delivery. Different types of nanoparticles exhibit ability to cross the brain blood barrier (BBB) and accumulate in several brain areas. Then, efforts have been done to develop safer nanocarrier systems to treat disorders of central nervous system (CNS). However, several in vitro and in vivo studies demonstrated that nanoparticles of different materials exhibit a wide range of neurotoxic effects inducing neuroinflammation and cognitive impairment. For this reason, polymeric nanoparticles arise as a promisor alternative due to their biocompatible and biodegradable properties. After an overview of CNS location and neurotoxic effects of translocated nanoparticles, this review addresses the use of polymeric nanoparticles to the treatment of neuroinfectious diseases, as acquired immunodeficiency syndrome (AIDS) and meningitis.
Collapse
Affiliation(s)
- Paulo Emílio Corrêa Leite
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences - DIMAV, National Institute of Metrology Quality and Technology - INMETRO, 25250-020 Duque de Caxias, RJ, Brazil.
| | - Mariana Rodrigues Pereira
- Laboratory of Chemical Signaling in Nervous System, Biology Institute, Fluminense Federal University, 24020-141 Niteroi, RJ, Brazil
| | - José Mauro Granjeiro
- Laboratory of Bioengineering and in Vitro Toxicology, Directory of Metrology Applied to Life Sciences - DIMAV, National Institute of Metrology Quality and Technology - INMETRO, 25250-020 Duque de Caxias, RJ, Brazil; Dental School, Fluminense Federal University, 24020-140 Niteroi, RJ, Brazil
| |
Collapse
|
172
|
Kim BJ, Cheong H, Hwang BH, Cha HJ. Mussel-Inspired Protein Nanoparticles Containing Iron(III)-DOPA Complexes for pH-Responsive Drug Delivery. Angew Chem Int Ed Engl 2015; 54:7318-22. [PMID: 25968933 DOI: 10.1002/anie.201501748] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/04/2015] [Indexed: 12/17/2022]
Abstract
A novel bioinspired strategy for protein nanoparticle (NP) synthesis to achieve pH-responsive drug release exploits the pH-dependent changes in the coordination stoichiometry of iron(III)-3,4-dihydroxyphenylalanine (DOPA) complexes, which play a major cross-linking role in mussel byssal threads. Doxorubicin-loaded polymeric NPs that are based on Fe(III)-DOPA complexation were thus synthesized with a DOPA-modified recombinant mussel adhesive protein through a co-electrospraying process. The release of doxorubicin was found to be predominantly governed by a change in the structure of the Fe(III)-DOPA complexes induced by an acidic pH value. It was also demonstrated that the fabricated NPs exhibited effective cytotoxicity towards cancer cells through efficient cellular uptake and cytosolic release. Therefore, it is anticipated that Fe(III)-DOPA complexation can be successfully utilized as a new design principle for pH-responsive NPs for diverse controlled drug-delivery applications.
Collapse
Affiliation(s)
- Bum Jin Kim
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea)
| | - Hogyun Cheong
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea)
| | - Byeong Hee Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea).,Division of Bioengineering, Incheon National University, Incheon 406-772 (Korea)
| | - Hyung Joon Cha
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 790-784 (Korea).
| |
Collapse
|
173
|
Kim BJ, Cheong H, Hwang BH, Cha HJ. Mussel-Inspired Protein Nanoparticles Containing Iron(III)-DOPA Complexes for pH-Responsive Drug Delivery. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201501748] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
174
|
Shen X, Su F, Dong J, Fan Z, Duan Y, Li S. In vitrobiocompatibility evaluation of bioresorbable copolymers prepared froml-lactide, 1, 3-trimethylene carbonate, and glycolide for cardiovascular applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:497-514. [DOI: 10.1080/09205063.2015.1030992] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
175
|
Zhang Y, Lundberg P, Diether M, Porsch C, Janson C, Lynd NA, Ducani C, Malkoch M, Malmström E, Hawker CJ, Nyström AM. Histamine-functionalized copolymer micelles as a drug delivery system in 2D and 3D models of breast cancer. J Mater Chem B 2015; 3:2472-2486. [PMID: 26257912 PMCID: PMC4527560 DOI: 10.1039/c4tb02051k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Histamine functionalized block copolymers based on poly(allyl glycidyl ether)-b-poly(ethylene oxide) (PAGE-b-PEO) were prepared with different ratios of histamine and octyl or benzyl groups using UV-initiated thiol-ene click chemistry. At neutral pH, the histamine units are uncharged and hydrophobic, while in acidic environments, such as in the endosome, lysosomes, or extracellular sites of tumours, the histamine groups are positively charged and hydrophilic. pH responsible polymer drug delivery systems is a promising route to site specific delivery of drugs and offers the potential to avoid side effects of systemic treatment. Our detailed in vitro experiments of the efficacy of drug delivery and the intracellular localization characteristics of this library of NPs in 2D and 3D cultures of breast cancer revealed that the 50% histamine-modified polymer loaded with DOX exhibited rapid accumulation in the nucleus of free DOX within 2 h. Confocal studies showed enhanced mitochondrial localization and lysosomal escape when compared to controls. From these combined studies, it was shown that by accurately tuning the structure of the initial block copolymers, the resulting self-assembled NPs can be designed to exploit histamine as an endosomal escape trigger and the octyl/benzyl units give rise to a hydrophobic core resulting in highly efficacious drug delivery systems (DDS) with control over intracellular localization. Optimization and rational control of the intracellular localization of both DDS and the parent drug can give nanomedicines a substantial increase in efficacy and should be explored in future studies.
Collapse
Affiliation(s)
- Yuning Zhang
- IMM Institute of Environmental Medicine, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Pontus Lundberg
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
| | - Maren Diether
- IMM Institute of Environmental Medicine, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Christian Porsch
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| | - Caroline Janson
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
| | - Nathaniel A. Lynd
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
| | - Cosimo Ducani
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Michael Malkoch
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| | - Eva Malmström
- KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Fibre and Polymer Technology, SE-100 44, Stockholm, Sweden
| | - Craig J. Hawker
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA
| | - Andreas M. Nyström
- IMM Institute of Environmental Medicine, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| |
Collapse
|
176
|
Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 2015; 93:52-79. [PMID: 25813885 DOI: 10.1016/j.ejpb.2015.03.018] [Citation(s) in RCA: 1139] [Impact Index Per Article: 113.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 02/08/2023]
Abstract
Cancer is the second worldwide cause of death, exceeded only by cardiovascular diseases. It is characterized by uncontrolled cell proliferation and an absence of cell death that, except for hematological cancers, generates an abnormal cell mass or tumor. This primary tumor grows thanks to new vascularization and, in time, acquires metastatic potential and spreads to other body sites, which causes metastasis and finally death. Cancer is caused by damage or mutations in the genetic material of the cells due to environmental or inherited factors. While surgery and radiotherapy are the primary treatment used for local and non-metastatic cancers, anti-cancer drugs (chemotherapy, hormone and biological therapies) are the choice currently used in metastatic cancers. Chemotherapy is based on the inhibition of the division of rapidly growing cells, which is a characteristic of the cancerous cells, but unfortunately, it also affects normal cells with fast proliferation rates, such as the hair follicles, bone marrow and gastrointestinal tract cells, generating the characteristic side effects of chemotherapy. The indiscriminate destruction of normal cells, the toxicity of conventional chemotherapeutic drugs, as well as the development of multidrug resistance, support the need to find new effective targeted treatments based on the changes in the molecular biology of the tumor cells. These novel targeted therapies, of increasing interest as evidenced by FDA-approved targeted cancer drugs in recent years, block biologic transduction pathways and/or specific cancer proteins to induce the death of cancer cells by means of apoptosis and stimulation of the immune system, or specifically deliver chemotherapeutic agents to cancer cells, minimizing the undesirable side effects. Although targeted therapies can be achieved directly by altering specific cell signaling by means of monoclonal antibodies or small molecules inhibitors, this review focuses on indirect targeted approaches that mainly deliver chemotherapeutic agents to molecular targets overexpressed on the surface of tumor cells. In particular, we offer a detailed description of different cytotoxic drug carriers, such as liposomes, carbon nanotubes, dendrimers, polymeric micelles, polymeric conjugates and polymeric nanoparticles, in passive and active targeted cancer therapy, by enhancing the permeability and retention or by the functionalization of the surface of the carriers, respectively, emphasizing those that have received FDA approval or are part of the most important clinical studies up to date. These drug carriers not only transport the chemotherapeutic agents to tumors, avoiding normal tissues and reducing toxicity in the rest of the body, but also protect cytotoxic drugs from degradation, increase the half-life, payload and solubility of cytotoxic agents and reduce renal clearance. Despite the many advantages of all the anticancer drug carriers analyzed, only a few of them have reached the FDA approval, in particular, two polymer-protein conjugates, five liposomal formulations and one polymeric nanoparticle are available in the market, in contrast to the sixteen FDA approval of monoclonal antibodies. However, there are numerous clinical trials in progress of polymer-protein and polymer-drug conjugates, liposomal formulations, including immunoliposomes, polymeric micelles and polymeric nanoparticles. Regarding carbon nanotubes or dendrimers, there are no FDA approvals or clinical trials in process up to date due to their unresolved toxicity. Moreover, we analyze in detail the more promising and advanced preclinical studies of the particular case of polymeric nanoparticles as carriers of different cytotoxic agents to active and passive tumor targeting published in the last 5 years, since they have a huge potential in cancer therapy, being one of the most widely studied nano-platforms in this field in the last years. The interest that these formulations have recently achieved is stressed by the fact that 90% of the papers based on cancer therapeutics with polymeric nanoparticles have been published in the last 6 years (PubMed search).
Collapse
|
177
|
He W, Lv Y, Zhao Y, Xu C, Jin Z, Qin C, Yin L. Core-shell structured gel-nanocarriers for sustained drug release and enhanced antitumor effect. Int J Pharm 2015; 484:163-71. [PMID: 25724136 DOI: 10.1016/j.ijpharm.2015.02.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 02/13/2015] [Accepted: 02/23/2015] [Indexed: 12/18/2022]
Abstract
The present paper attempted to develop temperature-sensitive and core-shell structured gel-nanocarriers (gel-NCs) for paclitaxel (PTX) with 12-hydroxystearic acid (12-HSA) as an organic gelator, which aims at sustaining drug release over time and thus improves the therapeutic effect. The gel-NCs were prepared by a mechanical mixing and high-pressure homogenization method. The gelation transition temperature (Tgel) of the organic phase contained in the cores of the gel-NCs was optimized by a stirring method. The gel-NCs were characterized in terms of the particle size, morphology and in vitro drug release. The in vivo studies, including the antitumor effects on H22 tumor-bearing mice, biocompatibility and toxicity in mice, were performed. Gel-NCs with approximately 170 nm were prepared successfully, and the gelation of the liquid cores at 37°C was achieved, while the amount of gelator was 3.75% (w/w). Due to the gelation of the cores, sustained drug release over time was obtained. Moreover, the PTX-loaded gel-NCs suppressed tumor growth more efficiently than the conventional nanocarriers with better in vivo biocompatibility and no toxicity to other healthy organs. In conclusion, the 12-HSA organogel-based NCs appear to be promising systems for the sustained release of active compounds for a long time and thus improve the therapeutic outcome.
Collapse
Affiliation(s)
- Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yaqi Lv
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yaping Zhao
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chaoran Xu
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Zhu Jin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Chao Qin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lifang Yin
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
178
|
Jyothi KR, Beloor J, Jo A, Nguyen MN, Choi TG, Kim JH, Akter S, Lee SK, Maeng CH, Baik HH, Kang I, Ha J, Kim SS. Liver-targeted cyclosporine A-encapsulated poly (lactic-co-glycolic) acid nanoparticles inhibit hepatitis C virus replication. Int J Nanomedicine 2015; 10:903-21. [PMID: 25673987 PMCID: PMC4321639 DOI: 10.2147/ijn.s74723] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Therapeutic options for hepatitis C virus (HCV) infection have been limited by drug resistance and adverse side effects. Targeting the host factor cyclophilin A (CypA), which is essential for HCV replication, offers a promising strategy for antiviral therapy. However, due to its immunosuppressive activity and severe side effects, clinical application of cyclosporine A (CsA) has been limited as an antiviral agent. To overcome these drawbacks, we have successfully developed a liver-specific, sustained drug delivery system by conjugating the liver-targeting peptide (LTP) to PEGylated CsA-encapsulated poly (lactic-co-glycolic) acid (PLGA) nanoparticles. Furthermore, our delivery system exhibited high specificity to liver, thus contributing to the reduced immunosuppressive effect and toxicity profile of CsA. Finally, targeted nanoparticles were able to effectively inhibit viral replication in vitro and in an HCV mouse model. As a proof of principle, we herein show that our delivery system is able to negate the adverse effects of CsA and produce therapeutic effects in an HCV mouse model.
Collapse
Affiliation(s)
- K R Jyothi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jagadish Beloor
- Department of Bioengineering and Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
| | - Ara Jo
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Minh Nam Nguyen
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Tae Gyu Choi
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Jin-Hwan Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sang-Kyung Lee
- Department of Bioengineering and Institute for Bioengineering and Biopharmaceutical Research, Hanyang University, Seoul, Republic of Korea
| | - Chi Hoon Maeng
- Department of Medical Oncology and Hematology, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Hyung Hwan Baik
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
179
|
Jiang Y, Tang R, Duncan B, Jiang Z, Yan B, Mout R, Rotello VM. Direct cytosolic delivery of siRNA using nanoparticle-stabilized nanocapsules. Angew Chem Int Ed Engl 2015; 54:506-10. [PMID: 25393227 PMCID: PMC4314441 DOI: 10.1002/anie.201409161] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Indexed: 12/17/2022]
Abstract
The use of nanoparticle-stabilized nanocapsules (NPSCs) for the direct cytosolic delivery of siRNA is reported. In this approach, siRNA is complexed with cationic arginine-functionalized gold nanoparticles by electrostatic interactions, with the resulting ensemble self-assembled onto the surface of fatty acid nanodroplets to form a NPSC/siRNA nanocomplex. The complex rapidly delivers siRNA into the cytosol through membrane fusion, a mechanism supported by cellular uptake studies. Using destabilized green fluorescent protein (deGFP) as a target, 90% knockdown was observed in HEK293 cells. Moreover, the delivery of siRNA targeting polo-like kinase 1 (siPLK1) efficiently silenced PLK1 expression in cancer cells with concomitant cytotoxicity.
Collapse
Affiliation(s)
- Ying Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| | - Rui Tang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| | - Bradley Duncan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| | - Ziwen Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| | - Bo Yan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| | - Rubul Mout
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA, Tel: (+1) 413-545-2058
| |
Collapse
|
180
|
Hwang TL, Aljuffali IA, Lin CF, Chang YT, Fang JY. Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: lipid nanoparticles versus polymeric nanoparticles. Int J Nanomedicine 2015; 10:371-85. [PMID: 25609950 PMCID: PMC4294622 DOI: 10.2147/ijn.s73017] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This report compares the effect of lipid and polymeric nanoparticles upon human neutrophils in the presence of cationic surfactants. Nanostructured lipid carriers and poly(lactic-co-glycolic) acid nanoparticles were manufactured as lipid and polymeric systems, respectively. Some cytotoxic and proinflammatory mediators such as lactate dehydrogenase (LDH), elastase, O2•−, and intracellular Ca2+ were examined. The nanoparticles showed a size of 170–225 nm. Incorporation of cetyltrimethylammonium bromide or soyaethyl morpholinium ethosulfate, the cationic surfactant, converted zeta potential from a negative to a positive charge. Nanoparticles without cationic surfactants revealed a negligible change on immune and inflammatory responses. Cationic surfactants in both nanoparticulate and free forms induced cell death and the release of mediators. Lipid nanoparticles generally demonstrated a greater response compared to polymeric nanoparticles. The neutrophil morphology observed by electron microscopy confirmed this trend. Cetyltrimethylammonium bromide as the coating material showed more significant activation of neutrophils than soyaethyl morpholinium ethosulfate. Confocal microscope imaging displayed a limited internalization of nanoparticles into neutrophils. It is proposed that cationic nanoparticles interact with the cell membrane, triggering membrane disruption and the following Ca2+ influx. The elevation of intracellular Ca2+ induces degranulation and oxidative stress. The consequence of these effects is cytotoxicity and cell death. Caution should be taken when selecting feasible nanoparticulate formulations and cationic additives for consideration of applicability and toxicity.
Collapse
Affiliation(s)
- Tsong-Long Hwang
- Cell Pharmacology Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan ; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan ; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| | - Yuan-Ting Chang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan ; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan ; Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
181
|
He W, Jin Z, Lv Y, Cao H, Yao J, Zhou J, Yin L. Shell-crosslinked hybrid nanoparticles for direct cytosolic delivery for tumor therapy. Int J Pharm 2015; 478:762-72. [DOI: 10.1016/j.ijpharm.2014.12.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 12/09/2014] [Accepted: 12/16/2014] [Indexed: 12/18/2022]
|
182
|
Gnecchi M, Pisano F, Bariani R. microRNA and Cardiac Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 887:119-41. [PMID: 26662989 DOI: 10.1007/978-3-319-22380-3_7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heart diseases are a very common health problem in developed as well as developing countries. In particular, ischemic heart disease and heart failure represent a plague for the patients and for the society. Loss of cardiac tissue after myocardial infarction or dysfunctioning tissue in nonischemic cardiomyopathies may result in cardiac failure. Despite great advancements in the treatment of these diseases, there is a substantial unmet need for novel therapies, ideally addressing repair and regeneration of the damaged or lost myocardium. Along this line, cardiac cell based therapies have gained substantial attention. Three main approaches are currently under investigation: stem cell therapy with either embryonic or adult stem cells; generation of patient-specific induced pluripotent stem cells; stimulation of endogenous regeneration trough direct reprogramming of fibroblasts into cardiomyocytes, activation of resident cardiac stem cells or induction of native resident cardiomyocytes to reenter the cell cycle. All these strategies need to be optimized since their efficiency is low.It has recently become clear that cardiac signaling and transcriptional pathways are intimately intertwined with microRNA molecules which act as modulators of cardiac development, function, and disease. Moreover, miRNA also regulates stem cell differentiation. Here we describe how miRNA may circumvent hurdles that hamper the field of cardiac regeneration and stem cell therapy, and how miRNA may result as the most suitable solution for the damaged heart.
Collapse
Affiliation(s)
- Massimiliano Gnecchi
- Department of Molecular Medicine - Cardiology Unit, University of Pavia, Pavia, Italy.
- Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Institute of Research and Treatment Foundation Polyclinic San Matteo, Pavia, Italy.
- Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Institute of Research and Treatment Foundation Polyclinic San Matteo, Pavia, Italy.
- Department of Medicine, University of Cape Town, Cape Town, South Africa.
| | - Federica Pisano
- Department of Cardiothoracic and Vascular Sciences - Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Institute of Research and Treatment Foundation Polyclinic San Matteo, Pavia, Italy
- Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Institute of Research and Treatment Foundation Polyclinic San Matteo, Pavia, Italy
| | - Riccardo Bariani
- Department of Molecular Medicine - Cardiology Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
183
|
Cosco D, Paolino D, De Angelis F, Cilurzo F, Celia C, Di Marzio L, Russo D, Tsapis N, Fattal E, Fresta M. Aqueous-core PEG-coated PLA nanocapsules for an efficient entrapment of water soluble anticancer drugs and a smart therapeutic response. Eur J Pharm Biopharm 2015; 89:30-9. [DOI: 10.1016/j.ejpb.2014.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/12/2014] [Accepted: 11/17/2014] [Indexed: 12/18/2022]
|
184
|
Chen Y, Gao DY, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev 2015; 81:128-41. [PMID: 24859533 PMCID: PMC5009470 DOI: 10.1016/j.addr.2014.05.009] [Citation(s) in RCA: 502] [Impact Index Per Article: 50.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 04/15/2014] [Accepted: 05/15/2014] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs), small non-coding RNAs, can regulate post-transcriptional gene expressions and silence a broad set of target genes. miRNAs, aberrantly expressed in cancer cells, play an important role in modulating gene expressions, thereby regulating downstream signaling pathways and affecting cancer formation and progression. Oncogenes or tumor suppressor genes regulated by miRNAs mediate cell cycle progression, metabolism, cell death, angiogenesis, metastasis and immunosuppression in cancer. Recently, miRNAs have emerged as therapeutic targets or tools and biomarkers for diagnosis and therapy monitoring in cancer. Since miRNAs can regulate multiple cancer-related genes simultaneously, using miRNAs as a therapeutic approach plays an important role in cancer therapy. However, one of the major challenges of miRNA-based cancer therapy is to achieve specific, efficient and safe systemic delivery of therapeutic miRNAs in vivo. This review discusses the key challenges to the development of the carriers for miRNA-based therapy and explores current strategies to systemically deliver miRNAs to cancer without induction of toxicity.
Collapse
Affiliation(s)
- Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC.
| | - Dong-Yu Gao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
| | - Leaf Huang
- Division of Molecular Pharmaceutics and Center for Nanotechnology in Drug Delivery, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
185
|
Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release 2014; 200:138-57. [PMID: 25545217 DOI: 10.1016/j.jconrel.2014.12.030] [Citation(s) in RCA: 1246] [Impact Index Per Article: 113.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/18/2022]
Abstract
Cancer is a leading cause of death worldwide. Currently available therapies are inadequate and spur demand for improved technologies. Rapid growth in nanotechnology towards the development of nanomedicine products holds great promise to improve therapeutic strategies against cancer. Nanomedicine products represent an opportunity to achieve sophisticated targeting strategies and multi-functionality. They can improve the pharmacokinetic and pharmacodynamic profiles of conventional therapeutics and may thus optimize the efficacy of existing anti-cancer compounds. In this review, we discuss state-of-the-art nanoparticles and targeted systems that have been investigated in clinical studies. We emphasize the challenges faced in using nanomedicine products and translating them from a preclinical level to the clinical setting. Additionally, we cover aspects of nanocarrier engineering that may open up new opportunities for nanomedicine products in the clinic.
Collapse
|
186
|
Cooper DL, Harirforoosh S. Effect of formulation variables on preparation of celecoxib loaded polylactide-co-glycolide nanoparticles. PLoS One 2014; 9:e113558. [PMID: 25502102 PMCID: PMC4264745 DOI: 10.1371/journal.pone.0113558] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 10/28/2014] [Indexed: 12/31/2022] Open
Abstract
Polymer based nanoparticle formulations have been shown to increase drug bioavailability and/or reduce drug adverse effects. Nonsteroidal anti-inflammatory drugs (e.g. celecoxib) reduce prostaglandin synthesis and cause side effects such as gastrointestinal and renal complications. The aim of this study was to formulate celecoxib entrapped poly lactide-co-glycolide based nanoparticles through a solvent evaporation process using didodecyldimethylammonium bromide or poly vinyl alcohol as stabilizer. Nanoparticles were characterized for zeta potential, particle size, entrapment efficiency, and morphology. Effects of stabilizer concentration (0.1, 0.25, 0.5, and 1% w/v), drug amount (5, 10, 15, and 20 mg), and emulsifier (lecithin) on nanoparticle characterization were examined for formula optimization. The use of 0.1, 0.25, and 0.5% w/v didodecyldimethylammonium bromide resulted in a more than 5-fold increase in zeta potential and a more than 1.5-fold increase in entrapment efficiency with a reduction in particle size over 35%, when compared to stabilizer free formulation. Nanoparticle formulations were also highly influenced by emulsifier and drug amount. Using 0.25% w/v didodecyldimethylammonium bromide NP formulations, peak zeta potential was achieved using 15 mg celecoxib with emulsifier (17.15±0.36 mV) and 20 mg celecoxib without emulsifier (25.00±0.18 mV). Peak NP size reduction and entrapment efficiency was achieved using 5 mg celecoxib formulations with (70.87±1.24 nm and 95.55±0.66%, respectively) and without (92.97±0.51 nm and 95.93±0.27%, respectively) emulsifier. In conclusion, formulations using 5 mg celecoxib with 0.25% w/v didodecyldimethylammonium bromide concentrations produced nanoparticles exhibiting enhanced size reduction and entrapment efficiency. Furthermore, emulsifier free formulations demonstrated improved zeta potential when compared to formulations containing emulsifier (p<0.01). Therefore, our results suggest the use of emulsifier free 5 mg celecoxib drug formulations containing 0.25% w/v didodecyldimethylammonium bromide for production of polymeric NPs that demonstrate enhanced zeta potential, small particle size, and high entrapment efficiency.
Collapse
Affiliation(s)
- Dustin L. Cooper
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee, United States of America
| | - Sam Harirforoosh
- Department of Pharmaceutical Sciences, Gatton College of Pharmacy, East Tennessee State University, Johnson City, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
187
|
Lucero-Acuña A, Jeffery JJ, Abril ER, Nagle RB, Guzman R, Pagel MD, Meuillet EJ. Nanoparticle delivery of an AKT/PDK1 inhibitor improves the therapeutic effect in pancreatic cancer. Int J Nanomedicine 2014; 9:5653-65. [PMID: 25516710 PMCID: PMC4263440 DOI: 10.2147/ijn.s68511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The K-ras mutation in pancreatic cancer can inhibit drug delivery and increase drug resistance. This is exemplified by the therapeutic effect of PH-427, a small molecule inhibitor of AKT/PDK1, which has shown a good therapeutic effect against a BxPC3 pancreatic cancer model that has K-ras, but has a poor therapeutic effect against a MiaPaCa-2 pancreatic cancer model with mutant K-ras. To increase the therapeutic effect of PH-427 against the MiaPaCa-2 pancreatic cancer model with mutant K-ras, we encapsulated PH-427 into poly(lactic-co-glycolic acid) nanoparticles (PNP) to form drug-loaded PH-427-PNP. PH-427 showed a biphasic release from PH-427-PNP over 30 days during studies in sodium phosphate buffer, and in vitro studies revealed that the PNP was rapidly internalized into MiaPaCa-2 tumor cells, suggesting that PNP can improve PH-427 delivery into cells harboring mutant K-ras. In vivo studies of an orthotopic MiaPaCa-2 pancreatic cancer model showed reduced tumor load with PH-427-PNP as compared with treatment using PH-427 alone or with no treatment. Ex vivo studies confirmed the in vivo results, suggesting that PNP can improve drug delivery to pancreatic cancer harboring mutant K-ras.
Collapse
Affiliation(s)
- Armando Lucero-Acuña
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Justin J Jeffery
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Edward R Abril
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA ; Department of Pathology, University of Arizona, Tucson, AZ, USA
| | - Raymond B Nagle
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA ; Department of Pathology, University of Arizona, Tucson, AZ, USA
| | - Roberto Guzman
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Mark D Pagel
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA ; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA ; Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA ; Department of Medical Imaging, University of Arizona, Tucson, AZ, USA
| | - Emmanuelle J Meuillet
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA ; Department of Molecular and Cell Biology, University of Arizona, Tucson, AZ, USA ; Department of Nutritional Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
188
|
Jiang Y, Tang R, Duncan B, Jiang Z, Yan B, Mout R, Rotello VM. Direct Cytosolic Delivery of siRNA Using Nanoparticle-Stabilized Nanocapsules. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201409161] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
189
|
The chemotherapeutic potential of PEG-b-PLGA copolymer micelles that combine chloroquine as autophagy inhibitor and docetaxel as an anti-cancer drug. Biomaterials 2014; 35:9144-54. [DOI: 10.1016/j.biomaterials.2014.07.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 07/20/2014] [Indexed: 12/16/2022]
|
190
|
Natarajan JV, Nugraha C, Ng XW, Venkatraman S. Sustained-release from nanocarriers: a review. J Control Release 2014; 193:122-38. [DOI: 10.1016/j.jconrel.2014.05.029] [Citation(s) in RCA: 181] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/10/2014] [Accepted: 05/17/2014] [Indexed: 12/18/2022]
|
191
|
Sadhukha T, O'Brien TD, Prabha S. Nano-engineered mesenchymal stem cells as targeted therapeutic carriers. J Control Release 2014; 196:243-51. [PMID: 25456830 DOI: 10.1016/j.jconrel.2014.10.015] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/07/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022]
Abstract
Poor availability in deep-seated solid tumors is a significant challenge that limits the effectiveness of currently used anticancer drugs. Approaches that can specifically enhance drug delivery to the tumor tissue can potentially improve therapeutic efficacy. In our current studies, we used nano-engineered mesenchymal stem cells (nano-engineered MSCs) as tumor-targeted therapeutic carriers. In addition to their exquisite tumor homing capabilities, MSCs overexpress efflux transporters such as P-glycoprotein and are highly drug resistant. The inherent tumor-tropic and drug-resistant properties make MSCs ideal carriers for toxic payload. Nano-engineered MSCs were prepared by treating human MSCs with drug-loaded polymeric nanoparticles. Incorporating nanoparticles in MSCs did not affect their viability, differentiation or migration potential. Nano-engineered MSCs induced dose-dependent cytotoxicity in A549 lung adenocarcinoma cells and MA148 ovarian cancer cells in vitro. An orthotopic A549 lung tumor model was used to monitor the in vivo distribution of nanoengineered MSCs. Intravenous injection of nanoparticles resulted in non-specific biodistribution, with significant accumulation in the liver and spleen while nano-engineered MSCs demonstrated selective accumulation and retention in lung tumors. These studies demonstrate the feasibility of developing nano-engineered MSCs loaded with high concentration of anticancer agents without affecting their tumor-targeting or drug resistance properties.
Collapse
Affiliation(s)
- Tanmoy Sadhukha
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA
| | - Timothy D O'Brien
- Stem Cell Institute and Veterinary Population Medicine Department, University of Minnesota, 1365 Gortner Avenue, Saint Paul, MN 55108, USA
| | - Swayam Prabha
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA; Center for Translational Drug Delivery, University of Minnesota, 308 Harvard Street SE, Minneapolis, MN 55455, USA.
| |
Collapse
|
192
|
Geary SM, Salem AK. Exploiting the tumor phenotype using biodegradable submicron carriers of chemotherapeutic drugs. Crit Rev Oncog 2014; 19:269-80. [PMID: 25271435 DOI: 10.1615/critrevoncog.2014011518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tumor tissues possess characteristics that distinguish them from healthy tissues and make them attractive targets for submicron carriers of chemotherapeutic drugs (CTX). CTX are generally administered systemically in free form to cancer patients resulting in unwanted cytotoxic effects and placing limitations on the deliverable CTX dose. In an effort to raise the therapeutic index of CTX there are now liposome-based CTX formulations in clinical use that are more tumor specific than the free form of CTX. However, progression to liposome-based chemotherapy in the clinic has been slow and there have been no approved formulations introduced in the last decade. Alternative carrier systems such as those made from the biodegradable polymer poly(lactic-co-glycolic) acid (PLGA) have been investigated in preclinical settings with promising outcomes. Here we review the principle behind biodegradable submicron carriers as CTX delivery vehicles for solid tumors with a specific focUS on liposomes and PLGA-based carriers, highlighting the strengths and weaknesses of each system.
Collapse
Affiliation(s)
- Sean M Geary
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa
| | - Aliasger K Salem
- Division of Pharmaceutics and Translational Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa
| |
Collapse
|
193
|
Evangelatov A, Skrobanska R, Mladenov N, Petkova M, Yordanov G, Pankov R. Epirubicin loading in poly(butyl cyanoacrylate) nanoparticles manifests via altered intracellular localization and cellular response in cervical carcinoma (HeLa) cells. Drug Deliv 2014; 23:2235-2244. [PMID: 25268149 DOI: 10.3109/10717544.2014.962117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Drug loading into nanocarriers is used to facilitate drug delivery to target cells and organs. We have previously reported a change in cellular localization of epirubicin after loading to poly(butyl cyanoacrylate) (PBCA) nanoparticles. We aimed to further investigate the altered cellular localization and cellular responses to the described drug formulation. MATERIALS AND METHODS HeLa cells were treated with epirubicin-loaded PBCA nanoparticles prepared by the pre-polymerization method. A systematic study was performed to evaluate the formulation cytotoxicity. Cellular localization and uptake of the formulation as well as cellular response to the treatment were evaluated. RESULTS Our studies revealed decreased cytotoxicity of the nanoparticle-formulated epirubicin compared to the free drug as well as a noticeable change in the drug's intracellular localization. Epirubicin-loaded nanoparticles were internalized via endocytosis, accumulated inside endosomal vesicles and induced a two-fold stronger pro-apoptotic signal when compared to the free drug. The level of the tumor suppressor protein p53 in HeLa cells increased significantly upon treatment with free epirubicin, but remained relatively unchanged when cells were treated with equivalent dose of nanoparticle-loaded drug, suggesting a possible shift from p53-dependent DNA/RNA intercalation-based induction of cytotoxicity by free epirubicin to a caspase 3-induced cell death by the epirubicin-loaded PBCA formulation.
Collapse
Affiliation(s)
| | - Ralica Skrobanska
- a Faculty of Biology, Sofia University St. Kliment Ohridski , Sofia , Bulgaria and
| | - Nikola Mladenov
- a Faculty of Biology, Sofia University St. Kliment Ohridski , Sofia , Bulgaria and
| | - Milena Petkova
- a Faculty of Biology, Sofia University St. Kliment Ohridski , Sofia , Bulgaria and
| | - Georgi Yordanov
- b Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski , Sofia , Bulgaria
| | - Roumen Pankov
- a Faculty of Biology, Sofia University St. Kliment Ohridski , Sofia , Bulgaria and
| |
Collapse
|
194
|
Dördelmann G, Kozlova D, Karczewski S, Lizio R, Knauer S, Epple M. Calcium phosphate increases the encapsulation efficiency of hydrophilic drugs (proteins, nucleic acids) into poly(d,l-lactide-co-glycolide acid) nanoparticles for intracellular delivery. J Mater Chem B 2014; 2:7250-7259. [DOI: 10.1039/c4tb00922c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
195
|
Zhang X, Yang Y, Liang X, Zeng X, Liu Z, Tao W, Xiao X, Chen H, Huang L, Mei L. Enhancing therapeutic effects of docetaxel-loaded dendritic copolymer nanoparticles by co-treatment with autophagy inhibitor on breast cancer. Am J Cancer Res 2014; 4:1085-95. [PMID: 25285162 PMCID: PMC4173759 DOI: 10.7150/thno.9933] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/30/2014] [Indexed: 12/13/2022] Open
Abstract
Dendrimers are synthetic nanocarriers that comprise a highly branched spherical polymer as new, efficient tools for drug delivery. However, the fate of nanocarriers after being internalized into cells has seldom been studied. Docetaxel loaded dendritic copolymer H40-poly(D,L-lactide) nanoparticles, referred to as “DTX-H40-PLA NPs”, were prepared and used as a model to evaluate whether the NPs were sequestered by autophagy and fused with lysosomes. Besides being degraded through the endolysosomal pathway, the DTX-loaded H40-PLA NPs were also sequestered by autophagosomes and degraded through the autolysosomal pathway. DTX-loaded H40-PLA NPs may stop exerting beneficial effects after inducing autophagy of human MCF-7 cancer cells. Co-delivery of autophagy inhibitor such as chloroquine and chemotherapeutic drug DTX by dendritic copolymer NPs greatly enhanced cancer cell killing in vitro, and decreased both the volume and weight of the tumors in severe combined immunodeficient mice. These findings provide valuable evidence for development of nanomedicine such as dendritic copolymer NPs for clinical application.
Collapse
|
196
|
Wang EC, Wang AZ. Nanoparticles and their applications in cell and molecular biology. Integr Biol (Camb) 2014; 6:9-26. [PMID: 24104563 DOI: 10.1039/c3ib40165k] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanoparticles can be engineered with distinctive composition, size, shape, and surface chemistry to enable novel techniques in a wide range of biological applications. The unique properties of nanoparticles and their behavior in biological milieu also enable exciting and integrative approaches to studying fundamental biological questions. This review will provide an overview of various types of nanoparticles and concepts of targeting nanoparticles. We will also discuss the advantages and recent applications of using nanoparticles as tools for drug delivery, imaging, sensing, and for the understanding of basic biological processes.
Collapse
Affiliation(s)
- Edina C Wang
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | |
Collapse
|
197
|
Yang B, Lv Y, Zhu JY, Han YT, Jia HZ, Chen WH, Feng J, Zhang XZ, Zhuo RX. A pH-responsive drug nanovehicle constructed by reversible attachment of cholesterol to PEGylated poly(l-lysine) via catechol-boronic acid ester formation. Acta Biomater 2014; 10:3686-95. [PMID: 24879311 DOI: 10.1016/j.actbio.2014.05.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 05/09/2014] [Accepted: 05/16/2014] [Indexed: 12/14/2022]
Abstract
The present work reports the construction of a drug delivery nanovehicle via a pH-sensitive assembly strategy for improved cellular internalization and intracellular drug liberation. Through spontaneous formation of boronate linkage in physiological conditions, phenylboronic acid-modified cholesterol was able to attach onto catechol-pending methoxypoly(ethylene glycol)-block-poly(l-lysine). This comb-type polymer can self-organize into a micellar nanoconstruction that is able to effectively encapsulate poorly water-soluble agents. The blank micelles exhibited negligible in vitro cytotoxicity, yet doxorubicin (DOX)-loaded micelles could effectively induce cell death at a level comparable to free DOX. Owing to the acid-labile feature of the boronate linkage, a reduction in environmental pH from pH 7.4 to 5.0 could trigger the dissociation of the nanoconstruction, which in turn could accelerate the liberation of entrapped drugs. Importantly, the blockage of endosomal acidification in HeLa cells by NH4Cl treatment significantly decreased the nuclear uptake efficiency and cell-killing effect mediated by the DOX-loaded nanoassembly, suggesting that acid-triggered destruction of the nanoconstruction is of significant importance in enhanced drug efficacy. Moreover, confocal fluorescence microscopy and flow cytometry assay revealed the effective internalization of the nanoassemblies, and their cellular uptake exhibited a cholesterol dose-dependent profile, indicating the contribution of introduced cholesterol functionality to the transmembrane process of the nanoassembly.
Collapse
Affiliation(s)
- Bin Yang
- Key Laboratory of Biomedical Polymers (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yin Lv
- Key Laboratory of Biomedical Polymers (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jing-Yi Zhu
- Key Laboratory of Biomedical Polymers (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yun-Tao Han
- Key Laboratory of Biomedical Polymers (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Hui-Zhen Jia
- Key Laboratory of Biomedical Polymers (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China.
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers (Ministry of Education), Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| |
Collapse
|
198
|
Sadhukha T, Prabha S. Encapsulation in nanoparticles improves anti-cancer efficacy of carboplatin. AAPS PharmSciTech 2014; 15:1029-38. [PMID: 24831091 DOI: 10.1208/s12249-014-0139-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 04/24/2014] [Indexed: 12/11/2022] Open
Abstract
Poor cellular uptake contributes to high dose requirement and limited therapeutic efficacy of the platinum-based anticancer drug carboplatin. Delivery systems that can improve the cellular accumulation of carboplatin will, therefore, likely improve its therapeutic potential. The objective of this study was to evaluate nanoparticles composed of the biodegradable polymer, poly(D, L-lactide-co-glycolide), for carboplatin delivery to tumor cells. Carboplatin-loaded nanoparticles were formulated by double emulsion-solvent evaporation technique. Nanoparticles demonstrated sustained release of carboplatin over 7 days. Cellular uptake of carboplatin encapsulated in nanoparticles was several fold higher than that with free carboplatin in A549 (lung) and MA148 (ovarian) tumor cells. In vitro cytotoxicity studies showed that encapsulation of carboplatin in nanoparticles resulted in a remarkable reduction in the IC50 of carboplatin in several cell lines (up to 280-fold in some cells). Confocal microscopic analysis revealed the presence of carboplatin nanoparticles in several cellular compartments including lysosomes, cytoplasm, and the nucleus. These results demonstrate an enhanced cellular uptake of carboplatin through encapsulation in PLGA nanoparticles and suggest that improved therapeutic efficacy and reduced toxicity may be achieved with this approach.
Collapse
|
199
|
Ahmed S, Hayashi F, Nagashima T, Matsumura K. Protein cytoplasmic delivery using polyampholyte nanoparticles and freeze concentration. Biomaterials 2014; 35:6508-18. [PMID: 24814426 DOI: 10.1016/j.biomaterials.2014.04.030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Accepted: 04/10/2014] [Indexed: 12/18/2022]
|
200
|
Sau S, Agarwalla P, Mukherjee S, Bag I, Sreedhar B, Pal-Bhadra M, Patra CR, Banerjee R. Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor-targeted gold nanoparticle. NANOSCALE 2014; 6:6745-54. [PMID: 24824564 DOI: 10.1039/c4nr00974f] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of 'exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of 'endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of 'endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics.
Collapse
Affiliation(s)
- Samaresh Sau
- Biomaterials Group, CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Tarnaka, Uppal Road, Hyderabad 500007, India.
| | | | | | | | | | | | | | | |
Collapse
|