151
|
Solomon BD, Hadley DW, Pineda-Alvarez DE, Kamat A, Teer JK, Cherukuri PF, Hansen NF, Cruz P, Young AC, Berkman BE, Chandrasekharappa SC, Mullikin JC, Mullikin JC. Incidental medical information in whole-exome sequencing. Pediatrics 2012; 129:e1605-11. [PMID: 22585771 PMCID: PMC3362899 DOI: 10.1542/peds.2011-0080] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Genomic technologies, such as whole-exome sequencing, are a powerful tool in genetic research. Such testing yields a great deal of incidental medical information, or medical information not related to the primary research target. We describe the management of incidental medical information derived from whole-exome sequencing in the research context. We performed whole-exome sequencing on a monozygotic twin pair in which only 1 child was affected with congenital anomalies and applied an institutional review board-approved algorithm to determine what genetic information would be returned. Whole-exome sequencing identified 79525 genetic variants in the twins. Here, we focus on novel variants. After filtering artifacts and excluding known single nucleotide polymorphisms and variants not predicted to be pathogenic, the twins had 32 novel variants in 32 genes that were felt to be likely to be associated with human disease. Eighteen of these novel variants were associated with recessive disease and 18 were associated with dominantly manifesting conditions (variants in some genes were potentially associated with both recessive and dominant conditions), but only 1 variant ultimately met our institutional review board-approved criteria for return of information to the research participants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Benjamin E. Berkman
- Department of Bioethics, Clinical Center, and Office of the Clinical Director, and
| | - Settara C. Chandrasekharappa
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | | | | |
Collapse
|
152
|
Schrijver I, Galli SJ. Between hype and hope: whole-genome sequencing in clinical medicine. Per Med 2012; 9:243-246. [PMID: 29758791 DOI: 10.2217/pme.11.76] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Iris Schrijver
- Departments of Pathology & Pediatrics, L235, Stanford University Medical Center, 300 Pasteur Drive, Stanford, CA 94305, USA and Center for Genomics & Personalized Medicine, Stanford University Medical Center, Stanford, CA, USA.
| | - Stephen J Galli
- Center for Genomics & Personalized Medicine, Stanford University Medical Center, Stanford, CA, USA and Departments of Pathology & Microbiology & Immunology, Stanford University Medical Center, Stanford, CA, USA
| |
Collapse
|
153
|
Patowary A, Purkanti R, Singh M, Chauhan RK, Bhartiya D, Dwivedi OP, Chauhan G, Bharadwaj D, Sivasubbu S, Scaria V. Systematic analysis and functional annotation of variations in the genome of an Indian individual. Hum Mutat 2012; 33:1133-40. [PMID: 22461382 DOI: 10.1002/humu.22091] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 03/05/2012] [Indexed: 01/02/2023]
Abstract
Whole genome sequencing of personal genomes has revealed a large repertoire of genomic variations and has provided a rich template for identification of common and rare variants in genomes in addition to understanding the genetic basis of diseases. The widespread application of personal genome sequencing in clinical settings for predictive and preventive medicine has been limited due to the lack of comprehensive computational analysis pipelines. We have used next-generation sequencing technology to sequence the whole genome of a self-declared healthy male of Indian origin. We have generated around 28X of the reference human genome with over 99% coverage. Analysis revealed over 3 million single nucleotide variations and about 490,000 small insertion-deletion events including several novel variants. Using this dataset as a template, we designed a comprehensive computational analysis pipeline for the systematic analysis and annotation of functionally relevant variants in the genome. This study follows a systematic and intuitive data analysis workflow to annotate genome variations and its potential functional effects. Moreover, we integrate predictive analysis of pharmacogenomic traits with emphasis on drugs for which pharmacogenomic testing has been recommended. This study thus provides the template for genome-scale analysis of personal genomes for personalized medicine.
Collapse
Affiliation(s)
- Ashok Patowary
- Genomics and Molecular Medicine, CSIR Institute of Genomics and IntegrativeBiology, Council of Scientific and Industrial Research, Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Thorogood A, Knoppers BM, Dondorp WJ, de Wert GMWR. Whole-genome sequencing and the physician. Clin Genet 2012; 81:511-3. [PMID: 22404433 DOI: 10.1111/j.1399-0004.2012.01868.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A Thorogood
- Centre of Genomics & Policy, Faculty of Medicine, Department of Human Genetics, McGill University, Montreal, QC H3A 1A1, Canada.
| | | | | | | |
Collapse
|
155
|
Rodríguez-Santiago B, Armengol L. Tecnologías de secuenciación de nueva generación en diagnóstico genético pre- y postnatal. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.diapre.2012.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
156
|
Nesterova IV, Hupert ML, Witek MA, Soper SA. Hydrodynamic shearing of DNA in a polymeric microfluidic device. LAB ON A CHIP 2012; 12:1044-1047. [PMID: 22314498 DOI: 10.1039/c2lc21122j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
With the advent of next-generation sequencing (NGS) systems and the associated high throughput they afford, the input to these machines requires manageable lengths of fragments (~1000 bp) produced from chromosomal DNAs. Therefore, it is critical to develop devices that can shear DNA in a controlled fashion. We report a polymer-based microfluidic device that establishes an efficient and inexpensive platform with performance comparable to a commercially available bench-top system.
Collapse
Affiliation(s)
- Irina V Nesterova
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70820, USA
| | | | | | | |
Collapse
|
157
|
Valencia CA, Rhodenizer D, Bhide S, Chin E, Littlejohn MR, Keong LM, Rutkowski A, Bonnemann C, Hegde M. Assessment of target enrichment platforms using massively parallel sequencing for the mutation detection for congenital muscular dystrophy. J Mol Diagn 2012; 14:233-46. [PMID: 22426012 DOI: 10.1016/j.jmoldx.2012.01.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 01/02/2012] [Accepted: 01/18/2012] [Indexed: 11/30/2022] Open
Abstract
Sequencing individual genes by Sanger sequencing is a time-consuming and costly approach to resolve clinically heterogeneous genetic disorders. Panel testing offers the ability to efficiently and cost-effectively screen all of the genes for a particular genetic disorder. We assessed the analytical sensitivity and specificity of two different enrichment technologies, solution-based hybridization and microdroplet-based PCR target enrichment, in conjunction with next-generation sequencing (NGS), to identify mutations in 321 exons representing 12 different genes involved with congenital muscular dystrophies. Congenital muscular dystrophies present diagnostic challenges due to phenotypic variability, lack of standard access to and inherent difficulties with muscle immunohistochemical stains, and a general lack of clinician awareness. NGS results were analyzed across several parameters, including sequencing metrics and genotype concordance with Sanger sequencing. Genotyping data showed that both enrichment technologies produced suitable calls for use in clinical laboratories. However, microdroplet-based PCR target enrichment is more appropriate for a clinical laboratory, due to excellent sequence specificity and uniformity, reproducibility, high coverage of the target exons, and the ability to distinguish the active gene versus known pseudogenes. Regardless of the method, exons with highly repetitive and high GC regions are not well enriched and require Sanger sequencing for completeness. Our study demonstrates the successful application of targeted sequencing in conjunction with NGS to screen for mutations in hundreds of exons in a genetically heterogeneous human disorder.
Collapse
Affiliation(s)
- C Alexander Valencia
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Ku CS, Cooper DN, Polychronakos C, Naidoo N, Wu M, Soong R. Exome sequencing: dual role as a discovery and diagnostic tool. Ann Neurol 2012; 71:5-14. [PMID: 22275248 DOI: 10.1002/ana.22647] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Recent developments in high-throughput sequence capture methods and next-generation sequencing technologies have now made exome sequencing a viable approach to elucidate the genetic basis of Mendelian disorders with hitherto unknown etiology. In addition, exome sequencing is increasingly being employed as a diagnostic tool for specific genetic diseases, particularly in the context of those disorders characterized by significant genetic and phenotypic heterogeneity, for example, Charcot-Marie-Tooth disease and congenital disorders of glycosylation. Such disorders are challenging to interrogate with conventional polymerase chain reaction-Sanger sequencing methods, because of the inherent difficulty in prioritizing candidate genes for diagnostic testing. Here, we explore the value of exome sequencing as a diagnostic tool and discuss whether exome sequencing can come to serve a dual role in diagnosis and discovery. We summarize the current status of exome sequencing, the technical challenges facing it, and its adaptation to diagnostics, and make recommendations for the use of exome sequencing as a routine diagnostic tool. Finally, we discuss pertinent ethical concerns, such as the use of exome sequencing data, originally generated in a diagnostic context, in research investigations.
Collapse
Affiliation(s)
- Chee-Seng Ku
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.
| | | | | | | | | | | |
Collapse
|
159
|
Rossetti S, Hopp K, Sikkink RA, Sundsbak JL, Lee YK, Kubly V, Eckloff BW, Ward CJ, Winearls CG, Torres VE, Harris PC. Identification of gene mutations in autosomal dominant polycystic kidney disease through targeted resequencing. J Am Soc Nephrol 2012; 23:915-33. [PMID: 22383692 DOI: 10.1681/asn.2011101032] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Mutations in two large multi-exon genes, PKD1 and PKD2, cause autosomal dominant polycystic kidney disease (ADPKD). The duplication of PKD1 exons 1-32 as six pseudogenes on chromosome 16, the high level of allelic heterogeneity, and the cost of Sanger sequencing complicate mutation analysis, which can aid diagnostics of ADPKD. We developed and validated a strategy to analyze both the PKD1 and PKD2 genes using next-generation sequencing by pooling long-range PCR amplicons and multiplexing bar-coded libraries. We used this approach to characterize a cohort of 230 patients with ADPKD. This process detected definitely and likely pathogenic variants in 115 (63%) of 183 patients with typical ADPKD. In addition, we identified atypical mutations, a gene conversion, and one missed mutation resulting from allele dropout, and we characterized the pattern of deep intronic variation for both genes. In summary, this strategy involving next-generation sequencing is a model for future genetic characterization of large ADPKD populations.
Collapse
Affiliation(s)
- Sandro Rossetti
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Lane HY, Tsai GE, Lin E. Assessing gene-gene interactions in pharmacogenomics. Mol Diagn Ther 2012; 16:15-27. [PMID: 22352452 DOI: 10.2165/11597270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
In pharmacogenomics studies, gene-gene interactions play an important role in characterizing a trait that involves complex pharmacokinetic and pharmacodynamic mechanisms, particularly when each involved feature only demonstrates a minor effect. In addition to the candidate gene approach, genome-wide association studies (GWAS) are widely utilized to identify common variants that are associated with treatment response. In the wake of recent advances in scientific research, a paradigm shift from GWAS to whole-genome sequencing is expected, because of the reduced cost and the increased throughput of next-generation sequencing technologies. This review first outlines several promising methods for addressing gene-gene interactions in pharmacogenomics studies. We then summarize some candidate gene studies for various treatments with consideration of gene-gene interactions. Furthermore, we give a brief overview for the pharmacogenomics studies with the GWAS approach and describe the limitations of these GWAS in terms of gene-gene interactions. Future research in translational medicine promises to lead to mechanistic findings related to drug responsiveness in light of complex gene-gene interactions and will probably make major contributions to individualized medicine and therapeutic decision-making.
Collapse
Affiliation(s)
- Hsien-Yuan Lane
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
| | | | | |
Collapse
|
161
|
Hollants S, Redeker EJW, Matthijs G. Microfluidic amplification as a tool for massive parallel sequencing of the familial hypercholesterolemia genes. Clin Chem 2012; 58:717-24. [PMID: 22294733 DOI: 10.1373/clinchem.2011.173963] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Familial hypercholesterolemia (FH) is an autosomal dominant disorder that affects cholesterol metabolism and is an important risk factor for heart disease. Three different genes were causally linked to this disorder: LDLR (low density lipoprotein receptor), APOB [apolipoprotein B (including Ag(x) antigen)], and PCSK9 (proprotein convertase subtilisin/kexin type 9). We evaluated a new amplicon preparation tool for resequencing these genes on next generation sequencing (NGS) platforms. METHODS For the 3 genes, 38 primer pairs were designed and loaded on the Fluidigm Access Array, a microfluidic array in which a PCR was performed. We amplified 144 DNA samples (73 positive controls and 71 patient samples) and performed 3 sequencing runs on a GS FLX Titanium system from Roche 454, using pyrosequencing. Data were analyzed with the SeqNext module of the Sequence Pilot software. RESULT From the 38 amplicons, 37 were amplified successfully, without any further optimization. Sequencing resulted in a mean coverage of the individual amplicons of 71-fold, 74-fold, and 117-fold for the 3 runs, respectively. In the positive controls, all known mutations were identified. In 29% of the patient samples, a pathogenic point mutation or small deletion/insertion was found. Large rearrangements were not detectable with NGS, but were picked up by multiplex ligation-dependent probe amplification. CONCLUSIONS Combining a microfluidic amplification system with massive parallel sequencing is an effective method for mutation scanning in FH patients, which can be implemented in diagnostics. For data analysis, we propose a minimum variant frequency threshold of 20% and a minimum coverage of 25-fold.
Collapse
Affiliation(s)
- Silke Hollants
- Laboratory for Molecular Diagnosis, Center for Human Genetics, University of Leuven, Leuven, Belgium
| | | | | |
Collapse
|
162
|
Infantile Progressive Hepatoencephalomyopathy with Combined OXPHOS Deficiency due to Mutations in the Mitochondrial Translation Elongation Factor Gene GFM1. JIMD Rep 2011; 5:113-22. [PMID: 23430926 DOI: 10.1007/8904_2011_107] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 10/17/2011] [Accepted: 10/20/2011] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial disorders are a heterogeneous group of often multisystemic and early fatal diseases caused by defects in the oxidative phosphorylation (OXPHOS) system. Given the complexity and intricacy of the OXPHOS system, it is not surprising that the underlying molecular defect remains unidentified in many patients with a mitochondrial disorder. Here, we report the clinical features and diagnostic workup leading to the elucidation of the genetic basis for a combined complex I and IV OXPHOS deficiency secondary to a mitochondrial translational defect in an infant who presented with rapidly progressive liver failure, encephalomyopathy, and severe refractory lactic acidemia. Sequencing of the GFM1 gene revealed two inherited novel, heterozygous mutations: a.539delG (p.Gly180AlafsX11) in exon 4 which resulted in a frameshift mutation, and a second c.688G > A (p.Gly230Ser) mutation in exon 5. This missense mutation is likely to be pathogenic since it affects an amino acid residue that is highly conserved across species and is absent from the dbSNP and 1,000 genomes databases. Review of literature and comparison were made with previously reported cases of this recently identified mitochondrial disorder encoded by a nuclear gene. Although limited in number, nuclear gene defects causing mitochondrial translation abnormalities represent a new, rapidly expanding field of mitochondrial medicine and should potentially be considered in the diagnostic investigation of infants with progressive hepatoencephalomyopathy and combined OXPHOS disorders.
Collapse
|
163
|
Posch MG, Waldmuller S, Müller M, Scheffold T, Fournier D, Andrade-Navarro MA, De Geeter B, Guillaumont S, Dauphin C, Yousseff D, Schmitt KR, Perrot A, Berger F, Hetzer R, Bouvagnet P, Özcelik C. Cardiac alpha-myosin (MYH6) is the predominant sarcomeric disease gene for familial atrial septal defects. PLoS One 2011; 6:e28872. [PMID: 22194935 PMCID: PMC3237499 DOI: 10.1371/journal.pone.0028872] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 11/16/2011] [Indexed: 11/18/2022] Open
Abstract
Secundum-type atrial septal defects (ASDII) account for approximately 10% of all congenital heart defects (CHD) and are associated with a familial risk. Mutations in transcription factors represent a genetic source for ASDII. Yet, little is known about the role of mutations in sarcomeric genes in ASDII etiology. To assess the role of sarcomeric genes in patients with inherited ASDII, we analyzed 13 sarcomeric genes (MYH7, MYBPC3, TNNT2, TCAP, TNNI3, MYH6, TPM1, MYL2, CSRP3, ACTC1, MYL3, TNNC1, and TTN kinase region) in 31 patients with familial ASDII using array-based resequencing. Genotyping of family relatives and control subjects as well as structural and homology analyses were used to evaluate the pathogenic impact of novel non-synonymous gene variants. Three novel missense mutations were found in the MYH6 gene encoding alpha-myosin heavy chain (R17H, C539R, and K543R). These mutations co-segregated with CHD in the families and were absent in 370 control alleles. Interestingly, all three MYH6 mutations are located in a highly conserved region of the alpha-myosin motor domain, which is involved in myosin-actin interaction. In addition, the cardiomyopathy related MYH6-A1004S and the MYBPC3-A833T mutations were also found in one and two unrelated subjects with ASDII, respectively. No mutations were found in the 11 other sarcomeric genes analyzed. The study indicates that sarcomeric gene mutations may represent a so far underestimated genetic source for familial recurrence of ASDII. In particular, perturbations in the MYH6 head domain seem to play a major role in the genetic origin of familial ASDII.
Collapse
Affiliation(s)
- Maximilian G Posch
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Sequencing by ligation variation with endonuclease V digestion and deoxyinosine-containing query oligonucleotides. BMC Genomics 2011; 12:598. [PMID: 22151854 PMCID: PMC3273492 DOI: 10.1186/1471-2164-12-598] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 12/12/2011] [Indexed: 11/29/2022] Open
Abstract
Background Sequencing-by-ligation (SBL) is one of several next-generation sequencing methods that has been developed for massive sequencing of DNA immobilized on arrayed beads (or other clonal amplicons). SBL has the advantage of being easy to implement and accessible to all because it can be performed with off-the-shelf reagents. However, SBL has the limitation of very short read lengths. Results To overcome the read length limitation, research groups have developed complex library preparation processes, which can be time-consuming, difficult, and result in low complexity libraries. Herein we describe a variation on traditional SBL protocols that extends the number of sequential bases that can be sequenced by using Endonuclease V to nick a query primer, thus leaving a ligatable end extended into the unknown sequence for further SBL cycles. To demonstrate the protocol, we constructed a known DNA sequence and utilized our SBL variation, cyclic SBL (cSBL), to resequence this region. Using our method, we were able to read thirteen contiguous bases in the 3' - 5' direction. Conclusions Combining this read length with sequencing in the 5' - 3' direction would allow a read length of over twenty bases on a single tage. Implementing mate-paired tags and this SBL variation could enable > 95% coverage of the genome.
Collapse
|
165
|
Puzyrev VP, Kucher AN. Evolutionary ontogenetic aspects of pathogenetics of chronic human diseases. RUSS J GENET+ 2011. [DOI: 10.1134/s102279541112012x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
166
|
Kang S, Hong S. Prediction of personalized drugs based on genetic variations provided by DNA sequencing technologies. Genes Genomics 2011. [DOI: 10.1007/s13258-011-0124-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
167
|
Zhang L, Pei YF, Hai R, Lin Y, Deng HW. Testing rare variants for association with diseases: a Bayesian marker selection approach. Ann Hum Genet 2011; 76:74-85. [PMID: 22034989 DOI: 10.1111/j.1469-1809.2011.00684.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
It has been a research focus to uncover the genetic determination of complex diseases caused by rare variants. As the vast majority of genomic variants represent background variation, highlighting potentially causal mutations through a weighting scheme is critical to the success of association studies aimed at identifying rare variants. In this study, we propose a novel Bayesian marker selection approach to perform a weighting-based association test. In this approach, an individual association signal and its direction are used to weight variants. In addition, the predicted biological function of variants is taken as prior information to direct the selection of likely causal variants. Simulation studies show that the proposed method has improved power over several existing methods in certain conditions. Analyses of two empirical datasets demonstrate its applicability.
Collapse
Affiliation(s)
- Lei Zhang
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, P. R. China
| | | | | | | | | |
Collapse
|
168
|
Moorthie S, Mattocks CJ, Wright CF. Review of massively parallel DNA sequencing technologies. THE HUGO JOURNAL 2011. [PMID: 23205160 DOI: 10.1007/s11568-011-9156-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Since the development of technologies that can determine the base-pair sequence of DNA, the ability to sequence genes has contributed much to science and medicine. However, it has remained a relatively costly and laborious process, hindering its use as a routine biomedical tool. Recent times are seeing rapid developments in this field, both in the availability of novel sequencing platforms, as well as supporting technologies involved in processes such as targeting and data analysis. This is leading to significant reductions in the cost of sequencing a human genome and the potential for its use as a routine biomedical tool. This review is a snapshot of this rapidly moving field examining the current state of the art, forthcoming developments and some of the issues still to be resolved prior to the use of new sequencing technologies in routine clinical diagnosis.
Collapse
|
169
|
Current genetic methodologies in the identification of disaster victims and in forensic analysis. J Appl Genet 2011; 53:41-60. [PMID: 22002120 PMCID: PMC3265735 DOI: 10.1007/s13353-011-0068-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 09/22/2011] [Accepted: 09/23/2011] [Indexed: 12/16/2022]
Abstract
This review presents the basic problems and currently available molecular techniques used for genetic profiling in disaster victim identification (DVI). The environmental conditions of a mass disaster often result in severe fragmentation, decomposition and intermixing of the remains of victims. In such cases, traditional identification based on the anthropological and physical characteristics of the victims is frequently inconclusive. This is the reason why DNA profiling became the gold standard for victim identification in mass-casualty incidents (MCIs) or any forensic cases where human remains are highly fragmented and/or degraded beyond recognition. The review provides general information about the sources of genetic material for DNA profiling, the genetic markers routinely used during genetic profiling (STR markers, mtDNA and single-nucleotide polymorphisms [SNP]) and the basic statistical approaches used in DNA-based disaster victim identification. Automated technological platforms that allow the simultaneous analysis of a multitude of genetic markers used in genetic identification (oligonucleotide microarray techniques and next-generation sequencing) are also presented. Forensic and population databases containing information on human variability, routinely used for statistical analyses, are discussed. The final part of this review is focused on recent developments, which offer particularly promising tools for forensic applications (mRNA analysis, transcriptome variation in individuals/populations and genetic profiling of specific cells separated from mixtures).
Collapse
|
170
|
Solomon BD, Pineda-Alvarez DE, Hadley DW, NISC Comparative Sequencing Program, Teer JK, Cherukuri PF, Hansen NF, Cruz P, Young AC, Blakesley RW, Lanpher B, Gibson SM, Sincan M, Chandrasekharappa SC, Mullikin JC. Personalized genomic medicine: lessons from the exome. Mol Genet Metab 2011; 104:189-91. [PMID: 21767969 PMCID: PMC3171610 DOI: 10.1016/j.ymgme.2011.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 12/29/2022]
Abstract
While genomic sequencing methods are powerful tools in the discovery of the genetic underpinnings of human disease, incidentally-revealed novel genomic risk factors may be equally important, both scientifically, and as relates to direct patient care. We performed whole-exome sequencing on a child with VACTERL association who suffered severe post-surgical neonatal pulmonary hypertension, and identified a potential novel genetic risk factor for this complication: a heterozygous mutation in CPSI. Newborn screening results from this patient's monozygotic twin provided evidence that this mutation, in combination with an environmental trigger (in this case, surgery), may have resulted in pulmonary artery hypertension due to inadequate nitric oxide production. Identification of this genetic risk factor allows for targeted medical preventative measures in this patient as well as relatives with the same mutation, and illustrates the power of incidental medical information unearthed by whole-exome sequencing.
Collapse
Affiliation(s)
- Benjamin D. Solomon
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Daniel E. Pineda-Alvarez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Donald W. Hadley
- Social and Behavioral Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - NISC Comparative Sequencing Program
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Rockville, Maryland, 20852,United States of America
| | - Jamie K. Teer
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Praveen F. Cherukuri
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Nancy F. Hansen
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Pedro Cruz
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Alice C. Young
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Robert W. Blakesley
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - Brendan Lanpher
- Department of Genetics and Metabolism, Children’s National Medical Center, Washington, DC, 20010, United States of America
| | | | - Murat Sincan
- Undiagnosed Diseases Program, National Institutes of Health, Bethesda, Maryland, 20892
| | - Settara C. Chandrasekharappa
- Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| | - James C. Mullikin
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, United States of America
| |
Collapse
|
171
|
Study designs for identification of rare disease variants in complex diseases: the utility of family-based designs. Genetics 2011; 189:1061-8. [PMID: 21840850 DOI: 10.1534/genetics.111.131813] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The recent progress in sequencing technologies makes possible large-scale medical sequencing efforts to assess the importance of rare variants in complex diseases. The results of such efforts depend heavily on the use of efficient study designs and analytical methods. We introduce here a unified framework for association testing of rare variants in family-based designs or designs based on unselected affected individuals. This framework allows us to quantify the enrichment in rare disease variants in families containing multiple affected individuals and to investigate the optimal design of studies aiming to identify rare disease variants in complex traits. We show that for many complex diseases with small values for the overall sibling recurrence risk ratio, such as Alzheimer's disease and most cancers, sequencing affected individuals with a positive family history of the disease can be extremely advantageous for identifying rare disease variants. In contrast, for complex diseases with large values of the sibling recurrence risk ratio, sequencing unselected affected individuals may be preferable.
Collapse
|
172
|
Burchill L, Greenway S, Silversides CK, Mital S. Genetic counseling in the adult with congenital heart disease: what is the role? Curr Cardiol Rep 2011; 13:347-355. [PMID: 21537992 DOI: 10.1007/s11886-011-0188-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
New discoveries using high-resolution methods for detecting genetic aberrations indicate that the genetic contribution to congenital heart disease has been significantly underestimated in the past. DNA diagnostics have become more accessible and genetic test results are increasingly being used to guide clinical management. Adult congenital heart disease specialists seeking to counsel adults with congenital heart disease about the genetic aspects of their condition face the challenge of keeping abreast of new genetic techniques and discoveries. The emphasis of this review is on the genetic basis of structural cardiovascular defects. A framework for identifying adult congenital heart disease patients most likely to benefit from genetic testing is suggested, along with a summary of current techniques for genetic testing. The clinical and ethical challenges associated with genetic counseling are highlighted. Finally, emerging technologies and future directions in genetics and adult congenital heart disease are discussed.
Collapse
Affiliation(s)
- Luke Burchill
- Department of Medicine, Division of Cardiology, Toronto General Hospital, Toronto, ON, Canada
| | | | | | | |
Collapse
|
173
|
Thompson JF, Reifenberger JG, Giladi E, Kerouac K, Gill J, Hansen E, Kahvejian A, Kapranov P, Knope T, Lipson D, Steinmann KE, Milos PM. Single-step capture and sequencing of natural DNA for detection of BRCA1 mutations. Genome Res 2011; 22:340-5. [PMID: 21765009 DOI: 10.1101/gr.122192.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Genetic testing for disease risk is an increasingly important component of medical care. However, testing can be expensive, which can lead to patients and physicians having limited access to the genetic information needed for medical decisions. To simplify DNA sample preparation and lower costs, we have developed a system in which any gene can be captured and sequenced directly from human genomic DNA without amplification, using no proteins or enzymes prior to sequencing. Extracted whole-genome DNA is acoustically sheared and loaded in a flow cell channel for single-molecule sequencing. Gene isolation, amplification, or ligation is not necessary. Accurate and low-cost detection of DNA sequence variants is demonstrated for the BRCA1 gene. Disease-causing mutations as well as common variants from well-characterized samples are identified. Single-molecule sequencing generates very reproducible coverage patterns, and these can be used to detect any size insertion or deletion directly, unlike PCR-based methods, which require additional assays. Because no gene isolation or amplification is required for sequencing, the exceptionally low costs of sample preparation and analysis could make genetic tests more accessible to those who wish to know their own disease susceptibility. Additionally, this approach has applications for sequencing integration sites for gene therapy vectors, transposons, retroviruses, and other mobile DNA elements in a more facile manner than possible with other methods.
Collapse
Affiliation(s)
- John F Thompson
- Helicos BioSciences Corporation, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
Common lung diseases such as asthma, COPD, and pulmonary fibrosis cause significant morbidity and mortality in the U.S. and worldwide. Research investigating the mechanisms of disease etiology has clearly indicated that genetic attributes and environmental exposures each play important roles in the development of these diseases. Emerging evidence underscores the importance of the interplay between genetic predisposition and environmental factors in fully understanding the development of lung disease. Herein we discuss recent advances in knowledge and technology surrounding the role of genetics, the environment, and gene-environment interactions in these common lung diseases.
Collapse
Affiliation(s)
- Max A Seibold
- Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206, USA.
| | | |
Collapse
|
175
|
Estécio MRH, Issa JPJ. Dissecting DNA hypermethylation in cancer. FEBS Lett 2011; 585:2078-86. [PMID: 21146531 PMCID: PMC3378045 DOI: 10.1016/j.febslet.2010.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 12/02/2010] [Accepted: 12/03/2010] [Indexed: 12/31/2022]
Abstract
There is compelling evidence to support the importance of DNA methylation alterations in cancer development. Both losses and gains of DNA methylation are observed, thought to contribute pathophysiologically by inactivating tumor suppressor genes, inducing chromosomal instability and ectopically activating gene expression. Lesser known are the causes of aberrant DNA methylation. Recent studies have pointed out that intrinsic gene susceptibility to DNA methylation, environmental factors and gene function all have an intertwined participation in this process. Overall, these data support a deterministic rather than a stochastic mechanism for de novo DNA methylation in cancer. In this review article, we discuss the technologies available to study DNA methylation and the endogenous and exogenous factors that influence the onset of de novo methylation in cancer.
Collapse
Affiliation(s)
- Marcos R H Estécio
- Department of Leukemia, UT MD Anderson Cancer Center, Houston, TX 77030, United States.
| | | |
Collapse
|
176
|
Abstract
Current approaches to genetic screening include newborn screening to identify infants who would benefit from early treatment, reproductive genetic screening to assist reproductive decision making, and family history assessment to identify individuals who would benefit from additional prevention measures. Although the traditional goal of screening is to identify early disease or risk in order to implement preventive therapy, genetic screening has always included an atypical element-information relevant to reproductive decisions. New technologies offer increasingly comprehensive identification of genetic conditions and susceptibilities. Tests based on these technologies are generating a different approach to screening that seeks to inform individuals about all of their genetic traits and susceptibilities for purposes that incorporate rapid diagnosis, family planning, and expediting of research, as well as the traditional screening goal of improving prevention. Use of these tests in population screening will increase the challenges already encountered in genetic screening programs, including false-positive and ambiguous test results, overdiagnosis, and incidental findings. Whether this approach is desirable requires further empiric research, but it also requires careful deliberation on the part of all concerned, including genomic researchers, clinicians, public health officials, health care payers, and especially those who will be the recipients of this novel screening approach.
Collapse
Affiliation(s)
- Wylie Burke
- Department of Bioethics and Humanities, A204 Health Sciences Building, Box 357120, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
177
|
Klassen T, Davis C, Goldman A, Burgess D, Chen T, Wheeler D, McPherson J, Bourquin T, Lewis L, Villasana D, Morgan M, Muzny D, Gibbs R, Noebels J. Exome sequencing of ion channel genes reveals complex profiles confounding personal risk assessment in epilepsy. Cell 2011; 145:1036-48. [PMID: 21703448 PMCID: PMC3131217 DOI: 10.1016/j.cell.2011.05.025] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/21/2011] [Accepted: 05/20/2011] [Indexed: 11/25/2022]
Abstract
Ion channel mutations are an important cause of rare Mendelian disorders affecting brain, heart, and other tissues. We performed parallel exome sequencing of 237 channel genes in a well-characterized human sample, comparing variant profiles of unaffected individuals to those with the most common neuronal excitability disorder, sporadic idiopathic epilepsy. Rare missense variation in known Mendelian disease genes is prevalent in both groups at similar complexity, revealing that even deleterious ion channel mutations confer uncertain risk to an individual depending on the other variants with which they are combined. Our findings indicate that variant discovery via large scale sequencing efforts is only a first step in illuminating the complex allelic architecture underlying personal disease risk. We propose that in silico modeling of channel variation in realistic cell and network models will be crucial to future strategies assessing mutation profile pathogenicity and drug response in individuals with a broad spectrum of excitability disorders.
Collapse
Affiliation(s)
- Tara Klassen
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Whaley NR, Fujioka S, Wszolek ZK. Autosomal dominant cerebellar ataxia type I: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis 2011; 6:33. [PMID: 21619691 PMCID: PMC3123548 DOI: 10.1186/1750-1172-6-33] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 05/28/2011] [Indexed: 12/26/2022] Open
Abstract
Type I autosomal dominant cerebellar ataxia (ADCA) is a type of spinocerebellar ataxia (SCA) characterized by ataxia with other neurological signs, including oculomotor disturbances, cognitive deficits, pyramidal and extrapyramidal dysfunction, bulbar, spinal and peripheral nervous system involvement. The global prevalence of this disease is not known. The most common type I ADCA is SCA3 followed by SCA2, SCA1, and SCA8, in descending order. Founder effects no doubt contribute to the variable prevalence between populations. Onset is usually in adulthood but cases of presentation in childhood have been reported. Clinical features vary depending on the SCA subtype but by definition include ataxia associated with other neurological manifestations. The clinical spectrum ranges from pure cerebellar signs to constellations including spinal cord and peripheral nerve disease, cognitive impairment, cerebellar or supranuclear ophthalmologic signs, psychiatric problems, and seizures. Cerebellar ataxia can affect virtually any body part causing movement abnormalities. Gait, truncal, and limb ataxia are often the most obvious cerebellar findings though nystagmus, saccadic abnormalities, and dysarthria are usually associated. To date, 21 subtypes have been identified: SCA1-SCA4, SCA8, SCA10, SCA12-SCA14, SCA15/16, SCA17-SCA23, SCA25, SCA27, SCA28 and dentatorubral pallidoluysian atrophy (DRPLA). Type I ADCA can be further divided based on the proposed pathogenetic mechanism into 3 subclasses: subclass 1 includes type I ADCA caused by CAG repeat expansions such as SCA1-SCA3, SCA17, and DRPLA, subclass 2 includes trinucleotide repeat expansions that fall outside of the protein-coding regions of the disease gene including SCA8, SCA10 and SCA12. Subclass 3 contains disorders caused by specific gene deletions, missense mutation, and nonsense mutation and includes SCA13, SCA14, SCA15/16, SCA27 and SCA28. Diagnosis is based on clinical history, physical examination, genetic molecular testing, and exclusion of other diseases. Differential diagnosis is broad and includes secondary ataxias caused by drug or toxic effects, nutritional deficiencies, endocrinopathies, infections and post-infection states, structural abnormalities, paraneoplastic conditions and certain neurodegenerative disorders. Given the autosomal dominant pattern of inheritance, genetic counseling is essential and best performed in specialized genetic clinics. There are currently no known effective treatments to modify disease progression. Care is therefore supportive. Occupational and physical therapy for gait dysfunction and speech therapy for dysarthria is essential. Prognosis is variable depending on the type of ADCA and even among kindreds.
Collapse
|
179
|
Abstract
There has been tremendous growth in the application of genetics to the clinical practice of pediatric cardiomyopathy. The identification of the genetic basis for cardiomyopathies is important for establishing a causal diagnosis, providing definitive identification of at risk family members, and providing cost-effective screening and surveillance. Additional research is needed to better understand the genetic heterogeneity of cardiomyopathy in children, the implications of specific genotypes, the best approach to cardiac surveillance and genetic testing, and the utility of genotyping for individual risk stratification. As the technology for evaluation of the human genome continues to improve, there is an increasing need for assessment of clinical relevance and utility. This is coupled with an ongoing need for education and training of professionals to interpret and implement genomics in a clinical setting.
Collapse
Affiliation(s)
- Stephanie M. Ware
- Department of Pediatrics, the Heart Institute, Cincinnati Children’s Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, OH, 45229-3039
| |
Collapse
|
180
|
Tavares P, Dias L, Palmeiro A, Rendeiro P, Tolias P. Single-test parallel assessment of multiple genetic disorders. Per Med 2011; 8:375-379. [DOI: 10.2217/pme.11.23] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We advocate a new paradigm for genetic diagnosis based on using customized array panels, each of which groups multiple genes and mutations associated with clinical profiles that are common to particular syndromic diseases. This parallel approach, based on a single-test multigene multiplexing strategy, compared with traditional sequential testing by gene-by-gene genetic analysis, drastically reduces the time and cost of diagnosis while maintaining accuracy and reliability. Faster diagnosis enables early decision-making to facilitate better patient management and outcomes at reduced costs to the healthcare system.
Collapse
Affiliation(s)
| | - Luís Dias
- CGC Genetics, 211 Warren St., Newark, NJ 07103, USA
- Rua Sá da Bandeira no. 706-1, 4000-432 Porto, Portugal
| | - Aida Palmeiro
- CGC Genetics, 211 Warren St., Newark, NJ 07103, USA
- Rua Sá da Bandeira no. 706-1, 4000-432 Porto, Portugal
| | - Paula Rendeiro
- CGC Genetics, 211 Warren St., Newark, NJ 07103, USA
- Rua Sá da Bandeira no. 706-1, 4000-432 Porto, Portugal
| | - Peter Tolias
- Institute of Genomic Medicine, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, MSB F661, Newark, NJ 07101, USA
| |
Collapse
|
181
|
Natrajan R, Reis-Filho JS. Next-generation sequencing applied to molecular diagnostics. Expert Rev Mol Diagn 2011; 11:425-44. [PMID: 21545259 DOI: 10.1586/erm.11.18] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Next-generation sequencing technologies have begun to revolutionize the field of cancer genetics through rapid and accurate assessment of a patient's DNA makeup with minimal cost. These technologies have already led to the realization of the inter- and intra-tumor genetic heterogeneity and the identification of novel mutations and chimeric genes, however, several challenges lie ahead. Given the low number of recurrent somatic genetic aberrations in common types of cancer, the identification of 'driver' genetic aberrations has proven challenging. Furthermore, implementation of next-generation sequencing and/or some of its derivatives into routine practice as diagnostic tests will require in-depth understanding of the pitfalls of these technologies and a great degree of bioinformatic expertise. This article focuses on the contribution of next-generation sequencing technologies to diagnosis and cancer prognostication and prediction.
Collapse
Affiliation(s)
- Rachael Natrajan
- Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK.
| | | |
Collapse
|
182
|
Pena S. The fallacy of racial pharmacogenomics. Braz J Med Biol Res 2011; 44:268-75. [DOI: 10.1590/s0100-879x2011007500031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 02/14/2011] [Indexed: 11/22/2022] Open
Affiliation(s)
- S.D.J. Pena
- Universidade Federal de Minas Gerais, Brasil; GENE - Núcleo de Genética Médica, Brasil
| |
Collapse
|
183
|
Zhang J, Chiodini R, Badr A, Zhang G. The impact of next-generation sequencing on genomics. J Genet Genomics 2011; 38:95-109. [PMID: 21477781 PMCID: PMC3076108 DOI: 10.1016/j.jgg.2011.02.003] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 02/06/2023]
Abstract
This article reviews basic concepts, general applications, and the potential impact of next-generation sequencing (NGS) technologies on genomics, with particular reference to currently available and possible future platforms and bioinformatics. NGS technologies have demonstrated the capacity to sequence DNA at unprecedented speed, thereby enabling previously unimaginable scientific achievements and novel biological applications. But, the massive data produced by NGS also presents a significant challenge for data storage, analyses, and management solutions. Advanced bioinformatic tools are essential for the successful application of NGS technology. As evidenced throughout this review, NGS technologies will have a striking impact on genomic research and the entire biological field. With its ability to tackle the unsolved challenges unconquered by previous genomic technologies, NGS is likely to unravel the complexity of the human genome in terms of genetic variations, some of which may be confined to susceptible loci for some common human conditions. The impact of NGS technologies on genomics will be far reaching and likely change the field for years to come.
Collapse
Affiliation(s)
- Jun Zhang
- COE for Neurosciences, Department of Anesthesiology, Texas Tech University Health Sciences Center El Paso, TX 79905, USA.
| | | | | | | |
Collapse
|
184
|
Berg JS, Evans JP, Leigh MW, Omran H, Bizon C, Mane K, Knowles MR, Weck KE, Zariwala MA. Next generation massively parallel sequencing of targeted exomes to identify genetic mutations in primary ciliary dyskinesia: implications for application to clinical testing. Genet Med 2011; 13:218-29. [PMID: 21270641 PMCID: PMC3755008 DOI: 10.1097/gim.0b013e318203cff2] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Advances in genetic sequencing technology have the potential to enhance testing for genes associated with genetically heterogeneous clinical syndromes, such as primary ciliary dyskinesia. The objective of this study was to investigate the performance characteristics of exon-capture technology coupled with massively parallel sequencing for clinical diagnostic evaluation. METHODS We performed a pilot study of four individuals with a variety of previously identified primary ciliary dyskinesia mutations. We designed a custom array (NimbleGen) to capture 2089 exons from 79 genes associated with primary ciliary dyskinesia or ciliary function and sequenced the enriched material using the GS FLX Titanium (Roche 454) platform. Bioinformatics analysis was performed in a blinded fashion in an attempt to detect the previously identified mutations and validate the process. RESULTS Three of three substitution mutations and one of three small insertion/deletion mutations were readily identified using this methodology. One small insertion mutation was clearly observed after adjusting the bioinformatics handling of previously described SNPs. This process failed to detect two known mutations: one single-nucleotide insertion and a whole-exon deletion. Additional retrospective bioinformatics analysis revealed strong sequence-based evidence for the insertion but failed to detect the whole-exon deletion. Numerous other variants were also detected, which may represent potential genetic modifiers of the primary ciliary dyskinesia phenotype. CONCLUSIONS We conclude that massively parallel sequencing has considerable potential for both research and clinical diagnostics, but further development is required before widespread adoption in a clinical setting.
Collapse
Affiliation(s)
- Jonathan S Berg
- Departments of Genetics, the University of North Carolina Chapel Hill, North Carolina 27599-7264, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Corbett M, Gecz J. Great expectations: using massively parallel sequencing to solve inherited disorders. Expert Rev Mol Diagn 2011; 10:833-6. [PMID: 20964599 DOI: 10.1586/erm.10.83] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
186
|
|
187
|
Abstract
Contemporary sequencing studies often ignore the diploid nature of the human genome because they do not routinely separate or 'phase' maternally and paternally derived sequence information. However, many findings - both from recent studies and in the more established medical genetics literature - indicate that relationships between human DNA sequence and phenotype, including disease, can be more fully understood with phase information. Thus, the existing technological impediments to obtaining phase information must be overcome if human genomics is to reach its full potential.
Collapse
|
188
|
Ionita-Laza I, Buxbaum JD, Laird NM, Lange C. A new testing strategy to identify rare variants with either risk or protective effect on disease. PLoS Genet 2011; 7:e1001289. [PMID: 21304886 PMCID: PMC3033379 DOI: 10.1371/journal.pgen.1001289] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 12/31/2010] [Indexed: 01/09/2023] Open
Abstract
Rapid advances in sequencing technologies set the stage for the large-scale medical sequencing efforts to be performed in the near future, with the goal of assessing the importance of rare variants in complex diseases. The discovery of new disease susceptibility genes requires powerful statistical methods for rare variant analysis. The low frequency and the expected large number of such variants pose great difficulties for the analysis of these data. We propose here a robust and powerful testing strategy to study the role rare variants may play in affecting susceptibility to complex traits. The strategy is based on assessing whether rare variants in a genetic region collectively occur at significantly higher frequencies in cases compared with controls (or vice versa). A main feature of the proposed methodology is that, although it is an overall test assessing a possibly large number of rare variants simultaneously, the disease variants can be both protective and risk variants, with moderate decreases in statistical power when both types of variants are present. Using simulations, we show that this approach can be powerful under complex and general disease models, as well as in larger genetic regions where the proportion of disease susceptibility variants may be small. Comparisons with previously published tests on simulated data show that the proposed approach can have better power than the existing methods. An application to a recently published study on Type-1 Diabetes finds rare variants in gene IFIH1 to be protective against Type-1 Diabetes.
Collapse
Affiliation(s)
- Iuliana Ionita-Laza
- Department of Biostatistics, Columbia University, New York, New York, United States of America.
| | | | | | | |
Collapse
|
189
|
Kuhlenbäumer G, Hullmann J, Appenzeller S. Novel genomic techniques open new avenues in the analysis of monogenic disorders. Hum Mutat 2011; 32:144-51. [DOI: 10.1002/humu.21400] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
190
|
Voelkerding KV, Dames S, Durtschi JD. Next generation sequencing for clinical diagnostics-principles and application to targeted resequencing for hypertrophic cardiomyopathy: a paper from the 2009 William Beaumont Hospital Symposium on Molecular Pathology. J Mol Diagn 2011; 12:539-51. [PMID: 20805560 DOI: 10.2353/jmoldx.2010.100043] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During the past five years, new high-throughput DNA sequencing technologies have emerged; these technologies are collectively referred to as next generation sequencing (NGS). By virtue of sequencing clonally amplified DNA templates or single DNA molecules in a massively parallel fashion in a flow cell, NGS provides both qualitative and quantitative sequence data. This combination of information has made NGS the technology of choice for complex genetic analyses that were previously either technically infeasible or cost prohibitive. As a result, NGS has had a fundamental and broad impact on many facets of biomedical research. In contrast, the dissemination of NGS into the clinical diagnostic realm is in its early stages. Though NGS is powerful and can be envisioned to have multiple applications in clinical diagnostics, the technology is currently complex. Successful adoption of NGS into the clinical laboratory will require expertise in both molecular biology techniques and bioinformatics. The current report presents principles that underlie NGS including sequencing library preparation, sequencing chemistries, and an introduction to NGS data analysis. These concepts are subsequently further illustrated by showing representative results from a case study using NGS for targeted resequencing of genes implicated in hypertrophic cardiomyopathy.
Collapse
|
191
|
McHale CM, Zhang L, Hubbard AE, Smith MT. Toxicogenomic profiling of chemically exposed humans in risk assessment. Mutat Res 2010; 705:172-83. [PMID: 20382258 PMCID: PMC2928857 DOI: 10.1016/j.mrrev.2010.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 04/01/2010] [Indexed: 12/13/2022]
Abstract
Gene-environment interactions contribute to complex disease development. The environmental contribution, in particular low-level and prevalent environmental exposures, may constitute much of the risk and contribute substantially to disease. Systematic risk evaluation of the majority of human chemical exposures, has not been conducted and is a goal of regulatory agencies in the U.S. and worldwide. With the recent recognition that toxicological approaches more predictive of effects in humans are required for risk assessment, in vitro human cell line data as well as animal data are being used to identify toxicity mechanisms that can be translated into biomarkers relevant to human exposure studies. In this review, we discuss how data from toxicogenomic studies of exposed human populations can inform risk assessment, by generating biomarkers of exposure, early effect, and/or susceptibility, elucidating mechanisms of action underlying exposure-related disease, and detecting response at low doses. Good experimental design incorporating precise, individual exposure measurements, phenotypic anchors (pre-disease or traditional toxicological markers), and a range of relevant exposure levels, is necessary. Further, toxicogenomic studies need to be designed with sufficient power to detect true effects of the exposure. As more studies are performed and incorporated into databases such as the Comparative Toxicogenomics Database (CTD) and Chemical Effects in Biological Systems (CEBS), data can be mined for classification of newly tested chemicals (hazard identification), and, for investigating the dose-response, and inter-relationship among genes, environment and disease in a systems biology approach (risk characterization).
Collapse
Affiliation(s)
- Cliona M. McHale
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Luoping Zhang
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| | - Alan E. Hubbard
- School of Public Health, Division of Biostatistics, University of California, Berkeley, CA 94720
| | - Martyn T. Smith
- School of Public Health, Division of Environmental Health Sciences, University of California, Berkeley, CA 94720
| |
Collapse
|
192
|
Zhang L, Pei YF, Li J, Papasian CJ, Deng HW. Improved detection of rare genetic variants for diseases. PLoS One 2010; 5:e13857. [PMID: 21079782 PMCID: PMC2975623 DOI: 10.1371/journal.pone.0013857] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 09/30/2010] [Indexed: 11/18/2022] Open
Abstract
Technology advances have promoted gene-based sequencing studies with the aim of identifying rare mutations responsible for complex diseases. A complication in these types of association studies is that the vast majority of non-synonymous mutations are believed to be neutral to phenotypes. It is thus critical to distinguish potential causative variants from neutral variation before performing association tests. In this study, we used existing predicting algorithms to predict functional amino acid substitutions, and incorporated that information into association tests. Using simulations, we comprehensively studied the effects of several influential factors, including the sensitivity and specificity of functional variant predictions, number of variants, and proportion of causative variants, on the performance of association tests. Our results showed that incorporating information regarding functional variants obtained from existing prediction algorithms improves statistical power under certain conditions, particularly when the proportion of causative variants is moderate. The application of the proposed tests to a real sequencing study confirms our conclusions. Our work may help investigators who are planning to pursue gene-based sequencing studies.
Collapse
Affiliation(s)
- Lei Zhang
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Ministry of Education and Institute of Molecular Genetics, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Yu-Fang Pei
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Ministry of Education and Institute of Molecular Genetics, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jian Li
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Christopher J. Papasian
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
| | - Hong-Wen Deng
- Center of System Biomedical Sciences, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- School of Medicine, University of Missouri-Kansas City, Kansas City, Missouri, United States of America
- College of Life Sciences and Engineering, Beijing Jiao Tong University, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
193
|
Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing. Nat Genet 2010; 42:931-6. [PMID: 20972442 DOI: 10.1038/ng.691] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 09/10/2010] [Indexed: 12/13/2022]
Abstract
We report the analysis of a Japanese male using high-throughput sequencing to × 40 coverage. More than 99% of the sequence reads were mapped to the reference human genome. Using a Bayesian decision method, we identified 3,132,608 single nucleotide variations (SNVs). Comparison with six previously reported genomes revealed an excess of singleton nonsense and nonsynonymous SNVs, as well as singleton SNVs in conserved non-coding regions. We also identified 5,319 deletions smaller than 10 kb with high accuracy, in addition to copy number variations and rearrangements. De novo assembly of the unmapped sequence reads generated around 3 Mb of novel sequence, which showed high similarity to non-reference human genomes and the human herpesvirus 4 genome. Our analysis suggests that considerable variation remains undiscovered in the human genome and that whole-genome sequencing is an invaluable tool for obtaining a complete understanding of human genetic variation.
Collapse
|
194
|
Affiliation(s)
- K A Pussegoda
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
195
|
Cooper DN, Chen JM, Ball EV, Howells K, Mort M, Phillips AD, Chuzhanova N, Krawczak M, Kehrer-Sawatzki H, Stenson PD. Genes, mutations, and human inherited disease at the dawn of the age of personalized genomics. Hum Mutat 2010; 31:631-55. [PMID: 20506564 DOI: 10.1002/humu.21260] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The number of reported germline mutations in human nuclear genes, either underlying or associated with inherited disease, has now exceeded 100,000 in more than 3,700 different genes. The availability of these data has both revolutionized the study of the morbid anatomy of the human genome and facilitated "personalized genomics." With approximately 300 new "inherited disease genes" (and approximately 10,000 new mutations) being identified annually, it is pertinent to ask how many "inherited disease genes" there are in the human genome, how many mutations reside within them, and where such lesions are likely to be located? To address these questions, it is necessary not only to reconsider how we define human genes but also to explore notions of gene "essentiality" and "dispensability."Answers to these questions are now emerging from recent novel insights into genome structure and function and through complete genome sequence information derived from multiple individual human genomes. However, a change in focus toward screening functional genomic elements as opposed to genes sensu stricto will be required if we are to capitalize fully on recent technical and conceptual advances and identify new types of disease-associated mutation within noncoding regions remote from the genes whose function they disrupt.
Collapse
Affiliation(s)
- David N Cooper
- Institute of Medical Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Gowrisankar S, Lerner-Ellis JP, Cox S, White ET, Manion M, LeVan K, Liu J, Farwell LM, Iartchouk O, Rehm HL, Funke BH. Evaluation of second-generation sequencing of 19 dilated cardiomyopathy genes for clinical applications. J Mol Diagn 2010; 12:818-27. [PMID: 20864638 DOI: 10.2353/jmoldx.2010.100014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Medical sequencing for diseases with locus and allelic heterogeneities has been limited by the high cost and low throughput of traditional sequencing technologies. "Second-generation" sequencing (SGS) technologies allow the parallel processing of a large number of genes and, therefore, offer great promise for medical sequencing; however, their use in clinical laboratories is still in its infancy. Our laboratory offers clinical resequencing for dilated cardiomyopathy (DCM) using an array-based platform that interrogates 19 of more than 30 genes known to cause DCM. We explored both the feasibility and cost effectiveness of using PCR amplification followed by SGS technology for sequencing these 19 genes in a set of five samples enriched for known sequence alterations (109 unique substitutions and 27 insertions and deletions). While the analytical sensitivity for substitutions was comparable to that of the DCM array (98%), SGS technology performed better than the DCM array for insertions and deletions (90.6% versus 58%). Overall, SGS performed substantially better than did the current array-based testing platform; however, the operational cost and projected turnaround time do not meet our current standards. Therefore, efficient capture methods and/or sample pooling strategies that shorten the turnaround time and decrease reagent and labor costs are needed before implementing this platform into routine clinical applications.
Collapse
Affiliation(s)
- Sivakumar Gowrisankar
- Laboratory for Molecular Medicine, Partners HealthCare Center for Personalized Genetic Medicine, 65 Landsdowne St., Cambridge, MA 02139, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Martin ER, Kinnamon DD, Schmidt MA, Powell EH, Zuchner S, Morris RW. SeqEM: an adaptive genotype-calling approach for next-generation sequencing studies. ACTA ACUST UNITED AC 2010; 26:2803-10. [PMID: 20861027 PMCID: PMC2971572 DOI: 10.1093/bioinformatics/btq526] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Motivation: Next-generation sequencing presents several statistical challenges, with one of the most fundamental being determining an individual's genotype from multiple aligned short read sequences at a position. Some simple approaches for genotype calling apply fixed filters, such as calling a heterozygote if more than a specified percentage of the reads have variant nucleotide calls. Other genotype-calling methods, such as MAQ and SOAPsnp, are implementations of Bayes classifiers in that they classify genotypes using posterior genotype probabilities. Results: Here, we propose a novel genotype-calling algorithm that, in contrast to the other methods, estimates parameters underlying the posterior probabilities in an adaptive way rather than arbitrarily specifying them a priori. The algorithm, which we call SeqEM, applies the well-known Expectation-Maximization algorithm to an appropriate likelihood for a sample of unrelated individuals with next-generation sequence data, leveraging information from the sample to estimate genotype probabilities and the nucleotide-read error rate. We demonstrate using analytic calculations and simulations that SeqEM results in genotype-call error rates as small as or smaller than filtering approaches and MAQ. We also apply SeqEM to exome sequence data in eight related individuals and compare the results to genotypes from an Illumina SNP array, showing that SeqEM behaves well in real data that deviates from idealized assumptions. Conclusion: SeqEM offers an improved, robust and flexible genotype-calling approach that can be widely applied in the next-generation sequencing studies. Availability and implementation: Software for SeqEM is freely available from our website: www.hihg.org under Software Download. Contact:emartin1@med.miami.edu Supplementary information:Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- E R Martin
- John P. Hussman Institute for Human Genomics and the Dr. John T. Macdonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, Florida, USA.
| | | | | | | | | | | |
Collapse
|
198
|
Knudsen B, Forsberg R, Miyamoto MM. A computer simulator for assessing different challenges and strategies of de novo sequence assembly. Genes (Basel) 2010; 1:263-82. [PMID: 24710045 PMCID: PMC3954094 DOI: 10.3390/genes1020263] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/18/2010] [Accepted: 08/31/2010] [Indexed: 11/16/2022] Open
Abstract
This study presents a new computer program for assessing the effects of different factors and sequencing strategies on de novo sequence assembly. The program uses reads from actual sequencing studies or from simulations with a reference genome that may also be real or simulated. The simulated reads can be created with our read simulator. They can be of differing length and coverage, consist of paired reads with varying distance, and include sequencing errors such as color space miscalls to imitate SOLiD data. The simulated or real reads are mapped to their reference genome and our assembly simulator is then used to obtain optimal assemblies that are limited only by the distribution of repeats. By way of this mapping, the assembly simulator determines which contigs are theoretically possible, or conversely (and perhaps more importantly), which are not. We illustrate the application and utility of our new simulation tools with several experiments that test the effects of genome complexity (repeats), read length and coverage, word size in De Bruijn graph assembly, and alternative sequencing strategies (e.g., BAC pooling) on sequence assemblies. These experiments highlight just some of the uses of our simulators in the experimental design of sequencing projects and in the further development of assembly algorithms.
Collapse
Affiliation(s)
| | | | - Michael M Miyamoto
- Department of Biology, Box 118525, University of Florida, Gainesville, Florida, 32611-8525, USA.
| |
Collapse
|
199
|
Abstract
The recent emergence of massively parallel sequencing technologies has enabled an increasing number of human genome re-sequencing studies, notable among them being the 1000 Genomes Project. The main aim of these studies is to identify the yet unknown genetic variants in a genomic region, mostly low frequency variants (frequency less than 5%). We propose here a set of statistical tools that address how to optimally design such studies in order to increase the number of genetic variants we expect to discover. Within this framework, the tradeoff between lower coverage for more individuals and higher coverage for fewer individuals can be naturally solved. The methods here are also useful for estimating the number of genetic variants missed in a discovery study performed at low coverage. We show applications to simulated data based on coalescent models and to sequence data from the ENCODE project. In particular, we show the extent to which combining data from multiple populations in a discovery study may increase the number of genetic variants identified relative to studies on single populations.
Collapse
|
200
|
Abstract
The past few decades are characterized by an explosive evolution of genetics and molecular cell biology. Advances in chemistry and engineering have enabled increased data throughput, permitting the study of complete sets of molecules with increasing speed and accuracy using techniques such as genomics, transcriptomics, proteomics, and metabolomics. Prediction of long-term outcomes in transplantation is hampered by the absence of sufficiently robust biomarkers and a lack of adequate insight into the mechanisms of acute and chronic alloimmune injury and the adaptive mechanisms of immunological quiescence that may support transplantation tolerance. Here, we discuss some of the great opportunities that molecular diagnostic tools have to offer both basic scientists and translational researchers for bench-to-bedside clinical application in transplantation medicine, with special focus on genomics and genome-wide association studies, epigenetics (DNA methylation and histone modifications), gene expression studies and transcriptomics (including microRNA and small interfering RNA studies), proteomics and peptidomics, antibodyomics, metabolomics, chemical genomics and functional imaging with nanoparticles. We address the challenges and opportunities associated with the newer high-throughput sequencing technologies, especially in the field of bioinformatics and biostatistics, and demonstrate the importance of integrative approaches. Although this Review focuses on transplantation research and clinical transplantation, the concepts addressed are valid for all translational research.
Collapse
|