151
|
Blokker BA, Maijo M, Echeandia M, Galduroz M, Patterson AM, Ten A, Philo M, Schungel R, Gutierrez‐de Juan V, Halilbasic E, Fuchs C, Le Gall G, Milkiewicz M, Milkiewicz P, Banales JM, Rushbrook SM, Mato JM, Trauner M, Müller M, Martínez‐Chantar ML, Varela‐Rey M, Beraza N. Fine-Tuning of Sirtuin 1 Expression Is Essential to Protect the Liver From Cholestatic Liver Disease. Hepatology 2019; 69:699-716. [PMID: 30229970 PMCID: PMC6492079 DOI: 10.1002/hep.30275] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022]
Abstract
Cholestasis comprises aetiologically heterogeneous conditions characterized by accumulation of bile acids in the liver that actively contribute to liver damage. Sirtuin 1 (SIRT1) regulates liver regeneration and bile acid metabolism by modulating farnesoid X receptor (FXR); we here investigate its role in cholestatic liver disease. We determined SIRT1 expression in livers from patients with cholestatic disease, in two experimental models of cholestasis, as well as in human and murine liver cells in response to bile acid loading. SIRT1-overexpressing (SIRToe ) and hepatocyte-specific SIRT1-KO (knockout) mice (SIRThep-/- ) were subjected to bile duct ligation (BDL) and were fed with a 0.1% DDC (3,5-diethoxycarbonyl-1,4-dihydrocollidine) diet to determine the biological relevance of SIRT1 during cholestasis. The effect of NorUDCA (24-norursodeoxycholic acid) was tested in BDL/SIRToe mice. We found that SIRT1 was highly expressed in livers from cholestatic patients, mice after BDL, and Mdr2 knockout mice (Mdr2-/- ) animals. The detrimental effects of SIRT1 during cholestasis were validated in vivo and in vitro. SIRToe mice showed exacerbated parenchymal injury whereas SIRThep-/- mice evidenced a moderate improvement after BDL and 0.1% DDC feeding. Likewise, hepatocytes isolated from SIRToe mice showed increased apoptosis in response to bile acids, whereas a significant reduction was observed in SIRThep-/- hepatocytes. Importantly, the decrease, but not complete inhibition, of SIRT1 exerted by norUDCA treatment correlated with pronounced improvement in liver parenchyma in BDL/SIRToe mice. Interestingly, both SIRT1 overexpression and hepatocyte-specific SIRT1 depletion correlated with inhibition of FXR, whereas modulation of SIRT1 by NorUDCA associated with restored FXR signaling. Conclusion: SIRT1 expression is increased during human and murine cholestasis. Fine-tuning expression of SIRT1 is essential to protect the liver from cholestatic liver damage.
Collapse
Affiliation(s)
- Britt A. Blokker
- Norwich Medical SchoolUniversity of East AngliaNorwichUnited Kingdom,Gut Microbes and Health Institute Strategic ProgrammeQuadram InstituteNorwichUnited Kingdom
| | - Monica Maijo
- Gut Microbes and Health Institute Strategic ProgrammeQuadram InstituteNorwichUnited Kingdom
| | - Marta Echeandia
- Gut Microbes and Health Institute Strategic ProgrammeQuadram InstituteNorwichUnited Kingdom
| | - Mikel Galduroz
- Gut Microbes and Health Institute Strategic ProgrammeQuadram InstituteNorwichUnited Kingdom
| | - Angela M. Patterson
- Gut Microbes and Health Institute Strategic ProgrammeQuadram InstituteNorwichUnited Kingdom
| | - Anna Ten
- Gut Microbes and Health Institute Strategic ProgrammeQuadram InstituteNorwichUnited Kingdom
| | - Mark Philo
- Metabolomics UnitQuadram InstituteNorwichUnited Kingdom
| | - Rebecca Schungel
- Gut Microbes and Health Institute Strategic ProgrammeQuadram InstituteNorwichUnited Kingdom,Department of Food, Nutrition, FacilitiesUniversity of Applied Sciences MünsterMünsterGermany
| | - Virginia Gutierrez‐de Juan
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)DerioSpain
| | - Emina Halilbasic
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University ViennaViennaAustria
| | - Claudia Fuchs
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University ViennaViennaAustria
| | | | | | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver SurgeryMedical University of WarsawWarsawPoland
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal DiseasesBiodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, IkerbasqueDonostiaSpain
| | - Simon M. Rushbrook
- Department of GastroenterologyNorfolk and Norwich University HospitalNorwichUnited Kingdom
| | - José M. Mato
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)DerioSpain
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University ViennaViennaAustria
| | - Michael Müller
- Norwich Medical SchoolUniversity of East AngliaNorwichUnited Kingdom
| | - María Luz Martínez‐Chantar
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)DerioSpain
| | - Marta Varela‐Rey
- CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)DerioSpain
| | - Naiara Beraza
- Gut Microbes and Health Institute Strategic ProgrammeQuadram InstituteNorwichUnited Kingdom,CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)DerioSpain
| |
Collapse
|
152
|
Chi ZC. Intestinal microbiome and autoimmune liver disease. Shijie Huaren Xiaohua Zazhi 2019; 27:50-62. [DOI: 10.11569/wcjd.v27.i1.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
At present, it has been proved that intestinal microbial-related disorders are involved in the development and progression of multi-organ system diseases. Intestinal microflora is the accumulation of microbial antigens and activated immune cells. Changes in the composition of intestinal microflora (biological disorders) can destroy the systemic immune tolerance of intestinal and symbiotic bacteria. Toll-like receptors in the intestine recognize microbial-related molecular patterns and T helper lymphocyte subpopulations that can cross-react with host antigens (molecular mimics). Activated enterogenous lymphocytes can migrate to lymph nodes, and enterogenous microbial antigens can migrate to extraintestinal sites. Inflammasomes can form in hepatocytes and hepatic stellate cells, which can drive inflammatory, immune-mediated and fibrotic responses. This article reviews and evaluates the role of intestinal microorganisms in the pathogenesis and treatment of autoimmune liver disease.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Affiliated Hospital of Shandong University Medical College, Qingdao 266011, Shandong Province, China
| |
Collapse
|
153
|
Xue Y, Ma C, Hanna I, Pan G. Intestinal Transporter-Associated Drug Absorption and Toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1141:361-405. [DOI: 10.1007/978-981-13-7647-4_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
154
|
Cabrera D, Arab JP, Arrese M. UDCA, NorUDCA, and TUDCA in Liver Diseases: A Review of Their Mechanisms of Action and Clinical Applications. Handb Exp Pharmacol 2019; 256:237-264. [PMID: 31236688 DOI: 10.1007/164_2019_241] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bile acids (BAs) are key molecules in generating bile flow, which is an essential function of the liver. In the last decades, there have been great advances in the understanding of BA physiology, and new insights have emerged regarding the role of BAs in determining cell damage and death in several liver diseases. This new knowledge has helped to better delineate the pathophysiology of cholestasis and the adaptive responses of hepatocytes to cholestatic liver injury as well as of the mechanisms of injury of biliary epithelia. In this context, therapeutic approaches for liver diseases using hydrophilic BA (i.e., ursodeoxycholic acid, tauroursodeoxycholic, and, more recently, norursodeoxycholic acid), have been revamped. In the present review, we summarize current experimental and clinical data regarding these BAs and its role in the treatment of certain liver diseases.
Collapse
Affiliation(s)
- Daniel Cabrera
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Ciencias Químicas y Biológicas, Facultad de Salud, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Juan Pablo Arab
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marco Arrese
- Departamento de Gastroenterología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
155
|
Guo C, Li Y, Wang P, Li Y, Qiu C, Li M, Wang D, Zhao R, Li D, Wang Y, Li S, Dai W, Zhang L. Alterations of Gut Microbiota in Cholestatic Infants and Their Correlation With Hepatic Function. Front Microbiol 2018; 9:2682. [PMID: 30483228 PMCID: PMC6243132 DOI: 10.3389/fmicb.2018.02682] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022] Open
Abstract
Cholestasis is a major hepatic disease in infants, with increasing morbidity in recent years. Accumulating evidence has revealed that the gut microbiota (GM) is associated with liver diseases, such as non-alcoholic steatohepatitis, cirrhosis, and hepatocellular carcinoma. However, GM alterations in cholestatic infants and the correlation between the GM and hepatic functions remain uninvestigated. In this study, 43 cholestatic infants (IC group) and 37 healthy infants (H group) were enrolled to detect GM discrepancies using 16S rDNA analysis. The diversity in the bacterial community was significantly lower in the IC group than that in the H group (P = 0.013). After determining the top 10 abundant genera of microbes in the IC and H groups, we found that 13 of them were differentially enriched, including Bifidobacterium, Bacteroides, Streptococcus, Enterococcus, and Staphylococcus. As compared with the H group, the IC group had a more complex GM co-occurrence network featured by three core nodes: Phyllobacterium, Ruminococcus, and Anaerostipes. In addition, the positive correlation between Faecalibacterium and Erysipelatoclostridium (r = 0.689, P = 0.000, FDR = 0.009) was not observed in the IC patients. Using the GM composition, the cholestatic patients can be distinguished from healthy infants with high accuracy [areas under receiver operating curve (AUC) > 0.97], wherein Rothia, Eggerthella, Phyllobacterium, and Blautia are identified as valuable biomarkers. Using KEGG annotation, we identified 32 functional categories with significant difference in enrichment of the GM of IC patients, including IC-enriched functional categories that were related to lipid metabolism, biodegradation and metabolism of xenobiotics, and various diseases. In contrast, the number of functions associated with amino acid metabolism, nucleotide metabolism, and vitamins metabolism was reduced in the IC patients. We also identified significant correlation between GM composition and indicators of hepatic function. Megasphaera positively correlated with total bilirubin (r = 0.455, P = 0.002) and direct bilirubin (r = 0.441, P = 0.003), whereas γ-glutamyl transpeptidase was positively associated with Parasutterella (r = 0.466, P = 0.002) and negatively related to Streptococcus (r = -0.450, P = 0.003). This study describes the GM characteristics in the cholestatic infants, illustrates the association between the GM components and the hepatic function, and provides a solid theoretical basis for GM intervention for the treatment of infantile cholestasis.
Collapse
Affiliation(s)
- Cheng Guo
- Department of Pediatrics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yinhu Li
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Peipei Wang
- Department of Pediatrics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingchao Li
- Department of Pediatrics, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chuangzhao Qiu
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, China
| | - Muxia Li
- Department of Pediatrics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Daxi Wang
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, China
| | - Ruiqin Zhao
- Department of Pediatrics, Children's Hospital of Hebei Province, Shijiazhuang, China
| | - Dongfang Li
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, China
| | - Ye Wang
- Department of Pediatrics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Shuaicheng Li
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Wenkui Dai
- Department of Microbial Research, WeHealthGene Institute, Shenzhen, China
| | - Lin Zhang
- Department of Pediatrics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
156
|
Camara-Lemarroy CR, Metz LM, Yong VW. Focus on the gut-brain axis: Multiple sclerosis, the intestinal barrier and the microbiome. World J Gastroenterol 2018; 24:4217-4223. [PMID: 30310254 PMCID: PMC6175760 DOI: 10.3748/wjg.v24.i37.4217] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 02/06/2023] Open
Abstract
The brain-gut axis serves as the bidirectional connection between the gut microbiome, the intestinal barrier and the immune system that might be relevant for the pathophysiology of inflammatory demyelinating diseases. People with multiple sclerosis have been shown to have an altered microbiome, increased intestinal permeability and changes in bile acid metabolism. Experimental evidence suggests that these changes can lead to profound alterations of peripheral and central nervous system immune regulation. Besides being of pathophysiological interest, the brain-gut axis could also open new avenues of therapeutic targets. Modification of the microbiome, the use of probiotics, fecal microbiota transplantation, supplementation with bile acids and intestinal barrier enhancers are all promising candidates. Hopefully, pre-clinical studies and clinical trials will soon yield significant results.
Collapse
Affiliation(s)
- Carlos R Camara-Lemarroy
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary T2N 2T9, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary T2N 2T9, Canada
| | - Luanne M Metz
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary T2N 2T9, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary T2N 2T9, Canada
| | - V Wee Yong
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary T2N 2T9, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary T2N 2T9, Canada
| |
Collapse
|
157
|
Santiago P, Scheinberg AR, Levy C. Cholestatic liver diseases: new targets, new therapies. Therap Adv Gastroenterol 2018; 11:1756284818787400. [PMID: 30159035 PMCID: PMC6109852 DOI: 10.1177/1756284818787400] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/14/2018] [Indexed: 02/04/2023] Open
Abstract
Cholestatic liver diseases result from gradual destruction of bile ducts, accumulation of bile acids and self-perpetuation of the inflammatory process leading to damage to cholangiocytes and hepatocytes. If left untreated, cholestasis will lead to fibrosis, biliary cirrhosis, and ultimately end-stage liver disease. Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are the two most common chronic cholestatic liver diseases affecting adults, and their etiologies remain puzzling. While treatment with ursodeoxycholic acid (UDCA) has significantly improved outcomes and prolonged transplant-free survival for patients with PBC, treatment options for UDCA nonresponders remain limited. Furthermore, there is no available medical therapy for PSC. With recent advances in molecular biochemistry specifically related to bile acid regulation and understanding of immunologic pathways, novel pharmacologic treatments have emerged. In this review, we discuss the standard of care and emphasize the various emerging treatments for PBC and PSC.
Collapse
Affiliation(s)
- Priscila Santiago
- Department of Medicine, University of Miami/Jackson Memorial Hospital
| | | | | |
Collapse
|
158
|
Li X, Liu R, Huang Z, Gurley EC, Wang X, Wang J, He H, Yang H, Lai G, Zhang L, Bajaj JS, White M, Pandak WM, Hylemon PB, Zhou H. Cholangiocyte-derived exosomal long noncoding RNA H19 promotes cholestatic liver injury in mouse and humans. Hepatology 2018; 68:599-615. [PMID: 29425397 PMCID: PMC6085159 DOI: 10.1002/hep.29838] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/28/2018] [Accepted: 02/07/2018] [Indexed: 12/12/2022]
Abstract
UNLABELLED Cholestatic liver injury is an important clinical problem with limited understanding of disease pathologies. Exosomes are small extracellular vesicles released by a variety of cells, including cholangiocytes. Exosome-mediated cell-cell communication can modulate various cellular functions by transferring a variety of intracellular components to target cells. Our recent studies indicate that the long noncoding RNA (lncRNA), H19, is mainly expressed in cholangiocytes, and its aberrant expression is associated with significant down-regulation of small heterodimer partner (SHP) in hepatocytes and cholestatic liver injury in multidrug resistance 2 knockout (Mdr2-/- ) mice. However, how cholangiocyte-derived H19 suppresses SHP in hepatocytes remains unknown. Here, we report that cholangiocyte-derived exosomes mediate transfer of H19 into hepatocytes and promote cholestatic injury. Hepatic H19 level is correlated with severity of cholestatic injury in both fibrotic mouse models, including Mdr2-/- mice, a well-characterized model of primary sclerosing cholangitis (PSC), or CCl4 -induced cholestatic liver injury mouse models, and human PSC patients. Moreover, serum exosomal-H19 level is gradually up-regulated during disease progression in Mdr2-/- mice and patients with cirrhosis. H19-carrying exosomes from the primary cholangiocytes of wild-type (WT) mice suppress SHP expression in hepatocytes, but not the exosomes from the cholangiocytes of H19-/- mice. Furthermore, overexpression of H19 significantly suppressed SHP expression at both transcriptional and posttranscriptional levels. Importantly, transplant of H19-carrying serum exosomes of old fibrotic Mdr2-/- mice significantly promoted liver fibrosis (LF) in young Mdr2-/- mice. CONCLUSION Cholangiocyte-derived exosomal-H19 plays a critical role in cholestatic liver injury. Serum exosomal H19 represents a noninvasive biomarker and potential therapeutic target for cholestatic diseases. (Hepatology 2018).
Collapse
Affiliation(s)
- Xiaojiaoyang Li
- Department of Microbiology and Immunology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Runping Liu
- Department of Microbiology and Immunology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Zhiming Huang
- Department of Gastroenterology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Emily C. Gurley
- Department of Microbiology and Immunology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, USA,Division of Gastroenterology, Hepatology and Nutrition and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University
| | - Xuan Wang
- Department of Microbiology and Immunology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Juan Wang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Hongliang He
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Guanhua Lai
- Department of Pathology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Luyong Zhang
- Guangdong Pharmaceutical University, Guangzhou, China
| | - Jasmohan S Bajaj
- Division of Gastroenterology, Hepatology and Nutrition and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University
| | - Melanie White
- Division of Gastroenterology, Hepatology and Nutrition and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University
| | - William M Pandak
- Division of Gastroenterology, Hepatology and Nutrition and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University
| | - Phillip B. Hylemon
- Department of Microbiology and Immunology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Huiping Zhou
- Department of Microbiology and Immunology and McGuire Veterans Affairs Medical Center, Virginia Commonwealth University, Richmond, Virginia, USA,Department of Gastroenterology, the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China,Address correspondence to: Huiping Zhou, Ph.D., Department of Microbiology & Immunology, Virginia Commonwealth University, McGuire Veterans Affairs Medical Center, 1217 East Marshall Street, MSB#533, Richmond, VA, 23298-0678, USA, Tel: 804-828-6817; Fax: 804-828-0676,
| |
Collapse
|
159
|
|
160
|
Wahlström A. Outside the liver box: The gut microbiota as pivotal modulator of liver diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1865:912-919. [PMID: 31007175 DOI: 10.1016/j.bbadis.2018.07.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
The gut microbiota affects host physiology and has evolved as an important contributor to health and disease. Gut and liver are closely connected and communicate via the portal vein and the biliary system so the liver is constantly exposed to gut-derived bacterial products and metabolites. The intestinal barrier is important for maintaining physical and functional separation between microbes in the gut and the interior of the host and disruption of the barrier function can lead to bacterial translocation and increased leakage of bacterial metabolites. Liver diseases have been associated with dysbiotic changes in the gut microbiota and impaired gut barrier integrity, thus a future strategy to treat liver disease may be to target the gut microbiota and thereby restore the gut barrier function. This review will summarize and discuss studies that have shown a link between the gut microbiota and liver disease with the main focus on non-alcoholic fatty liver disease and alcoholic liver disease.
Collapse
Affiliation(s)
- Annika Wahlström
- Sahlgrenska Academy, Institute of Medicine, Department of Molecular and Clinical Medicine, Wallenberg Laboratory, University of Gothenburg, S-413 45 Gothenburg, Sweden.
| |
Collapse
|
161
|
Abe K, Takahashi A, Fujita M, Imaizumi H, Hayashi M, Okai K, Ohira H. Dysbiosis of oral microbiota and its association with salivary immunological biomarkers in autoimmune liver disease. PLoS One 2018; 13:e0198757. [PMID: 29969462 PMCID: PMC6029758 DOI: 10.1371/journal.pone.0198757] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/24/2018] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota has recently been recognized to play a role in the pathogenesis of autoimmune liver disease (AILD), mainly primary biliary cholangitis (PBC) and autoimmune hepatitis (AIH). This study aimed to analyze and compare the composition of the oral microbiota of 56 patients with AILD and 15 healthy controls (HCs) and to evaluate its association with salivary immunological biomarkers and gut microbiota. The subjects included 39 patients with PBC and 17 patients with AIH diagnosed at our hospital. The control population comprised 15 matched HCs. Salivary and fecal samples were collected for analysis of the microbiome by terminal restriction fragment length polymorphism of 16S rDNA. Correlations between immunological biomarkers measured by Bio-Plex assay (Bio-Rad) and the oral microbiomes of patients with PBC and AIH were assessed. Patients with AIH showed a significant increase in Veillonella with a concurrent decrease in Streptococcus in the oral microbiota compared with the HCs. Patients with PBC showed significant increases in Eubacterium and Veillonella and a significant decrease in Fusobacterium in the oral microbiota compared with the HCs. Immunological biomarker analysis showed elevated levels of inflammatory cytokines (IL-1β, IFN-γ, TNF-α, IL-8) and immunoglobulin A in the saliva of patients with AILD. The relative abundance of Veillonella was positively correlated with the levels of IL-1β, IL-8 and immunoglobulin A in saliva and the relative abundance of Lactobacillales in feces. Dysbiosis of the oral microbiota is associated with inflammatory responses and reflects changes in the gut microbiota of patients with AILD. Dysbiosis may play an important role in the pathogenesis of AILD.
Collapse
Affiliation(s)
- Kazumichi Abe
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
- Department of Internal Medicine, Hanawa Kosei Hospital, Higashishirakawa, Japan
| | - Atsushi Takahashi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Masashi Fujita
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiromichi Imaizumi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Manabu Hayashi
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Ken Okai
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
162
|
Obesity-Related Asthma: Immune Regulation and Potential Targeted Therapies. J Immunol Res 2018; 2018:1943497. [PMID: 30050954 PMCID: PMC6046139 DOI: 10.1155/2018/1943497] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/24/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023] Open
Abstract
Obesity, one of the most severe public health problems of the 21st century, is a common metabolic syndrome due to excess body fat. The incidence and severity of obesity-related asthma have undergone a dramatic increase. Because obesity-related asthma is poorly controlled using conventional therapies, alternative and complementary therapies are urgently needed. Lipid metabolism may be abnormal in obesity-related asthma, and immune modulation therapies need to be investigated. Herein, we describe the immune regulators of lipid metabolism in obesity as well as the interplay of obesity and asthma. These lay the foundations for targeted therapies in terms of direct and indirect immune regulators of lipid metabolism, which ultimately help provide effective control of obesity-related asthma with a feasible treatment strategy.
Collapse
|
163
|
Sedki M, Levy C. Update in the Care and Management of Patients with Primary Sclerosing Cholangitis. Curr Gastroenterol Rep 2018; 20:29. [PMID: 29886518 DOI: 10.1007/s11894-018-0635-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE OF REVIEW Primary sclerosing cholangitis (PSC) is a progressive cholestatic liver disease for which specific medical therapy is not available. The goals of treatment are primarily early detection and management of complications. In this review, we discuss novel therapies under evaluation and provide the foundation for surveillance strategies. RECENT FINDINGS Drugs under investigation include norursodeoxycholic acid, nuclear receptor agonists, anti-fibrotics, antibiotics, and anti-inflammatory drugs. Endoscopic therapy is indicated for symptomatic dominant strictures and in the work-up of malignancies. Recently, the use of stents was associated with an increased rate of complications compared to balloon dilatation; and long-term stenting should be avoided. Malignancies currently account for most of the PSC-related mortality. Many drugs are emerging for the treatment of PSC but liver transplantation is the only treatment modality shown to prolong survival. PSC recurrence occurs in up to 35% of transplanted allografts within a median of 5 years. Surveillance for hepatobiliary and colorectal malignancies is indicated.
Collapse
Affiliation(s)
- Mai Sedki
- Department of Internal Medicine, University of Miami/Jackson Memorial Hospital, Miami, FL, USA
| | - Cynthia Levy
- Division of Hepatology, University of Miami Miller School of Medicine, 1500 NW 12th Avenue, Suite 1101, Miami, FL, USA.
| |
Collapse
|
164
|
Rizzetto L, Fava F, Tuohy KM, Selmi C. Connecting the immune system, systemic chronic inflammation and the gut microbiome: The role of sex. J Autoimmun 2018; 92:12-34. [PMID: 29861127 DOI: 10.1016/j.jaut.2018.05.008] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/18/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Unresolved low grade systemic inflammation represents the underlying pathological mechanism driving immune and metabolic pathways involved in autoimmune diseases (AID). Mechanistic studies in animal models of AID and observational studies in patients have found alterations in gut microbiota communities and their metabolites, suggesting a microbial contribution to the onset or progression of AID. The gut microbiota and its metabolites have been shown to influence immune functions and immune homeostasis both within the gut and systematically. Microbial derived-short chain fatty acid (SCFA) and bio-transformed bile acid (BA) have been shown to influence the immune system acting as ligands specific cell signaling receptors like GPRCs, TGR5 and FXR, or via epigenetic processes. Similarly, intestinal permeability (leaky gut) and bacterial translocation are important contributors to chronic systemic inflammation and, without repair of the intestinal barrier, might represent a continuous inflammatory stimulus capable of triggering autoimmune processes. Recent studies indicate gender-specific differences in immunity, with the gut microbiota shaping and being concomitantly shaped by the hormonal milieu governing differences between the sexes. A bi-directional cross-talk between microbiota and the endocrine system is emerging with bacteria being able to produce hormones (e.g. serotonin, dopamine and somatostatine), respond to host hormones (e.g. estrogens) and regulate host hormones' homeostasis (e.g by inhibiting gene prolactin transcription or converting glucocorticoids to androgens). We review herein how gut microbiota and its metabolites regulate immune function, intestinal permeability and possibly AID pathological processes. Further, we describe the dysbiosis within the gut microbiota observed in different AID and speculate how restoring gut microbiota composition and its regulatory metabolites by dietary intervention including prebiotics and probiotics could help in preventing or ameliorating AID. Finally, we suggest that, given consistent observations of microbiota dysbiosis associated with AID and the ability of SCFA and BA to regulate intestinal permeability and inflammation, further mechanistic studies, examining how dietary microbiota modulation can protect against AID, hold considerable potential to tackle increased incidence of AID at the population level.
Collapse
Affiliation(s)
- Lisa Rizzetto
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy.
| | - Francesca Fava
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Kieran M Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Trento, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy; BIOMETRA Department, University of Milan, Italy
| |
Collapse
|
165
|
Li B, Selmi C, Tang R, Gershwin ME, Ma X. The microbiome and autoimmunity: a paradigm from the gut-liver axis. Cell Mol Immunol 2018; 15:595-609. [PMID: 29706647 PMCID: PMC6079090 DOI: 10.1038/cmi.2018.7] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/01/2018] [Accepted: 01/02/2018] [Indexed: 02/07/2023] Open
Abstract
Microbial cells significantly outnumber human cells in the body, and the microbial flora at mucosal sites are shaped by environmental factors and, less intuitively, act on host immune responses, as demonstrated by experimental data in germ-free and gnotobiotic studies. Our understanding of this link stems from the established connection between infectious bacteria and immune tolerance breakdown, as observed in rheumatic fever triggered by Streptococci via molecular mimicry, epitope spread and bystander effects. The availability of high-throughput techniques has significantly advanced our capacity to sequence the microbiome and demonstrated variable degrees of dysbiosis in numerous autoimmune diseases, including rheumatoid arthritis, type 1 diabetes, multiple sclerosis and autoimmune liver disease. It remains unknown whether the observed differences are related to the disease pathogenesis or follow the therapeutic and inflammatory changes and are thus mere epiphenomena. In fact, there are only limited data on the molecular mechanisms linking the microbiota to autoimmunity, and microbial therapeutics is being investigated to prevent or halt autoimmune diseases. As a putative mechanism, it is of particular interest that the apoptosis of intestinal epithelial cells in response to microbial stimuli enables the presentation of self-antigens, giving rise to the differentiation of autoreactive Th17 cells and other T helper cells. This comprehensive review will illustrate the data demonstrating the crosstalk between intestinal microbiome and host innate and adaptive immunity, with an emphasis on how dysbiosis may influence systemic autoimmunity. In particular, a gut–liver axis involving the intestinal microbiome and hepatic autoimmunity is elucidated as a paradigm, considering its anatomic and physiological connections.
Collapse
Affiliation(s)
- Bo Li
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 200001, Shanghai, China
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, Rozzano, Italy.,BIOMETRA Department, University of Milan, Milan, Italy
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 200001, Shanghai, China
| | - M E Gershwin
- Division of Rheumatology, Department of Medicine, Allergy and Clinical Immunology, University of California at Davis, Davis, CA, USA
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 200001, Shanghai, China.
| |
Collapse
|
166
|
The immunobiology of mucosal-associated invariant T cell (MAIT) function in primary biliary cholangitis: Regulation by cholic acid-induced Interleukin-7. J Autoimmun 2018; 90:64-75. [PMID: 29429758 DOI: 10.1016/j.jaut.2018.01.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/27/2018] [Accepted: 01/30/2018] [Indexed: 12/11/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are novel innate-like T cells constituting a significant proportion of circulating and hepatic T cells. Herein, we extensively examine the phenotypical and functional alterations of MAIT cells and their regulation in a cohort of 56 patients with Primary Biliary Cholangitis (PBC) and 53 healthy controls (HC). Additionally alterations of MAIT cells were assessed before and after UDCA treatment. Finally the localization of MAIT cell in liver was examined using specific tetramer staining and the underlying mechanisms of these alterations in PBC were explored. Our data demonstrated that the frequency and number of circulating MAIT cells were decreased, whereas hepatic MAIT cells were increased in PBC compared to HC. Moreover, circulating MAIT cells were more activated in PBC than HC, reflected by elevated expression levels of granzyme B. Six months of UDCA treatment significantly attenuated the circulating MAIT cells differences in PBC. Of note, the expression levels of IL-7 were significantly increased in both plasma and liver from PBC as compared to HC, which promoted the production of inflammatory cytokines and granzyme B by inducing signal transduction and activation of transcription 5 (STAT5) phosphorylation in MAIT cells. Finally, cholic acid, one of the major bile acids in liver, upregulated IL-7 expression in hepatocyte cell line L02 by inducing Farnesoid X Receptor (FXR) binding to the IL-7 promoter. Hence MAIT cells are activated and enriched in the liver of PBC. Cholic acid-induced IL-7 production in hepatocytes plays a critical role in regulating MAIT cell function, highlighting that hepatocytes may bridge cholangiocyte injury and innate immunity through a bile acid signaling pathway.
Collapse
|
167
|
Tanaka A, Leung PS, Gershwin ME. Environmental basis of primary biliary cholangitis. Exp Biol Med (Maywood) 2018; 243:184-189. [PMID: 29307284 DOI: 10.1177/1535370217748893] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autoimmunity is a consequence of both genetic and environmental factors, occurring in genetically susceptible hosts with environmental triggers. While genome-wide association studies have revealed a number of susceptible genes contributing to etiology, the environmental triggers remain poorly understood. Primary biliary cholangitis, formally known as primary biliary cirrhosis, is considered a model autoimmune disease for which our group has extensively evaluated environmental factors involved in its etiology. Bacterial infection and xenobiotics have been proposed as candidate environmental factors that may explain tolerance breakdown and production of primary biliary cholangitis-specific antimitochondrial autoantibodies. Large-scale case-control studies have consistently detected an association of primary biliary cholangitis with urinary tract infections caused by Escherichia coli, as E. coli PDC-E2 is molecularly similar to human PDC-E2, the immunodominant target of AMAs. Another bacterium of interest is Novosphingobium aromaticivorans, a ubiquitous xenobiotic-metabolizing bacterium that produces lipoylated proteins, which are highly reactive with sera from primary biliary cholangitis patients. Regarding xenobiotics, case-control studies have suggested that frequent use of nail polish is associated with an increased susceptibility to primary biliary cholangitis. We found that 2-octynamide, the conjugate derived from 2-octynoic acid present in cosmetics, lipsticks, and some chewing gums, was unique in both its quantitative structure-activity relationship analysis and reactivity with primary biliary cholangitis sera. 2-nonyamide is another xenobiotic that also has the optimal chemical structure for xenobiotic modification of the PDC-E2 epitope, as demonstrated by the enhanced epitope recognition with AMA-positive PBC sera. Moreover, we found that C57BL/6 mice immunized with 2-octynoic acid-BSA possess many of the features characteristic to primary biliary cholangitis. Impact statement Autoimmunity is believed to develop in genetically susceptible hosts with triggers from the environment. Researchers have recently demonstrated that bacteria and xenobiotics commonly present in our environment are potential triggers of tolerance breakdown against autoantigens and autoimmunity, particularly in primary biliary cholangitis (PBC). The link between xenobiotics and PBC has been further confirmed with the establishment of PBC model mice by immunizing mice with xenobiotics.
Collapse
Affiliation(s)
- Atsushi Tanaka
- 1 Department of Medicine, School of Medicine, Teikyo University, Tokyo 1738606, Japan
| | - Patrick Sc Leung
- 2 Division of Rheumatology Allergy and Clinical Immunology, University of California School of Medicine, Davis, CA 95616, USA
| | - M Eric Gershwin
- 2 Division of Rheumatology Allergy and Clinical Immunology, University of California School of Medicine, Davis, CA 95616, USA
| |
Collapse
|
168
|
Ikegami T, Honda A. Reciprocal interactions between bile acids and gut microbiota in human liver diseases. Hepatol Res 2018; 48:15-27. [PMID: 29150974 DOI: 10.1111/hepr.13001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 02/08/2023]
Abstract
The gut microbiota (GM) play a central role in their host's metabolism of bile acids (BAs) by regulating deconjugation, dehydroxylation, dehydrogenation, and epimerization reactions to generate unconjugated free BAs and secondary BAs. These BAs generated by the GM are potent signaling molecules that interact with BA receptors, such as the farnesoid X receptor and Takeda G-protein-coupled receptor 5. Each BA has a differential affinity to these receptors; therefore, alterations in BA composition by GM could modify the intensity of receptor signaling. Bile acids also act as antimicrobial agents by damaging bacterial membranes and as detergents by altering intracellular macromolecular structures. Therefore, BAs and the GM reciprocally control each other's compositions. In this review, we discuss the latest findings on the mutual effects of BAs and GM on each other; we also describe their roles in the pathophysiology of liver disease progression and potential therapeutic applications of targeting this cross-talk.
Collapse
Affiliation(s)
- Tadashi Ikegami
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| | - Akira Honda
- Division of Gastroenterology and Hepatology, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan.,Joint Research Center, Tokyo Medical University Ibaraki Medical Center, Ibaraki, Japan
| |
Collapse
|