151
|
Xiao J, Angsana J, Wen J, Smith SV, Park PW, Ford ML, Haller CA, Chaikof EL. Syndecan-1 displays a protective role in aortic aneurysm formation by modulating T cell-mediated responses. Arterioscler Thromb Vasc Biol 2011; 32:386-96. [PMID: 22173227 DOI: 10.1161/atvbaha.111.242198] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Chronic inflammation drives progressive and pathological remodeling inherent to formation of abdominal aortic aneurysm (AAA). Syndecan-1 (Sdc-1) is a cell surface heparan sulfate proteoglycan that displays the capacity to modulate inflammatory processes within the vascular wall. In the current investigation, the role of Sdc-1 in AAA formation was examined using 2 models of experimental aneurysm induction, angiotensin II infusion and elastase perfusion. METHODS AND RESULTS Sdc-1 deficiency exacerbated AAA formation in both experimental models and was associated with increased degradation of elastin, greater protease activity, and enhanced inflammatory cell recruitment into the aortic wall. Bone marrow transplantation studies indicated that deficiency of Sdc-1 in marrow-derived cells significantly contributed to AAA severity. Immunostaining revealed augmented Sdc-1 expression in a subset of AAA localized macrophages. We specifically characterized a higher percentage of CD4(+) T cells in Sdc-1-deficient AAA, and antibody depletion studies established the active role of T cells in aneurysmal dilatation. Finally, we confirmed the ability of Sdc-1 macrophage to modulate the inflammatory chemokine environment. CONCLUSIONS These investigations identify cross-talk between Sdc-1-expressing macrophages and AAA-localized CD4(+) T cells, with Sdc-1 providing an important counterbalance to T-cell-driven inflammation in the vascular wall.
Collapse
Affiliation(s)
- Jiantao Xiao
- BIDMC, 110 Francis St, Suite 9F, Boston, MA 02215 or Carolyn A. Haller, PhD, BIDMC, 110 Francis St, Suite 9F, Boston, MA 02215, USA
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Chui A, Zainuddin N, Rajaraman G, Murthi P, Brennecke SP, Ignjatovic V, Monagle PT, Said JM. Placental syndecan expression is altered in human idiopathic fetal growth restriction. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:693-702. [PMID: 22138583 DOI: 10.1016/j.ajpath.2011.10.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 08/26/2011] [Accepted: 10/21/2011] [Indexed: 11/19/2022]
Abstract
Pregnancy represents a hypercoagulable state characterized by increased thrombin generation. However, placentas from fetal growth restriction (FGR) pregnancies are characterized by increased fibrin deposition and thrombi in the vasculature, indicative of a further increase in thrombin activation and a disturbance in coagulation in this clinical setting. The cause of the coagulation disturbance observed in FGR pregnancies is currently unknown. Anticoagulant mechanisms are crucial in the regulation of thrombin activity, and current evidence suggests that syndecans are the principal placental anticoagulant proteoglycans. The aim of this study was to determine the localization, distribution, and expression of syndecans 1 to 4 in placentas complicated by idiopathic FGR compared with gestation-matched controls. Immunohistochemistry results revealed that all of the syndecans were localized to cells located closely to the maternal and fetal circulation. The mRNA and protein expression levels of both syndecan 1 and syndecan 2 were significantly decreased in FGR samples compared with controls. This is the first study to demonstrate the differential expression of syndecans 1 to 4 in idiopathic FGR placentas compared with controls. Reduced levels of syndecan expression may result in increased placental thrombosis in the uteroplacental circulation and may therefore contribute to the pathogenesis of FGR.
Collapse
Affiliation(s)
- Amy Chui
- Department of Perinatal Medicine, Pregnancy Research Centre, The Royal Women's Hospital, Parkville, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Broadie K, Baumgartner S, Prokop A. Extracellular matrix and its receptors in Drosophila neural development. Dev Neurobiol 2011; 71:1102-30. [PMID: 21688401 PMCID: PMC3192297 DOI: 10.1002/dneu.20935] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Extracellular matrix (ECM) and matrix receptors are intimately involved in most biological processes. The ECM plays fundamental developmental and physiological roles in health and disease, including processes underlying the development, maintenance, and regeneration of the nervous system. To understand the principles of ECM-mediated functions in the nervous system, genetic model organisms like Drosophila provide simple, malleable, and powerful experimental platforms. This article provides an overview of ECM proteins and receptors in Drosophila. It then focuses on their roles during three progressive phases of neural development: (1) neural progenitor proliferation, (2) axonal growth and pathfinding, and (3) synapse formation and function. Each section highlights known ECM and ECM-receptor components and recent studies done in mutant conditions to reveal their in vivo functions, all illustrating the enormous opportunities provided when merging work on the nervous system with systematic research into ECM-related gene functions.
Collapse
Affiliation(s)
- Kendal Broadie
- Departments of Biological Sciences and Cell and Developmental Biology, Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37232 USA
| | - Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, BMC B12, 22184 Lund, Sweden
| | - Andreas Prokop
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
154
|
Lei J, Xue SN, Wu W, Zhou SX, Zhang YL, Yuan GY, Wang JF. Increased level of soluble syndecan-1 in serum correlates with myocardial expression in a rat model of myocardial infarction. Mol Cell Biochem 2011; 359:177-82. [DOI: 10.1007/s11010-011-1012-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
|
155
|
Whiteford JR, Xian X, Chaussade C, Vanhaesebroeck B, Nourshargh S, Couchman JR. Syndecan-2 is a novel ligand for the protein tyrosine phosphatase receptor CD148. Mol Biol Cell 2011; 22:3609-24. [PMID: 21813734 PMCID: PMC3183016 DOI: 10.1091/mbc.e11-02-0099] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The proteoglycan syndecan-2 is a novel ligand for the tyrosine phosphatase receptor CD148, an interaction that stimulates a signaling pathway leading to integrin-mediated cell adhesion. The pathway involves SRC and PI3 kinases and is an example of cell surface receptor cross-talk influencing integrin-mediated cellular processes. Syndecan-2 is a heparan sulfate proteoglycan that has a cell adhesion regulatory domain contained within its extracellular core protein. Cell adhesion to the syndecan-2 extracellular domain (S2ED) is β1 integrin dependent; however, syndecan-2 is not an integrin ligand. Here the protein tyrosine phosphatase receptor CD148 is shown to be a key intermediary in cell adhesion to S2ED, with downstream β1 integrin–mediated adhesion and cytoskeletal organization. We show that S2ED is a novel ligand for CD148 and identify the region proximal to the transmembrane domain of syndecan-2 as the site of interaction with CD148. A mechanism for the transduction of the signal from CD148 to β1 integrins is elucidated requiring Src kinase and potential implication of the C2β isoform of phosphatidylinositol 3 kinase. Our data uncover a novel pathway for β1 integrin–mediated adhesion of importance in cellular processes such as angiogenesis and inflammation.
Collapse
Affiliation(s)
- James R Whiteford
- Centre for Microvascular Research, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.
| | | | | | | | | | | |
Collapse
|
156
|
|
157
|
Dash-Wagh S, Neumann JR, Veitinger S, Grote-Westrick C, Landgraf P, Pape HC, Kreutz MR, von Holst A, Wahle P. The survival promoting peptide Y-P30 promotes cellular migration. Mol Cell Neurosci 2011; 48:195-204. [PMID: 21820515 DOI: 10.1016/j.mcn.2011.07.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 06/01/2011] [Accepted: 07/14/2011] [Indexed: 11/25/2022] Open
Abstract
Y-P30, the 30 amino acid N-terminal peptide of the dermcidin gene, has been found to promote neuronal survival and differentiation. Its early presence in development and import to the fetal brain led to the hypothesis that Y-P30 has an influence on proliferation, differentiation and migration. Neurospheres derived from neural stem cells isolated from E13 mouse cortex and striatal ganglionic eminences were treated with Y-P30, however, the proportion of progenitors, neurons and astrocytes generated in differentiation assays was not altered. A short Y-P30 treatment of undifferentiated striatal and cortical neurospheres failed to alter the proportion of BrdU-positive cells. A longer treatment reduced the percentage of BrdU-positive cells and GABA-immunoreactive neurons only in striatal spheres. The presence of Y-P30 enhanced migration of T24 human bladder carcinoma cells in a wound-healing assay in vitro. Further, Y-P30 enhanced migration of T24 cells, rat primary cortical astrocytes and PC12 cells in chemotactic Boyden chamber assays. Together, these findings suggest that a major function of Y-P30 is to promote migration of neural and non-neural cell types.
Collapse
Affiliation(s)
- Suvarna Dash-Wagh
- AG Developmental Neurobiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Zong F, Fthenou E, Mundt F, Szatmári T, Kovalszky I, Szilák L, Brodin D, Tzanakakis G, Hjerpe A, Dobra K. Specific syndecan-1 domains regulate mesenchymal tumor cell adhesion, motility and migration. PLoS One 2011; 6:e14816. [PMID: 21731601 PMCID: PMC3121713 DOI: 10.1371/journal.pone.0014816] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 03/31/2011] [Indexed: 12/25/2022] Open
Abstract
Background Syndecans are proteoglycans whose core proteins have a short cytoplasmic domain, a transmembrane domain and a large N-terminal extracellular domain possessing glycosaminoglycan chains. Syndecans are involved in many important cellular processes. Our recent publications have demonstrated that syndecan-1 translocates into the nucleus and hampers tumor cell proliferation. In the present study, we aimed to investigate the role of syndecan-1 in tumor cell adhesion and migration, with special focus on the importance of its distinct protein domains, to better understand the structure-function relationship of syndecan-1 in tumor progression. Methodology/Principal Findings We utilized two mesenchymal tumor cell lines which were transfected to stably overexpress full-length syndecan-1 or truncated variants: the 78 which lacks the extracellular domain except the DRKE sequence proposed to be essential for oligomerization, the 77 which lacks the whole extracellular domain, and the RMKKK which serves as a nuclear localization signal. The deletion of the RMKKK motif from full-length syndecan-1 abolished the nuclear translocation of this proteoglycan. Various bioassays for cell adhesion, chemotaxis, random movement and wound healing were studied. Furthermore, we performed gene microarray to analyze the global gene expression pattern influenced by syndecan-1. Both full-length and truncated syndecan-1 constructs decrease tumor cell migration and motility, and affect cell adhesion. Distinct protein domains have differential effects, the extracellular domain is more important for promoting cell adhesion, while the transmembrane and cytoplasmic domains are sufficient for inhibition of cell migration. Cell behavior seems to depend also on the nuclear translocation of syndecan-1. Many genes are differentially regulated by syndecan-1 and a number of genes are actually involved in cell adhesion and migration. Conclusions/Significance Our results demonstrate that syndecan-1 regulates mesenchymal tumor cell adhesion and migration, and different domains have differential effects. Our study provides new insights into better understanding of the role of syndecans in tumor progression.
Collapse
Affiliation(s)
- Fang Zong
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Grigorieva EV, Prudnikova TY, Domanitskaya NV, Mostovich LA, Pavlova TV, Kashuba VI, Zabarovsky ER. D-glucuronyl C5-epimerase suppresses small-cell lung cancer cell proliferation in vitro and tumour growth in vivo. Br J Cancer 2011; 105:74-82. [PMID: 21654676 PMCID: PMC3137399 DOI: 10.1038/bjc.2011.170] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND D-Glucuronyl C5-epimerase (GLCE) is a key enzyme involved in the biosynthesis of heparan sulphate proteoglycans, which has an important role in cell-cell and cell-matrix interactions and signalling. Decreased GLCE expression in human breast tumours and its anti-proliferative effects in breast cancer cells suggest that it may be a candidate tumour-suppressor gene. The aim of this study was to investigate the involvement of GLCE in lung carcinogenesis. METHODS D-Glucuronyl C5-epimerase expression in different lung cancer cell lines was determined and the gene was ectopically re-expressed in U2020 small-cell lung cancer cells. Cellular proliferation in vitro and tumour growth in vivo were then examined. RESULTS Ectopic re-expression of GLCE in U2020 cells did not affect cell viability but did influence morphology. Cellular proliferation in vitro and tumour formation in vivo were both suppressed. These effects were mediated via downregulation of several pro-angiogenic growth factors and their receptors, including VEGF-A, TGFB1, FGFR2, PDGF-A and PDGF-B, and TNFa and its receptors. Expression of matrix metalloproteinase2, MTA1, PLAU, TIMP3, S100A4, SERPINE1 and TWIST1 was also downregulated. CONCLUSION The anti-tumour effects associated with ectopic GLCE re-expression suggest that it may be a potential tumour-suppressor gene and a possible target for lung cancer diagnosis and treatment.
Collapse
Affiliation(s)
- E V Grigorieva
- Institute of Molecular Biology and Biophysics SD RAMS, Timakova str 2, Novosibirsk 630117, Russia.
| | | | | | | | | | | | | |
Collapse
|
160
|
Beauvais DM, Rapraeger AC. Syndecan-1 couples the insulin-like growth factor-1 receptor to inside-out integrin activation. J Cell Sci 2011; 123:3796-807. [PMID: 20971705 DOI: 10.1242/jcs.067645] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Syndecan-1 (Sdc1) engages and activates the αvβ3 (and/or αvβ5) integrin when clustered in human carcinoma and endothelial cells. Although the engagement is extracellular, the activation mechanism is cytoplasmic. This talin-dependent, inside-out signaling pathway is activated downstream of the insulin-like growth factor-1 receptor (IGF1R), whose kinase activity is triggered by Sdc1 clustering. In vitro binding assays using purified receptors suggest that association of the Sdc1 ectodomain with the integrin provides a 'docking face' for IGF1R. IGF1R docking and activation of the associated integrin is blocked by synstatin (SSTN(92-119)), a peptide derived from the integrin engagement site in Sdc1. IGF1R colocalizes with αvβ3 integrin and Sdc1 in focal contacts, but fails to associate with or activate the integrin in cells either lacking Sdc1 or expressing Sdc1(Δ67-121), a mutant that is unable to form the Sdc1-integrin-IGF1R ternary complex. Integrin activation is also blocked by IGF1R inhibitors or by silencing IGF1R or talin expression with small-interfering RNAs (siRNAs). In both cases, expression of the constitutively active talin F23 head domain rescues integrin activation. We recently reported that SSTN(92-119) blocks angiogenesis and impairs tumor growth in mice, therefore this Sdc1-mediated integrin regulatory mechanism might be a crucial regulator of disease processes known to rely on these integrins, including tumor cell metastasis and tumor-induced angiogenesis.
Collapse
Affiliation(s)
- DeannaLee M Beauvais
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | | |
Collapse
|
161
|
Murakami S. Periodontal tissue regeneration by signaling molecule(s): what role does basic fibroblast growth factor (FGF-2) have in periodontal therapy? Periodontol 2000 2011; 56:188-208. [DOI: 10.1111/j.1600-0757.2010.00365.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
162
|
Whitelock J, Melrose J. Heparan sulfate proteoglycans in healthy and diseased systems. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 3:739-51. [PMID: 21462353 DOI: 10.1002/wsbm.149] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Heparin and heparan sulfate (HS) are glycosaminoglycans (GAGs) that are synthesized in the tissues and organs of mammals. They are synthesized and attached to a core protein as proteoglycans through serine-glycine concensus motifs along the core protein. These GAGs are linear polysaccharides composed of repeating disaccharide saccharide units that are variously modified along their length. As a consequence of these modifications naturally occurring heparin and HS are extremely heterogeneous in their structures. A diverse range of proteins bind heparin and HS. The types of proteins that bind are dictated by the structure of the HS or heparin chains with which they are interacting. Heparan sulfates play major roles in tissue development and in maintaining homeostasis within healthy individuals. Recent genetic studies illustrate that alterations in their structural organization can have important consequences often giving rise to, or directly causing, a disease situation. A greater understanding of the repertoire of proteins with which heparin and HS interact and the diseases that can be caused by perturbations in the structures of heparin and HS proteoglycan may provide insights into possible therapeutic interventions. These issues are discussed with a focus on musculoskeletal phenotypes and diseases.
Collapse
Affiliation(s)
- John Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, Australia.
| | | |
Collapse
|
163
|
Wang X, Chen Y, Song Y, Zhang S, Xie X, Wang X. Activated Syndecan-1 shedding contributes to mice colitis induced by dextran sulfate sodium. Dig Dis Sci 2011; 56:1047-56. [PMID: 20936359 DOI: 10.1007/s10620-010-1398-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2010] [Accepted: 08/12/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND Syndecan-1(Sdc1) plays important roles in many steps of inflammatory responses. In ulcerative colitis patients, decreased Sdc1 expression was observed and Sdc1 analogue heparin could improve the disease course. A better understanding of how Sdc1 functions in colitis will benefit the disease intervention. AIMS To evaluate the role of Sdc1 in dextran sulfate sodium (DSS)-induced colitis. METHODS BALB/c mice were grouped randomly into control, DSS, and heparin+DSS. The DSS group was given 4% DSS orally and heparin+DSS group was given 4% DSS with heparin (enoxaparin) subcutaneously, while the control was given distilled water orally. All mice were killed at day 7. Disease activities, histopathological changes, membrane-bound and free Sdc1 level and mRNA expression of Sdc1, IL-1, and IL-10 in colon mucosa were detected. RESULTS Significant colitis was observed in the DSS group, but disease activity index and histological score showed significant lower in the heparin+DSS group than those in the DSS group. Compared to the control group, decreased Sdc1 protein expression was detected in colon mucosa of DSS-induced colitis while Sdc1 ectodomain level in serum was much higher. Inhibited Sdc1 ectodomain shedding was detected in the heparin+DSS group compared to the DSS group. RT-PCR demonstrated that both IL-1 and IL-10 expression were up-regulated in DSS-induced colitis while heparin lessened the up-regulation extent. CONCLUSIONS Sdc1 shedding is activated in DSS-induced colitis and heparin, which mimics Sdc1 functions, relieves colitis severity by inhibiting Sdc1 shedding and down-regulating cytokines expression.
Collapse
Affiliation(s)
- Xia Wang
- Guangdong Provincial Key Laboratory of Gastroenterology and Department of Digestive Diseases, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| | | | | | | | | | | |
Collapse
|
164
|
Kaur S, Kuznetsova SA, Pendrak ML, Sipes JM, Romeo MJ, Li Z, Zhang L, Roberts DD. Heparan sulfate modification of the transmembrane receptor CD47 is necessary for inhibition of T cell receptor signaling by thrombospondin-1. J Biol Chem 2011; 286:14991-5002. [PMID: 21343308 DOI: 10.1074/jbc.m110.179663] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell surface proteoglycans on T cells contribute to retroviral infection, binding of chemokines and other proteins, and are necessary for some T cell responses to the matricellular glycoprotein thrombospondin-1. The major cell surface proteoglycans expressed by primary T cells and Jurkat T cells have an apparent M(r) > 200,000 and are modified with chondroitin sulfate and heparan sulfate chains. Thrombospondin-1 bound in a heparin-inhibitable manner to this proteoglycan and to a soluble form released into the medium. Based on mass spectrometry, knockdown, and immunochemical analyses, the proteoglycan contains two major core proteins as follows: amyloid precursor-like protein-2 (APLP2, apparent M(r) 230,000) and CD47 (apparent M(r) > 250,000). CD47 is a known thrombospondin-1 receptor but was not previously reported to be a proteoglycan. This proteoglycan isoform of CD47 is widely expressed on vascular cells. Mutagenesis identified glycosaminoglycan modification of CD47 at Ser(64) and Ser(79). Inhibition of T cell receptor signaling by thrombospondin-1 was lost in CD47-deficient T cells that express the proteoglycan isoform of APLP2, indicating that binding to APLP2 is not sufficient. Inhibition of CD69 induction was restored in CD47-deficient cells by re-expressing CD47 or an S79A mutant but not by the S64A mutant. Therefore, inhibition of T cell receptor signaling by thrombospondin-1 is mediated by CD47 and requires its modification at Ser(64).
Collapse
Affiliation(s)
- Sukhbir Kaur
- Laboratory of Pathology, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20982, USA
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Minowa K, Amano H, Nakano S, Ando S, Watanabe T, Nakiri Y, Amano E, Tokano Y, Morimoto S, Takasaki Y. Elevated serum level of circulating syndecan-1 (CD138) in active systemic lupus erythematosus. Autoimmunity 2011; 44:357-62. [PMID: 21320038 DOI: 10.3109/08916934.2010.545846] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is characterized by loss of B cell tolerance and by the presence of polyclonal B cell activation. Syndecan-1 (CD138) is expressed on plasma cells derived from B cells, and is suspected to play a role in SLE. We evaluated the level of soluble CD138 (sCD138) and cell surface expression of CD138 in patients with active SLE, and also examined correlations among the serum levels of BAFF, a proliferation-inducing ligand (APRIL), and CD138 in these patients. METHODS Peripheral blood samples were obtained from 22 SLE patients in an active disease state and 14 normal controls. The levels of serum sCD138, sBAFF, and sAPRIL were measured using ELISA, and cell surface CD138 was analyzed by flow cytometry. The levels of CD138 mRNA were analyzed by RT-PCR. Blood samples were obtained longitudinally when the patients were in an inactive disease state. RESULTS The levels of circulating CD138, CD138 mRNA in PBMC, and the numbers of CD20(- )CD38(+)CD138(+) plasma cells were increased in patients with active SLE in comparison with normal controls. Furthermore, the serum sCD138 level in SLE patients was found to correlate with the proportion of CD20(- )CD38(+)CD138(+) plasma cells. On the other hand, patients with active SLE showed a reduced level of sCD138, and this was inversely correlated with the serum level of sAPRIL. CONCLUSIONS These results suggest that sCD138 may be applicable as a surrogate marker of disease activity, and that syndecan-1/APRIL signaling may be a potential therapeutic target for patients with active SLE.
Collapse
Affiliation(s)
- Kentaro Minowa
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Abstract
To cause infections, microbial pathogens elaborate a multitude of factors that interact with host components. Using these host–pathogen interactions to their advantage, pathogens attach, invade, disseminate, and evade host defense mechanisms to promote their survival in the hostile host environment. Many viruses, bacteria, and parasites express adhesins that bind to cell surface heparan sulfate proteoglycans (HSPGs) to facilitate their initial attachment and subsequent cellular entry. Some pathogens also secrete virulence factors that modify HSPG expression. HSPGs are ubiquitously expressed on the cell surface of adherent cells and in the extracellular matrix. HSPGs are composed of one or several heparan sulfate (HS) glycosaminoglycan chains attached covalently to specific core proteins. For most intracellular pathogens, cell surface HSPGs serve as a scaffold that facilitates the interaction of microbes with secondary receptors that mediate host cell entry. Consistent with this mechanism, addition of HS or its pharmaceutical functional mimic, heparin, inhibits microbial attachment and entry into cultured host cells, and HS-binding pathogens can no longer attach or enter cultured host cells whose HS expression has been reduced by enzymatic treatment or chemical mutagenesis. In pathogens where the specific HS adhesin has been identified, mutant strains lacking HS adhesins are viable and show normal growth rates, suggesting that the capacity to interact with HSPGs is strictly a virulence activity. The goal of this chapter is to provide a mechanistic overview of our current understanding of how certain microbial pathogens subvert HSPGs to promote their infection, using specific HSPG–pathogen interactions as representative examples.
Collapse
Affiliation(s)
- Mauro S.G. Pavão
- , Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Av. Prof. Rodolpho Paulo Rocco 255, Rio de Janeiro, 21941-913 Rio de Janeiro Brazil
| |
Collapse
|
167
|
A role for syndecan-1 and claudin-2 in microbial translocation during HIV-1 infection. J Acquir Immune Defic Syndr 2010; 55:306-15. [PMID: 20700059 DOI: 10.1097/qai.0b013e3181ecfeca] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Microbial translocation from the gastrointestinal tract has been implicated in chronic activation of the immune system during progressive HIV-1 infection by ill-defined mechanisms. We recently identified a gene encoding syndecan-1 (SYN1) in microarray studies of HIV-1 infection in lymphatic tissues and show here that increased expression of SYN1 in the gut of HIV-1-infected individuals is associated with increased microbial translocation. We further show that: (1) microbial access to SYN1 in the intestinal epithelium could be mediated by compromised barrier function through the upregulation of claudin-2; (2) increases in SYN1 and microbial translocation are associated with systemic immune activation; and (3) SYN1 expression and microbial translocation are inversely correlated with peripheral blood CD4 T-cell counts. We thus propose a new mechanism in which claudin-2 and SYN1 work in concert to enhance microbial translocation across the intestinal epithelial barrier to contribute to chronic immune activation and CD4 T-cell depletion.
Collapse
|
168
|
Baston-Büst DM, Götte M, Janni W, Krüssel JS, Hess AP. Syndecan-1 knock-down in decidualized human endometrial stromal cells leads to significant changes in cytokine and angiogenic factor expression patterns. Reprod Biol Endocrinol 2010; 8:133. [PMID: 21044331 PMCID: PMC2988802 DOI: 10.1186/1477-7827-8-133] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 11/02/2010] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Successful embryonic implantation depends on a synchronized embryo-maternal dialogue. Chemokines, such as chemokine ligand 1 (CXCL1), play essential roles in the maternal reproductive tract leading to morphological changes during decidualization, mediating maternal acceptance towards the semi-allograft embryo and induction of angiogenesis. Chemokine binding to their classical G-protein coupled receptors is essentially supported by the syndecan (Sdc) family of heparan sulfate proteoglycans. The aim of this study was to identify the involvement of Sdc-1 at the embryo-maternal interface regarding changes of the chemokine and angiogenic profile of the decidua during the process of decidualization and implantation in human endometrium. METHODS A stable Sdc-1 knock-down was generated in the immortalized human endometrial stromal cell line St-T1 and was named KdS1. The ability of KdS1 to decidualize was proven by Insulin-like growth factor binding 1 (IGFBP1) and prolactin (PRL) confirmation on mRNA level before further experiments were carried out. Dot blot protein analyses of decidualized knock-down cells vs non-transfected controls were performed. In order to imitate embryonic implantation, decidualized KdS1 were then incubated with IL-1beta, an embryo secretion product, vs controls. Statistical analyses were performed applying the Student's t-test with p < 0.05, p < 0.02 and p < 0.01 and one way post-hoc ANOVA test with p < 0.05 as cut-offs for statistical significance. RESULTS The induction of the Sdc-1 knock-down revealed significant changes in cytokine and angiogenic factor expression profiles of dKdS1 vs decidualized controls. Incubation with embryonic IL-1beta altered the expression patterns of KdS1 chemokines and angiogenic factors towards inflammatory-associated molecules and factors involved in matrix regulation. CONCLUSIONS Sdc-1 knock-down in human endometrial stroma cells led to fulminant changes regarding cytokine and angiogenic factor expression profiles upon decidualization and imitation of embryonic contact. Sdc-1 appears to play an important role as a co-receptor and storage factor for many cytokines and angiogenic factors during decidualization and implantation period, supporting proper implantation and angiogenesis by regulation of chemokine and angiogenic factor secretion in favour of the implanting embryo.
Collapse
Affiliation(s)
- Dunja M Baston-Büst
- University Düsseldorf, Medical Faculty, Department of OB/GYN and REI, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Martin Götte
- Department of OB/GYN, Münster University Hospital, Albert-Schweitzer-Str. 33, 48149 Münster, Germany
| | - Wolfgang Janni
- University Düsseldorf, Medical Faculty, Department of OB/GYN and REI, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Jan-Steffen Krüssel
- University Düsseldorf, Medical Faculty, Department of OB/GYN and REI, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Alexandra P Hess
- University Düsseldorf, Medical Faculty, Department of OB/GYN and REI, Moorenstr. 5, 40225 Düsseldorf, Germany
| |
Collapse
|
169
|
Prudnikova TY, Mostovich LA, Domanitskaya NV, Pavlova TV, Kashuba VI, Zabarovsky ER, Grigorieva EV. Antiproliferative effect of D-glucuronyl C5-epimerase in human breast cancer cells. Cancer Cell Int 2010; 10:27. [PMID: 20723247 PMCID: PMC2936283 DOI: 10.1186/1475-2867-10-27] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Accepted: 08/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND D-glucuronyl C5-epimerase (GLCE) is one of the key enzymes in the biosynthesis of heparansulfate proteoglycans. Down-regulation of GLCE expression in human breast tumours suggests a possible involvement of the gene in carcinogenesis. In this study, an effect of GLCE ectopic expression on cell proliferation and viability of breast carcinoma cells MCF7 in vitro and its potential molecular mechanisms were investigated. RESULTS D-glucuronyl C5-epimerase expression was significantly decreased in MCF7 cells compared to normal human breast tissue. Re-expression of GLCE inhibited proliferative activity of MCF7 cells according to CyQUANT NF Cell Proliferation Assay, while it did not affect their viability in Colony Formation Test. According to Cancer PathFinder RT Profiler PCR Array, antiproliferative effect of GLCE in vitro could be related to the enhanced expression of tumour suppressor genes р53 (+3.3 fold), E2F1 (+3.00 fold), BRCA1 (+3.5 fold), SYK (+8.1 fold) and apoptosis-related genes BCL2 (+4.2 fold) and NFKB1 (+2.6 fold). Also, GLCE re-expression in MCF7 cells considerably changed the expression of some genes involved in angiogenesis (IL8, +4.6 fold; IFNB1, +3.9 fold; TNF, +4.6 fold and TGFB1, -5.7 fold) and invasion/metastasis (SYK, +8.1 fold; NME1, +3.96 fold; S100A4, -4.6 fold). CONCLUSIONS The ability of D-glucuronyl С5-epimerase to suppress proliferation of breast cancer cells MCF7 through the attenuated expression of different key genes involved in cell cycle regulation, angiogenesis and metastasis molecular pathways supports the idea on the involvement of the gene in regulation of breast cancer cell proliferation.
Collapse
Affiliation(s)
- Tatiana Y Prudnikova
- Institute of Molecular Biology and Biophysics SD RAMS, Timakova str,, 2, Novosibirsk, 630117 Russia.
| | | | | | | | | | | | | |
Collapse
|
170
|
Abstract
AbstractThe human genome encodes six proteins of family 18 glycosyl hydrolases, two active chitinases and four chitinase-like lectins (chi-lectins) lacking catalytic activity. The present article is dedicated to homology modeling of 3D structure of human chitinase 3-like 2 protein (CHI3L2), which is overexpressed in glial brain tumors, and its structural comparison with homologous chi-lectin CHI3L1. Two crystal structures of CHI3L1 in free state (Protein Data Bank codes 1HJX and 1NWR) were used as structural templates for the homology modeling by Modeller 9.7 program, and the best quality model structure was selected from the obtained model ensemble. Analysis of potential oligosaccharide-binding groove structures of CHI3L1 and CHI3L2 revealed significant differences between these two homologous proteins. 8 of 19 amino acid residues important for ligand binding are substituted in CHI3L2: Tyr34/Asp39, Trp69/Lys74, Trp71/Lys76, Trp99/Tyr104, Asn100/Leu105, Met204/Leu210, Tyr206/Phe212 and Arg263/His271. The differences between these residues could influence the structure of the ligand-binding groove and substantially change the ability of CHI3L2 to bind oligosaccharide ligands.
Collapse
|
171
|
Alexopoulou AN, Leao M, Caballero OL, Da Silva L, Reid L, Lakhani SR, Simpson AJ, Marshall JF, Neville AM, Jat PS. Dissecting the transcriptional networks underlying breast cancer: NR4A1 reduces the migration of normal and breast cancer cell lines. Breast Cancer Res 2010; 12:R51. [PMID: 20642837 PMCID: PMC2949640 DOI: 10.1186/bcr2610] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Revised: 06/28/2010] [Accepted: 07/19/2010] [Indexed: 11/25/2022] Open
Abstract
Introduction Breast cancer currently accounts for more than one-quarter of all female cancers and, despite the great progress in treatment observed in the past few years, the need for identification of new gene targets that can be used for diagnosis, prognosis and therapy is evident. A previous study identified the transcription factor NR4A1 as a gene upregulated in primary breast cancer compared with normal tissue by microarray analysis and sequencing technologies. The purpose of the study was to identify the role of NR4A1 in normal mammary epithelial and breast cancer cell biology. Methods NR4A1 expression in breast tumours was assessed by semiquantitative and real-time PCR using RNA from normal and tumour samples or breast cancer cell lines. Immunohistochemistry on tissue microarrays was performed to check NR4A1 protein expression in breast tumours. MCF-10A and 226L normal mammary epithelial cells as well as the tumour lines PMC42, ZR-75-1 and MDA-MB-231 were transduced with full-length NR4A1, and the ability of NR4A1-overexpressing cells to migrate was tested using scratch wound or transwell migration assays. Proliferation was measured using the MTT and BrdU assays, while apoptosis was determined by the Annexin V assay. The ability of the cells to adhere to extracellular matrix was tested by adhesion assays and integrin cell surface expression was measured by flow cytometry. Activation of the FAK as well as ERK1/2 and PI3K pathways was checked by western blotting. Results Breast tissue microarray analysis showed NR4A1 expression in primary tumours, which was reduced in higher grade and metastatic tumours. Ectopic expression of NR4A1 in MCF-10A, 226L, PMC42 and ZR-75-1 cells led to reduced ability of the cells to migrate, while no differences were observed in their proliferation and apoptotic index. NR4A1 expression altered the ability of the MCF-10A cells to adhere to the extracellular matrix and affected cell surface expression of integrins. Conclusions NR4A1 acts as an antimigratory factor in two normal mammary epithelial and two breast cancer cell lines tested. It is therefore possible that NR4A1 acts as an antimigratory factor in breast tumours, and further studies should be conducted to understand the mechanisms involved.
Collapse
Affiliation(s)
- Annika N Alexopoulou
- University of Oxford Branch, Ludwig Institute for Cancer Research, Old Road Campus, Off Roosevelt Drive, Oxford OX3 7DQ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Gawlik KI, Akerlund M, Carmignac V, Elamaa H, Durbeej M. Distinct roles for laminin globular domains in laminin alpha1 chain mediated rescue of murine laminin alpha2 chain deficiency. PLoS One 2010; 5:e11549. [PMID: 20657839 PMCID: PMC2906511 DOI: 10.1371/journal.pone.0011549] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 06/21/2010] [Indexed: 11/24/2022] Open
Abstract
Background Laminin α2 chain mutations cause congenital muscular dystrophy with dysmyelination neuropathy (MDC1A). Previously, we demonstrated that laminin α1 chain ameliorates the disease in mice. Dystroglycan and integrins are major laminin receptors. Unlike laminin α2 chain, α1 chain binds the receptors by separate domains; laminin globular (LG) domains 4 and LG1-3, respectively. Thus, the laminin α1 chain is an excellent tool to distinguish between the roles of dystroglycan and integrins in the neuromuscular system. Methodology/Principal Findings Here, we provide insights into the functions of laminin α1LG domains and the division of their roles in MDC1A pathogenesis and rescue. Overexpression of laminin α1 chain that lacks the dystroglycan binding LG4-5 domains in α2 chain deficient mice resulted in prolonged lifespan and improved health. Importantly, diaphragm and heart muscles were corrected, whereas limb muscles were dystrophic, indicating that different muscles have different requirements for LG4-5 domains. Furthermore, the regenerative capacity of the skeletal muscle did not depend on laminin α1LG4-5. However, this domain was crucial for preventing apoptosis in limb muscles, essential for myelination in peripheral nerve and important for basement membrane assembly. Conclusions/Significance These results show that laminin α1LG domains and consequently their receptors have disparate functions in the neuromuscular system. Understanding these interactions could contribute to design and optimization of future medical treatment for MDC1A patients.
Collapse
Affiliation(s)
- Kinga I Gawlik
- Department of Experimental Medical Science, Muscle Biology Unit, University of Lund, Lund, Sweden
| | | | | | | | | |
Collapse
|
173
|
Abstract
Virtually all metazoan cells contain at least one and usually several types of transmembrane proteoglycans. These are varied in protein structure and type of polysaccharide, but the total number of vertebrate genes encoding transmembrane proteoglycan core proteins is less than 10. Some core proteins, including those of the syndecans, always possess covalently coupled glycosaminoglycans; others do not. Syndecan has a long evolutionary history, as it is present in invertebrates, but many other transmembrane proteoglycans are vertebrate inventions. The variety of proteins and their glycosaminoglycan chains is matched by diverse functions. However, all assume roles as coreceptors, often working alongside high-affinity growth factor receptors or adhesion receptors such as integrins. Other common themes are an ability to signal through their cytoplasmic domains, often to the actin cytoskeleton, and linkage to PDZ protein networks. Many transmembrane proteoglycans associate on the cell surface with metzincin proteases and can be shed by them. Work with model systems in vivo and in vitro reveals roles in growth, adhesion, migration, and metabolism. Furthermore, a wide range of phenotypes for the core proteins has been obtained in mouse knockout experiments. Here some of the latest developments in the field are examined in hopes of stimulating further interest in this fascinating group of molecules.
Collapse
Affiliation(s)
- John R Couchman
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, 2200 Denmark.
| |
Collapse
|
174
|
Dieudonné FX, Marion A, Haÿ E, Marie PJ, Modrowski D. High Wnt signaling represses the proapoptotic proteoglycan syndecan-2 in osteosarcoma cells. Cancer Res 2010; 70:5399-408. [PMID: 20530678 DOI: 10.1158/0008-5472.can-10-0090] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Osteosarcoma is characterized by frequent relapse and metastatic disease associated with resistance to chemotherapy. We previously showed that syndecan-2 is a mediator of the antioncogenic effect of chemotherapeutic drugs. The purpose of this work was to elucidate molecular mechanisms responsible for the low expression of syndecan-2 in osteosarcoma. We compared the regulatory activity of cis-acting DNA sequences of the syndecan-2 gene in osteosarcoma and osteoblastic cell lines. We identified a DNA region that negatively regulates syndecan-2 transcription in the osteosarcoma cells. T-cell factors (TCF) bind to this sequence in vivo. Wnt3a stimulation, beta-catenin activation, and TCF overexpression resulted in syndecan-2 repression, whereas Wnt inhibition using sFRP-1 increased syndecan-2 expression in U2OS cells. RhoA activation blunted the stimulatory effect of sFRP-1 on syndecan-2 transcription, whereas RhoA inhibition enhanced syndecan-2 expression. These results indicate that Wnt/beta-catenin and Wnt/RhoA signaling contribute to syndecan-2 repression. The alteration of syndecan-2 expression in osteosarcoma cell lines also seemed to be related to a higher shedding, controlled by Wnt/RhoA. Conversely, syndecan-2 was found to activate its own expression in U2OS cells through RhoA inhibition. These data identify a molecular network that may contribute to the low expression of the proapoptotic proteoglycan syndecan-2 in osteosarcoma cells. The high activity of the canonical Wnt pathway in the different osteosarcoma cells induces a constitutive repression of syndecan-2 transcription, whereas Wnt/RhoA signaling blocks the amplification loop of syndecan-2 expression. Our results identify syndecan-2 as a Wnt target and bring new insights into a possible pathologic role of Wnt signaling in osteosarcoma.
Collapse
Affiliation(s)
- François-Xavier Dieudonné
- Laboratory of Osteoblast Biology and Pathology, UMR 606 INSERM and University of Paris Diderot, Paris, France
| | | | | | | | | |
Collapse
|
175
|
Parsi MK, Adams JR, Whitelock J, Gibson MA. LTBP-2 has multiple heparin/heparan sulfate binding sites. Matrix Biol 2010; 29:393-401. [DOI: 10.1016/j.matbio.2010.03.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 03/26/2010] [Accepted: 03/26/2010] [Indexed: 11/28/2022]
|
176
|
Guiral EC, Faas L, Pownall ME. Neural crest migration requires the activity of the extracellular sulphatases XtSulf1 and XtSulf2. Dev Biol 2010; 341:375-88. [PMID: 20206618 DOI: 10.1016/j.ydbio.2010.02.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 02/24/2010] [Accepted: 02/24/2010] [Indexed: 12/30/2022]
Abstract
In vertebrates, there are two related genes, Sulf1 and Sulf2 that code for extracellular heparan sulphate 6-0-endosulphatases. These enzymes act to post-synthetically remodel heparan sulphate chains, generating structural diversity of cell surface HSPGs; this activity provides an important mechanism to modulate developmental cell signalling. Here we describe the expression and activity of Xenopus tropicalis Sulf2 (XtSulf2), which like XtSulf1, can act extracellularly to inhibit BMP4 and FGF4 signalling. Consistent with its discrete expression in regions of the anterior developing nervous system, we found that overexpression of XtSulf2 disrupts the expression of a set of neural markers and inhibits the migration of the neural crest. Using a combination of grafting experiments and antisense morpholino based knockdown studies in Xenopus embryos, we demonstrate that endogenous XtSulf1 and XtSulf2 play an important role during cranial neural crest cell migration in vivo.
Collapse
Affiliation(s)
- Emily C Guiral
- Department of Biology, University of York, York YO10 5YW, UK
| | | | | |
Collapse
|
177
|
Regatieri CV, Dreyfuss JL, Melo GB, Lavinsky D, Hossaka SK, Rodrigues EB, Farah ME, Maia M, Nader HB. Quantitative evaluation of experimental choroidal neovascularization by confocal scanning laser ophthalmoscopy: fluorescein angiogram parallels heparan sulfate proteoglycan expression. Braz J Med Biol Res 2010; 43:627-33. [PMID: 20464343 DOI: 10.1590/s0100-879x2010007500043] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Accepted: 04/28/2010] [Indexed: 11/22/2022] Open
Abstract
The objective of the present study was to develop a quantitative method to evaluate laser-induced choroidal neovascularization (CNV) in a rat model using Heidelberg Retina Angiograph 2 (HRA2) imaging. The expression of two heparan sulfate proteoglycans (HSPG) related to inflammation and angiogenesis was also investigated. CNV lesions were induced with argon laser in 21 heterozygous Zucker rats and after three weeks a fluorescein angiogram and autofluorescence exams were performed using HRA2. The area and greatest linear dimension were measured by two observers not aware of the protocol. Bland-Altman plots showed agreement between the observers, suggesting that the technique was reproducible. After fluorescein angiogram, HSPG (perlecan and syndecan-4) were analyzed by real-time RT-PCR and immunohistochemistry. There was a significant increase in the expression of perlecan and syndecan-4 (P < 0.0001) in retinas bearing CNV lesions compared to control retinas. The expression of these two HSPG increased with increasing CNV area. Immunohistochemistry demonstrated that the rat retina damaged with laser shots presented increased expression of perlecan and syndecan-4. Moreover, we observed that the overexpression occurred in the outer layer of the retina, which is related to choroidal damage. It was possible to develop a standardized quantitative method to evaluate CNV in a rat model using HRA2. In addition, we presented data indicating that the expression of HSPG parallels the area of CNV lesion. The understanding of these events offers opportunities for studies of new therapeutic interventions targeting these HSPG.
Collapse
Affiliation(s)
- C V Regatieri
- Departamento de Oftalmologia, Universidade Federal de São Paulo, SP, Brasil
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Kotsovilis S, Tseleni-Balafouta S, Charonis A, Fourmousis I, Nikolidakis D, Vrotsos JA. Syndecan-1 immunohistochemical expression in gingival tissues of chronic periodontitis patients correlated with various putative factors. J Periodontal Res 2010; 45:520-31. [PMID: 20412418 DOI: 10.1111/j.1600-0765.2009.01267.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Limited information is available on the expression and distribution of syndecan-1 within human gingival tissues/cells and on putative factors that might affect its expression. Therefore, the objective of the present study was to determine immunohistochemically the expression and distribution of syndecan-1 in the gingival tissues of patients with chronic periodontitis and to examine the correlation of syndecan-1 expression with various putative factors (environmental, patient/systemic and local factors). MATERIAL AND METHODS Gingival specimens were surgically excised from the area of the junctional/pocket epithelium (study group 1, including 30 chronic periodontitis patients) or the gingival oral epithelium (study group 2, comprising another 30 chronic periodontitis patients), adjacent to teeth with poor prognosis. Standard two-step immunohistochemistry and semi-quantitative evaluation of immunohistochemical staining were used to determine syndecan-1 expression. Statistical analyses on the impact of various putative factors were performed. RESULTS In the junctional/pocket epithelium or the oral epithelium, syndecan-1 expression was weak to moderate in the suprabasal and basal epithelial cells and absent to weak in the internal basal lamina, external basal lamina and gingival connective tissue matrix. Syndecan-1 expression in the junctional/pocket epithelium was statistically significantly stronger than in the oral epithelium in inflammatory cells within the underlying gingival connective tissue (primarily plasma cells and lymphocytes) and in scattered fibroblast-like cells. CONCLUSIONS Syndecan-1 expression in the junctional/pocket epithelium or the oral epithelium can exhibit a significant positive correlation with the severity/degree of histologically evaluated local gingival inflammation, but in general is not significantly correlated with age, smoking, full-mouth and local clinical (probing pocket depth and clinical attachment level) and radiographical parameters (radiographical bone loss) of periodontal status.
Collapse
Affiliation(s)
- S Kotsovilis
- Department of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Hellas.
| | | | | | | | | | | |
Collapse
|
179
|
Masre SF, W. Yip G, Sirajudeen K, Che Ghazal F. Wound Healing Activity of Total Sulfated Glycosaminoglycan (GAG) from Stichopus vastus and Stichopus hermanni integumental Tissue in Rats. ACTA ACUST UNITED AC 2010. [DOI: 10.3923/ijmmas.2010.49.53] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
180
|
Dreyfuss JL, Regatieri CV, Jarrouge TR, Cavalheiro RP, Sampaio LO, Nader HB. Heparan sulfate proteoglycans: structure, protein interactions and cell signaling. AN ACAD BRAS CIENC 2010; 81:409-29. [PMID: 19722012 DOI: 10.1590/s0001-37652009000300007] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 10/08/2008] [Indexed: 01/18/2023] Open
Abstract
Heparan sulfate proteoglycans are ubiquitously found at the cell surface and extracellular matrix in all the animal species. This review will focus on the structural characteristics of the heparan sulfate proteoglycans related to protein interactions leading to cell signaling. The heparan sulfate chains due to their vast structural diversity are able to bind and interact with a wide variety of proteins, such as growth factors, chemokines, morphogens, extracellular matrix components, enzymes, among others. There is a specificity directing the interactions of heparan sulfates and target proteins, regarding both the fine structure of the polysaccharide chain as well precise protein motifs. Heparan sulfates play a role in cellular signaling either as receptor or co-receptor for different ligands, and the activation of downstream pathways is related to phosphorylation of different cytosolic proteins either directly or involving cytoskeleton interactions leading to gene regulation. The role of the heparan sulfate proteoglycans in cellular signaling and endocytic uptake pathways is also discussed.
Collapse
Affiliation(s)
- Juliana L Dreyfuss
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | | | | | | | | |
Collapse
|
181
|
Thiara AS, Andersen VY, Videm V, Mollnes TE, Svennevig K, Hoel TN, Fiane AE. Comparable biocompatibility of Phisio- and Bioline-coated cardiopulmonary bypass circuits indicated by the inflammatory response. Perfusion 2010; 25:9-16. [DOI: 10.1177/0267659110362822] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Background: The biocompatibility of cardiopulmonary bypass surfaces has been improved by heparin and polymer surface modifications. The present study compared the effect of two such coatings on the inflammatory reactions after open heart surgery. Methods:Thirty patients undergoing elective heart surgery were randomly assigned to receive one of two types of coated circuits: Bioline (n=15) or phosphorylcholine (Phisio, n=15). The platelet and leukocyte counts, neutrophil activation (myeloperoxidase), complement activation (C3a and TCC), concentrations of lactate dehydrogenase, 27 cytokines (including interleukins, chemokines and growth factors), thrombin-antithrombin complexes, and the endothelial cell marker syndecan-1 were analyzed at five predetermined time points until 24 hrs post operatively. Results: Most measurements were comparable in both groups. However, myeloperoxidase was significantly higher in the Bioline group (p < 0.001). Postoperative lactate dehydrogenase concentrations were significantly higher in the Phisio group (p<0.01) and the maximal concentration of thrombin-antithrombin complexes 2 hours postoperatively tended to be higher in the Phisio group (p=0.08), consistent with a longer aortic cross-clamp and cardiopulmonary bypass time. Conclusions: The two circuits exhibited a comparable degree of in vivo biocompatibility.
Collapse
Affiliation(s)
- AS Thiara
- Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital, Oslo, Norway,
| | - VY Andersen
- Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital, Oslo, Norway
| | - V. Videm
- Department of Immunology and Transfusion Medicine, Trondheim University Hospital and Institute of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - TE Mollnes
- Institute of Immunology, Oslo University Hospital, Oslo, Norway, Nordland Hospital, Bodø, and University of Tromsø, Norway, Faculty Division Rikshospitalet, University of Oslo, Oslo, Norway
| | - K. Svennevig
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Norway
| | - TN Hoel
- Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital, Oslo, Norway
| | - AE Fiane
- Department of Thoracic and Cardiovascular Surgery, Oslo University Hospital, Oslo, Norway, Faculty Division Rikshospitalet, University of Oslo, Oslo, Norway
| |
Collapse
|
182
|
Okamoto O, Hozumi K, Katagiri F, Takahashi N, Sumiyoshi H, Matsuo N, Yoshioka H, Nomizu M, Fujiwara S. Dermatopontin promotes epidermal keratinocyte adhesion via alpha3beta1 integrin and a proteoglycan receptor. Biochemistry 2010; 49:147-55. [PMID: 19928997 DOI: 10.1021/bi901066f] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Dermatopontin, an extracellular matrix component initially purified from bovine dermis, promoted cell adhesion of the human epidermal keratinocyte cell line (HaCaT cells). HaCaT cells spread on dermatopontin and formed actin fibers. Adhesion of HaCaT cells to dermatopontin was inhibited by both EDTA and heparin and was mediated in part by alpha3beta1 integrin. A synthetic peptide (DP-4, PHGQVVVAVRS; bovine dermatopontin residues 33-43) specifically inhibited adhesion of cells to dermatopontin, and when the DP-4 peptide was coated on the well, it promoted cell adhesion in a dose-dependent manner. An active core sequence of the DP-4 peptide was localized to an eight-amino acid sequence (GQVVVAVR). These results indicate that dermatopontin is a novel epidermal cell adhesion molecule and suggest that the DP-4 sequence is critical for the cell adhesive activity of dermatopontin. Adhesion of cells to DP-4 was strongly inhibited by heparin. When HaCaT cells were treated with heparitinase I, the cells failed to adhere to DP-4 but chondroitinase ABC treatment did not influence the adhesion activity. DP-4 specifically interacted with biotinylated heparin, and this interaction was inhibited by unlabeled heparin. DP-4 peptide significantly promoted the adhesion of cells overexpressing syndecans, and syndecan bound to a DP-4 peptide affinity column. These results suggest that HaCaT cells adhere to dermatopontin through alpha3beta1 integrin and a heparan sulfate proteoglycan-type receptor, which is likely a syndecan. We conclude that dermatopontin plays a role as a multifunctional adhesion molecule for epidermal cells.
Collapse
Affiliation(s)
- Osamu Okamoto
- Department of Dermatology, Faculty of Medicine, Oita University, 1-1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
|
184
|
Abstract
Proteoglycans represent a structurally heterogeneous family of proteins that typically undergo extensive posttranslational modification with sulfated sugar chains. Although historically believed to affect signaling pathways exclusively as growth factor coreceptors, proteoglycans are now understood to initiate and modulate signal transduction cascades independently of other receptors. From within the extracellular matrix, proteoglycans are able to shield protein growth factors from circulating proteases and establish gradients that guide cell migration. Extracellular proteoglycans are also critical in the maintenance of growth factor stores and are thus instrumental in modulating paracrine signaling. At the cell membrane, proteoglycans stabilize ligand-receptor interactions, creating potentiated ternary signaling complexes that regulate cell proliferation, endocytosis, migration, growth factor sensitivity, and matrix adhesion. In some cases, proteoglycans are able to independently activate various signaling cascades, attenuate the signaling of growth factors, or orchestrate multimeric intracellular signaling complexes. Signaling between cells is also modulated by proteoglycan activity at the cell membrane, as exemplified by the proteoglycan requirement for effective synaptogenesis between neurons. Finally, proteoglycans are able to regulate signaling from intracellular compartments, particularly in the context of storage granule formation and maintenance. These proteoglycans are also major determinants of exocytic vesicle fate and other vesicular trafficking pathways. In contrast to the mechanisms underlying classical ligand-receptor signaling, proteoglycan signaling is frequently characterized by ligand promiscuity and low-affinity binding; likewise, these events commonly do not exhibit the same degree of reliance on intermolecular structure or charge configurations as other ligand-receptor interactions. Such unique features often defy conventional mechanisms of signal transduction, and present unique challenges to the study of their indispensable roles within cell signaling networks.
Collapse
|
185
|
Ishikawa T, Kramer RH. Sdc1 negatively modulates carcinoma cell motility and invasion. Exp Cell Res 2009; 316:951-65. [PMID: 20036233 DOI: 10.1016/j.yexcr.2009.12.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 12/15/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
During cancer progression, tumor cells eventually invade the surrounding collagen-rich extracellular matrix. Here we show that squamous cell carcinoma cells strongly adhere to Type I collagen substrates but display limited motility and invasion on collagen barriers. Further analysis revealed that in addition to the alpha2beta1 integrin, a second collagen receptor was identified as Syndecan-1 (Sdc1), a cell surface heparan sulfate proteoglycan. We demonstrate that siRNA-mediated depletion of Sdc1 reduced adhesion efficiency to collagen I, whereas knockdown of Sdc4 was without effect. Importantly, silencing Sdc1 expression caused reduced focal adhesion plaque formation and enhanced cell spreading and motility on collagen I substrates, but did not alter cell motility on other ECM substrates. Sdc1 depletion ablated adhesion-induced RhoA activation. In contrast, Rac1 was strongly activated following Sdc1 knockdown, suggesting that Sdc1 may mediate the link between integrin-induced actin remodeling and motility. Taken together, these data substantiate the existence of a co-adhesion receptor system in tumor cells, whereby Sdc1 functions as a key regulator of cell motility and cell invasion by modulating RhoA and Rac activity. Downregulation of Sdc1 expression during carcinoma progression may represent a mechanism by which tumor cells become more invasive and metastatic.
Collapse
Affiliation(s)
- Tohru Ishikawa
- Department of Cell and Tissue Biology, University of California San Francisco, 521 Parnassus Avenue, Room C-640, San Francisco, CA 94143-0640, USA
| | | |
Collapse
|
186
|
Smith EM, Mitsi M, Nugent MA, Symes K. PDGF-A interactions with fibronectin reveal a critical role for heparan sulfate in directed cell migration during Xenopus gastrulation. Proc Natl Acad Sci U S A 2009; 106:21683-8. [PMID: 19966216 PMCID: PMC2799789 DOI: 10.1073/pnas.0902510106] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Indexed: 12/18/2022] Open
Abstract
Platelet-derived growth factor (PDGF) signaling is essential for processes involving cell motility and differentiation during embryonic development in a wide variety of organisms including the mouse, frog, zebrafish, and sea urchin. In early Xenopus laevis embryos, PDGF-AA provides guidance cues for the migration of anterior mesendoderm cells as they move across a fibronectin-rich extracellular matrix. The long form of PDGF-A includes a positively charged carboxyl-terminal retention motif that can interact with the extracellular matrix and heparan sulfate proteoglycans (HSPGs). In this study we demonstrate that PDGF-AA binds directly to fibronectin and that this association is greatly enhanced by heparin. The PDGF-AA-fibronectin binding occurs across a broad range of pHs (5.5-9), which is significant because the PDGF-guided migration of Xenopus mesendoderm cells occurs under basic extracellular conditions (pH 8.4). We further demonstrate that endogenous HSPG's are required for the PDGF-AA-guided mesendoderm movement, suggesting an in vivo role for HSPGs in mediating the interaction between PDGF-AA and fibronectin.
Collapse
Affiliation(s)
- Erin M. Smith
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118; and
| | - Maria Mitsi
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118; and
- Institute of Biologically Oriented Materials, Eidgenössische Technische Hochschule Zürich, Wolfgang-Pauli-Strasse 10, HCI F443 (Hönggerberg), CH-8093 Zürich, Switzerland
| | - Matthew A. Nugent
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118; and
| | - Karen Symes
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118; and
| |
Collapse
|
187
|
Shriver Z, Raman R, Viswanathan K, Sasisekharan R. Context-specific target definition in influenza a virus hemagglutinin-glycan receptor interactions. ACTA ACUST UNITED AC 2009; 16:803-14. [PMID: 19716471 DOI: 10.1016/j.chembiol.2009.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Revised: 07/28/2009] [Accepted: 08/03/2009] [Indexed: 12/20/2022]
Abstract
Protein-glycan interactions are important regulators of a variety of biological processes, ranging from immune recognition to anticoagulation. An important area of active research is directed toward understanding the role of host cell surface glycans as recognition sites for pathogen protein receptors. Recognition of cell surface glycans is a widely employed strategy for a variety of pathogens, including bacteria, parasites, and viruses. We present here a representative example of such an interaction: the binding of influenza A hemagglutinin (HA) to specific sialylated glycans on the cell surface of human upper airway epithelial cells, which initiates the infection cycle. We detail a generalizable strategy to understand the nature of protein-glycan interactions both structurally and biochemically, using HA as a model system. This strategy combines a top-down approach using available structural information to define important contacts between glycans and HA, with a bottom-up approach using data-mining and informatics approaches to identify the common motifs that distinguish glycan binders from nonbinders. By probing protein-glycan interactions simultaneously through top-down and bottom-up approaches, we can scientifically validate a series of observations. This in turn provides additional confidence and surmounts known challenges in the study of protein-glycan interactions, such as accounting for multivalency, and thus truly defines concepts such as specificity, affinity, and avidity. With the advent of new technologies for glycomics-including glycan arrays, data-mining solutions, and robust algorithms to model protein-glycan interactions-we anticipate that such combination approaches will become tractable for a wide variety of protein-glycan interactions.
Collapse
Affiliation(s)
- Zachary Shriver
- Koch Institute for Integrative Cancer Research, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | | | | | |
Collapse
|
188
|
Wang XF, Chen Y, Dai JC, Chen CL, Wang X, Chen Y. Significance of syndecan-1 expression in dextran sulfate sodium-induced colitis that progresses to chronicity in mice. Shijie Huaren Xiaohua Zazhi 2009; 17:3296-3301. [DOI: 10.11569/wcjd.v17.i32.3296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of syndecan-1 (SDC-1) in dextran sodium sulphate (DSS)-induced colitis that progresses to chronicity in mice and explore the role of SDC-1 in the progression of colitis.
METHODS: Fifty-four C57BL/6 mice were equally divided into control group and model group. The model group was fed 3% DSS ad libitum for 5 days, followed by administration of distilled water for 2 weeks to induce acute colitis that progressed to chronic inflammation. The control group was only fed distilled water. Mice were killed on days 5, 12 and 19, respectively. The histological changes in the colon were observed and scored under light microscopy. The expression of SDC-1 and interleukin-8 (IL-8) mRNAs as well as SDC-1 protein in colonic tissue was detected by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry, respectively.
RESULTS: The histological scores on days 5, 12 and 19 were significantly higher in the model group than in the control group (2.17 ± 1.03, 2.60 ± 1.73 and 1.18 ± 0.75 vs 0.04 ± 0.13, respectively; all P < 0.05). The expression levels of SDC-1 mRNA and protein in the colon at all time points were significantly lower in the model group than in the control group (mRNA: 1.58 ± 0.13, 1.39 ± 0.17 and 1.78 ± 0.08 vs 2.12 ± 0.03, respectively; all P < 0.05; protein: 1.59 ± 0.12, 1.43 ± 0.12 and 1.81 ± 0.10 vs 2.20 ± 0.04, respectively; all P < 0.01). The expression levels of IL-8 mRNA in the colon at all time points were significantly higher in the model group than in the control group (1.20 ± 0.15, 1.53 ± 0.05 and 1.65 ± 0.04 vs 1.02 ± 0.08, respectively; all P < 0.01).
CONCLUSION: The reduced severity of colitis is associated with downregulated SDC-1 mRNA and protein expression in the colon of mice. The downregulation of SDC-1 mRNA and protein may be associated with increased IL-8 mRNA level.
Collapse
|
189
|
Mythreye K, Blobe GC. Proteoglycan signaling co-receptors: roles in cell adhesion, migration and invasion. Cell Signal 2009; 21:1548-58. [PMID: 19427900 PMCID: PMC2735586 DOI: 10.1016/j.cellsig.2009.05.001] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 05/04/2009] [Indexed: 12/17/2022]
Abstract
Signaling co-receptors are diverse, multifunctional components of most major signaling pathways, with roles in mediating and regulating signaling in both physiological and pathophysiological circumstances. Many of these signaling co-receptors, including CD44, glypicans, neuropilins, syndecans and TssRIII/betaglycan are also proteoglycans. Like other co-receptors, these proteoglycan signaling co-receptors can bind multiple ligands, promoting the formation of receptor signaling complexes and regulating signaling at the cell surface. The proteoglycan signaling co-receptors can also function as structural molecules to regulate adhesion, cell migration, morphogenesis and differentiation. Through a balance of these signaling and structural roles, proteoglycan signaling co-receptors can have either tumor promoting or tumor suppressing functions. Defining the role and mechanism of action of these proteoglycan signaling co-receptors should enable more effective targeting of these co-receptors and their respective pathways for the treatment of human disease.
Collapse
Affiliation(s)
| | - Gerard C. Blobe
- Department of Medicine, Duke University Medical Center, Durham NC 27708
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham NC 27708
| |
Collapse
|
190
|
Wang JB, Guan J, Shen J, Zhou L, Zhang YJ, Si YF, Yang L, Jian XH, Sheng Y. Insulin increases shedding of syndecan-1 in the serum of patients with type 2 diabetes mellitus. Diabetes Res Clin Pract 2009; 86:83-8. [PMID: 19735958 DOI: 10.1016/j.diabres.2009.08.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2009] [Revised: 08/03/2009] [Accepted: 08/13/2009] [Indexed: 01/04/2023]
Abstract
AIMS To detect the level of serum syndecan-1 of patients with type 2 diabetes. METHODS Subjects with diabetes were categorized into 4 subgroups, oral-agents, insulin therapy for <or=1 month, 1-12 months, and >12 months. Serum syndecan-1 was detected by ELISA, and potential correlation between syndecan-1 levels and clinical characteristics was analyzed. RESULTS Sixty-two diabetic patients and 20 healthy subjects (controls) were enrolled. Syndecan-1 in diabetic patients (24.616+/-1.993 ng/ml) was higher than that of the controls (18.907+/-2.638 ng/ml). The average concentration of syndecan-1 in the group of oral-agents, insulin therapy for <or=1 month, 1-12 months, and >12 months was 19.157+/-2.556 ng/ml (n=20), 24.447+/-3.173 ng/ml (n=23), 35.005+/-4.749 ng/ml (n=11), and 27.593+/-8.304 ng/ml (n=8), respectively. An association between serum syndecan-1 and intake of exogenous insulin was found (r=0.266, p=0.035). Serum syndecan-1 of insulin-therapy group (27.811+/-2.669 ng/ml) enhanced significantly compared to that of the controls (p=0.030) and that of the oral-agents group (p=0.035). Syndecan-1 of the insulin therapy for 1-12 months group enhanced predominantly compared to that of the controls (p=0.005) and the oral-agents group (p=0.005). CONCLUSIONS Chronic inflammation and exogenous insulin usage increases serum syndecan-1 level. Exogenous insulin can promote shedding of syndecan-1 ectodomains to the serum in a time-dependent manner.
Collapse
Affiliation(s)
- Jing-bo Wang
- Department of Ophthalmology, The 309th Hospital of Chinese People's Liberation Army, Haidian District, Beijing 100091, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
|
192
|
Kirn-Safran C, Farach-Carson MC, Carson DD. Multifunctionality of extracellular and cell surface heparan sulfate proteoglycans. Cell Mol Life Sci 2009; 66:3421-34. [PMID: 19629389 PMCID: PMC11115568 DOI: 10.1007/s00018-009-0096-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/01/2009] [Accepted: 07/06/2009] [Indexed: 02/06/2023]
Abstract
Heparan sulfate proteoglycans are a remarkably diverse family of glycosaminoglycan-bearing protein cores that include the syndecans, the glypicans, perlecan, agrin, and collagen XVIII. Members of this protein class play key roles during normal processes that occur during development, tissue morphogenesis, and wound healing. As key components of basement membranes in organs and tissues, they also participate in selective filtration of biological fluids, in establishing cellular barriers, and in modulation of angiogenesis. The ability to perform these functions is provided both by the features of the protein cores as well as by the unique properties of heparan sulfate, which is assembled as a polymer of N-acetylglucosamine and glucuronic acid and modified by specific enzymes to generate specialized biologically active structures. This article discusses the structures and functions of this amazing family of proteoglycans and provides a platform for further study of the individual members.
Collapse
Affiliation(s)
| | - Mary C. Farach-Carson
- Department of Biological Sciences, University of Delaware, Newark, DE 19707 USA
- Present Address: Department of Biochemistry and Cell Biology, Weiss School of Natural Sciences, Rice University, MS-102, P.O. Box 1892, Houston, TX 77251-1892 USA
| | - Daniel D. Carson
- Present Address: Department of Biochemistry and Cell Biology, Weiss School of Natural Sciences, Rice University, MS-102, P.O. Box 1892, Houston, TX 77251-1892 USA
| |
Collapse
|
193
|
Abstract
The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, tissue repair and in pathological situations such as chronic inflammation and cancer. Tenascin-C interacts with several other extracellular matrix molecules and cell-surface receptors, thus affecting tissue architecture, tissue resilience and cell responses. Tenascin-C modulates cell migration, proliferation and cellular signaling through induction of pro-inflammatory cytokines and oncogenic signaling molecules amongst other mechanisms. Given the causal role of inflammation in cancer progression, common mechanisms might be controlled by tenascin-C during both events. Drugs targeting the expression or function of tenascin-C or the tenascin-C protein itself are currently being developed and some drugs have already reached advanced clinical trials. This generates hope that increased knowledge about tenascin-C will further improve management of diseases with high tenascin-C expression such as chronic inflammation, heart failure, artheriosclerosis and cancer.
Collapse
|
194
|
Epigenetic activation of unintegrated HIV-1 genomes by gut-associated short chain fatty acids and its implications for HIV infection. Proc Natl Acad Sci U S A 2009; 106:18786-91. [PMID: 19843699 DOI: 10.1073/pnas.0905859106] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Integration of HIV-1 linear DNA into the host chromatin is an essential step in the viral life cycle. However, the majority of reverse-transcribed, nuclear-imported viral genomes remain episomal, either as linear or circular DNA. To date, these nonintegrated viral genomes are largely considered "dead-end products" of reverse transcription. Indeed, limited gene expression from nonintegrated HIV-1 has been reported, although the mechanism that renders nonintegrating HIV-1 genomes incapable of supporting efficient viral replication has not been fully elucidated. Here, we demonstrate that nonintegrating HIV-1 and HIV-1-based vector genomes are organized into chromatin structures and enriched with histone modifications typical of transcriptionally silenced chromatin. Gene expression and replication of nonintegrating HIV-1 was notably increased in vitro upon exposure to histone deacetylase inhibitors (HDACi) in the form of various short-chain fatty acids (SCFAs) known to be endogenously produced by normal microbial-gut flora. Furthermore, we demonstrated genetic and functional crosstalk between episomal and integrated vector/viral genomes, resulting in recombination between integrated and nonintegrated HIV-1, as well as mobilization of episomal vector genomes by productive viral particles encoded by integrated viral genomes. Finally, we propose a mechanism describing the role of episomal HIV-1 forms in the viral life cycle in a SCFA-rich gut environment.
Collapse
|
195
|
Midwood KS, Orend G. The role of tenascin-C in tissue injury and tumorigenesis. J Cell Commun Signal 2009; 3:287-310. [PMID: 19838819 PMCID: PMC2778592 DOI: 10.1007/s12079-009-0075-1] [Citation(s) in RCA: 329] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 09/30/2009] [Indexed: 01/14/2023] Open
Abstract
The extracellular matrix molecule tenascin-C is highly expressed during embryonic development, tissue repair and in pathological situations such as chronic inflammation and cancer. Tenascin-C interacts with several other extracellular matrix molecules and cell-surface receptors, thus affecting tissue architecture, tissue resilience and cell responses. Tenascin-C modulates cell migration, proliferation and cellular signaling through induction of pro-inflammatory cytokines and oncogenic signaling molecules amongst other mechanisms. Given the causal role of inflammation in cancer progression, common mechanisms might be controlled by tenascin-C during both events. Drugs targeting the expression or function of tenascin-C or the tenascin-C protein itself are currently being developed and some drugs have already reached advanced clinical trials. This generates hope that increased knowledge about tenascin-C will further improve management of diseases with high tenascin-C expression such as chronic inflammation, heart failure, artheriosclerosis and cancer.
Collapse
Affiliation(s)
- Kim S. Midwood
- Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, 65 Aspenlea Road, Hammersmith, London, W6 8LH UK
| | - Gertraud Orend
- Inserm U682, Strasbourg, 67200 France
- University of Strasbourg, UMR-S682, Strasbourg, 67081 France
- Department of Molecular Biology, CHRU Strasbourg, Strasbourg, 67200 France
| |
Collapse
|
196
|
Lambaerts K, Wilcox-Adelman SA, Zimmermann P. The signaling mechanisms of syndecan heparan sulfate proteoglycans. Curr Opin Cell Biol 2009. [DOI: 10.1016/j.ceb.2009.05.002 doi:dx.doi.org] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2022]
|
197
|
Lambaerts K, Wilcox-Adelman SA, Zimmermann P. The signaling mechanisms of syndecan heparan sulfate proteoglycans. Curr Opin Cell Biol 2009; 21:662-9. [PMID: 19535238 PMCID: PMC2758656 DOI: 10.1016/j.ceb.2009.05.002] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 05/13/2009] [Indexed: 01/01/2023]
Abstract
Syndecans are membrane proteins controlling cell proliferation, differentiation, adhesion, and migration. Their extracellular domains bear versatile heparan sulfate chains that provide structural determinants for syndecans to function as coreceptors or activators for molecules like growth factors and constituents of the matrix. Syndecans also signal via their protein cores and their conserved transmembrane and cytoplasmic domains. The direct interactions and signaling cascades they support are becoming better characterized. These interactions are regulated by phosphorylation, induced clustering and shedding of the syndecan extracellular domain. Moreover evidence is emerging that syndecans concentrate in unconventional lipid domains and might govern novel vesicular trafficking pathways. Here we focus on recent findings that refine our understanding of the complex structure-function relationships of these cellular effectors.
Collapse
Affiliation(s)
- Kathleen Lambaerts
- Laboratory for Signal Integration in Cell Fate Decision, Department of Human Genetics, K.U.Leuven, Herestraat 49, O&N1 box 602, B-3000 Leuven, Belgium, emails: ;
| | | | - Pascale Zimmermann
- Laboratory for Signal Integration in Cell Fate Decision, Department of Human Genetics, K.U.Leuven, Herestraat 49, O&N1 box 602, B-3000 Leuven, Belgium, emails: ;
| |
Collapse
|
198
|
Laremore TN, Zhang F, Dordick JS, Liu J, Linhardt RJ. Recent progress and applications in glycosaminoglycan and heparin research. Curr Opin Chem Biol 2009; 13:633-40. [PMID: 19781979 DOI: 10.1016/j.cbpa.2009.08.017] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/11/2009] [Accepted: 08/21/2009] [Indexed: 01/25/2023]
Abstract
Heparin, the focus of this review, is a crucially important anticoagulant drug produced from animal sources, which was contaminated last year leading to a number of adverse side effects, some resulting in death. Heparin is a highly acidic polysaccharide and a member of a family of biopolymers called glycosaminoglycans. The structure and activities of heparin are detailed along with recent advances in heparin structural analysis and biological evaluation. Current state-of-the-art chemical and chemoenzymatic synthesis of heparin and new approaches for its metabolic engineering are described. New technologies, including microarrays and digital microfluidics, are proposed for high-throughput synthesis and screening of heparin and for the fabrication of an artificial Golgi.
Collapse
Affiliation(s)
- Tatiana N Laremore
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | |
Collapse
|
199
|
O'Donnell CD, Shukla D. A novel function of heparan sulfate in the regulation of cell-cell fusion. J Biol Chem 2009; 284:29654-65. [PMID: 19726670 DOI: 10.1074/jbc.m109.037960] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Despite the important contribution of cell-cell fusion in the development and physiology of eukaryotes, little is known about the mechanisms that regulate this process. Our study shows that glycosaminoglycans and more specifically heparan sulfate (HS) expressed on the cell surface and extracellular matrix may act as negative regulator of cell-cell fusion. Using herpes simplex virus type-1 as a tool to enhance cell-cell fusion, we demonstrate that the absence of HS expression on the cell surface results in a significant increase in cell-cell fusion. An identical phenomenon was observed when other viruses or polyethylene glycol was used as fusion enhancer. Cells deficient in HS biosynthesis showed increased activity of two Rho GTPases, RhoA and Cdc42, both of which showed a correlation between increased activity and increased cell-cell fusion. This could serve as a possible explanation as to why HS-deficient cells showed significantly enhanced cell-cell fusion and suggests that HS could regulate fusion via fine tuning of RhoA and Cdc42 activities.
Collapse
Affiliation(s)
- Christopher D O'Donnell
- Department of Ophthalmology and Visual Sciences and the Department of Microbiology and Immunology, College of Medicine, University of Illinois, Chicago, Illinois 60612, USA
| | | |
Collapse
|
200
|
Kirn-Safran C, Farach-Carson MC, Carson DD. Multifunctionality of extracellular and cell surface heparan sulfate proteoglycans. Cell Mol Life Sci 2009. [DOI: 10.1007/s00018-009-0096-1 doi:dx.doi.org] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
|