151
|
Wang L, Yang J, Wang HN, Fu RY, Liu XD, Piao YS, Wei LQ, Wang JW, Zhang L. LncRNA BCYRN1-induced autophagy enhances asparaginase resistance in extranodal NK/T-cell lymphoma. Theranostics 2021; 11:925-940. [PMID: 33391513 PMCID: PMC7738865 DOI: 10.7150/thno.46655] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Asparaginase (ASP) is the cornerstone drug in the treatment of extranodal NK/T-cell lymphoma (ENKTCL), and the mechanisms of resistance to ASP remain largely unknown. Long non-coding RNAs play important roles in chemotherapy resistance in various cancers. However, the expression of BCYRN1 and its role in ENKTCL still remain unidentified. Methods: Lentivirus-mediated BCYRN1 overexpression and knockdown were performed in SNK-6 cells. Cell autophagy was analyzed by adenovirus expressing GFP-LC3B fusion protein. RNA pull-down and RNA Binding Protein Immunoprecipitation Assay were performed to investigate the relationship between BCYRN1 and p53. Western blot analysis was performed to assess the effect of BCYRN1 on different autophagy pathways. Finally, in vivo xenograft tumor model was constructed to analyze the effect of BCYRN1 on tumor growth and ASP resistance. Results: BCYRN1 was overexpressed in ENKTCL than normal NK cells, and patients with higher expression had significantly inferior progression-free survival (PFS). The IC50 value of ASP was significantly increased in BCYRN1-overexpressed SNK-6 cells and BCYRN1 overexpression could resist the inhibitory effect of ASP on proliferation. ASP could induce concurrent apoptosis and autophagy in ENKTCL, and the latter process was enhanced by overexpression of BCYRN1, mainly through affecting both PI3K/AKT/mTOR and p53/mTOR pathways. BCYRN1 could induce the degradation of p53 via ubiquitination, thus resulting in enhancement of autophagy and ASP resistance, which could be reversed by drug-induced autophagy inhibition. The effect of BCYRN1 on tumor growth and autophagy were confirmed in vivo xenograft model. Conclusions: It was found that BCYRN1 was a valuable prognostic biomarker in ENKTCL. BCYRN1 could promote resistance to ASP by inducing autophagy, which could be reversed by inhibition of autophagy. Our findings highlight the feasibility of combining autophagy inhibition and ASP in the treatment of ENKTCL.
Collapse
|
152
|
Cai J, Liu P, Huang H, Li Y, Ma S, Zhou H, Tian X, Zhang Y, Gao Y, Xia Y, Zhang X, Yang H, Li L, Cai Q. Combination of anti-PD-1 antibody with P-GEMOX as a potentially effective immunochemotherapy for advanced natural killer/T cell lymphoma. Signal Transduct Target Ther 2020; 5:289. [PMID: 33376237 PMCID: PMC7772337 DOI: 10.1038/s41392-020-00331-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/01/2020] [Accepted: 09/13/2020] [Indexed: 01/04/2023] Open
Abstract
Advanced natural killer/T cell lymphoma (NKTL) has demonstrated poor prognosis with currently available therapies. Here, we report the efficacy of anti-programmed death 1 (PD-1) antibody with the P-GEMOX (pegaspargase, gemcitabine, and oxaliplatin) regimen in advanced NKTL. Nine patients underwent six 21-day cycles of anti-PD-1 antibody (day 1), pegaspargase 2000 U/m2 (day 1), gemcitabine 1 g/m2 (days 1 and 8) and oxaliplatin 130 mg/m2 (day 1), followed by anti-PD-1 antibody maintenance every 3 weeks. Programmed death-ligand 1 (PD-L1) expression and genetic alterations were determined in paraffin-embedded pretreatment tissue samples using immunohistochemistry and next-generation sequencing (NGS) analysis. Responses were assessed using 18F-fluorodeoxyglucose positron emission tomography (18FDG-PET) and computed tomography or magnetic resonance imaging. Eight patients exhibited significant responses, comprising of seven complete remissions and one partial remission (overall response rate: 88.9%). After a median follow-up of 10.6 months, 6/9 patients (66.7%) remained in complete remission. The most common grade 3/4 adverse events were anemia (33.3%), neutropenia (33.3%), and thrombocytopenia (33.3%); all of which were manageable and resolved. Immunochemotherapy produced a high response rate in patients with positive PD-L1 expression (5/6, 83.3%). NGS analysis suggested that STAT3/JAK3/PD-L1 alterations and ARID1A mutation were associated with immunochemotherapy efficacy. Mutation in DDX3X and alteration in epigenetic modifiers of KMT2D, TET2, and BCORL1 might indicate a poor response to immunochemotherapy. In conclusion, the anti-PD-1 antibody plus P-GEMOX regimen demonstrated promising efficacy in advanced NKTL. PD-L1 expression combined with specific genetic alterations could be used as potential biomarkers to predict therapeutic responses to immunochemotherapy.
Collapse
Affiliation(s)
- Jun Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Panpan Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Huiqiang Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Yajun Li
- Department of Lymphoma and Hematology, Hunan Cancer Hospital, Changsha, 410013, P.R. China.,Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, P.R. China
| | - Shuyun Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Hui Zhou
- Department of Lymphoma and Hematology, Hunan Cancer Hospital, Changsha, 410013, P.R. China.,Department of Lymphoma and Hematology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, P.R. China
| | - Xiaopeng Tian
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Yuchen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Yan Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Yi Xia
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Xuanye Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Hang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Lirong Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China
| | - Qingqing Cai
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China. .,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, P.R. China.
| |
Collapse
|
153
|
Yang F, Gao Y, Chang YT, Zou Y, Houk KN, Lu JR, He J, Tang WZ, Liao HZ, Han H, Lin HW. Aromatic Ring Substituted Aaptamine Analogues as Potential Cytotoxic Agents against Extranodal Natural Killer/T-Cell Lymphoma. JOURNAL OF NATURAL PRODUCTS 2020; 83:3758-3763. [PMID: 33170001 DOI: 10.1021/acs.jnatprod.0c00769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A chemical modification study was conducted on the marine natural product aaptamine (1), isolated from the marine sponge Aaptos aaptos. Thirty new derivatives substituted by various aromatic rings at the 3- and 7-positions of aaptamine were prepared by bromination, followed by the Suzuki coupling reaction. Sixteen compounds displayed cytotoxicities to four cancer cell lines (IC50 < 10 μM). In particular, compound 5i demonstrated a significant antiproliferative effect on the extranodal natural killer/T-cell lymphoma (ENKT) cell line SNK-6 with an IC50 value of 0.6 μM. Additionally, compound 5i showed cytotoxicities to multiple lymphoma cell lines, including Ramos, Raji, WSU-DLCL2, and SU-DHL-4 cells.
Collapse
Affiliation(s)
- Fan Yang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Yuan Gao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Yung-Ting Chang
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Yike Zou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Jing-Rong Lu
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Jing He
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Wei-Zhuo Tang
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, People's Republic of China
| | - Hong-Ze Liao
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Hua Han
- School of Medicine, Tongji University, Shanghai 200092, People's Republic of China
| | - Hou-Wen Lin
- Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| |
Collapse
|
154
|
Xie C, Li X, Zeng H, Qian W. Molecular insights into pathogenesis and targeted therapy of peripheral T cell lymphoma. Exp Hematol Oncol 2020; 9:30. [PMID: 33292562 PMCID: PMC7664070 DOI: 10.1186/s40164-020-00188-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/03/2020] [Indexed: 02/08/2023] Open
Abstract
Peripheral T-cell lymphomas (PTCLs) are biologically and clinically heterogeneous diseases almost all of which are associated with poor outcomes. Recent advances in gene expression profiling that helps in diagnosis and prognostication of different subtypes and next-generation sequencing have given new insights into the pathogenesis and molecular pathway of PTCL. Here, we focus on a broader description of mutational insights into the common subtypes of PTCL including PTCL not other specified type, angioimmunoblastic T-cell lymphoma, anaplastic large cell lymphoma, and extra-nodal NK/T cell lymphoma, nasal type, and also present an overview of new targeted therapies currently in various stages of clinical trials.
Collapse
Affiliation(s)
- Caiqin Xie
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, 88# Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Xian Li
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, 88# Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Hui Zeng
- Department of Hematology, First Affiliated Hospital of Jiaxing University, 1882# Zhonghuan South Road, Jiaxing, 314000, People's Republic of China.
| | - Wenbin Qian
- Department of Hematology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, 88# Jiefang Road, Hangzhou, 310009, Zhejiang, People's Republic of China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215006, People's Republic of China.
| |
Collapse
|
155
|
Apostolidis J, Sayyed A, Darweesh M, Kaloyannidis P, Al Hashmi H. Current Clinical Applications and Future Perspectives of Immune Checkpoint Inhibitors in Non-Hodgkin Lymphoma. J Immunol Res 2020; 2020:9350272. [PMID: 33178841 PMCID: PMC7647776 DOI: 10.1155/2020/9350272] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/10/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Cancer cells escape immune recognition by exploiting the programmed cell-death protein 1 (PD-1)/programmed cell-death 1 ligand 1 (PD-L1) immune checkpoint axis. Immune checkpoint inhibitors that target PD-1/PD-L1 unleash the properties of effector T cells that are licensed to kill cancer cells. Immune checkpoint blockade has dramatically changed the treatment landscape of many cancers. Following the cancer paradigm, preliminary results of clinical trials in lymphoma have demonstrated that immune checkpoint inhibitors induce remarkable responses in specific subtypes, most notably classical Hodgkin lymphoma and primary mediastinal B-cell lymphoma, while in other subtypes, the results vary considerably, from promising to disappointing. Lymphomas that respond to immune checkpoint inhibitors tend to exhibit tumor cells that reside in a T-cell-rich immune microenvironment and display constitutive transcriptional upregulation of genes that facilitate innate immune resistance, such as structural variations of the PD-L1 locus, collectively referred to as T-cell-inflamed lymphomas, while those lacking such characteristics are referred to as noninflamed lymphomas. This distinction is not necessarily a sine qua non of response to immune checkpoint inhibitors, but rather a framework to move the field forward with a more rational approach. In this article, we provide insights on our current understanding of the biological mechanisms of immune checkpoint evasion in specific subtypes of B-cell and T-cell non-Hodgkin lymphomas and summarize the clinical experience of using inhibitors that target immune checkpoints in these subtypes. We also discuss the phenomenon of hyperprogression in T-cell lymphomas, related to the use of such inhibitors when T cells themselves are the target cells, and consider future approaches to refine clinical trials with immune checkpoint inhibitors in non-Hodgkin lymphomas.
Collapse
Affiliation(s)
- John Apostolidis
- Department of Adult Hematology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Ayman Sayyed
- Department of Adult Hematology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Mohammed Darweesh
- Department of Adult Hematology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | | | - Hani Al Hashmi
- Department of Adult Hematology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| |
Collapse
|
156
|
PD-1 blockade in extranodal NK/T-cell lymphoma: who is in charge? Leukemia 2020; 34:3432-3433. [PMID: 33009482 DOI: 10.1038/s41375-020-01046-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/21/2020] [Accepted: 09/23/2020] [Indexed: 11/09/2022]
|
157
|
Vega F. Pathology and Pathogenesis of T-Cell Lymphoma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20 Suppl 1:S89-S93. [PMID: 32862884 DOI: 10.1016/s2152-2650(20)30474-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Peripheral T cell lymphomas (PTCLs) are a heterogeneous and often clinically aggressive group of neoplasms derived from mature post-thymic T lymphocytes. These neoplasms are rare and usually diagnostically challenging. Our understanding of the pathogenesis of PTCL is increasing and this improved knowledge is leading us to better molecular characterization, more objective diagnostic criteria, more effective risk assessment, and potentially to better treatments for these neoplasms.
Collapse
Affiliation(s)
- Francisco Vega
- Department of Hematopathology, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas, 77030, US.
| |
Collapse
|
158
|
Wang L, Li LR, Zhang L, Wang JW. The landscape of new drugs in extranodal NK/T-cell lymphoma. Cancer Treat Rev 2020; 89:102065. [PMID: 32653806 DOI: 10.1016/j.ctrv.2020.102065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/11/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022]
Abstract
To date, much progress has been made in early-stage extranodal NK/T-cell lymphoma (ENKTCL), and risk-adapted therapy with radiotherapy (RT) alone for the low-risk group and RT combined with asparaginase-based chemotherapy (CT) for the high-risk group yields favorable outcomes. However, optimal treatment strategies have not been defined yet for advanced-stage ENKTCL. Historically, ENKTCL responded poorly to conventional anthracycline-based chemotherapy probably because of inherent multidrug resistance (MDR). The fact that ENKTCL cells lack asparagine synthetase (ASNS) activity warranted the use of L-asparaginase or pegaspargase as frontline chemotherapies. Even though, due to high mortality of the disease, approximately 50% patients failing the frontline therapy arrived at dismal clinical outcomes with a median progression-free survival (PFS) less than 8 months. As distinctive molecular and biological subgroups are increasingly discovered within the disease entity of ENKTCL, novel targeted therapies and immunotherapy are of the urgent need for those heterogeneous subgroups. In this review, we sought to summarize the preclinical and clinical results of 6 categories of promising targeted therapy and immunotherapy for the treatment of ENKTCL, including monoclonal antibodies, immune checkpoint inhibitors, small-molecular inhibitors, epigenetic therapy, immunomodulatory drugs, and adoptive T-cell therapy, and these might change the landscape of treatment for ENKTCL in the near future.
Collapse
Affiliation(s)
- Liang Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing Tongren Hospital, Beijing 100730, China.
| | - Lin-Rong Li
- Department of Breast Surgery, Peking Union Medical College Hospital, Beijing 100032, China
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China; Beijing Key Laboratory of Nasal Disease, Beijing Institute of Otolaryngology, Beijing 100730, China
| | - Jing-Wen Wang
- Department of Hematology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| |
Collapse
|
159
|
Abstract
In this issue of Cancer Cell, Xiong and colleagues describe the genomic and transcriptional landscape of natural killer/T cell lymphoma (NKTCL), a rare form of non-Hodgkin's lymphoma associated with EBV infection. They divide NKTCL into molecularly defined subtypes that could inform therapeutic strategies for patients with this deadly disease.
Collapse
Affiliation(s)
- Bethany Mundy-Bosse
- Division of Hematology, Department of Internal Medicine, Ohio State University, Columbus, OH 43210, USA.
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Broad Institute of MIT and Harvard University, Cambridge, MA 02142, USA
| |
Collapse
|