151
|
Miao YQ, Chen W, Zhou J, Shen Q, Sun Y, Li T, Wang SC. N(6)-adenosine-methyltransferase-14 promotes glioma tumorigenesis by repressing argininosuccinate synthase 1 expression in an m6A-dependent manner. Bioengineered 2022; 13:1858-1871. [PMID: 35012429 PMCID: PMC8805915 DOI: 10.1080/21655979.2021.2018386] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma is one of the leading causes of tumor-related deaths worldwide, but its potential mechanism remains unclear. This study aimed to explore the biological role and potential mechanism of argininosuccinate synthase 1 (ASS1) in glioma. The relative expression levels of ASS1 in glioma specimens and cell lines were calculated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blotting. The biological functions of ASS1 were demonstrated using the 5-ethynyl-2'-deoxyuridine (EdU) assay, transwell assay, and in vivo experiments. In addition, methylated RNA immunoprecipitation (MeRIP), RNA immunoprecipitation (RIP), and luciferase reporter assays were performed to explore the molecular mechanism of ASS1 in glioma. ASS1 expression levels were found to be downregulated in glioma specimens and cell lines. Functionally, we confirmed that ASS1 inhibited glioma cell proliferation, migration, invasion, and growth both. Furthermore, we found that ASS1 was a target of N(6)-adenosine-methyltransferase-14 (METTL14)-mediated N6-methyladenosine (m6A) modification. Overexpression of METTL14 markedly elevated ASS1 mRNA m6A modification and suppressed ASS1 mRNA expression. We also revealed that METTL14-mediated ASS1 mRNA degradation relied on the YTH m6A RNA-binding protein 2 (YTHDF2)-dependent pathway. We confirmed that decreased ASS1 expression promoted the cell proliferation, migration, and invasion in glioma, and that the METTL14/ASS1/YTHDF2 regulatory axis may be an effective therapeutic target for glioma.
Collapse
Affiliation(s)
- You-Qing Miao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Nanjing, China
| | - Wei Chen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jianfeng Zhou
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Qiyang Shen
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Sun
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Nanjing, China
| | - Tao Li
- Department of Pediatric Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Sheng-Chan Wang
- Department of Geriatrics, Geriatric Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
152
|
Su Y, Maimaitiyiming Y, Wang L, Cheng X, Hsu CH. Modulation of Phase Separation by RNA: A Glimpse on N 6-Methyladenosine Modification. Front Cell Dev Biol 2021; 9:786454. [PMID: 34957114 PMCID: PMC8703171 DOI: 10.3389/fcell.2021.786454] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
Phase separation is the driving force behind formation of various biomolecular condensates (BioMCs), which sub-compartmentalize certain cellular components in a membraneless manner to orchestrate numerous biological processes. Many BioMCs are composed of proteins and RNAs. While the features and functions of proteins are well studied, less attention was paid to the other essential component RNAs. Here, we describe how RNA contributes to the biogenesis, dissolution, and properties of BioMCs as a multivalence providing scaffold for proteins/RNA to undergo phase separation. Specifically, we focus on N6-methyladenosine (m6A), the most widely distributed dynamic post-transcriptional modification, which would change the charge, conformation, and RNA-binding protein (RBP) anchoring of modified RNA. m6A RNA-modulated phase separation is a new perspective to illustrate m6A-mediated various biological processes. We summarize m6A main functions as “beacon” to recruit reader proteins and “structural switcher” to alter RNA–protein and RNA–RNA interactions to modulate phase separation and regulate the related biological processes.
Collapse
Affiliation(s)
- Yingfeng Su
- Women's Hospital, Institute of Genetics, Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yasen Maimaitiyiming
- Women's Hospital, Institute of Genetics, Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Hematology of First Affiliated Hospital, Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingfang Wang
- Women's Hospital, Institute of Genetics, Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaodong Cheng
- Department of Obstetrics and Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chih-Hung Hsu
- Women's Hospital, Institute of Genetics, Department of Environmental Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
153
|
The multifaceted effects of YTHDC1-mediated nuclear m 6A recognition. Trends Genet 2021; 38:325-332. [PMID: 34920906 DOI: 10.1016/j.tig.2021.11.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
N6-methyladenosine or m6A modification to mRNAs is now recognised as a key regulator of gene expression and protein translation. The fate of m6A-modified mRNAs is decoded by m6A readers, mostly found in the cytoplasm, except for the nuclear-localised YTHDC1. While earlier studies have implicated YTHDC1-m6A functions in alternative splicing and mRNA export, recent literature has expanded its close association to the chromatin-associated, noncoding and regulatory RNAs to fine-tune transcription and gene expression in cells. Here, we summarise current progress in the study of YTHDC1 function in cells, highlighting its multiple modes of action in regulating gene expression, and propose the formation of YTHDC1 nuclear condensates as a general mechanism that underlies its diverse functions in the nucleus.
Collapse
|
154
|
Ogami K, Suzuki HI. Nuclear RNA Exosome and Pervasive Transcription: Dual Sculptors of Genome Function. Int J Mol Sci 2021; 22:13401. [PMID: 34948199 PMCID: PMC8707817 DOI: 10.3390/ijms222413401] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/10/2021] [Accepted: 12/10/2021] [Indexed: 01/14/2023] Open
Abstract
The genome is pervasively transcribed across various species, yielding numerous non-coding RNAs. As a counterbalance for pervasive transcription, various organisms have a nuclear RNA exosome complex, whose structure is well conserved between yeast and mammalian cells. The RNA exosome not only regulates the processing of stable RNA species, such as rRNAs, tRNAs, small nucleolar RNAs, and small nuclear RNAs, but also plays a central role in RNA surveillance by degrading many unstable RNAs and misprocessed pre-mRNAs. In addition, associated cofactors of RNA exosome direct the exosome to distinct classes of RNA substrates, suggesting divergent and/or multi-layer control of RNA quality in the cell. While the RNA exosome is essential for cell viability and influences various cellular processes, mutations and alterations in the RNA exosome components are linked to the collection of rare diseases and various diseases including cancer, respectively. The present review summarizes the relationships between pervasive transcription and RNA exosome, including evolutionary crosstalk, mechanisms of RNA exosome-mediated RNA surveillance, and physiopathological effects of perturbation of RNA exosome.
Collapse
Affiliation(s)
- Koichi Ogami
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan;
| | - Hiroshi I. Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan;
- Institute for Glyco-core Research (iGCORE), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
155
|
Suzuki HI, Onimaru K. Biomolecular condensates in cancer biology. Cancer Sci 2021; 113:382-391. [PMID: 34865286 PMCID: PMC8819300 DOI: 10.1111/cas.15232] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the characteristics of cancer cells is essential for the development of improved diagnosis and therapeutics. From a gene regulation perspective, the super‐enhancer concept has been introduced to systematically understand the molecular mechanisms underlying the identities of various cell types and has been extended to the analysis of cancer cells and cancer genome alterations. In addition, several characteristic features of super‐enhancers have led to the recognition of the link between gene regulation and biomolecular condensates, which is often mediated by liquid‐liquid phase separation. Several lines of evidence have suggested molecular and biophysical principles and their alterations in cancer cells, which are particularly associated with gene regulation and cell signaling (“ transcriptional” and “signaling” condensates). These findings collectively suggest that the modification of biomolecular condensates represents an important mechanism by which cancer cells acquire various cancer hallmark traits and establish functional innovation for cancer initiation and progression. The condensate model also provides the molecular basis of the vulnerability of cancer cells to transcriptional perturbation and further suggests the possibility of therapeutic targeting of condensates. This review summarizes recent findings regarding the relationships between super‐enhancers and biomolecular condensate models, multiple scenarios of condensate alterations in cancers, and the potential of the condensate model for therapeutic development.
Collapse
Affiliation(s)
- Hiroshi I Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| | - Koh Onimaru
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.,RIKEN Center for Biosystems Dynamics Research, Wako, Japan
| |
Collapse
|
156
|
Wang B, Niu L, Wang Z, Zhao Z. RNA m1A Methyltransferase TRMT6 Predicts Poorer Prognosis and Promotes Malignant Behavior in Glioma. Front Mol Biosci 2021; 8:692130. [PMID: 34631793 PMCID: PMC8493077 DOI: 10.3389/fmolb.2021.692130] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/11/2021] [Indexed: 12/26/2022] Open
Abstract
Background: Glioma is the most prevalent central nervous system tumor in humans, and its prognosis remains unsatisfactory due to a lack of effective therapeutic targets. The ectopic expression of N1-methyladenosine (m1A) regulators is a key participant in tumorigenesis and progression. However, the m1A regulator expression status, prognostic value, and relationship with tumor clinical features in glioma remain unclear. Methods: Public datasets were used to analyze the mRNA and protein expression levels of m1A regulators. Kaplan-Meier and Cox regression analyses were performed to confirm the prognostic value of m1A regulators in glioma. Cellular experiments were conducted to verify the effect of TRMT6 on cell function. A comprehensive bioinformatics analysis was conducted to identify the potential molecular mechanisms regulated by TEMT6 in glioma. Results: We found that the dysregulation of m1A regulators was closely associated with tumorigenesis and progression in glioma. Furthermore, TRMT6 might be a powerful and independent biomarker for prognosis in glioma. Our study showed that inhibition of TRMT6 suppressed the proliferation, migration, and invasion of glioma cells. Mechanistically, TRMT6 may be involved in glioma progression by regulating cell cycle, PI3K-AKT, TGF-beta, MTORC1, NOTCH, and MYC pathways. Conclusions: Variation in m1A regulators was closely associated with malignant progression in glioma. Silencing TRMT6 suppressed the cell proliferation, migration, and invasion in glioma. m1A regulators, especially TRMT6, might play an essential role in the malignant progression of glioma.
Collapse
Affiliation(s)
- Beibei Wang
- Pathology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lihua Niu
- Pathology Department, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengyang Wang
- Pathology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhihua Zhao
- Pathology Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
157
|
|