151
|
Vitvitsky V, Kumar R, Diessl J, Hanna DA, Banerjee R. Rapid HPLC method reveals dynamic shifts in coenzyme Q redox state. J Biol Chem 2024; 300:107301. [PMID: 38641068 PMCID: PMC11109469 DOI: 10.1016/j.jbc.2024.107301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024] Open
Abstract
Ubiquinol or coenzyme Q (CoQ) is a lipid-soluble electron carrier in the respiratory chain and an electron acceptor for various enzymes in metabolic pathways that intersect at this cofactor hub in the mitochondrial inner membrane. The reduced form of CoQ is an antioxidant, which protects against lipid peroxidation. In this study, we have optimized a UV-detected HPLC method for CoQ analysis from biological materials, which involves a rapid single-step extraction into n-propanol followed by direct sample injection onto a column. Using this method, we have measured the oxidized, reduced, and total CoQ pools and monitored shifts in the CoQ redox status in response to cell culture conditions and bioenergetic perturbations. We find that hypoxia or sulfide exposure induces a reductive shift in the intracellular CoQ pool. The effect of hypoxia is, however, rapidly reversed by exposure to ambient air. Interventions at different loci in the electron transport chain can induce sizeable redox shifts in the oxidative or reductive direction, depending on whether they are up- or downstream of complex III. We have also used this method to confirm that CoQ levels are higher and more reduced in murine heart versus brain. In summary, the availability of a convenient HPLC-based method described herein will facilitate studies on CoQ redox dynamics in response to environmental, nutritional, and endogenous alterations.
Collapse
Affiliation(s)
- Victor Vitvitsky
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA; Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia
| | - Roshan Kumar
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jutta Diessl
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - David A Hanna
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
152
|
Peng Q, Zeng W. The protective role of endothelial GLUT1 in ischemic stroke. Brain Behav 2024; 14:e3536. [PMID: 38747733 PMCID: PMC11095318 DOI: 10.1002/brb3.3536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
OBJECTIVE To provide thorough insight on the protective role of endothelial glucose transporter 1 (GLUT1) in ischemic stroke. METHODS We comprehensively review the role of endothelial GLUT1 in ischemic stroke by narrating the findings concerning biological characteristics of GLUT1 in brain in depth, summarizing the changes of endothelial GLUT1 expression and activity during ischemic stroke, discussing how GLUT1 achieves its neuroprotective effect via maintaining endothelial function, and identifying some outstanding blind spots in current studies. RESULTS Endothelial GLUT1 maintains persistent high glucose and energy requirements of the brain by transporting glucose through the blood-brain barrier, which preserves endothelial function and is beneficial to stroke prognosis. CONCLUSION This review underscores the potential involvement of GLUT1 trafficking, activity modulation, and degradation, and we look forward to more clinical and animal studies to illuminate these mechanisms.
Collapse
Affiliation(s)
- Qiwei Peng
- Department of Critical Care Medicine, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
- Key Laboratory of Anesthesiology and Resuscitation (Huazhong University of Science and Technology)Ministry of EducationWuhanChina
| | - Weiqi Zeng
- Department of NeurologyThe First People's Hospital of FoshanFoshanChina
| |
Collapse
|
153
|
Lu B, Zhao Q, Cai Z, Qian S, Mao J, Zhang L, Mao X, Sun X, Cui W, Zhang Y. Regulation of Glucose Metabolism for Cell Energy Supply In Situ via High-Energy Intermediate Fructose Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309060. [PMID: 38063818 DOI: 10.1002/smll.202309060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Indexed: 05/12/2024]
Abstract
The cellular functions, such as tissue-rebuilding ability, can be directly affected by the metabolism of cells. Moreover, the glucose metabolism is one of the most important processes of the metabolism. However, glucose cannot be efficiently converted into energy in cells under ischemia hypoxia conditions. In this study, a high-energy intermediate fructose hydrogel (HIFH) is developed by the dynamic coordination between sulfhydryl-functionalized bovine serum albumin (BSA-SH), the high-energy intermediate in glucose metabolism (fructose-1,6-bisphosphate, FBP), and copper ion (Cu2+). This hydrogel system is injectable, self-healing, and biocompatible, which can intracellularly convert energy with high efficacy by regulating the glucose metabolism in situ. Additionally, the HIFH can greatly boost cell antioxidant capacity and increase adenosine triphosphate (ATP) in the ischemia anoxic milieu by roughly 1.3 times, improving cell survival, proliferation and physiological functions in vitro. Furthermore, the ischemic skin tissue model is established in rats. The HIFH can speed up the healing of damaged tissue by promoting angiogenesis, lowering reactive oxygen species (ROS), and eventually expanding the healing area of the damaged tissue by roughly 1.4 times in vivo. Therefore, the HIFH can provide an impressive perspective on efficient in situ cell energy supply of damaged tissue.
Collapse
Affiliation(s)
- Bolun Lu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Qiuyu Zhao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Shutong Qian
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Jiayi Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Liucheng Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Xiyuan Mao
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Xiaoming Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yuguang Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai, 200011, P. R. China
| |
Collapse
|
154
|
Aragón-González A, Shaw AC, Kok JR, Roussel FS, Santos Souza CD, Granger SM, Vetter T, de Diego Y, Meyer KC, Beal SN, Shaw PJ, Ferraiuolo L. C9ORF72 patient-derived endothelial cells drive blood-brain barrier disruption and contribute to neurotoxicity. Fluids Barriers CNS 2024; 21:34. [PMID: 38605366 PMCID: PMC11007886 DOI: 10.1186/s12987-024-00528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/02/2024] [Indexed: 04/13/2024] Open
Abstract
The blood-brain barrier (BBB) serves as a highly intricate and dynamic interface connecting the brain and the bloodstream, playing a vital role in maintaining brain homeostasis. BBB dysfunction has been associated with multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS); however, the role of the BBB in neurodegeneration is understudied. We developed an ALS patient-derived model of the BBB by using cells derived from 5 patient donors carrying C9ORF72 mutations. Brain microvascular endothelial-like cells (BMEC-like cells) derived from C9ORF72-ALS patients showed altered gene expression, compromised barrier integrity, and increased P-glycoprotein transporter activity. In addition, mitochondrial metabolic tests demonstrated that C9ORF72-ALS BMECs display a significant decrease in basal glycolysis accompanied by increased basal and ATP-linked respiration. Moreover, our study reveals that C9-ALS derived astrocytes can further affect BMECs function and affect the expression of the glucose transporter Glut-1. Finally, C9ORF72 patient-derived BMECs form leaky barriers through a cell-autonomous mechanism and have neurotoxic properties towards motor neurons.
Collapse
Affiliation(s)
- Ana Aragón-González
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385 Glossop Road, S10 2HQ, Sheffield, UK.
- Facultad de Medicina, Universidad de Málaga, 29010, Malaga, Spain.
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, OH 43205, Columbus, USA.
| | - Allan C Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385 Glossop Road, S10 2HQ, Sheffield, UK
| | - Jannigje R Kok
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385 Glossop Road, S10 2HQ, Sheffield, UK
| | - Florence S Roussel
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, OH 43205, Columbus, USA
| | - Cleide Dos Santos Souza
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385 Glossop Road, S10 2HQ, Sheffield, UK
| | - Sarah M Granger
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385 Glossop Road, S10 2HQ, Sheffield, UK
| | - Tatyana Vetter
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, OH 43205, Columbus, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Yolanda de Diego
- Research Group PAIDI CTS-546, Institute of Biomedical Research of Málaga (IBIMA), 29010, Malaga, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Campus Rabanales, Cordoba, Spain
| | - Kathrin C Meyer
- Center for Gene Therapy, The Abigail Wexner Research Institute, Nationwide Children's Hospital, OH 43205, Columbus, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Selina N Beal
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385 Glossop Road, S10 2HQ, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385 Glossop Road, S10 2HQ, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience, University of Sheffield, 385 Glossop Road, S10 2HQ, Sheffield, UK.
| |
Collapse
|
155
|
Kowalik MA, Taguchi K, Serra M, Caddeo A, Puliga E, Bacci M, Koshiba S, Inoue J, Hishinuma E, Morandi A, Giordano S, Perra A, Yamamoto M, Columbano A. Metabolic reprogramming in Nrf2-driven proliferation of normal rat hepatocytes. Hepatology 2024; 79:829-843. [PMID: 37603610 DOI: 10.1097/hep.0000000000000568] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND AND AIMS Cancer cells reprogram their metabolic pathways to support bioenergetic and biosynthetic needs and to maintain their redox balance. In several human tumors, the Keap1-Nrf2 system controls proliferation and metabolic reprogramming by regulating the pentose phosphate pathway (PPP). However, whether this metabolic reprogramming also occurs in normal proliferating cells is unclear. APPROACH AND RESULTS To define the metabolic phenotype in normal proliferating hepatocytes, we induced cell proliferation in the liver by 3 distinct stimuli: liver regeneration by partial hepatectomy and hepatic hyperplasia induced by 2 direct mitogens: lead nitrate (LN) or triiodothyronine. Following LN treatment, well-established features of cancer metabolic reprogramming, including enhanced glycolysis, oxidative PPP, nucleic acid synthesis, NAD + /NADH synthesis, and altered amino acid content, as well as downregulated oxidative phosphorylation, occurred in normal proliferating hepatocytes displaying Nrf2 activation. Genetic deletion of Nrf2 blunted LN-induced PPP activation and suppressed hepatocyte proliferation. Moreover, Nrf2 activation and following metabolic reprogramming did not occur when hepatocyte proliferation was induced by partial hepatectomy or triiodothyronine. CONCLUSIONS Many metabolic changes in cancer cells are shared by proliferating normal hepatocytes in response to a hostile environment. Nrf2 activation is essential for bridging metabolic changes with crucial components of cancer metabolic reprogramming, including the activation of oxidative PPP. Our study demonstrates that matured hepatocytes exposed to LN undergo cancer-like metabolic reprogramming and offers a rapid and useful in vivo model to study the molecular alterations underpinning the differences/similarities of metabolic changes in normal and neoplastic hepatocytes.
Collapse
Affiliation(s)
- Marta A Kowalik
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Keiko Taguchi
- Department of Molecular Biology and Biochemistry, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Marina Serra
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Andrea Caddeo
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Elisabetta Puliga
- Department of Oncology, University of Torino, Candiolo, Italy
- Department of Oncology Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Florence, Italy
| | - Seizo Koshiba
- Department of Molecular Biology and Biochemistry, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Jin Inoue
- Department of Molecular Biology and Biochemistry, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Eiji Hishinuma
- Department of Molecular Biology and Biochemistry, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Florence, Italy
| | - Silvia Giordano
- Department of Oncology, University of Torino, Candiolo, Italy
- Department of Oncology Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Masayuki Yamamoto
- Department of Molecular Biology and Biochemistry, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
- Advanced Research Center for Innovations in Next Generation Medicine (INGEM), Tohoku University, Sendai, Japan
| | - Amedeo Columbano
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
156
|
Chen S, Lu Z, Zhao Y, Xia L, Liu C, Zuo S, Jin M, Jia H, Li S, Zhang S, Yang B, Wang Z, Li J, Wang F, Yang C. Myeloid-Mas Signaling Modulates Pathogenic Crosstalk among MYC +CD63 + Endothelial Cells, MMP12 + Macrophages, and Monocytes in Acetaminophen-Induced Liver Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306066. [PMID: 38350725 PMCID: PMC11040347 DOI: 10.1002/advs.202306066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/17/2024] [Indexed: 02/15/2024]
Abstract
Acetaminophen overdose is a leading cause of acute liver failure (ALF). Despite the pivotal role of the inflammatory microenvironment in the progression of advanced acetaminophen-induced liver injury (AILI), a comprehensive understanding of the underlying cellular interactions and molecular mechanisms remains elusive. Mas is a G protein-coupled receptor highly expressed by myeloid cells; however, its role in the AILI microenvironment remains to be elucidated. A multidimensional approach, including single-cell RNA sequencing, spatial transcriptomics, and hour-long intravital imaging, is employed to characterize the microenvironment in Mas1 deficient mice at the systemic and cell-specific levels. The characteristic landscape of mouse AILI models involves reciprocal cellular communication among MYC+CD63+ endothelial cells, MMP12+ macrophages, and monocytes, which is maintained by enhanced glycolysis and the NF-κB/TNF-α signaling pathway due to myeloid-Mas deficiency. Importantly, the pathogenic microenvironment is delineated in samples obtained from patients with ALF, demonstrating its clinical relevance. In summary, these findings greatly enhance the understanding of the microenvironment in advanced AILI and offer potential avenues for patient stratification and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Shuai Chen
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| | - Zhi Lu
- Department of AutomationTsinghua UniversityBeijing100084China
- Institute for Brain and Cognitive SciencesTsinghua UniversityBeijing100084China
| | - Yudong Zhao
- Department of Liver Surgery, Renji Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Lu Xia
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| | - Chun Liu
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| | - Siqing Zuo
- Department of AutomationTsinghua UniversityBeijing100084China
- Institute for Brain and Cognitive SciencesTsinghua UniversityBeijing100084China
| | - Manchang Jin
- Institute for Brain and Cognitive SciencesTsinghua UniversityBeijing100084China
- School of Electrical and Information EngineeringTianjin UniversityTianjin300072China
| | - Haoyu Jia
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| | - Shanshan Li
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| | - Shuo Zhang
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| | - Bo Yang
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| | - Zhijing Wang
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| | - Jing Li
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| | - Fei Wang
- Division of GastroenterologySeventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhen518107China
| | - Changqing Yang
- Department of Gastroenterology and HepatologyTongji Hospital, School of Medicine, Tongji UniversityShanghai200092China
| |
Collapse
|
157
|
Chen W, Ye X, Chen Y, Zhao T, Zhou H. M6A methylation of FKFB3 reduced pyroptosis of gastric cancer by NLRP3. Anticancer Drugs 2024; 35:344-357. [PMID: 38241195 DOI: 10.1097/cad.0000000000001574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Gastric cancer is a kind of malignant tumor that seriously endangers human life and health. Its incidence rate and mortality rate are among the highest in the global malignant tumors. Therefore, this study explored the role of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) in the progression of gastric cancer and its underlying mechanism. Patients with gastric cancer were collected, and human GC cell lines (stomach gastric carcinoma 7901, stomach gastric carcinoma 823 , human gastric carcinoma cell line 803 and adenocarcinoma gastric stomach) were used in this study. We utilized glucose consumption, cell migration, and ELISA assay kits to investigate the function of GC. To understand its mechanism, we employed quantitative PCR (qPCR), western blot, and m6A methylated RNA immunoprecipitation assay. FKFB3 protein expression levels in patients with gastric cancer were increased. The induction of PFKFB3 mRNA expression levels in patients with gastric cancer or gastric cancer cell lines. Gastric cancer patients with high PFKFB3 expression had a lower survival rate. PFKFB3 high expression possessed the probability of pathological stage, lymph node metastasis or distant metastasis in patients with gastric cancer. PFKFB3 upregulation promoted cancer progression and Warburg effect progression of gastric cancer. PFKFB3 upregulation reduced pyroptosis and suppressed nucleotidebinding domain, leucinerich repeat containing protein 3-induced pyroptosis of gastric cancer. M6A-forming enzyme methyltransferase-like 3 increased PFKFB3 stability. Taken together, the M6A-forming enzyme methyltransferase-like 3 increased PFKFB3 stability and reduced pyroptosis in the model of gastric cancer through the Warburg effect. The PFKFB3 gene represents a potential therapeutic strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Wanyuan Chen
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College
| | - Xiaolin Ye
- College of Basic Medical Science, Zhejiang Chinese Medical University
| | - Yun Chen
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Tongwei Zhao
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Hongying Zhou
- Cancer Center, Department of Medical Oncology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
158
|
He X, Cantrell AC, Williams QA, Gu W, Chen Y, Chen JX, Zeng H. p53 Acetylation Exerts Critical Roles in Pressure Overload-Induced Coronary Microvascular Dysfunction and Heart Failure in Mice. Arterioscler Thromb Vasc Biol 2024; 44:826-842. [PMID: 38328937 PMCID: PMC10978286 DOI: 10.1161/atvbaha.123.319601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 01/25/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND Coronary microvascular dysfunction (CMD) has been shown to contribute to cardiac hypertrophy and heart failure (HF) with preserved ejection fraction. At this point, there are no proven treatments for CMD. METHODS We have shown that histone acetylation may play a critical role in the regulation of CMD. By using a mouse model that replaces lysine with arginine at residues K98, K117, K161, and K162R of p53 (p534KR), preventing acetylation at these sites, we test the hypothesis that acetylation-deficient p534KR could improve CMD and prevent the progression of hypertensive cardiac hypertrophy and HF. Wild-type and p534KR mice were subjected to pressure overload by transverse aortic constriction to induce cardiac hypertrophy and HF. RESULTS Echocardiography measurements revealed improved cardiac function together with a reduction of apoptosis and fibrosis in p534KR mice. Importantly, myocardial capillary density and coronary flow reserve were significantly improved in p534KR mice. Moreover, p534KR upregulated the expression of cardiac glycolytic enzymes and Gluts (glucose transporters), as well as the level of fructose-2,6-biphosphate; increased PFK-1 (phosphofructokinase 1) activity; and attenuated cardiac hypertrophy. These changes were accompanied by increased expression of HIF-1α (hypoxia-inducible factor-1α) and proangiogenic growth factors. Additionally, the levels of SERCA-2 were significantly upregulated in sham p534KR mice, as well as in p534KR mice after transverse aortic constriction. In vitro, p534KR significantly improved endothelial cell glycolytic function and mitochondrial respiration and enhanced endothelial cell proliferation and angiogenesis. Similarly, acetylation-deficient p534KR significantly improved coronary flow reserve and rescued cardiac dysfunction in SIRT3 (sirtuin 3) knockout mice. CONCLUSIONS Our data reveal the importance of p53 acetylation in coronary microvascular function, cardiac function, and remodeling and may provide a promising approach to improve hypertension-induced CMD and to prevent the transition of cardiac hypertrophy to HF.
Collapse
Affiliation(s)
- Xiaochen He
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Aubrey C Cantrell
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Quinesha A Williams
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Wei Gu
- Department of Pathology & Cell Biology, Columbia University, Institute for Cancer Genetics, New York, NY 10032, USA
| | - Yingjie Chen
- Department of Physiology & Biophysics, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Jian-Xiong Chen
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| | - Heng Zeng
- Department of Pharmacology & Toxicology, University of Mississippi Medical Center, School of Medicine, Jackson, MS, 39216, USA
| |
Collapse
|
159
|
Henriksen T, Sajjad MU, Haugen G, Michelsen TM. Placental energy metabolism: Evidence for a placental-maternal lactate-ketone trade in the human. Placenta 2024; 148:31-37. [PMID: 38350223 DOI: 10.1016/j.placenta.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
INTRODUCTION Glucose from placenta is the predominant energy source for the fetus. Individual placentas exhibit a range of glucose handling from apparent net production to high consumption, presumably reflecting an ability of placenta to secure both own and fetal energy needs. A dependency of placenta on glucose as the main energy source could impede fetal supply. Placenta seems to release lactate to maternal side implying loss of energy. Whether placenta takes up ketones is unclear. Our main hypothesis was that the human placenta can release lactate to the maternal side but take up maternal ketones. METHODS An in vivo study of term uncomplicated pregnancies including 56 women delivered by cesarean section. We measured uterine and umbilical blood flow by Doppler ultrasonography, combined with blood sampling from maternal radial artery, uterine vein, umbilical artery and vein. Lactate and ketones were determined by quantitative nuclear magnetic resonance. RESULTS Placenta released lactate to the maternal side (median -36.65 μmol/min. Q1, Q3: 78.53, 13.29), p < 0.001), but not to the fetal side. A net uptake of maternal ketones was found (median (Q1, Q3): 59.12 (30.64, 131.46) μmol acetate equivalents/min, p < 0.001) which largely was metabolized by the uteroplacenta. The uptake of ketones was comparable in energy to the loss of lactate. DISCUSSION Placenta may release lactate to the maternal side. The energy lost by lactate may be compensated by uptake of maternal ketones. This lactate-ketone trade could benefit both placenta and the fetus by providing lactate for maternal gluconeogenesis and ketones for uteroplacental oxidative energy production.
Collapse
Affiliation(s)
- Tore Henriksen
- Department of Obstetrics, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Muhammad U Sajjad
- Department of Obstetrics, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Guttorm Haugen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Fetal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Trond M Michelsen
- Department of Obstetrics, Oslo University Hospital, Rikshospitalet, Oslo, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.
| |
Collapse
|
160
|
Lal H, Verma SK, Wang Y, Xie M, Young ME. Circadian Rhythms in Cardiovascular Metabolism. Circ Res 2024; 134:635-658. [PMID: 38484029 PMCID: PMC10947116 DOI: 10.1161/circresaha.123.323520] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 03/19/2024]
Abstract
Energetic demand and nutrient supply fluctuate as a function of time-of-day, in alignment with sleep-wake and fasting-feeding cycles. These daily rhythms are mirrored by 24-hour oscillations in numerous cardiovascular functional parameters, including blood pressure, heart rate, and myocardial contractility. It is, therefore, not surprising that metabolic processes also fluctuate over the course of the day, to ensure temporal needs for ATP, building blocks, and metabolism-based signaling molecules are met. What has become increasingly clear is that in addition to classic signal-response coupling (termed reactionary mechanisms), cardiovascular-relevant cells use autonomous circadian clocks to temporally orchestrate metabolic pathways in preparation for predicted stimuli/stresses (termed anticipatory mechanisms). Here, we review current knowledge regarding circadian regulation of metabolism, how metabolic rhythms are synchronized with cardiovascular function, and whether circadian misalignment/disruption of metabolic processes contribute toward the pathogenesis of cardiovascular disease.
Collapse
Affiliation(s)
- Hind Lal
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Suresh Kumar Verma
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yajing Wang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Min Xie
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin E. Young
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
161
|
Zhang QW, Lin XL, Dai ZH, Zhao R, Hou YC, Liang Q, Zhang Y, Ge ZZ. Hypoxia and low-glucose environments co-induced HGDILnc1 promote glycolysis and angiogenesis. Cell Death Discov 2024; 10:132. [PMID: 38472215 DOI: 10.1038/s41420-024-01903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/26/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
Small bowel vascular malformation disease (SBVM) commonly causes obscure gastrointestinal bleeding (OGIB). However, the pathogenetic mechanism and the role of lncRNAs in SBVM remain largely unknown. Here, we found that hypoxia and low-glucose environments co-augment angiogenesis and existed in SBVM. Mechanistically, hypoxia and low-glucose environments supported angiogenesis via activation of hypoxia and glucose deprivation-induced lncRNA (HGDILnc1) transcription by increasing binding of the NeuroD1 transcription factor to the HGDILnc1 promoter. Raised HGDILnc1 acted as a suppressor of α-Enolase 1 (ENO1) small ubiquitin-like modifier modification (SUMOylation)-triggered ubiquitination, and an activator of transcription of Aldolase C (ALDOC) via upregulation of Histone H2B lysine 16 acetylation (H2BK16ac) level in the promoter of ALDOC, and consequently promoting glycolysis and angiogenesis. Moreover, HGDILnc1 was clinically positively correlated with Neurogenic differentiation 1 (NeuroD1), ENO1, and ALDOC in SBVM tissues, and could function as a biomarker for SBVM diagnosis and therapy. These findings suggest that hypoxia and low-glucose environments were present in SBVM tissues, and co-augmented angiogenesis. Hypoxia and low-glucose environments co-induced HGDILnc1, which is higher expressed in SBVM tissue compared with normal tissue, could promoted glycolysis and angiogenesis.
Collapse
Affiliation(s)
- Qing-Wei Zhang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xiao-Lu Lin
- Department of Digestive Endoscopy Center, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Zi-Hao Dai
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Ran Zhao
- Department of Gastroenterology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yi-Chao Hou
- Department of Gastroenterology, Shanghai Nineth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qian Liang
- Department of Gastroenterology, Tongji Institute of Digestive Diseases, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Zhang
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhi-Zheng Ge
- Division of Gastroenterology and Hepatology, NHC Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai, China.
| |
Collapse
|
162
|
Gallo G, Savoia C. New Insights into Endothelial Dysfunction in Cardiometabolic Diseases: Potential Mechanisms and Clinical Implications. Int J Mol Sci 2024; 25:2973. [PMID: 38474219 DOI: 10.3390/ijms25052973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/14/2024] Open
Abstract
The endothelium is a monocellular layer covering the inner surface of blood vessels. It maintains vascular homeostasis regulating vascular tone and permeability and exerts anti-inflammatory, antioxidant, anti-proliferative, and anti-thrombotic functions. When the endothelium is exposed to detrimental stimuli including hyperglycemia, hyperlipidemia, and neurohormonal imbalance, different biological pathways are activated leading to oxidative stress, endothelial dysfunction, increased secretion of adipokines, cytokines, endothelin-1, and fibroblast growth factor, and reduced nitric oxide production, leading eventually to a loss of integrity. Endothelial dysfunction has emerged as a hallmark of dysmetabolic vascular impairment and contributes to detrimental effects on cardiac metabolism and diastolic dysfunction, and to the development of cardiovascular diseases including heart failure. Different biomarkers of endothelial dysfunction have been proposed to predict cardiovascular diseases in order to identify microvascular and macrovascular damage and the development of atherosclerosis, particularly in metabolic disorders. Endothelial dysfunction also plays an important role in the development of severe COVID-19 and cardiovascular complications in dysmetabolic patients after SARS-CoV-2 infection. In this review, we will discuss the biological mechanisms involved in endothelial dysregulation in the context of cardiometabolic diseases as well as the available and promising biomarkers of endothelial dysfunction in clinical practice.
Collapse
Affiliation(s)
- Giovanna Gallo
- Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, Italy
| | - Carmine Savoia
- Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Via di Grottarossa 1035-1039, 00189 Rome, Italy
| |
Collapse
|
163
|
Rapp J, Ness J, Wolf J, Hospach A, Liang P, Hug MJ, Agostini H, Schlunck G, Lange C, Bucher F. 2D and 3D in vitro angiogenesis assays highlight different aspects of angiogenesis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167028. [PMID: 38244944 DOI: 10.1016/j.bbadis.2024.167028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/22/2024]
Abstract
In angiogenesis research, scientists need to carefully select appropriate in vitro models to test their hypotheses to minimize the risk for false negative or false positive study results. In this study, we investigate molecular differences between simple two-dimensional and more complex three-dimensional angiogenesis assays and compare them to in vivo data from cancer-associated angiogenesis using an unbiased transcriptomic analysis. Human umbilical vein endothelial cells were treated with VEGF in 2D wound healing and proliferation assays and the 3D spheroid sprouting assay. VEGF-induced transcriptomic shifts were assessed in both settings by bulk RNA sequencing. Immunocytochemistry was used for protein detection. The data was linked to the transcriptomic profile of vascular endothelial cells from a single cell RNA sequencing dataset of various cancer tissue compared to adjacent healthy tissue control. VEGF induced a more diverse transcriptomic shift in vascular endothelial cells in a 3D experimental setting (767 differentially expressed genes) compared to the 2D settings (167 differentially expressed genes). Particularly, VEGF-induced changes in cell-matrix interaction, tip cell formation, and glycolysis were pronounced in the 3D spheroid sprouting experiments. Immunocytochemistry for VCAM1 and CD34 confirmed enhanced expression in response to VEGF-treatment in 3D settings. In vivo, vascular endothelial cells within various cancer tissue were characterized by strong transcriptomic changes in cell-matrix interaction and glycolysis similar to the 3D setting. Consequently, 3D assays may better address certain key aspects of angiogenesis in comparison to fast and scalable 2D assays. This should be taken into consideration within the context of each research question.
Collapse
Affiliation(s)
- Julian Rapp
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Jan Ness
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Institute of Pharmaceutical Sciences, Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Julian Wolf
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Alban Hospach
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Paula Liang
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Martin J Hug
- Pharmacy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Hansjürgen Agostini
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Günther Schlunck
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany; Ophtha-Lab, Department of Ophthalmology, St. Franziskus Hospital Muenster, Muenster, Germany
| | - Felicitas Bucher
- Eye Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
164
|
Stepanova D, Byrne HM, Maini PK, Alarcón T. Computational modeling of angiogenesis: The importance of cell rearrangements during vascular growth. WIREs Mech Dis 2024; 16:e1634. [PMID: 38084799 DOI: 10.1002/wsbm.1634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 03/16/2024]
Abstract
Angiogenesis is the process wherein endothelial cells (ECs) form sprouts that elongate from the pre-existing vasculature to create new vascular networks. In addition to its essential role in normal development, angiogenesis plays a vital role in pathologies such as cancer, diabetes and atherosclerosis. Mathematical and computational modeling has contributed to unraveling its complexity. Many existing theoretical models of angiogenic sprouting are based on the "snail-trail" hypothesis. This framework assumes that leading ECs positioned at sprout tips migrate toward low-oxygen regions while other ECs in the sprout passively follow the leaders' trails and proliferate to maintain sprout integrity. However, experimental results indicate that, contrary to the snail-trail assumption, ECs exchange positions within developing vessels, and the elongation of sprouts is primarily driven by directed migration of ECs. The functional role of cell rearrangements remains unclear. This review of the theoretical modeling of angiogenesis is the first to focus on the phenomenon of cell mixing during early sprouting. We start by describing the biological processes that occur during early angiogenesis, such as phenotype specification, cell rearrangements and cell interactions with the microenvironment. Next, we provide an overview of various theoretical approaches that have been employed to model angiogenesis, with particular emphasis on recent in silico models that account for the phenomenon of cell mixing. Finally, we discuss when cell mixing should be incorporated into theoretical models and what essential modeling components such models should include in order to investigate its functional role. This article is categorized under: Cardiovascular Diseases > Computational Models Cancer > Computational Models.
Collapse
Affiliation(s)
- Daria Stepanova
- Laboratorio Subterráneo de Canfranc, Canfranc-Estación, Huesca, Spain
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, UK
| | - Tomás Alarcón
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Centre de Recerca Matemàtica, Bellaterra, Barcelona, Spain
- Departament de Matemàtiques, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
165
|
Basehore SE, Garcia J, Clyne AM. Steady Laminar Flow Decreases Endothelial Glycolytic Flux While Enhancing Proteoglycan Synthesis and Antioxidant Pathways. Int J Mol Sci 2024; 25:2485. [PMID: 38473731 PMCID: PMC10931250 DOI: 10.3390/ijms25052485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/09/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Endothelial cells in steady laminar flow assume a healthy, quiescent phenotype, while endothelial cells in oscillating disturbed flow become dysfunctional. Since endothelial dysfunction leads to atherosclerosis and cardiovascular disease, it is important to understand the mechanisms by which endothelial cells change their function in varied flow environments. Endothelial metabolism has recently been proven a powerful tool to regulate vascular function. Endothelial cells generate most of their energy from glycolysis, and steady laminar flow may reduce endothelial glycolytic flux. We hypothesized that steady laminar but not oscillating disturbed flow would reduce glycolytic flux and alter glycolytic side branch pathways. In this study, we exposed human umbilical vein endothelial cells to static culture, steady laminar flow (20 dynes/cm2 shear stress), or oscillating disturbed flow (4 ± 6 dynes/cm2 shear stress) for 24 h using a cone-and-plate device. We then measured glucose and lactate uptake and secretion, respectively, and glycolytic metabolites. Finally, we explored changes in the expression and protein levels of endothelial glycolytic enzymes. Our data show that endothelial cells in steady laminar flow had decreased glucose uptake and 13C labeling of glycolytic metabolites while cells in oscillating disturbed flow did not. Steady laminar flow did not significantly change glycolytic enzyme gene or protein expression, suggesting that glycolysis may be altered through enzyme activity. Flow also modulated glycolytic side branch pathways involved in proteoglycan and glycosaminoglycan synthesis, as well as oxidative stress. These flow-induced changes in endothelial glucose metabolism may impact the atheroprone endothelial phenotype in oscillating disturbed flow.
Collapse
Affiliation(s)
- Sarah E. Basehore
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA (J.G.)
| | - Jonathan Garcia
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA 19104, USA (J.G.)
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
166
|
He X, Williams QA, Cantrell AC, Besanson J, Zeng H, Chen JX. TIGAR Deficiency Blunts Angiotensin-II-Induced Cardiac Hypertrophy in Mice. Int J Mol Sci 2024; 25:2433. [PMID: 38397106 PMCID: PMC10889085 DOI: 10.3390/ijms25042433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Hypertension is the key contributor to pathological cardiac hypertrophy. Growing evidence indicates that glucose metabolism plays an essential role in cardiac hypertrophy. TP53-induced glycolysis and apoptosis regulator (TIGAR) has been shown to regulate glucose metabolism in pressure overload-induced cardiac remodeling. In the present study, we investigated the role of TIGAR in cardiac remodeling during Angiotensin II (Ang-II)-induced hypertension. Wild-type (WT) and TIGAR knockout (KO) mice were infused with Angiotensin-II (Ang-II, 1 µg/kg/min) via mini-pump for four weeks. The blood pressure was similar between the WT and TIGAR KO mice. The Ang-II infusion resulted in a similar reduction of systolic function in both groups, as evidenced by the comparable decrease in LV ejection fraction and fractional shortening. The Ang-II infusion also increased the isovolumic relaxation time and myocardial performance index to the same extent in WT and TIGAR KO mice, suggesting the development of similar diastolic dysfunction. However, the knockout of TIGAR significantly attenuated hypertension-induced cardiac hypertrophy. This was associated with higher levels of fructose 2,6-bisphosphate, PFK-1, and Glut-4 in the TIGAR KO mice. Our present study suggests that TIGAR is involved in the control of glucose metabolism and glucose transporters by Ang-II and that knockout of TIGAR attenuates the development of maladaptive cardiac hypertrophy.
Collapse
Affiliation(s)
| | | | | | | | - Heng Zeng
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (X.H.); (Q.A.W.); (A.C.C.); (J.B.)
| | - Jian-Xiong Chen
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA; (X.H.); (Q.A.W.); (A.C.C.); (J.B.)
| |
Collapse
|
167
|
Klip A, De Bock K, Bilan PJ, Richter EA. Transcellular Barriers to Glucose Delivery in the Body. Annu Rev Physiol 2024; 86:149-173. [PMID: 38345907 DOI: 10.1146/annurev-physiol-042022-031657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Glucose is the universal fuel of most mammalian cells, and it is largely replenished through dietary intake. Glucose availability to tissues is paramount for the maintenance of homeostatic energetics and, hence, supply should match demand by the consuming organs. In its journey through the body, glucose encounters cellular barriers for transit at the levels of the absorbing intestinal epithelial wall, the renal epithelium mediating glucose reabsorption, and the tight capillary endothelia (especially in the brain). Glucose transiting through these cellular barriers must escape degradation to ensure optimal glucose delivery to the bloodstream or tissues. The liver, which stores glycogen and generates glucose de novo, must similarly be able to release it intact to the circulation. We present the most up-to-date knowledge on glucose handling by the gut, liver, brain endothelium, and kidney, and discuss underlying molecular mechanisms and open questions. Diseases associated with defects in glucose delivery and homeostasis are also briefly addressed. We propose that the universal problem of sparing glucose from catabolism in favor of translocation across the barriers posed by epithelia and endothelia is resolved through common mechanisms involving glucose transfer to the endoplasmic reticulum, from where glucose exits the cells via unconventional cellular mechanisms.
Collapse
Affiliation(s)
- Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH), Zürich, Switzerland
| | - Philip J Bilan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada;
| | - Erik A Richter
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
168
|
Kundu S. A mathematically rigorous algorithm to define, compute and assess relevance of the probable dissociation constants in characterizing a biochemical network. Sci Rep 2024; 14:3507. [PMID: 38347039 PMCID: PMC10861591 DOI: 10.1038/s41598-024-53231-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/30/2024] [Indexed: 02/15/2024] Open
Abstract
Metabolism results from enzymatic- and non-enzymatic interactions of several molecules, is easily parameterized with the dissociation constant and occurs via biochemical networks. The dissociation constant is an empirically determined parameter and cannot be used directly to investigate in silico models of biochemical networks. Here, we develop and present an algorithm to define, compute and assess the relevance of the probable dissociation constant for every reaction of a biochemical network. The reactants and reactions of this network are modelled by a stoichiometry number matrix. The algorithm computes the null space and then serially generates subspaces by combinatorially summing the spanning vectors that are non-trivial and unique. This is done until the terms of each row either monotonically diverge or form an alternating sequence whose terms can be partitioned into subsets with almost the same number of oppositely signed terms. For a selected null space-generated subspace the algorithm utilizes several statistical and mathematical descriptors to select and bin terms from each row into distinct outcome-specific subsets. The terms of each subset are summed, mapped to the real-valued open interval [Formula: see text] and used to populate a reaction-specific outcome vector. The p1-norm for this vector is then the probable dissociation constant for this reaction. These steps are continued until every reaction of a modelled network is unambiguously annotated. The assertions presented are complemented by computational studies of a biochemical network for aerobic glycolysis. The fundamental premise of this work is that every row of a null space-generated subspace is a valid reaction and can therefore, be modelled as a reaction-specific sequence vector with a dimension that corresponds to the cardinality of the subspace after excluding all trivial- and redundant-vectors. A major finding of this study is that the row-wise sum or the sum of the terms contained in each reaction-specific sequence vector is mapped unambiguously to a positive real number. This means that the probable dissociation constants, for all reactions, can be directly computed from the stoichiometry number matrix and are suitable indicators of outcome for every reaction of the modelled biochemical network. Additionally, we find that the unambiguous annotation for a biochemical network will require a minimum number of iterations and will determine computational complexity.
Collapse
Affiliation(s)
- Siddhartha Kundu
- Department of Biochemistry, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
169
|
Liu P, Sun D, Zhang S, Chen S, Wang X, Li H, Wei F. PFKFB3 in neovascular eye disease: unraveling mechanisms and exploring therapeutic strategies. Cell Biosci 2024; 14:21. [PMID: 38341583 DOI: 10.1186/s13578-024-01205-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/04/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Neovascular eye disease is characterized by pathological neovascularization, with clinical manifestations such as intraocular exudation, bleeding, and scar formation, ultimately leading to blindness in millions of individuals worldwide. Pathologic ocular angiogenesis often occurs in common fundus diseases including proliferative diabetic retinopathy (PDR), age-related macular degeneration (AMD), and retinopathy of prematurity (ROP). Anti-vascular endothelial growth factor (VEGF) targets the core pathology of ocular angiogenesis. MAIN BODY In recent years, therapies targeting metabolism to prevent angiogenesis have also rapidly developed, offering assistance to patients with a poor prognosis while receiving anti-VEGF therapy and reducing the side effects associated with long-term VEGF usage. Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), a key enzyme in targeted metabolism, has been shown to have great potential, with antiangiogenic effects and multiple protective effects in the treatment of neovascular eye disease. In this review, we summarize the mechanisms of common types of neovascular eye diseases; discuss the protective effect and potential mechanism of targeting PFKFB3, including the related inhibitors of PFKFB3; and look forward to the future exploration directions and therapeutic prospects of PFKFB3 in neovascular eye disease. CONCLUSION Neovascular eye disease, the most common and severely debilitating retinal disease, is largely incurable, necessitating the exploration of new treatment methods. PFKFB3 has been shown to possess various potential protective mechanisms in treating neovascular eye disease. With the development of several drugs targeting PFKFB3 and their gradual entry into clinical research, targeting PFKFB3-mediated glycolysis has emerged as a promising therapeutic approach for the future of neovascular eye disease.
Collapse
Affiliation(s)
- Peiyu Liu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Dandan Sun
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shuchang Zhang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Shimei Chen
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Xiaoqian Wang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China
| | - Huiming Li
- Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Fang Wei
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, National Clinical Research Center for Eye Diseases, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, 200080, China.
| |
Collapse
|
170
|
Liu Y, Zhong C, Chen S, Xue Y, Wei Z, Dong L, Kang L. Circulating exosomal mir-16-2-3p is associated with coronary microvascular dysfunction in diabetes through regulating the fatty acid degradation of endothelial cells. Cardiovasc Diabetol 2024; 23:60. [PMID: 38336726 PMCID: PMC10858495 DOI: 10.1186/s12933-024-02142-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Coronary microvascular dysfunction (CMD) is a frequent complication of diabetes mellitus (DM) characterized by challenges in both diagnosis and intervention. Circulating levels of microRNAs are increasingly recognized as potential biomarkers for cardiovascular diseases. METHODS Serum exosomes from patients with DM, DM with coronary microvascular dysfunction (DM-CMD) or DM with coronary artery disease (DM-CAD) were extracted for miRNA sequencing. The expression of miR-16-2-3p was assessed in high glucose-treated human aortic endothelial cells and human cardiac microvascular endothelial cells. Fluorescence in situ hybridization (FISH) was used to detect miR-16-2-3p within the myocardium of db/db mice. Intramyocardial injection of lentivirus overexpressing miR-16-2-3p was used to explore the function of the resulting gene in vivo. Bioinformatic analysis and in vitro assays were carried out to explore the downstream function and mechanism of miR-16-2-3p. Wound healing and tube formation assays were used to explore the effect of miR-16-2-3p on endothelial cell function. RESULTS miR-16-2-3p was upregulated in circulating exosomes from DM-CMD, high glucose-treated human cardiac microvascular endothelial cells and the hearts of db/db mice. Cardiac miR-16-2-3p overexpression improved cardiac systolic and diastolic function and coronary microvascular reperfusion. In vitro experiments revealed that miR-16-2-3p could regulate fatty acid degradation in endothelial cells, and ACADM was identified as a potential downstream target. MiR-16-2-3p increased cell migration and tube formation in microvascular endothelial cells. CONCLUSIONS Our findings suggest that circulating miR-16-2-3p may serve as a biomarker for individuals with DM-CMD. Additionally, miR-16-2-3p appears to alleviate coronary microvascular dysfunction in diabetes by modulating ACADM-mediated fatty acid degradation in endothelial cells.
Collapse
Affiliation(s)
- Yihai Liu
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, China
| | - Chongxia Zhong
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, China
| | - Shan Chen
- Department of General Medicine, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, China
| | - Yanan Xue
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, China
| | - Zhonghai Wei
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, China
| | - Li Dong
- Department of Geriatrics, Nanjing Central Hospital, Nanjing, 210018, China.
| | - Lina Kang
- Department of Cardiology, Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210009, China.
| |
Collapse
|
171
|
Müller WEG, Neufurth M, Wang S, Schröder HC, Wang X. The Physiological Inorganic Polymers Biosilica and Polyphosphate as Key Drivers for Biomedical Materials in Regenerative Nanomedicine. Int J Nanomedicine 2024; 19:1303-1337. [PMID: 38348175 PMCID: PMC10860874 DOI: 10.2147/ijn.s446405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/18/2024] [Indexed: 02/15/2024] Open
Abstract
There is a need for novel nanomaterials with properties not yet exploited in regenerative nanomedicine. Based on lessons learned from the oldest metazoan phylum, sponges, it has been recognized that two previously ignored or insufficiently recognized principles play an essential role in tissue regeneration, including biomineral formation/repair and wound healing. Firstly, the dependence on enzymes as a driving force and secondly, the availability of metabolic energy. The discovery of enzymatic synthesis and regenerative activity of amorphous biosilica that builds the mineral skeleton of siliceous sponges formed the basis for the development of successful strategies for the treatment of osteochondral impairments in humans. In addition, the elucidation of the functional significance of a second regeneratively active inorganic material, namely inorganic polyphosphate (polyP) and its amorphous nanoparticles, present from sponges to humans, has pushed forward the development of innovative materials for both soft (skin, cartilage) and hard tissue (bone) repair. This energy-rich molecule exhibits a property not shown by any other biopolymer: the delivery of metabolic energy, even extracellularly, necessary for the ATP-dependent tissue regeneration. This review summarizes the latest developments in nanobiomaterials based on these two evolutionarily old, regeneratively active materials, amorphous silica and amorphous polyP, highlighting their specific, partly unique properties and mode of action, and discussing their possible applications in human therapy. The results of initial proof-of-concept studies on patients demonstrating complete healing of chronic wounds are outlined.
Collapse
Affiliation(s)
- Werner E G Müller
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Meik Neufurth
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Shunfeng Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Heinz C Schröder
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Xiaohong Wang
- ERC Advanced Investigator Grant Research Group at the Institute for Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
172
|
Sadeghsoltani F, Hassanpour P, Safari MM, Haiaty S, Rahbarghazi R, Rahmati M, Mota A. Angiogenic activity of mitochondria; beyond the sole bioenergetic organelle. J Cell Physiol 2024; 239:e31185. [PMID: 38219050 DOI: 10.1002/jcp.31185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Angiogenesis is a complex process that involves the expansion of the pre-existing vascular plexus to enhance oxygen and nutrient delivery and is stimulated by various factors, including hypoxia. Since the process of angiogenesis requires a lot of energy, mitochondria play an important role in regulating and promoting this phenomenon. Besides their roles as an oxidative metabolism base, mitochondria are potential bioenergetics organelles to maintain cellular homeostasis via sensing alteration in oxygen levels. Under hypoxic conditions, mitochondria can regulate angiogenesis through different factors. It has been indicated that unidirectional and bidirectional exchange of mitochondria or their related byproducts between the cells is orchestrated via different intercellular mechanisms such as tunneling nanotubes, extracellular vesicles, and gap junctions to maintain the cell homeostasis. Even though, the transfer of mitochondria is one possible mechanism by which cells can promote and regulate the process of angiogenesis under reperfusion/ischemia injury. Despite the existence of a close relationship between mitochondrial donation and angiogenic response in different cell types, the precise molecular mechanisms associated with this phenomenon remain unclear. Here, we aimed to highlight the possible role of mitochondria concerning angiogenesis, especially the role of mitochondrial transport and the possible relation of this transfer with autophagy, the housekeeping phenomenon of cells, and angiogenesis.
Collapse
Affiliation(s)
- Fatemeh Sadeghsoltani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Hassanpour
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir-Meghdad Safari
- Open Heart ICU of Shahid Madani Cardiovascular Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanya Haiaty
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Rahmati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Mota
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
173
|
Cleveland AH, Fan Y. Reprogramming endothelial cells to empower cancer immunotherapy. Trends Mol Med 2024; 30:126-135. [PMID: 38040601 PMCID: PMC10922198 DOI: 10.1016/j.molmed.2023.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 12/03/2023]
Abstract
Cancer immunity is subject to spatiotemporal regulation by leukocyte interaction with the tumor microenvironment. Growing evidence suggests an emerging role for the vasculature in tumor immune evasion and immunotherapy resistance. Beyond the conventional functions of the tumor vasculature, such as providing oxygen and nutrients to support tumor progression, we propose multiplex mechanisms for vascular regulation of tumor immunity: The immunosuppressive vascular niche locoregionally educates circulation-derived immune cells by angiocrines, aberrant endothelial metabolism induces T cell exclusion and inactivation, and topologically and biochemically abnormal vascularity forms a pathophysiological barrier that hampers lymphocyte infiltration. We postulate that genetic and metabolic reprogramming of endothelial cells may rewire the immunosuppressive vascular microenvironment to overcome immunotherapy resistance, serving as a next-generation vascular targeting strategy for cancer treatment.
Collapse
Affiliation(s)
- Abigail H Cleveland
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yi Fan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
174
|
Zhou JY, Mei YK, Qian XN, Yao ZH, Zhu YW, Wei YW, Qiu J. Modulation of SEMA4D-modified titanium surface on M2 macrophage polarization via activation of Rho/ROCK-mediated lactate release of endothelial cells: In vitro and in vivo. Colloids Surf B Biointerfaces 2024; 234:113691. [PMID: 38070369 DOI: 10.1016/j.colsurfb.2023.113691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 02/09/2024]
Abstract
SEMA4D-modified titanium surfaces can indirectly regulate macrophages through endothelial cells to achieve an anti-inflammatory effect, which is beneficial for healing soft tissues around the gingival abutment. However, the mechanism of surface-induced cellular phenotypic changes in SEMA4D-modified titanium has not yet been elucidated. SEMA4D activates the RhoA signaling pathway in endothelial cells, which coordinates metabolism and cytoskeletal remodeling. This study hypothesized that endothelial cells inoculated on SEMA4D-modified titanium surfaces can direct M2 polarization of macrophages via metabolites. An indirect co-culture model of endothelial cells and macrophages was constructed in vitro, and specific inhibitors were employed. Subsequently, endothelial cell adhesion and migration, metabolic changes, Rho/ROCK1 expression, and inflammatory expression of macrophages were assessed via immunofluorescence microscopy, specific kits, qRT-PCR, and Western blotting. Moreover, an in vivo rat bilateral maxillary implant model was constructed to evaluate the soft tissue healing effect. The in vitro experiments showed that the SEMA4D group had stronger endothelial cell adhesion and migration, increased Rho/ROCK1 expression, and enhanced release of lactate. Additionally, decreased macrophage inflammatory expression was observed. In contrast, the inhibitor group partially suppressed lactate metabolism and motility, whereas increased inflammatory expression. The in vivo analyses indicated that the SEMA4D group had faster and better angiogenic and anti-inflammatory effects, especially in the early stage. In conclusion, via the Rho/ROCK1 signaling pathway, the SEMA4D-modified titanium surface promotes endothelial cell adhesion and migration and lactic acid release, then the paracrine lactic acid promotes the polarization of macrophages to M2, thus obtaining the dual effects of angiogenesis and anti-inflammation.
Collapse
Affiliation(s)
- Jie-Yi Zhou
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Yu-Kun Mei
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Xin-Na Qian
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Zheng-Hua Yao
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Ya-Wen Zhu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Yu-Wen Wei
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China
| | - Jing Qiu
- Department of Oral Implantology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China.
| |
Collapse
|
175
|
Tian F, Yi J, Liu Y, Chen B, Wang X, Ouyang Y, Liu J, Tang Y, Long H, Liu B. Integrating network pharmacology and bioinformatics to explore and experimentally verify the regulatory effect of Buyang Huanwu decoction on glycolysis and angiogenesis after cerebral infarction. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117218. [PMID: 37806535 DOI: 10.1016/j.jep.2023.117218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Promoting the recovery of cerebral blood circulation after cerebral infarction (CI) is an important intervention. Buyang Huanwu decoction (BHD) is a classic prescription for treating CI that promotes angiogenesis. Cytoplasmic glycolysis ischaemic-region cells after CI may be highly activated to maintain metabolic activity under hypoxia. From the perspective of long-term maintenance of glycolytic metabolism in the ischaemic area after CI, it may be beneficial to promote angiogenesis and maintain glial cell activation and neuronal survival. In this context, the regulatory relationship of lncRNAs and miRNAs with mRNAs is worthy of attention. Mining the competitive binding relationships among RNAs will aid in the screening of key gene targets post-CI. In this study, network pharmacology and bioinformatics were used to construct a ceRNA network, screen key targets, and explore the effect of glycolysis on angiogenesis during BHD-mediated CI regulation. AIM OF THE STUDY This study aimed to explore the effect of BHD on angiogenesis after glycolysis regulation in CI. MATERIALS AND METHODS According to the 21 active BHD ingredients we identified by our research team, we conducted network pharmacology. BHD targets that can regulate glycolysis and angiogenesis after CI were screened from the GeneCards, CTD and OMIM databases. We retrieved CI-related datasets from the GEO database and screened for differentially expressed lncRNAs and miRNAs. LncRNA‒miRNA-mRNA/TF targeting relationships were screened and organized with the miRcode, miRDB, TargetScan, miRWalk, and TransmiR v2.0 databases. Cytoscape was used to construct an lncRNA‒miRNA-mRNA/TF ceRNA network. Through BioGPS, key mRNAs/TFs in the network were screened for enrichment analysis. Animal experiments were then conducted to validate some key mRNAs/TFs and enriched signalling pathways. RESULTS PFKFB3 and other genes may help regulate glycolysis and angiogenesis through AMPK and other signalling pathways. The anti-CI effect of BHD may involve maintaining activation of genes such as AMPK and PFKFB3 in the ischaemic cortex, maintaining moderate glycolysis levels in brain tissue, and promoting angiogenesis. CONCLUSION BHD can regulate glycolysis and promote angiogenesis after CI through multiple pathways and targets, in which AMPK signalling pathway activation may be important.
Collapse
Affiliation(s)
- Fengming Tian
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, China; Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410006, China
| | - Jian Yi
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, China; Hunan Academy of Chinese Medicine, 58 Lushan Road, Changsha, Hunan, 410007, China; Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410006, China
| | - Yingfei Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, China; Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410006, China
| | - Bowei Chen
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, China; Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410006, China
| | - Xiaoju Wang
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, China
| | - Yin Ouyang
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, China; Hunan University of Chinese Medicine, 300 Xueshi Road, Changsha, Hunan, 410006, China
| | - Jian Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, China
| | - Yan Tang
- Yiyang Medical College, 516 Yingbin Road, Yiyang, Hunan, 413499, China
| | - Hongping Long
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, China
| | - Baiyan Liu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, 95 Shaoshan Road, Changsha, Hunan, 410007, China; Hunan Academy of Chinese Medicine, 58 Lushan Road, Changsha, Hunan, 410007, China.
| |
Collapse
|
176
|
Kulovic-Sissawo A, Tocantins C, Diniz MS, Weiss E, Steiner A, Tokic S, Madreiter-Sokolowski CT, Pereira SP, Hiden U. Mitochondrial Dysfunction in Endothelial Progenitor Cells: Unraveling Insights from Vascular Endothelial Cells. BIOLOGY 2024; 13:70. [PMID: 38392289 PMCID: PMC10886154 DOI: 10.3390/biology13020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Endothelial dysfunction is associated with several lifestyle-related diseases, including cardiovascular and neurodegenerative diseases, and it contributes significantly to the global health burden. Recent research indicates a link between cardiovascular risk factors (CVRFs), excessive production of reactive oxygen species (ROS), mitochondrial impairment, and endothelial dysfunction. Circulating endothelial progenitor cells (EPCs) are recruited into the vessel wall to maintain appropriate endothelial function, repair, and angiogenesis. After attachment, EPCs differentiate into mature endothelial cells (ECs). Like ECs, EPCs are also susceptible to CVRFs, including metabolic dysfunction and chronic inflammation. Therefore, mitochondrial dysfunction of EPCs may have long-term effects on the function of the mature ECs into which EPCs differentiate, particularly in the presence of endothelial damage. However, a link between CVRFs and impaired mitochondrial function in EPCs has hardly been investigated. In this review, we aim to consolidate existing knowledge on the development of mitochondrial and endothelial dysfunction in the vascular endothelium, place it in the context of recent studies investigating the consequences of CVRFs on EPCs, and discuss the role of mitochondrial dysfunction. Thus, we aim to gain a comprehensive understanding of mechanisms involved in EPC deterioration in relation to CVRFs and address potential therapeutic interventions targeting mitochondrial health to promote endothelial function.
Collapse
Affiliation(s)
- Azra Kulovic-Sissawo
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Carolina Tocantins
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Mariana S Diniz
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Elisa Weiss
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Andreas Steiner
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Silvija Tokic
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Susana P Pereira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| |
Collapse
|
177
|
Xu Y, Xia D, Huang K, Liang M. Hypoxia-induced P4HA1 overexpression promotes post-ischemic angiogenesis by enhancing endothelial glycolysis through downregulating FBP1. J Transl Med 2024; 22:74. [PMID: 38238754 PMCID: PMC10797932 DOI: 10.1186/s12967-024-04872-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Angiogenesis is essential for tissue repair in ischemic diseases, relying on glycolysis as its primary energy source. Prolyl 4-hydroxylase subunit alpha 1 (P4HA1), the catalytic subunit of collagen prolyl 4-hydroxylase, is a glycolysis-related gene in cancers. However, its role in glycolysis-induced angiogenesis remains unclear. METHODS P4HA1 expression was modulated using adenoviruses. Endothelial angiogenesis was evaluated through 5-ethynyl-2'-deoxyuridine incorporation, transwell migration, and tube formation assays in vitro. In vivo experiments measured blood flow and capillary density in the hindlimb ischemia (HLI) model. Glycolytic stress assays, glucose uptake, lactate production, and quantitative reverse transcription-polymerase chain reaction (RT-PCR) were employed to assess glycolytic capacity. Transcriptome sequencing, validated by western blotting and RT-PCR, was utilized to determine underlying mechanisms. RESULTS P4HA1 was upregulated in endothelial cells under hypoxia and in the HLI model. P4HA1 overexpression promoted angiogenesis in vitro and in vivo, while its knockdown had the opposite effect. P4HA1 overexpression reduced cellular α-ketoglutarate (α-KG) levels by consuming α-KG during collagen hydroxylation. Downregulation of α-KG reduced the protein level of a DNA dioxygenase, ten-eleven translocation 2 (TET2), and its recruitment to the fructose-1,6-biphosphatase (FBP1) promoter, resulting in decreased FBP1 expression. The decrease in FBP1 enhanced glycolytic metabolism, thereby promoting endothelial angiogenesis. CONCLUSIONS Hypoxia-induced endothelial P4HA1 overexpression enhanced angiogenesis by promoting glycolytic metabolism reprogramming through the P4HA1/α-KG/TET2/FBP1 pathway. The study's findings underscore the significance of P4HA1 in post-ischemic angiogenesis, suggesting its therapeutic potential for post-ischemic tissue repair.
Collapse
Affiliation(s)
- Yating Xu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Xia
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Minglu Liang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Ave, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Clinical Research Center for Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
178
|
Wang Y, Yang J, Zhang Y, Zhou J. Focus on Mitochondrial Respiratory Chain: Potential Therapeutic Target for Chronic Renal Failure. Int J Mol Sci 2024; 25:949. [PMID: 38256023 PMCID: PMC10815764 DOI: 10.3390/ijms25020949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The function of the respiratory chain is closely associated with kidney function, and the dysfunction of the respiratory chain is a primary pathophysiological change in chronic kidney failure. The incidence of chronic kidney failure caused by defects in respiratory-chain-related genes has frequently been overlooked. Correcting abnormal metabolic reprogramming, rescuing the "toxic respiratory chain", and targeting the clearance of mitochondrial reactive oxygen species are potential therapies for treating chronic kidney failure. These treatments have shown promising results in slowing fibrosis and inflammation progression and improving kidney function in various animal models of chronic kidney failure and patients with chronic kidney disease (CKD). The mitochondrial respiratory chain is a key target worthy of attention in the treatment of chronic kidney failure. This review integrated research related to the mitochondrial respiratory chain and chronic kidney failure, primarily elucidating the pathological status of the mitochondrial respiratory chain in chronic kidney failure and potential therapeutic drugs. It provided new ideas for the treatment of kidney failure and promoted the development of drugs targeting the mitochondrial respiratory chain.
Collapse
Affiliation(s)
| | | | | | - Jianhua Zhou
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China; (Y.W.); (J.Y.); (Y.Z.)
| |
Collapse
|
179
|
Liu XT, Huang Y, Liu D, Jiang YC, Zhao M, Chung LH, Han XD, Zhao Y, Chen J, Coleman P, Ting KK, Tran C, Su Y, Dennis CV, Bhatnagar A, Liu K, Don AS, Vadas MA, Gorrell MD, Zhang S, Murray M, Kavurma MM, McCaughan GW, Gamble JR, Qi Y. Targeting the SphK1/S1P/PFKFB3 axis suppresses hepatocellular carcinoma progression by disrupting glycolytic energy supply that drives tumor angiogenesis. J Transl Med 2024; 22:43. [PMID: 38200582 PMCID: PMC10782643 DOI: 10.1186/s12967-023-04830-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) remains a leading life-threatening health challenge worldwide, with pressing needs for novel therapeutic strategies. Sphingosine kinase 1 (SphK1), a well-established pro-cancer enzyme, is aberrantly overexpressed in a multitude of malignancies, including HCC. Our previous research has shown that genetic ablation of Sphk1 mitigates HCC progression in mice. Therefore, the development of PF-543, a highly selective SphK1 inhibitor, opens a new avenue for HCC treatment. However, the anti-cancer efficacy of PF-543 has not yet been investigated in primary cancer models in vivo, thereby limiting its further translation. METHODS Building upon the identification of the active form of SphK1 as a viable therapeutic target in human HCC specimens, we assessed the capacity of PF-543 in suppressing tumor progression using a diethylnitrosamine-induced mouse model of primary HCC. We further delineated its underlying mechanisms in both HCC and endothelial cells. Key findings were validated in Sphk1 knockout mice and lentiviral-mediated SphK1 knockdown cells. RESULTS SphK1 activity was found to be elevated in human HCC tissues. Administration of PF-543 effectively abrogated hepatic SphK1 activity and significantly suppressed HCC progression in diethylnitrosamine-treated mice. The primary mechanism of action was through the inhibition of tumor neovascularization, as PF-543 disrupted endothelial cell angiogenesis even in a pro-angiogenic milieu. Mechanistically, PF-543 induced proteasomal degradation of the critical glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, thus restricting the energy supply essential for tumor angiogenesis. These effects of PF-543 could be reversed upon S1P supplementation in an S1P receptor-dependent manner. CONCLUSIONS This study provides the first in vivo evidence supporting the potential of PF-543 as an effective anti-HCC agent. It also uncovers previously undescribed links between the pro-cancer, pro-angiogenic and pro-glycolytic roles of the SphK1/S1P/S1P receptor axis. Importantly, unlike conventional anti-HCC drugs that target individual pro-angiogenic drivers, PF-543 impairs the PFKFB3-dictated glycolytic energy engine that fuels tumor angiogenesis, representing a novel and potentially safer therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xin Tracy Liu
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Yu Huang
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Da Liu
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Yingxin Celia Jiang
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Long Hoa Chung
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Xingxing Daisy Han
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Yinan Zhao
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, Liaoning, China
| | - Jinbiao Chen
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Paul Coleman
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Ka Ka Ting
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Collin Tran
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yingying Su
- Sydney Microscopy and Microanalysis, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Claude Vincent Dennis
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, 2050, Australia
| | - Atul Bhatnagar
- Sydney Mass Spectrometry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Ken Liu
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, 2050, Australia
| | - Anthony Simon Don
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Mathew Alexander Vadas
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Mark Douglas Gorrell
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, 2050, Australia
| | - Shubiao Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of Ministry of Education, Dalian Minzu University, Dalian, 116600, Liaoning, China
| | - Michael Murray
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | | | - Geoffrey William McCaughan
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
- AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney Local Health District, Sydney, NSW, 2050, Australia
| | - Jennifer Ruth Gamble
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, The University of Sydney, Sydney, NSW, 2050, Australia.
| |
Collapse
|
180
|
Wu D, Khan FA, Zhang K, Pandupuspitasari NS, Negara W, Guan K, Sun F, Huang C. Retinoic acid signaling in development and differentiation commitment and its regulatory topology. Chem Biol Interact 2024; 387:110773. [PMID: 37977248 DOI: 10.1016/j.cbi.2023.110773] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
Retinoic acid (RA), the derivative of vitamin A/retinol, is a signaling molecule with important implications in health and disease. It is a well-known developmental morphogen that functions mainly through the transcriptional activity of nuclear RA receptors (RARs) and, uncommonly, through other nuclear receptors, including peroxisome proliferator-activated receptors. Intracellular RA is under spatiotemporally fine-tuned regulation by synthesis and degradation processes catalyzed by retinaldehyde dehydrogenases and P450 family enzymes, respectively. In addition to dictating the transcription architecture, RA also impinges on cell functioning through non-genomic mechanisms independent of RAR transcriptional activity. Although RA-based differentiation therapy has achieved impressive success in the treatment of hematologic malignancies, RA also has pro-tumor activity. Here, we highlight the relevance of RA signaling in cell-fate determination, neurogenesis, visual function, inflammatory responses and gametogenesis commitment. Genetic and post-translational modifications of RAR are also discussed. A better understanding of RA signaling will foster the development of precision medicine to improve the defects caused by deregulated RA signaling.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China
| | | | - Windu Negara
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat, 10340, Indonesia
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, 226001, China.
| |
Collapse
|
181
|
Lei J, Jiang X, Huang D, Jing Y, Yang S, Geng L, Yan Y, Zheng F, Cheng F, Zhang W, Belmonte JCI, Liu GH, Wang S, Qu J. Human ESC-derived vascular cells promote vascular regeneration in a HIF-1α dependent manner. Protein Cell 2024; 15:36-51. [PMID: 37158785 PMCID: PMC10762672 DOI: 10.1093/procel/pwad027] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/22/2023] [Indexed: 05/10/2023] Open
Abstract
Hypoxia-inducible factor (HIF-1α), a core transcription factor responding to changes in cellular oxygen levels, is closely associated with a wide range of physiological and pathological conditions. However, its differential impacts on vascular cell types and molecular programs modulating human vascular homeostasis and regeneration remain largely elusive. Here, we applied CRISPR/Cas9-mediated gene editing of human embryonic stem cells and directed differentiation to generate HIF-1α-deficient human vascular cells including vascular endothelial cells, vascular smooth muscle cells, and mesenchymal stem cells (MSCs), as a platform for discovering cell type-specific hypoxia-induced response mechanisms. Through comparative molecular profiling across cell types under normoxic and hypoxic conditions, we provide insight into the indispensable role of HIF-1α in the promotion of ischemic vascular regeneration. We found human MSCs to be the vascular cell type most susceptible to HIF-1α deficiency, and that transcriptional inactivation of ANKZF1, an effector of HIF-1α, impaired pro-angiogenic processes. Altogether, our findings deepen the understanding of HIF-1α in human angiogenesis and support further explorations of novel therapeutic strategies of vascular regeneration against ischemic damage.
Collapse
Affiliation(s)
- Jinghui Lei
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Xiaoyu Jiang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoyuan Huang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Ying Jing
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Shanshan Yang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Lingling Geng
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
| | - Yupeng Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
| | - Fangshuo Zheng
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
| | - Fang Cheng
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Beijing 100101, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
- Sino-Danish Center for Education and Research, Beijing 101408, China
- Aging Biomarker Consortium, China
| | | | - Guang-Hui Liu
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, China
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
- The Fifth People’s Hospital of Chongqing, Chongqing 400062, China
- Aging Biomarker Consortium, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Aging Biomarker Consortium, China
| |
Collapse
|
182
|
Martin-Puig S, Menendez-Montes I. Cardiac Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1441:365-396. [PMID: 38884721 DOI: 10.1007/978-3-031-44087-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The heart is composed of a heterogeneous mixture of cellular components perfectly intermingled and able to integrate common environmental signals to ensure proper cardiac function and performance. Metabolism defines a cell context-dependent signature that plays a critical role in survival, proliferation, or differentiation, being a recognized master piece of organ biology, modulating homeostasis, disease progression, and adaptation to tissue damage. The heart is a highly demanding organ, and adult cardiomyocytes require large amount of energy to fulfill adequate contractility. However, functioning under oxidative mitochondrial metabolism is accompanied with a concomitant elevation of harmful reactive oxygen species that indeed contributes to the progression of several cardiovascular pathologies and hampers the regenerative capacity of the mammalian heart. Cardiac metabolism is dynamic along embryonic development and substantially changes as cardiomyocytes mature and differentiate within the first days after birth. During early stages of cardiogenesis, anaerobic glycolysis is the main energetic program, while a progressive switch toward oxidative phosphorylation is a hallmark of myocardium differentiation. In response to cardiac injury, different signaling pathways participate in a metabolic rewiring to reactivate embryonic bioenergetic programs or the utilization of alternative substrates, reflecting the flexibility of heart metabolism and its central role in organ adaptation to external factors. Despite the well-established metabolic pattern of fetal, neonatal, and adult cardiomyocytes, our knowledge about the bioenergetics of other cardiac populations like endothelial cells, cardiac fibroblasts, or immune cells is limited. Considering the close intercellular communication and the influence of nonautonomous cues during heart development and after cardiac damage, it will be fundamental to better understand the metabolic programs in different cardiac cells in order to develop novel interventional opportunities based on metabolic rewiring to prevent heart failure and improve the limited regenerative capacity of the mammalian heart.
Collapse
Affiliation(s)
- Silvia Martin-Puig
- Department of Metabolic and Immune Diseases, Institute for Biomedical Research "Sols-Morreale", National Spanish Research Council, CSIC, Madrid, Spain.
- Cardiac Regeneration Program, National Center for Cardiovascular Research, CNIC, Madrid, Spain.
| | - Ivan Menendez-Montes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
183
|
Motawe ZY, Abdelmaboud SS, Breslin JW. Evaluation of Glycolysis and Mitochondrial Function in Endothelial Cells Using the Seahorse Analyzer. Methods Mol Biol 2024; 2711:241-256. [PMID: 37776463 PMCID: PMC11368073 DOI: 10.1007/978-1-0716-3429-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2023]
Abstract
Endothelial bioenergetics have emerged as a key regulator of endothelial barrier function. Glycolytic parameters have been linked to barrier enhancement, and interruption with mitochondrial complexes was shown to disrupt endothelial barrier. Therefore, a new technology that has been introduced to assess bioenergetics and metabolism has also made it possible to determine roles of specific energy production pathways in endothelial health. The Seahorse extracellular flux analysis by Agilent technologies is a state of the art tool that has been more frequently used to evaluate bioenergetics of endothelial cells. This chapter includes details about different assays that can be used to study endothelial cells using the Seahorse analyzer and how interpretation of the results can provide novel insight about endothelial metabolism.
Collapse
Affiliation(s)
- Zeinab Y Motawe
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Salma S Abdelmaboud
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jerome W Breslin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
184
|
Morgan AE, Salcedo-Sora JE, Mc Auley MT. A new mathematical model of folate homeostasis in E. coli highlights the potential importance of the folinic acid futile cycle in cell growth. Biosystems 2024; 235:105088. [PMID: 38000545 DOI: 10.1016/j.biosystems.2023.105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Folate (vitamin B9) plays a central role in one-carbon metabolism in prokaryotes and eukaryotes. This pathway mediates the transfer of one-carbon units, playing a crucial role in nucleotide synthesis, methylation, and amino acid homeostasis. The folinic acid futile cycle adds a layer of intrigue to this pathway, due to its associations with metabolism, cell growth, and dormancy. It also introduces additional complexity to folate metabolism. A logical way to deal with such complexity is to examine it by using mathematical modelling. This work describes the construction and analysis of a model of folate metabolism, which includes the folinic acid futile cycle. This model was tested under three in silico growth conditions. Model simulations revealed: 1) the folate cycle behaved as a stable biochemical system in three growth states (slow, standard, and rapid); 2) the initial concentration of serine had the greatest impact on metabolite concentrations; 3) 5-formyltetrahydrofolate cyclo-ligase (5-FCL) activity had a significant impact on the levels of the 7 products that carry the one-carbon donated from folates, and the redox couple NADP/NADPH; this was particularly evident in the rapid growth state; 4) 5-FCL may be vital to the survival of the cells by maintaining low levels of homocysteine, as high levels can induce toxicity; and 5) the antifolate therapeutic trimethoprim had a greater impact on folate metabolism with higher nutrient availability. These results highlight the important role of 5-FCL in intracellular folate homeostasis and mass generation under different metabolic scenarios.
Collapse
Affiliation(s)
- Amy E Morgan
- School of Health & Sport Sciences, Hope Park, Liverpool Hope University, Liverpool, L16 9JD, UK.
| | - J Enrique Salcedo-Sora
- Liverpool Shared Research Facilities, GeneMill, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Mark T Mc Auley
- School of Science, Engineering and Environment, University of Salford, Manchester, M5 4NT, UK
| |
Collapse
|
185
|
Shi L, Xu Y, Li J, He L, Li K, Yin S, Nie M, Liu X. Vascularized characteristics and functional regeneration of three-dimensional cell reconstruction of oral mucosa equivalents based on vascular homeostasis phenotypic modification. J Tissue Eng 2024; 15:20417314241268912. [PMID: 39301507 PMCID: PMC11412212 DOI: 10.1177/20417314241268912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/09/2024] [Indexed: 09/22/2024] Open
Abstract
Our prior research has effectively developed tissue-engineered vascularized oral mucosa equivalents (VOME); however, challenges such as low repeatability and stability, as well as the inability to accurately replicate the complexity of real blood vessels, were encountered. Therefore, this study aimed to screen the VOME and native oral mucosa vascular homeostasis phenotypes by tandem mass tag-tagged proteomics associated with laser capture microdissection and human angiogenesis antibody array technology. Then, lentiviruses were constructed and stably transfected with vascular endothelial-like cells (VELCs) to detect angiogenic capacity. HE, EdU Apollo tracer staining, immunofluorescence staining, scanning electron microscopy, biomechanical testing, and a small animal ultrasound imaging system were used to analyze the characteristics of vascularization homeostasis and monitor functional regeneration of the vascularized homeostatic phenotypic oral mucosal equivalents (VHPOME). The results showed that PGAM1, COL5A1, ANG, and RNH1 are potential specific angiogenesis phenotypes. High expression of PGAM1, COL5A1, and ANG and/or low expression of RNH1 can promote the angiogenesis of VOME. ANG/shRNH1 has the most significant tube-like structure-formation ability. The expression of PGAM1, COL5A1, and ANG in the VHPOME group was higher than that of the control group, and the expression of RNH1 was lower than that of the control group. COL5A1/ANG can significantly improve the mechanical properties. The blood flow signal was most significant in the ANG/shRNH1 group. PGAM1, COL5A1, ANG, shRNH1, PGAM1/ANG, COL5A1/ANG, PGAM1/shRNH1, PGAM1/shRNH1, COL5A1/shRNH1, and ANG/shRNH1 may be the targets for establishing vascularization homeostasis and functional regeneration of oral mucosal equivalent genes (groups), and ANG/shRNH1 has the most significant effect.
Collapse
Affiliation(s)
- Lijuan Shi
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Yiwen Xu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Jingying Li
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Li He
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Kaiyu Li
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Shigang Yin
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Minhai Nie
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, Sichuan, China
| | - Xuqian Liu
- Department of Periodontics & Oral Mucosal Diseases, The Affiliated Stomatology Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, Luzhou, Sichuan, China
| |
Collapse
|
186
|
Shen T, Lin R, Hu C, Yu D, Ren C, Li T, Zhu M, Wan Z, Su T, Wu Y, Cai W, Yu J. Succinate-induced macrophage polarization and RBP4 secretion promote vascular sprouting in ocular neovascularization. J Neuroinflammation 2023; 20:308. [PMID: 38129891 PMCID: PMC10734053 DOI: 10.1186/s12974-023-02998-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Pathological neovascularization is a pivotal biological process in wet age-related macular degeneration (AMD), retinopathy of prematurity (ROP) and proliferative diabetic retinopathy (PDR), in which macrophages (Mφs) play a key role. Tip cell specialization is critical in angiogenesis; however, its interconnection with the surrounding immune environment remains unclear. Succinate is an intermediate in the tricarboxylic acid (TCA) cycle and was significantly elevated in patients with wet AMD by metabolomics. Advanced experiments revealed that SUCNR1 expression in Mφ and M2 polarization was detected in abnormal vessels of choroidal neovascularization (CNV) and oxygen-induced retinopathy (OIR) models. Succinate-induced M2 polarization via SUCNR1, which facilitated vascular endothelial cell (EC) migration, invasion, and tubulation, thus promoting angiogenesis in pathological neovascularization. Furthermore, evidence indicated that succinate triggered the release of RBP4 from Mφs into the surroundings to regulate endothelial sprouting and pathological angiogenesis via VEGFR2, a marker of tip cell formation. In conclusion, our results suggest that succinate represents a novel class of vasculature-inducing factors that modulate Mφ polarization and the RBP4/VEGFR2 pathway to induce pathological angiogenic signaling through tip cell specialization.
Collapse
Affiliation(s)
- Tianyi Shen
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Ruoyi Lin
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Chengyu Hu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Donghui Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Chengda Ren
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tingting Li
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Meijiang Zhu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Zhongqi Wan
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Tu Su
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Yan Wu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Wenting Cai
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Jing Yu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
- Department of Ophthalmology, The Third People's Hospital of Bengbu, Bengbu, China.
| |
Collapse
|
187
|
Chaube B, Citrin KM, Sahraei M, Singh AK, de Urturi DS, Ding W, Pierce RW, Raaisa R, Cardone R, Kibbey R, Fernández-Hernando C, Suárez Y. Suppression of angiopoietin-like 4 reprograms endothelial cell metabolism and inhibits angiogenesis. Nat Commun 2023; 14:8251. [PMID: 38086791 PMCID: PMC10716292 DOI: 10.1038/s41467-023-43900-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Angiopoietin-like 4 (ANGPTL4) is known to regulate various cellular and systemic functions. However, its cell-specific role in endothelial cells (ECs) function and metabolic homeostasis remains to be elucidated. Here, using endothelial-specific Angptl4 knock-out mice (Angptl4iΔEC), and transcriptomics and metabolic flux analysis, we demonstrate that ANGPTL4 is required for maintaining EC metabolic function vital for vascular permeability and angiogenesis. Knockdown of ANGPTL4 in ECs promotes lipase-mediated lipoprotein lipolysis, which results in increased fatty acid (FA) uptake and oxidation. This is also paralleled by a decrease in proper glucose utilization for angiogenic activation of ECs. Mice with endothelial-specific deletion of Angptl4 showed decreased pathological neovascularization with stable vessel structures characterized by increased pericyte coverage and reduced permeability. Together, our study denotes the role of endothelial-ANGPTL4 in regulating cellular metabolism and angiogenic functions of EC.
Collapse
Affiliation(s)
- Balkrishna Chaube
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Kathryn M Citrin
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
| | - Mahnaz Sahraei
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Abhishek K Singh
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
| | - Diego Saenz de Urturi
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
| | - Wen Ding
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Richard W Pierce
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Raaisa Raaisa
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Rebecca Cardone
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Richard Kibbey
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular & Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Yajaira Suárez
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA.
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA.
- Yale Center for Molecular and System Metabolism, Yale University School of Medicine, New Haven, CT, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
188
|
Zhao L, Ma D, Wang L, Su X, Feng L, Zhu L, Chen Y, Hao Y, Wang X, Feng J. Metabolic changes with the occurrence of atherosclerotic plaques and the effects of statins. Front Immunol 2023; 14:1301051. [PMID: 38143759 PMCID: PMC10739339 DOI: 10.3389/fimmu.2023.1301051] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/23/2023] [Indexed: 12/26/2023] Open
Abstract
Atherosclerosis is a common cardiovascular disease caused by the abnormal expression of multiple factors and genes influenced by both environmental and genetic factors. The primary manifestation of atherosclerosis is plaque formation, which occurs when inflammatory cells consume excess lipids, affecting their retention and modification within the arterial intima. This triggers endothelial cell (EC) activation, immune cell infiltration, vascular smooth muscle cell (VSMC) proliferation and migration, foam cell formation, lipid streaks, and fibrous plaque development. These processes can lead to vascular wall sclerosis, lumen stenosis, and thrombosis. Immune cells, ECs, and VSMCs in atherosclerotic plaques undergo significant metabolic changes and inflammatory responses. The interaction of cytokines and chemokines secreted by these cells leads to the onset, progression, and regression of atherosclerosis. The regulation of cell- or cytokine-based immune responses is a novel therapeutic approach for atherosclerosis. Statins are currently the primary pharmacological agents utilised for managing unstable plaques owing to their ability to enhance endothelial function, regulate VSMC proliferation and apoptosis by reducing cholesterol levels, and mitigate the expression and activity of inflammatory cytokines. In this review, we provide an overview of the metabolic changes associated with atherosclerosis, describe the effects of inflammatory responses on atherosclerotic plaques, and discuss the mechanisms through which statins contribute to plaque stabilisation. Additionally, we examine the role of statins in combination with other drugs in the management of atherosclerosis.
Collapse
Affiliation(s)
| | - Di Ma
- Bethune First Hospital, Jilin University, Changchun, China
| | - LiJuan Wang
- Bethune First Hospital, Jilin University, Changchun, China
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Yang K, Li X, Qiu T, Zhou J, Gong X, Lan Y, Ji Y. Effects of propranolol on glucose metabolism in hemangioma-derived endothelial cells. Biochem Pharmacol 2023; 218:115922. [PMID: 37956892 DOI: 10.1016/j.bcp.2023.115922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
Infantile hemangioma (IH) is the most common benign tumor in children. Propranolol is the first-line treatment for IH, but the underlying mechanism of propranolol treatment in IH is not completely understood. Integrated transcriptional and metabolic analyses were performed to investigate the metabolic changes in hemangioma-derived endothelial cells (HemECs) after propranolol treatment. The findings were then further validated through independent cell experiments using a Seahorse XFp analyzer, Western blotting, immunohistochemistry and mitochondrial functional assays. Thirty-four differentially expressed metabolites, including the glycolysis metabolites glucose 6-phosphate, fructose 6-phosphate and fructose 1,6-bisphosphate, were identified by targeted metabolomics. A KEGG pathway enrichment analysis showed that the disturbances in these metabolites were highly related to glucose metabolism-related pathways, including the pentose phosphate pathway, the Warburg effect, glycolysis and the citric acid cycle. Transcriptional analysis revealed that metabolism-related pathways, including glycine, serine and threonine metabolism, tyrosine metabolism, and glutathione metabolism, were highly enriched. Moreover, integration of the metabolomic and transcriptomic data revealed that glucose metabolism-related pathways, particularly glycolysis, were altered after propranolol treatment. Cell experiments demonstrated that HemECs exhibited higher levels of glycolysis than human umbilical vein ECs (HUVECs) and that propranolol suppressed glycolysis in HemECs. In conclusion, propranolol inhibited glucose metabolism in HemECs by suppressing glucose metabolic pathways, particularly glycolysis.
Collapse
Affiliation(s)
- Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China; Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, National Children's Medical Center for South Central Region, Guangzhou Medical University, Guangzhou 510623, China
| | - Xin Li
- Laboratory of Clinical Proteomics and Metabolomics, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, 610041, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuru Lan
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
190
|
Si Z, Su W, Zhou Z, Li J, Su C, Zhang Y, Hu Z, Huang Z, Zhou H, Cong A, Zhou Z, Cao W. Hyperglycolysis in endothelial cells drives endothelial injury and microvascular alterations in peritoneal dialysis. Clin Transl Med 2023; 13:e1498. [PMID: 38037461 PMCID: PMC10689974 DOI: 10.1002/ctm2.1498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Endothelial cell (EC) dysfunction leading to microvascular alterations is a hallmark of technique failure in peritoneal dialysis (PD). However, the mechanisms underlying EC dysfunction in PD are poorly defined. METHODS We combined RNA sequencing with metabolite set analysis to characterize the metabolic profile of peritoneal ECs from a mouse model of PD. This was combined with EC-selective blockade of glycolysis by genetic or pharmacological inhibition of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) in vivo and in vitro. We also investigated the association between peritoneal EC glycolysis and microvascular alterations in human peritoneal samples from patients with end-stage kidney disease (ESKD). RESULTS In a mouse model of PD, peritoneal ECs had a hyperglycolytic metabolism that shunts intermediates into nucleotide synthesis. Hyperglycolytic mouse peritoneal ECs displayed a unique active phenotype with increased proliferation, permeability and inflammation. The active phenotype of mouse peritoneal ECs can be recapitulated in human umbilical venous ECs and primary human peritoneal ECs by vascular endothelial growth factor that was released from high glucose-treated mesothelial cells. Importantly, reduction of peritoneal EC glycolysis, via endothelial deficiency of the glycolytic activator PFKFB3, inhibited PD fluid-induced increases in peritoneal capillary density, vascular permeability and monocyte extravasation, thereby protecting the peritoneum from the development of structural and functional damages. Mechanistically, endothelial PFKFB3 deficiency induced the protective effects in part by inhibiting cell proliferation, VE-cadherin endocytosis and monocyte-adhesion molecule expression. Pharmacological PFKFB3 blockade induced a similar therapeutic benefit in this PD model. Human peritoneal tissue from patients with ESKD also demonstrated evidence of increased EC PFKFB3 expression associated with microvascular alterations and peritoneal dysfunction. CONCLUSIONS These findings reveal a critical role of glycolysis in ECs in mediating the deterioration of peritoneal function and suggest that strategies targeting glycolysis in peritoneal ECs may be of therapeutic benefit for patients undergoing PD.
Collapse
Affiliation(s)
- Zekun Si
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Wenyan Su
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Zhuoyu Zhou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Jinjin Li
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Cailing Su
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Ying Zhang
- Division of NephrologyThe Second Affiliated Hospital of Guangzhou Medical UniversityGuangzhouP. R. China
| | - Zuoyu Hu
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Zhijie Huang
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Hong Zhou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Ansheng Cong
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Zhanmei Zhou
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| | - Wei Cao
- Division of NephrologyState Key Laboratory of Organ Failure ResearchGuangdong Provincial Key Laboratory of NephrologyGuangdong Provincial Clinical Research Center for Kidney DiseaseNanfang HospitalSouthern Medical UniversityGuangzhouP. R. China
| |
Collapse
|
191
|
Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol 2023; 20:812-829. [PMID: 37237146 DOI: 10.1038/s41569-023-00887-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Cardiac metabolism is vital for heart function. Given that cardiac contraction requires a continuous supply of ATP in large quantities, the role of fuel metabolism in the heart has been mostly considered from the perspective of energy production. However, the consequence of metabolic remodelling in the failing heart is not limited to a compromised energy supply. The rewired metabolic network generates metabolites that can directly regulate signalling cascades, protein function, gene transcription and epigenetic modifications, thereby affecting the overall stress response of the heart. In addition, metabolic changes in both cardiomyocytes and non-cardiomyocytes contribute to the development of cardiac pathologies. In this Review, we first summarize how energy metabolism is altered in cardiac hypertrophy and heart failure of different aetiologies, followed by a discussion of emerging concepts in cardiac metabolic remodelling, that is, the non-energy-generating function of metabolism. We highlight challenges and open questions in these areas and finish with a brief perspective on how mechanistic research can be translated into therapies for heart failure.
Collapse
Affiliation(s)
- Julia Ritterhoff
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany.
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
192
|
Wang P, Wei R, Cui X, Jiang Z, Yang J, Zu L, Hong T. Fatty acid β-oxidation and mitochondrial fusion are involved in cardiac microvascular endothelial cell protection induced by glucagon receptor antagonism in diabetic mice. J Diabetes 2023; 15:1081-1094. [PMID: 37596940 PMCID: PMC10755618 DOI: 10.1111/1753-0407.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/15/2023] [Accepted: 07/26/2023] [Indexed: 08/21/2023] Open
Abstract
INTRODUCTION The role of cardiac microvascular endothelial cells (CMECs) in diabetic cardiomyopathy is not fully understood. We aimed to investigate whether a glucagon receptor (GCGR) monoclonal antibody (mAb) ameliorated diabetic cardiomyopathy and clarify whether and how CMECs participated in the process. RESEARCH DESIGN AND METHODS The db/db mice were treated with GCGR mAb or immunoglobulin G (as control) for 4 weeks. Echocardiography was performed to evaluate cardiac function. Immunofluorescent staining was used to determine microvascular density. The proteomic signature in isolated primary CMECs was analyzed by using tandem mass tag-based quantitative proteomic analysis. Some target proteins were verified by using western blot. RESULTS Compared with db/m mice, cardiac microvascular density and left ventricular diastolic function were significantly reduced in db/db mice, and this reduction was attenuated by GCGR mAb treatment. A total of 199 differentially expressed proteins were upregulated in db/db mice versus db/m mice and downregulated in GCGR mAb-treated db/db mice versus db/db mice. The enrichment analysis demonstrated that fatty acid β-oxidation and mitochondrial fusion were the key pathways. The changes of the related proteins carnitine palmitoyltransferase 1B, optic atrophy type 1, and mitofusin-1 were further verified by using western blot. The levels of these three proteins were upregulated in db/db mice, whereas this upregulation was attenuated by GCGR mAb treatment. CONCLUSION GCGR antagonism has a protective effect on CMECs and cardiac diastolic function in diabetic mice, and this beneficial effect may be mediated via inhibiting fatty acid β-oxidation and mitochondrial fusion in CMECs.
Collapse
Affiliation(s)
- Peng Wang
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of EducationBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijingChina
| | - Rui Wei
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Xiaona Cui
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Zongzhe Jiang
- Department of Endocrinology and MetabolismThe Affiliated Hospital of Southwest Medical UniversityLuzhouChina
| | - Jin Yang
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| | - Lingyun Zu
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of EducationBeijing Key Laboratory of Cardiovascular Receptors ResearchBeijingChina
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Department of Cardiology and Institute of Vascular MedicinePeking University Third HospitalBeijingChina
| |
Collapse
|
193
|
Liu C, Xu X, He X, Ren J, Chi M, Deng G, Li G, Nasser MI. Activation of the Nrf-2/HO-1 signalling axis can alleviate metabolic syndrome in cardiovascular disease. Ann Med 2023; 55:2284890. [PMID: 38039549 PMCID: PMC10836253 DOI: 10.1080/07853890.2023.2284890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/10/2023] [Indexed: 12/03/2023] Open
Abstract
Background: Cardiovascular disease (CVD) is widely observed in modern society. CVDs are responsible for the majority of fatalities, with heart attacks and strokes accounting for approximately 80% of these cases. Furthermore, a significant proportion of these deaths, precisely one-third, occurs in individuals under 70. Metabolic syndrome encompasses a range of diseases characterized by various physiological dysfunctions. These include increased inflammation in adipose tissue, enhanced cholesterol synthesis in the liver, impaired insulin secretion, insulin resistance, compromised vascular tone and integrity, endothelial dysfunction, and atheroma formation. These factors contribute to the development of metabolic disorders and significantly increase the likelihood of experiencing cardiovascular complications.Method: We selected studies that proposed hypotheses regarding metabolic disease syndrome and cardiovascular disease (CVD) and the role of Nrf2/HO-1 and factor regulation in CVD research investigations based on our searches of Medline and PubMed.Results: A total of 118 articles were included in the review, 16 of which exclusively addressed hypotheses about the role of Nrf2 on Glucose regulation, while 16 involved Cholesterol regulation. Likewise, 14 references were used to prove the importance of mitochondria on Nrf2. Multiple studies have provided evidence suggesting the involvement of Nrf2/HO-1 in various physiological processes, including metabolism and immune response. A total of 48 research articles and reviews have been used to highlight the role of metabolic syndrome and CVD.Conclusion: This review provides an overview of the literature on Nrf2/HO-1 and its role in metabolic disease syndrome and CVD.
Collapse
Affiliation(s)
- Chi Liu
- Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xingli Xu
- Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xing He
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Junyi Ren
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxuan Chi
- Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Gang Deng
- Department of Cardiac Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| | - Guisen Li
- Department of Nephrology, Sichuan Clinical Research Center for Kidney Disease, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Moussa Ide Nasser
- Department of Cardiac Surgery, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Cardiovascular Institute, Guangzhou, Guangdong, China
| |
Collapse
|
194
|
Roy RM, Allawzi A, Burns N, Sul C, Rubio V, Graham J, Stenmark K, Nozik ES, Tuder RM, Vohwinkel CU. Lactate produced by alveolar type II cells suppresses inflammatory alveolar macrophages in acute lung injury. FASEB J 2023; 37:e23316. [PMID: 37983890 PMCID: PMC10914122 DOI: 10.1096/fj.202301722r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Alveolar inflammation is a hallmark of acute lung injury (ALI), and its clinical correlate is acute respiratory distress syndrome-and it is as a result of interactions between alveolar type II cells (ATII) and alveolar macrophages (AM). In the setting of acute injury, the microenvironment of the intra-alveolar space is determined in part by metabolites and cytokines and is known to shape the AM phenotype. In response to ALI, increased glycolysis is observed in AT II cells, mediated by the transcription factor hypoxia-inducible factor (HIF) 1α, which has been shown to decrease inflammation. We hypothesized that in acute lung injury, lactate, the end product of glycolysis, produced by ATII cells shifts AMs toward an anti-inflammatory phenotype, thus mitigating ALI. We found that local intratracheal delivery of lactate improved ALI in two different mouse models. Lactate shifted cytokine expression of murine AMs toward increased IL-10, while decreasing IL-1 and IL-6 expression. Mice with ATII-specific deletion of Hif1a and mice treated with an inhibitor of lactate dehydrogenase displayed exacerbated ALI and increased inflammation with decreased levels of lactate in the bronchoalveolar lavage fluid; however, all those parameters improved with intratracheal lactate. When exposed to LPS (to recapitulate an inflammatory stimulus as it occurs in ALI), human primary AMs co-cultured with alveolar epithelial cells had reduced inflammatory responses. Taken together, these studies reveal an innate protective pathway, in which lactate produced by ATII cells shifts AMs toward an anti-inflammatory phenotype and dampens excessive inflammation in ALI.
Collapse
Affiliation(s)
- René M. Roy
- Children’s Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Ayed Allawzi
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nana Burns
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christina Sul
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Victoria Rubio
- Children’s Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jessica Graham
- Children’s Hospital Colorado, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kurt Stenmark
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eva S. Nozik
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Rubin M. Tuder
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Program in Translational Lung Research, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Christine U. Vohwinkel
- Division of Pediatric Critical Care, Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
- Developmental Lung Biology, Cardiovascular Pulmonary Research Laboratories, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
195
|
Lemma B, Nelson CM. Spatial patterning of energy metabolism during tissue morphogenesis. Curr Opin Cell Biol 2023; 85:102235. [PMID: 37696131 PMCID: PMC10840784 DOI: 10.1016/j.ceb.2023.102235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 09/13/2023]
Abstract
Biophysical signaling organizes forces to drive tissue morphogenesis, a process co-opted during disease progression. The systematic buildup of forces at the tissue scale is energetically demanding. Just as mechanical forces, gene expression, and concentrations of morphogens vary spatially across a developing tissue, there might similarly be spatial variations in energy consumption. Recent studies have started to uncover the connections between spatial patterns of mechanical forces and spatial patterns of energy metabolism. Here, we define and review the concept of energy metabolism during tissue morphogenesis. We highlight experiments showing spatial variations in energy metabolism across several model systems, categorized by morphogenetic motif, including convergent extension, branching, and migration. Finally, we discuss approaches to further enable quantitative measurements of energy production and consumption during morphogenesis.
Collapse
Affiliation(s)
- Bezia Lemma
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Celeste M Nelson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
196
|
Gao Y, Jiang Z, Xu B, Mo R, Li S, Jiang Y, Zhao D, Cao W, Chen B, Tian M, Tan Q. Evaluation of topical methylene blue nanoemulsion for wound healing in diabetic mice. PHARMACEUTICAL BIOLOGY 2023; 61:1462-1473. [PMID: 37691404 PMCID: PMC10496548 DOI: 10.1080/13880209.2023.2254341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
CONTEXT Diabetic wounds (DW) are a complication of diabetes and slow wound healing is the main manifestation. Methylene blue (MB) has been shown to exhibit therapeutic effects on diabetes-related diseases. OBJECTIVE To investigate the mechanisms of action of MB-nanoemulsion (NE) in the treatment of DW. MATERIALS AND METHODS The concentration of MB-NE used in the in vivo and in vitro experiments was 0.1 mg/mL. Streptozocin-induced diabetic mice were used as models. The mice were separated into nondiabetic, diabetic, MB-NE treated, and NE-treated groups. Intervention of high glucose-induced human umbilical vein endothelial cells using MB-NE. The mechanism by which MB-NE promotes DW healing is investigated by combining histological analysis, immunofluorescence analysis, TUNEL and ROS assays and western blotting. RESULTS In diabetic mice, the MB-NE accelerated DW healing (p < 0.05), promoted the expression of endothelial cell markers (α-SMA, CD31 and VEGF) (p < 0.05), and reduced TUNEL levels. In vitro, MB accelerated the migration rate of cells (p < 0.05); promoted the expression of CD31, VEGF, anti-apoptotic protein Bcl2 (p < 0.05) and decreased the expression of the pro-apoptotic proteins cleaved caspase-3 and Bax (p < 0.05). MB upregulated the expression of Nrf2, catalase, HO-1 and SOD2 (p < 0.05). In addition, MB reduced the immunofluorescence intensity of TUNEL and ROS in cells and reduced apoptosis. The therapeutic effect of MB was attenuated after treatment with an Nrf2 inhibitor (ML385). DISCUSSION AND CONCLUSION This study provides a foundation for the application of MB-NE in the treatment of DW.
Collapse
Affiliation(s)
- Yu Gao
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Zhounan Jiang
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bin Xu
- Hubei Xiangyang Central Hospital, Xiangyang, China
| | - Ran Mo
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Shiyan Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yanan Jiang
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Demei Zhao
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Wangbin Cao
- Nanjing Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Bin Chen
- Institute of Plant Resources and Chemistry, Nanjing Research Institute for Comprehensive Utilization of Wild Plants, Nanjing, China
| | - Meng Tian
- Department of Plastic Surgery, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qian Tan
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| |
Collapse
|
197
|
Zodda E, Tura-Ceide O, Mills NL, Tarragó-Celada J, Carini M, Thomson TM, Cascante M. Autonomous metabolic reprogramming and oxidative stress characterize endothelial dysfunction in acute myocardial infarction. eLife 2023; 12:e86260. [PMID: 38014932 PMCID: PMC10871716 DOI: 10.7554/elife.86260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/01/2023] [Indexed: 11/29/2023] Open
Abstract
Compelling evidence has accumulated on the role of oxidative stress on the endothelial cell (EC) dysfunction in acute coronary syndrome. Unveiling the underlying metabolic determinants has been hampered by the scarcity of appropriate cell models to address cell-autonomous mechanisms of EC dysfunction. We have generated endothelial cells derived from thrombectomy specimens from patients affected with acute myocardial infarction (AMI) and conducted phenotypical and metabolic characterizations. AMI-derived endothelial cells (AMIECs) display impaired growth, migration, and tubulogenesis. Metabolically, AMIECs displayed augmented ROS and glutathione intracellular content, with a diminished glucose consumption coupled to high lactate production. In AMIECs, while PFKFB3 protein levels of were downregulated, PFKFB4 levels were upregulated, suggesting a shunting of glycolysis towards the pentose phosphate pathway, supported by upregulation of G6PD. Furthermore, the glutaminolytic enzyme GLS was upregulated in AMIECs, providing an explanation for the increase in glutathione content. Finally, AMIECs displayed a significantly higher mitochondrial membrane potential than control ECs, which, together with high ROS levels, suggests a coupled mitochondrial activity. We suggest that high mitochondrial proton coupling underlies the high production of ROS, balanced by PPP- and glutaminolysis-driven synthesis of glutathione, as a primary, cell-autonomous abnormality driving EC dysfunction in AMI.
Collapse
Affiliation(s)
- Erika Zodda
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of BarcelonaBarcelonaSpain
- Institute for Molecular Biology of Barcelona, National Research Council (IBMB-CSIC)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-EDH)MadridSpain
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clínic-Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS); University of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES)MadridSpain
- Department of Pulmonary Medicine, Dr. Josep Trueta University Hospital de Girona, Santa Caterina Hospital de Salt and Girona Biomedical Research Institute (IDIBGI)GironaSpain
| | - Nicholas L Mills
- University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburghUnited Kingdom
| | - Josep Tarragó-Celada
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of BarcelonaBarcelonaSpain
| | - Marina Carini
- Department of Pharmaceutical Sciences, Università degli Studi di MilanoMilanItaly
| | - Timothy M Thomson
- Institute for Molecular Biology of Barcelona, National Research Council (IBMB-CSIC)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-EDH)MadridSpain
- Universidad Peruana Cayetano HerediaLimaPeru
| | - Marta Cascante
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBER-EDH)MadridSpain
- Institute of Biomedicine (IBUB), University of BarcelonaBarcelonaSpain
| |
Collapse
|
198
|
Ouyang J, Wang H, Huang J. The role of lactate in cardiovascular diseases. Cell Commun Signal 2023; 21:317. [PMID: 37924124 PMCID: PMC10623854 DOI: 10.1186/s12964-023-01350-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/06/2023] [Indexed: 11/06/2023] Open
Abstract
Cardiovascular diseases pose a major threat worldwide. Common cardiovascular diseases include acute myocardial infarction (AMI), heart failure, atrial fibrillation (AF) and atherosclerosis. Glycolysis process often has changed during these cardiovascular diseases. Lactate, the end-product of glycolysis, has been overlooked in the past but has gradually been identified to play major biological functions in recent years. Similarly, the role of lactate in cardiovascular disease is gradually being recognized. Targeting lactate production, regulating lactate transport, and modulating circulating lactate levels may serve as potential strategies for the treatment of cardiovascular diseases in the future. The purpose of this review is to integrate relevant clinical and basic research on the role of lactate in the pathophysiological process of cardiovascular disease in recent years to clarify the important role of lactate in cardiovascular disease and to guide further studies exploring the role of lactate in cardiovascular and other diseases. Video Abstract.
Collapse
Affiliation(s)
- Jun Ouyang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hui Wang
- School of Pharmacy, Guangxi Medical University, Nanning, China.
| | - Jiangnan Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.
| |
Collapse
|
199
|
Sun P, Cui M, Jing J, Kong F, Wang S, Tang L, Leng J, Chen K. Deciphering the molecular and cellular atlas of immune cells in septic patients with different bacterial infections. J Transl Med 2023; 21:777. [PMID: 37919720 PMCID: PMC10621118 DOI: 10.1186/s12967-023-04631-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/14/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Sepsis is a life-threatening organ dysfunction caused by abnormal immune responses to various, predominantly bacterial, infections. Different bacterial infections lead to substantial variation in disease manifestation and therapeutic strategies. However, the underlying cellular heterogeneity and mechanisms involved remain poorly understood. METHODS Multiple bulk transcriptome datasets from septic patients with 12 types of bacterial infections were integrated to identify signature genes for each infection. Signature genes were mapped onto an integrated large single-cell RNA (scRNA) dataset from septic patients, to identify subsets of cells associated with different sepsis types, and multiple omics datasets were combined to reveal the underlying molecular mechanisms. In addition, an scRNA dataset and spatial transcriptome data were used to identify signaling pathways in sepsis-related cells. Finally, molecular screening, optimization, and de novo design were conducted to identify potential targeted drugs and compounds. RESULTS We elucidated the cellular heterogeneity among septic patients with different bacterial infections. In Escherichia coli (E. coli) sepsis, 19 signature genes involved in epigenetic regulation and metabolism were identified, of which DRAM1 was demonstrated to promote autophagy and glycolysis in response to E. coli infection. DRAM1 upregulation was confirmed in an independent sepsis cohort. Further, we showed that DRAM1 could maintain survival of a pro-inflammatory monocyte subset, C10_ULK1, which induces systemic inflammation by interacting with other cell subsets via resistin and integrin signaling pathways in blood and kidney tissue, respectively. Finally, retapamulin was identified and optimized as a potential drug for treatment of E. coli sepsis targeting the signature gene, DRAM1, and inhibiting E. coli protein synthesis. Several other targeted drugs were also identified in other types of sepsis, including nystatin targeting C1QA in Neisseria sepsis and dalfopristin targeting CTSD in Streptococcus viridans sepsis. CONCLUSION Our study provides a comprehensive overview of the cellular heterogeneity and underlying mechanisms in septic patients with various bacterial infections, providing insights to inform development of stratified targeted therapies for sepsis.
Collapse
Affiliation(s)
- Ping Sun
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200127, China
- Department of Emergency, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China
| | - Mintian Cui
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200127, China
| | - Jiongjie Jing
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200127, China
| | - Fanyu Kong
- Department of Internal Emergency Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Shixi Wang
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200127, China
| | - Lunxian Tang
- Department of Internal Emergency Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Junling Leng
- Department of Emergency, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China
| | - Kun Chen
- Translational Medical Center for Stem Cell Therapy, Institute for Regenerative Medicine, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, 200127, China.
- Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
200
|
Wu J, Hu M, Jiang H, Ma J, Xie C, Zhang Z, Zhou X, Zhao J, Tao Z, Meng Y, Cai Z, Song T, Zhang C, Gao R, Cai C, Song H, Gao Y, Lin T, Wang C, Zhou X. Endothelial Cell-Derived Lactate Triggers Bone Mesenchymal Stem Cell Histone Lactylation to Attenuate Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301300. [PMID: 37752768 PMCID: PMC10625121 DOI: 10.1002/advs.202301300] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/17/2023] [Indexed: 09/28/2023]
Abstract
Blood vessels play a role in osteogenesis and osteoporosis; however, the role of vascular metabolism in these processes remains unclear. The present study finds that ovariectomized mice exhibit reduced blood vessel density in the bone and reduced expression of the endothelial glycolytic regulator pyruvate kinase M2 (PKM2). Endothelial cell (EC)-specific deletion of Pkm2 impairs osteogenesis and worsens osteoporosis in mice. This is attributed to the impaired ability of bone mesenchymal stem cells (BMSCs) to differentiate into osteoblasts. Mechanistically, EC-specific deletion of Pkm2 reduces serum lactate levels secreted by ECs, which affect histone lactylation in BMSCs. Using joint CUT&Tag and RNA sequencing analyses, collagen type I alpha 2 chain (COL1A2), cartilage oligomeric matrix protein (COMP), ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1), and transcription factor 7 like 2 (TCF7L2) as osteogenic genes regulated by histone H3K18la lactylation are identified. PKM2 overexpression in ECs, lactate addition, and exercise restore the phenotype of endothelial PKM2-deficient mice. Furthermore, serum metabolomics indicate that patients with osteoporosis have relatively low lactate levels. Additionally, histone lactylation and related osteogenic genes of BMSCs are downregulated in patients with osteoporosis. In conclusion, glycolysis in ECs fuels BMSC differentiation into osteoblasts through histone lactylation, and exercise partially ameliorates osteoporosis by increasing serum lactate levels.
Collapse
Affiliation(s)
- Jinhui Wu
- Department of OrthopedicsChangzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Miao Hu
- Department of OrthopedicsGeneral Hospital of Southern Theatre Command of PLAGuangzhou510010P. R. China
| | - Heng Jiang
- Department of OrthopedicsChangzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Jun Ma
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Chong Xie
- Department of NeurologyRenji HospitalShanghai Jiaotong University School of MedicineShanghai200127P. R. China
| | - Zheng Zhang
- Department of OrthopedicsChangzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Xin Zhou
- Department of OrthopedicsChangzheng HospitalNaval Medical UniversityShanghai200003P. R. China
- Department of OrthopedicsShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai200080P. R. China
| | - Jianquan Zhao
- Department of OrthopedicsChangzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Zhengbo Tao
- Department of OrthopedicsChangzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Yichen Meng
- Department of OrthopedicsChangzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Zhuyun Cai
- Department of OrthopedicsChangzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Tengfei Song
- Department of OrthopedicsChangzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Chenglin Zhang
- Department of OrthopedicsChangzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Rui Gao
- Department of OrthopedicsChangzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Chang Cai
- Department of OphthalmologyChanghai HospitalShanghai200433P. R. China
| | - Hongyuan Song
- Department of OphthalmologyChanghai HospitalShanghai200433P. R. China
| | - Yang Gao
- Senior Department of OrthopedicsThe Fourth Medical Center of PLA General HospitalBeijing100048P. R. China
| | - Tao Lin
- Department of OrthopedicsChangzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Ce Wang
- Department of OrthopedicsChangzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| | - Xuhui Zhou
- Department of OrthopedicsChangzheng HospitalNaval Medical UniversityShanghai200003P. R. China
| |
Collapse
|