151
|
Farah AA, Alvarez-Puebla RA, Fenniri H. Chemically stable silver nanoparticle-crosslinked polymer microspheres. J Colloid Interface Sci 2007; 319:572-6. [PMID: 18187145 DOI: 10.1016/j.jcis.2007.11.030] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Accepted: 11/15/2007] [Indexed: 11/18/2022]
Abstract
Stabilization of metal nanoparticles (MNP) is a prerequisite for any application in sensor design, optoelectronics, catalysis, spectroscopic labeling, and nanomedicine. However, MNPs produced by most currently available synthetic approaches tend to undergo aggregation into large clusters, thus reducing their accessibility and compromising properties associated with their nanoscale dimensions. To circumvent the agglomeration problem and enhance their chemical and physical stability, we developed an efficient strategy for the preparation of MNP/polymer composites in which silver nanoparticles coated with 4-mercaptomethylstyrene act as crosslinkers in a suspension polymerization. The resulting microspheres were characterized by Raman, SERS and XPS spectroscopies, DSC, SEM and TEM. Their chemical and physical stability was also established.
Collapse
Affiliation(s)
- Abdiaziz A Farah
- National Institute for Nanotechnology, National Research Council, 11421 Saskatchewan Drive, Edmonton, AB, Canada T6G 2M9
| | | | | |
Collapse
|
152
|
Murphy CJ, Gole AM, Hunyadi SE, Stone JW, Sisco PN, Alkilany A, Kinard BE, Hankins P. Chemical sensing and imaging with metallic nanorods. Chem Commun (Camb) 2007:544-57. [PMID: 18209787 DOI: 10.1039/b711069c] [Citation(s) in RCA: 331] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In this Feature Article, we examine recent advances in chemical analyte detection and optical imaging applications using gold and silver nanoparticles, with a primary focus on our own work. Noble metal nanoparticles have exciting physical and chemical properties that are entirely different from the bulk. For chemical sensing and imaging, the optical properties of metallic nanoparticles provide a wide range of opportunities, all of which ultimately arise from the collective oscillations of conduction band electrons ("plasmons") in response to external electromagnetic radiation. Nanorods have multiple plasmon bands compared to nanospheres. We identify four optical sensing and imaging modalities for metallic nanoparticles: (1) aggregation-dependent shifts in plasmon frequency; (2) local refractive index-dependent shifts in plasmon frequency; (3) inelastic (surface-enhanced Raman) light scattering; and (4) elastic (Rayleigh) light scattering. The surface chemistry of the nanoparticles must be tunable to create chemical specificity, and is a key requirement for successful sensing and imaging platforms.
Collapse
Affiliation(s)
- Catherine J Murphy
- Department of Chemistry & Biochemistry and the W. M. Keck Laboratory for Bionanoparticle Technology Discovery and Development, University of South Carolina, Columbia, SC 29208, USA.
| | | | | | | | | | | | | | | |
Collapse
|
153
|
Merican Z, Schiller TL, Hawker CJ, Fredericks PM, Blakey I. Self-assembly and encoding of polymer-stabilized gold nanoparticles with surface-enhanced Raman reporter molecules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:10539-45. [PMID: 17824719 DOI: 10.1021/la702218b] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Polymer-stabilized gold nanoparticles (AuNPs) were prepared and encoded with a range of surface-enhanced Raman reporter molecules. A range of as-synthesized polymers produced by reversible addition fragmentation chain transfer (RAFT) polymerization were demonstrated to self-assemble at the surface of AuNPs dispersed in water. The method involved the coprecipitation of polymer-gold conjugates by the addition of polymer dissolved in a water-miscible solvent to gold AuNPs dispersed in water. This method represents a simplification of the preparation of polymer-stabilized AuNPs compared with other published methods, in that the AuNPs do not need to be first transferred to an organic solvent. The process enabled the polymer stabilized AuNPs to be easily recovered by filtration or by phase transfer of the AuNPs to an organic solvent in which the RAFT polymer was soluble. The polymer-stabilized AuNPs were characterized by a range of methods including UV-visible spectrophotometry, transmission electron microscopy, thermogravimetric analysis, dynamic light scattering, and attenuated total reflection Fourier transform infrared spectroscopy. Furthermore, 1H pulsed field gradient spin echo NMR was utilized to characterize the self-diffusion of the polymer-stabilized AuNPs. Finally, we then demonstrated that these polymer-stabilized AuNPs maintained their ability to be encoded with surface-enhanced Raman spectroscopy reporter molecules.
Collapse
Affiliation(s)
- Zul Merican
- Centre for Magnetic Resonance, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
154
|
Shang L, Wang Y, Huang L, Dong S. Preparation of DNA-silver nanohybrids in multilayer nanoreactors by in situ electrochemical reduction, characterization, and application. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:7738-44. [PMID: 17552547 DOI: 10.1021/la700700e] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Novel nanocomposite films containing DNA-silver nanohybrids have been successfully fabricated by combined use of the layer-by-layer self-assembly technique and an in situ electrochemical reduction method with the DNA-Ag+ complex as one of the building blocks. UV-vis absorption spectroscopy was employed to monitor the buildup of the multilayer films, which suggested a progressive deposition with almost an equal amount of the DNA-Ag+ complex in each cycle. The following electrochemical reduction of silver resulted in the formation of metal nanoparticles in the film, which was evidenced by the evolution of the intense plasmon absorption band originating from silver. Scanning electron microscopy indicated that the particles formed in the multilayer films possessed good monodispersity and stability, thanks to the surrounding polymers. X-ray photoelectron spectroscopy further confirmed the presence of the main components (such as DNA and metallic silver) of the nanocomposite films. In addition, we show that the size of the metal nanoparticles and the optical property of the film could be readily tuned by manipulating the assembly conditions. Furthermore, the feasibility of the as-prepared nanocomposite films functioning as a surface-enhanced Raman scattering active substrate for sensing purposes was investigated, and the results showed great enhancement of the Raman signal of two probe molecules, Rhodamine 6G and 4-aminothiophenol.
Collapse
Affiliation(s)
- Li Shang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun 130022, China
| | | | | | | |
Collapse
|
155
|
Abstract
Proteins are essential components of organisms and are involved in a wide range of biological functions. There are increasing demands for ultra-sensitive protein detection, because many important protein biomarkers are present at ultra-low levels, especially during the early stages of disease. Measuring proteins at low levels is also crucial for investigations of the protein synthesis and functions in biological systems. In this review, we summarize the recent developments of novel technology enabling ultrasensitive protein detection. We focus on two groups of techniques that involve either polymerase amplification of affinity DNA probes or signal amplification by the use of nano-/micro-materials. The polymerase-based amplification of affinity DNA probes indirectly improves the sensitivity of protein detection by increasing the number of detection molecules. The use of nano-/micro-materials conjugated to affinity probes enhances the measurement signals by using the unique electrical, optical, and catalytic properties of these novel materials. This review describes the basic principles, performances, applications, merits, and limitations of these techniques.
Collapse
Affiliation(s)
- Hongquan Zhang
- Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada T6G 2G3
| | | | | | | |
Collapse
|
156
|
Surface-enhanced Raman spectra of magnetic nanoparticles adsorbed on a silver electrode. J Electroanal Chem (Lausanne) 2007. [DOI: 10.1016/j.jelechem.2007.02.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
157
|
Cañamares MV, Garcia-Ramos JV, Gómez-Varga JD, Domingo C, Sanchez-Cortes S. Ag nanoparticles prepared by laser photoreduction as substrates for in situ surface-enhanced Raman scattering analysis of dyes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:5210-5. [PMID: 17381143 DOI: 10.1021/la063445v] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In this work Ag nanoparticles (AgNP) with surface-enhanced Raman scattering (SERS) activity were prepared and immobilized by laser irradiation on a water/ solid interface where the aqueous phase contains the Ag+ cation and the solid surface is of hydrophilic nature (glass and cellulose). The so-prepared AgNP demonstrated a high SERS effectiveness in the detection of dispersed adsorbates such as the case of the anthraquinonic dye alizarin. The size and SERS effectiveness of AgNP increases with the irradiation time, the laser power, and the cation concentration. Laser-induced AgNP can be classified into two classes attending to the morphology: spherical and planar. The latter are formed after longer irradiation times, being more active regarding the SERS efficiency. Ag photoreduction can be employed for in situ detection of the dye alizarin, but when the dye is placed on a hydrophilic substrate. Even so, this in situ SERS technique could be attractive for analytical applications involving the in situ detection of the analyzed species, such as the case of dyes in artistical objects, textiles, foods, and surface analysis in general.
Collapse
Affiliation(s)
- M V Cañamares
- Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006-Madrid, Spain
| | | | | | | | | |
Collapse
|
158
|
Huo SJ, Xue XK, Li QX, Xu SF, Cai WB. Seeded-Growth Approach to Fabrication of Silver Nanoparticle Films on Silicon for Electrochemical ATR Surface-Enhanced IR Absorption Spectroscopy. J Phys Chem B 2006; 110:25721-8. [PMID: 17181212 DOI: 10.1021/jp064036a] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ag nanoparticle films (simplified as nanofilms hereafter) on Si for electrochemical ATR surface enhanced IR absorption spectroscopy (ATR-SEIRAS) have been successfully fabricated by using chemical deposition, which incorporates initial embedding of Ag seeds on the reflecting plane of an ATR Si prism and subsequent chemical plating of conductive and SEIRA-active Ag nanofilms. Two alternative methods for embedding initial Ag seeds have been developed: one is based on self-assembly of Ag colloids on an aminosilanized Si surface, whereas the other the reduction of Ag+ in a HF-containing solution. A modified silver-mirror reaction was employed for further growth of Ag seeds into Ag nanofilm electrodes with a theoretically average thickness of 40-50 nm. Both Ag seeds and as-deposited Ag nanofilms display island structure morphologies facilitating SEIRA, as revealed by AFM imaging. The cyclic voltammetric feature of the as-prepared Ag nanofilm electrodes is close to that of a polycrystalline bulk Ag electrode. With thiocyanate as a surface probe, enhancement factors of ca. 50-80 were estimated for the as-deposited Ag nanofilms as compared to a mechanically polished Ag electrode in the conventional IRAS after reasonable calibration of surface roughness factor, incident angles, surface coverage, and polarization states. As a preliminary example for extended application, the pyridine adsorption configuration at an as-deposited Ag electrode was re-examined by ATR-SEIRAS. The results revealed that pyridine molecules are bound via N end to the Ag electrode with its ring plane perpendicular or slightly tilted to the local surface without rotating its C2 axis about the surface normal, consistent with the conclusion drawn by SERS in the literature.
Collapse
Affiliation(s)
- Sheng-Juan Huo
- Shanghai Key Laboratory for Molecular Catalysis and Innovative Materials and Department of Chemistry, Fudan University, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
159
|
Miljanić S, Frkanec L, Biljan T, Meić Z, Zinić M. Surface-enhanced Raman scattering on molecular self-assembly in nanoparticle-hydrogel composite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:9079-81. [PMID: 17042511 DOI: 10.1021/la061521o] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Surface-enhanced Raman scattering has been applied to study weak intermolecular interactions between small organic gelling molecules involved in the silver nanoparticle-hydrogel composite formation. Assembly and disassembly of the gelator molecules in close vicinity to embedded silver nanoparticles were followed by changes in Raman intensity of the amide II and carboxyl vibrational bands, whereas the strength of the bands related to benzene modes remained constant. This implied that the gelator molecules were strongly attached to the silver particles through the benzene units, while participating in gel structure organization by intermolecular hydrogen bonding between oxalyl amide and carboxyl groups.
Collapse
Affiliation(s)
- Snezana Miljanić
- Laboratory of Analytical Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| | | | | | | | | |
Collapse
|
160
|
Hunyadi SE, Murphy CJ. Bimetallic silver–gold nanowires: fabrication and use in surface-enhanced Raman scattering. ACTA ACUST UNITED AC 2006. [DOI: 10.1039/b607116c] [Citation(s) in RCA: 159] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|