151
|
Schiel JA, Prekeris R. Making the final cut - mechanisms mediating the abscission step of cytokinesis. ScientificWorldJournal 2010; 10:1424-34. [PMID: 20661535 PMCID: PMC4365978 DOI: 10.1100/tsw.2010.129] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cytokinesis is the final stage of mitotic cell division that results in a physical separation of two daughter cells. Cytokinesis begins in the early stages of anaphase after the positioning of the cleavage plane and after the chromosomes segregate. This involves the recruitment and assembly of an actomyosin contractile ring, which constricts the plasma membrane and compacts midzone microtubules to form an electron-dense region, termed the midbody, located within an intracellular bridge. The resolution of this intracellular bridge, known as abscission, is the last step in cytokinesis that separates the two daughter cells. While much research has been done to delineate the mechanisms mediating actomyosin ring formation and contraction, the machinery that is responsible for abscission remains largely unclear. Recent work from several laboratories has demonstrated that dramatic changes occur in cytoskeleton and endosome dynamics, and are a prerequisite for abscission. However, the mechanistic details that regulate the final plasma membrane fusion during abscission are only beginning to emerge and are the subject of considerable controversy. Here we review recent studies within this field and discuss the proposed models of cell abscission.
Collapse
Affiliation(s)
- John A Schiel
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado, Aurora, USA
| | | |
Collapse
|
152
|
Torii T, Miyamoto Y, Sanbe A, Nishimura K, Yamauchi J, Tanoue A. Cytohesin-2/ARNO, through its interaction with focal adhesion adaptor protein paxillin, regulates preadipocyte migration via the downstream activation of Arf6. J Biol Chem 2010; 285:24270-81. [PMID: 20525696 DOI: 10.1074/jbc.m110.125658] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The formation of primitive adipose tissue is the initial process in adipose tissue development followed by the migration of preadipocytes into adipocyte clusters. Comparatively little is known about the molecular mechanism controlling preadipocyte migration. Here, we show that cytohesin-2, the guanine-nucleotide exchange factor for the Arf family GTP-binding proteins, regulates migration of mouse preadipocyte 3T3-L1 cells through Arf6. SecinH3, a specific inhibitor of the cytohesin family, markedly inhibits migration of 3T3-L1 cells. 3T3-L1 cells express cytohesin-2 and cytohesin-3, and knockdown of cytohesin-2 with its small interfering RNA effectively decreases cell migration. Cytohesin-2 preferentially acts upstream of Arf6 in this signaling pathway. Furthermore, we find that the focal adhesion protein paxillin forms a complex with cytohesin-2. Paxillin colocalizes with cytohesin-2 at the leading edges of migrating cells. This interaction is mediated by the LIM2 domain of paxillin and the isolated polybasic region of cytohesin-2. Importantly, migration is inhibited by expression of the constructs containing these regions. These results suggest that cytohesin-2, through a previously unexplored complex formation with paxillin, regulates preadipocyte migration and that paxillin plays a previously unknown role as a scaffold protein of Arf guanine-nucleotide exchange factor.
Collapse
Affiliation(s)
- Tomohiro Torii
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Okura, Tokyo 157-8535, Japan
| | | | | | | | | | | |
Collapse
|
153
|
The scaffold protein JIP3 functions as a downstream effector of the small GTPase ARF6 to regulate neurite morphogenesis of cortical neurons. FEBS Lett 2010; 584:2801-6. [PMID: 20493856 DOI: 10.1016/j.febslet.2010.05.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 05/05/2010] [Accepted: 05/07/2010] [Indexed: 12/21/2022]
Abstract
The small GTPase ADP-ribosylation factor 6 (ARF6) plays crucial roles in a wide variety of cell functions. To better understand the molecular mechanisms of ARF6-mediated signaling and cellular functions, we sought new ARF6-binding proteins in the mouse brain. We identified the signaling scaffold protein JNK-interacting protein 3 (JIP3), which is exclusively expressed in neurons, as a downstream effector of ARF6. Overexpression of a unique dominant negative mutant of ARF6, which was unable to interact with JIP3, and knockdown of JIP3 in mouse cortical neurons stimulated the elongation and branching of neurites. These results provide evidence that ARF6/JIP3 signaling regulates neurite morphogenesis.
Collapse
|
154
|
Ai E, Skop AR. Endosomal recycling regulation during cytokinesis. Commun Integr Biol 2010; 2:444-7. [PMID: 19907714 DOI: 10.4161/cib.2.5.8931] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2009] [Accepted: 04/05/2009] [Indexed: 11/19/2022] Open
Abstract
Successful cytokinesis is critical for cell proliferation and development. In animal cells, cytokinesis relies on temporally and spatially regulated membrane addition to the cleavage site. An important source for the new membrane is recycling endosomes. Yet how these endocytic vesicles are transported and regulated remains unclear. Several potential factors have been recently identified that regulate the trafficking of recycling endosomes during cytokinesis. Dynein and dynactin are required for the retrograde transport of recycling endosomes, while Kinesin-1 is responsible for endosome delivery to the furrow and midbody. Other regulators of recycling endosome trafficking have been identified, including RACK1, JIP3/4 and ECT2, which target recycling endosomes during the cell cycle. Here, we provide insights into the mechanisms controlling endosomal trafficking during cytokinesis.
Collapse
Affiliation(s)
- Erkang Ai
- Department of Genetics & Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | |
Collapse
|
155
|
Sagona AP, Nezis IP, Pedersen NM, Liestøl K, Poulton J, Rusten TE, Skotheim RI, Raiborg C, Stenmark H. PtdIns(3)P controls cytokinesis through KIF13A-mediated recruitment of FYVE-CENT to the midbody. Nat Cell Biol 2010; 12:362-71. [PMID: 20208530 DOI: 10.1038/ncb2036] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Accepted: 02/15/2010] [Indexed: 12/15/2022]
Abstract
Several subunits of the class III phosphatidylinositol-3-OH kinase (PI(3)K-III) complex are known as tumour suppressors. Here we uncover a function for this complex and its catalytic product phosphatidylinositol-3-phosphate (PtdIns(3)P) in cytokinesis. We show that PtdIns(3)P localizes to the midbody during cytokinesis and recruits a centrosomal protein, FYVE-CENT (ZFYVE26), and its binding partner TTC19, which in turn interacts with CHMP4B, an endosomal sorting complex required for transport (ESCRT)-III subunit implicated in the abscission step of cytokinesis. Translocation of FYVE-CENT and TTC19 from the centrosome to the midbody requires another FYVE-CENT-interacting protein, the microtubule motor KIF13A. Depletion of the VPS34 or Beclin 1 subunits of PI(3)K-III causes cytokinesis arrest and an increased number of binucleate and multinucleate cells, in a similar manner to the depletion of FYVE-CENT, KIF13A or TTC19. These results provide a mechanism for the translocation and docking of a cytokinesis regulatory machinery at the midbody.
Collapse
Affiliation(s)
- Antonia P Sagona
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0310 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Sanda M, Ohara N, Kamata A, Hara Y, Tamaki H, Sukegawa J, Yanagisawa T, Fukunaga K, Kondo H, Sakagami H. Vezatin, a potential target for ADP-ribosylation factor 6, regulates the dendritic formation of hippocampal neurons. Neurosci Res 2010; 67:126-36. [PMID: 20188128 DOI: 10.1016/j.neures.2010.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 12/16/2022]
Abstract
ADP-ribosylation factor 6 (ARF6) is a small GTPase that regulates neuronal morphogenesis processes such as axonal, dendritic, and spine formation possibly through the actin cytoskeleton and membrane trafficking. In an attempt to define the molecular mechanisms that regulate neuronal morphogenesis by ARF6, we identified vezatin as a novel binding partner of active GTP-bound ARF6 using yeast two-hybrid screening. Vezatin was able to bind specifically to GTP-ARF6 among the ARF family. In the adult mouse brain, vezatin exhibited widespread gene expression with high levels in the hippocampus and medial habenular nucleus. In hippocampal neurons, vezatin was localized at dendrites as well as cell bodies. Knockdown of endogenous vezatin significantly reduced total dendritic length and arborization of cultured hippocampal neurons, while overexpression of vezatin increased dendritic length. Our present study suggests that vezatin may regulate dendritic formation as a downstream effector of ARF6.
Collapse
Affiliation(s)
- Masashi Sanda
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara 228-8555, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Ally S, Larson AG, Barlan K, Rice SE, Gelfand VI. Opposite-polarity motors activate one another to trigger cargo transport in live cells. ACTA ACUST UNITED AC 2010; 187:1071-82. [PMID: 20038680 PMCID: PMC2806283 DOI: 10.1083/jcb.200908075] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intracellular transport is typically bidirectional, consisting of a series of back and forth movements. Kinesin-1 and cytoplasmic dynein require each other for bidirectional transport of intracellular cargo along microtubules; i.e., inhibition or depletion of kinesin-1 abolishes dynein-driven cargo transport and vice versa. Using Drosophila melanogaster S2 cells, we demonstrate that replacement of endogenous kinesin-1 or dynein with an unrelated, peroxisome-targeted motor of the same directionality activates peroxisome transport in the opposite direction. However, motility-deficient versions of motors, which retain the ability to bind microtubules and hydrolyze adenosine triphosphate, do not activate peroxisome motility. Thus, any pair of opposite-polarity motors, provided they move along microtubules, can activate one another. These results demonstrate that mechanical interactions between opposite-polarity motors are necessary and sufficient for bidirectional organelle transport in live cells.
Collapse
Affiliation(s)
- Shabeen Ally
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
158
|
Abe N, Almenar-Queralt A, Lillo C, Shen Z, Lozach J, Briggs SP, Williams DS, Goldstein LSB, Cavalli V. Sunday driver interacts with two distinct classes of axonal organelles. J Biol Chem 2009; 284:34628-39. [PMID: 19801628 PMCID: PMC2787325 DOI: 10.1074/jbc.m109.035022] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 09/25/2009] [Indexed: 11/06/2022] Open
Abstract
The extreme polarized morphology of neurons poses a challenging problem for intracellular trafficking pathways. The distant synaptic terminals must communicate via axonal transport with the cell soma for neuronal survival, function, and repair. Multiple classes of organelles transported along axons may establish and maintain the polarized morphology of neurons, as well as control signaling and neuronal responses to extracellular cues such as neurotrophic or stress factors. We reported previously that the motor-binding protein Sunday Driver (syd), also known as JIP3 or JSAP1, links vesicular axonal transport to injury signaling. To better understand syd function in axonal transport and in the response of neurons to injury, we developed a purification strategy based on anti-syd antibodies conjugated to magnetic beads to identify syd-associated axonal vesicles. Electron microscopy analyses revealed two classes of syd-associated vesicles of distinct morphology. To identify the molecular anatomy of syd vesicles, we determined their protein composition by mass spectrometry. Gene Ontology analyses of each vesicle protein content revealed their unique identity and indicated that one class of syd vesicles belongs to the endocytic pathway, whereas another may belong to an anterogradely transported vesicle pool. To validate these findings, we examined the transport and localization of components of syd vesicles within axons of mouse sciatic nerve. Together, our results lead us to propose that endocytic syd vesicles function in part to carry injury signals back to the cell body, whereas anterograde syd vesicles may play a role in axonal outgrowth and guidance.
Collapse
Affiliation(s)
- Namiko Abe
- From the Department of Anatomy and Neurobiology, Washington University in St. Louis, St. Louis, Missouri 63110
| | | | | | - Zhouxin Shen
- the Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, and
| | - Jean Lozach
- the Department of Cellular and Molecular Medicine, Howard Hughes Medical Institute
| | - Steven P. Briggs
- the Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, and
| | - David S. Williams
- the Departments of Pharmacology and Neurosciences, and
- the Departments of Ophthalmology and Neurosciences, Jules Stein Eye Institute, UCLA, Los Angeles, California 90095
| | | | - Valeria Cavalli
- From the Department of Anatomy and Neurobiology, Washington University in St. Louis, St. Louis, Missouri 63110
| |
Collapse
|
159
|
Leduc C, Campàs O, Joanny JF, Prost J, Bassereau P. Mechanism of membrane nanotube formation by molecular motors. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1798:1418-26. [PMID: 19948146 DOI: 10.1016/j.bbamem.2009.11.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 11/12/2009] [Accepted: 11/20/2009] [Indexed: 02/07/2023]
Abstract
Membrane nanotubes are ubiquitous in eukaryotic cells due to their involvement in the communication between many different membrane compartments. They are very dynamical structures, which are generally extended along the microtubule network. One possible mechanism of tube formation involves the action of molecular motors, which can generate the necessary force to pull the tubes along the cytoskeleton tracks. However, it has not been possible so far to image in living organisms simultaneously both tube formation and the molecular motors involved in the process. The reasons for this are mainly technological. To overcome these limitations and to elucidate in detail the mechanism of tube formation, many experiments have been developed over the last years in cell-free environments. In the present review, we present the results, which have been obtained in vitro either in cell extracts or with purified and artificial components. In particular, we will focus on a biomimetic system, which involves Giant Unilamellar Vesicles, kinesin-1 motors and microtubules in the presence of ATP. We present both theoretical and experimental results based on fluorescence microscopy that elucidate the dynamics of membrane tube formation, growth and stalling.
Collapse
Affiliation(s)
- Cécile Leduc
- Centre de Physique Moléculaire Optique et Hertzienne, Université Bordeaux 1, France
| | | | | | | | | |
Collapse
|
160
|
Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol 2009; 10:597-608. [PMID: 19696797 DOI: 10.1038/nrm2755] [Citation(s) in RCA: 1125] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endocytic recycling is coordinated with endocytic uptake to control the composition of the plasma membrane. Although much of our understanding of endocytic recycling has come from studies on the transferrin receptor, a protein internalized through clathrin-dependent endocytosis, increased interest in clathrin-independent endocytosis has led to the discovery of new endocytic recycling systems. Recent insights into the regulatory mechanisms that control endocytic recycling have focused on recycling through tubular carriers and the return to the cell surface of cargoes that enter cells through clathrin-independent mechanisms. Recent work emphasizes the importance of regulated recycling in processes as diverse as cytokinesis, cell adhesion, morphogenesis, cell fusion, learning and memory.
Collapse
Affiliation(s)
- Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | |
Collapse
|
161
|
Steigemann P, Gerlich DW. Cytokinetic abscission: cellular dynamics at the midbody. Trends Cell Biol 2009; 19:606-16. [PMID: 19733077 DOI: 10.1016/j.tcb.2009.07.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 07/18/2009] [Accepted: 07/20/2009] [Indexed: 10/20/2022]
Abstract
The intercellular canal containing the midbody is one of the most prominent structures in dividing animal cells, yet its function in the completion of cytokinesis by abscission remains largely unknown. This is because of its small size, which makes it difficult to investigate the cytoskeletal and membrane dynamics underlying abscission by standard light microscopy. The advent of new fluorescent probes and imaging technologies, along with sophisticated perturbation tools, provides new possibilities to elucidate the molecular control of this essential cell biological process. Here we discuss the control of midbody assembly and current models for the mechanism of abscission in animal cells. We highlight new methodologies that will facilitate testing and refining of these models.
Collapse
Affiliation(s)
- Patrick Steigemann
- Institute of Biochemistry, Swiss Federal Institute of Technology Zurich (ETHZ), Schafmattstr. 18, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
162
|
Isabet T, Montagnac G, Regazzoni K, Raynal B, El Khadali F, England P, Franco M, Chavrier P, Houdusse A, Ménétrey J. The structural basis of Arf effector specificity: the crystal structure of ARF6 in a complex with JIP4. EMBO J 2009; 28:2835-45. [PMID: 19644450 DOI: 10.1038/emboj.2009.209] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/01/2009] [Indexed: 11/09/2022] Open
Abstract
The JNK-interacting proteins, JIP3 and JIP4, are specific effectors of the small GTP-binding protein ARF6. The interaction of ARF6-GTP with the second leucine zipper (LZII) domains of JIP3/JIP4 regulates the binding of JIPs to kinesin-1 and dynactin. Here, we report the crystal structure of ARF6-GTP bound to the JIP4-LZII at 1.9 A resolution. The complex is a heterotetramer with dyad symmetry arranged in an ARF6-(JIP4)(2)-ARF6 configuration. Comparison of the ARF6-JIP4 interface with the equivalent region of ARF1 shows the structural basis of JIP4's specificity for ARF6. Using site-directed mutagenesis and surface plasmon resonance, we further show that non-conserved residues at the switch region borders are the key structural determinants of JIP4 specificity. A structure-derived model of the association of the ARF6-JIP3/JIP4 complex with membranes shows that the JIP4-LZII coiled-coil should lie along the membrane to prevent steric hindrances, resulting in only one ARF6 molecule bound. Such a heterotrimeric complex gives insights to better understand the ARF6-mediated motor switch regulatory function.
Collapse
|