151
|
Luhur A, Chawla G, Sokol NS. MicroRNAs as Components of Systemic Signaling Pathways in Drosophila melanogaster. Curr Top Dev Biol 2013; 105:97-123. [DOI: 10.1016/b978-0-12-396968-2.00004-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
152
|
Abstract
Macroautophagy (autophagy) is a conserved catabolic process that targets cytoplasmic components to lysosomes for degradation. Autophagy is required for cellular homeostasis and cell survival in response to starvation and stress, and paradoxically, it also plays a role in programmed cell death during development. The mechanisms that regulate the relationship between autophagy, cell survival, and cell death are poorly understood. Here we review research in Drosophila that has provided insights into the regulation of autophagy by steroid hormones and nutrient restriction and discuss how autophagy influences cell growth, nutrient utilization, cell survival, and cell death.
Collapse
|
153
|
Danielsen ET, Moeller ME, Rewitz KF. Nutrient Signaling and Developmental Timing of Maturation. Curr Top Dev Biol 2013; 105:37-67. [DOI: 10.1016/b978-0-12-396968-2.00002-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
154
|
Abstract
Hormones play a critical role in driving major stage transitions and developmental timing events in many species. In the nematode C. elegans the steroid hormone receptor, DAF-12, works at the confluence of pathways regulating developmental timing, stage specification, and longevity. DAF-12 couples environmental and physiologic signals to life history regulation, and it is embedded in a rich architecture governing diverse processes. Here, we highlight the molecular insights, extraordinary circuitry, and signaling pathways governing life stage transitions in the worm and how they have yielded fundamental insights into steroid regulation of biological time.
Collapse
Affiliation(s)
- Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany.
| |
Collapse
|
155
|
Rewitz KF, Yamanaka N, O'Connor MB. Developmental checkpoints and feedback circuits time insect maturation. Curr Top Dev Biol 2013; 103:1-33. [PMID: 23347514 DOI: 10.1016/b978-0-12-385979-2.00001-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transition from juvenile to adult is a fundamental process that allows animals to allocate resource toward reproduction after completing a certain amount of growth. In insects, growth to a species-specific target size induces pulses of the steroid hormone ecdysone that triggers metamorphosis and reproductive maturation. The past few years have seen significant progress in understanding the interplay of mechanisms that coordinate timing of ecdysone production and release. These studies show that the neuroendocrine system monitors complex size-related and nutritional signals, as well as external cues, to time production and release of ecdysone. Based on results discussed here, we suggest that developmental progression to adulthood is controlled by checkpoints that regulate the genetic timing program enabling it to adapt to different environmental conditions. These checkpoints utilize a number of signaling pathways to modulate ecdysone production in the prothoracic gland. Release of ecdysone activates an autonomous cascade of both feedforward and feedback signals that determine the duration of the ecdysone pulse at each developmental transitions. Conservation of the genetic mechanisms that coordinate the juvenile-adult transition suggests that insights from the fruit fly Drosophila will provide a framework for future investigation of developmental timing in metazoans.
Collapse
Affiliation(s)
- Kim F Rewitz
- Department of Biology, Cell and Neurobiology, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
156
|
Katsuyama T, Paro R. Innate immune cells are dispensable for regenerative growth of imaginal discs. Mech Dev 2012; 130:112-21. [PMID: 23238120 DOI: 10.1016/j.mod.2012.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/05/2012] [Accepted: 11/21/2012] [Indexed: 10/27/2022]
Abstract
Following tissue damage the immune response, including inflammation, has been considered an inevitable condition to build the host defense against invading pathogens. The recruitment of innate immune leukocytes to injured tissue is observed in both vertebrates and invertebrates. However, it is still not conclusive whether the inflammatory response is also indispensable for the wound healing process by itself, in addition to its role in microbial clearance. In this study we determine the requirement of innate immune cells, both hemocytes and fat body cells, in Drosophila imaginal disc regeneration. We investigate wound healing and regenerative cell proliferation of damaged imaginal discs under immunodeficient conditions. To delay development of Drosophila at matured third instar larval stage we used a sterol-mutant erg2 knock-out yeast strain in the medium. This dietary-controlled developmental arrest allowed us to generate larvae free of immune cells without interfering with their larval development. In addition, this approach allowed uncoupling regenerative cell proliferation of damaged discs from their normal developmental growth. We furthermore examined the regenerative cell proliferation of fragmented imaginal discs by transplantation into host flies deficient of immune cells. We demonstrate that the damaged/fragmented discs in immune cells deficient conditions still exhibit regenerative cell proliferation comparable to those of control samples. These results suggest that recruitment of immune cells is not a prerequisite for the regenerative growth of damaged imaginal discs.
Collapse
Affiliation(s)
- Tomonori Katsuyama
- Department of Biosystems Science and Engineering, ETH Zürich, Switzerland
| | | |
Collapse
|
157
|
Steroid signaling within Drosophila ovarian epithelial cells sex-specifically modulates early germ cell development and meiotic entry. PLoS One 2012; 7:e46109. [PMID: 23056242 PMCID: PMC3462805 DOI: 10.1371/journal.pone.0046109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 08/28/2012] [Indexed: 11/28/2022] Open
Abstract
Drosophila adult females but not males contain high levels of the steroid hormone ecdysone, however, the roles played by steroid signaling during Drosophila gametogenesis remain poorly understood. Drosophila germ cells in both sexes initially follow a similar pathway. After germline stem cells are established, their daughters form interconnected cysts surrounded by somatic escort (female) or cyst (male) cells and enter meiosis. Subsequently, female cysts acquire a new covering of somatic cells to form follicles. Knocking down expression of the heterodimeric ecdysteroid receptor (EcR/Usp) or the E75 early response gene in escort cells disrupts 16-cell cyst production, meiotic entry and follicle formation. Escort cells lose their squamous morphology and unsheath germ cells. By contrast, disrupting ecdysone signaling in males does not perturb cyst development or ensheathment. Thus, sex-specific steroid signaling is essential for female germ cell development at the time male and female pathways diverge. Our results suggest that steroid signaling plays an important sex-specific role in early germ cell development in Drosophila, a strategy that may be conserved in mammals.
Collapse
|
158
|
Jin H, Kim VN, Hyun S. Conserved microRNA miR-8 controls body size in response to steroid signaling in Drosophila. Genes Dev 2012; 26:1427-32. [PMID: 22751499 DOI: 10.1101/gad.192872.112] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Body size determination is a process that is tightly linked with developmental maturation. Ecdysone, an insect maturation hormone, contributes to this process by antagonizing insulin signaling and thereby suppressing juvenile growth. Here, we report that the microRNA miR-8 and its target, u-shaped (USH), a conserved microRNA/target axis that regulates insulin signaling, are critical for ecdysone-induced body size determination in Drosophila. We found that the miR-8 level is reduced in response to ecdysone, while the USH level is up-regulated reciprocally, and that miR-8 is transcriptionally repressed by ecdysone's early response genes. Furthermore, modulating the miR-8 level correlatively changes the fly body size; either overexpression or deletion of miR-8 abrogates ecdysone-induced growth control. Consistently, perturbation of USH impedes ecdysone's effect on body growth. Thus, miR-8 acts as a molecular rheostat that tunes organismal growth in response to a developmental maturation signal.
Collapse
Affiliation(s)
- Hua Jin
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - V Narry Kim
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Seogang Hyun
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea.,School of Biological Sciences, Chung-Ang University, Seoul 156-756, Korea
| |
Collapse
|
159
|
Benmimoun B, Polesello C, Waltzer L, Haenlin M. Dual role for Insulin/TOR signaling in the control of hematopoietic progenitor maintenance in Drosophila. Development 2012; 139:1713-7. [PMID: 22510984 DOI: 10.1242/dev.080259] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The interconnected Insulin/IGF signaling (IlS) and Target of Rapamycin (TOR) signaling pathways constitute the main branches of the nutrient-sensing system that couples growth to nutritional conditions in Drosophila. Here, we addressed the influence of these pathways and of diet restriction on the balance between the maintenance of multipotent hematopoietic progenitors and their differentiation in the Drosophila lymph gland. In this larval hematopoietic organ, a pool of stem-like progenitor blood cells (prohemocytes) is kept undifferentiated in response to signaling from a specialized group of cells forming the posterior signaling center (PSC), which serves as a stem cell niche. We show that, reminiscent of the situation in human, loss of the negative regulator of IIS Pten results in lymph gland hyperplasia, aberrant blood cell differentiation and hematopoietic progenitor exhaustion. Using site-directed loss- and gain-of-function analysis, we demonstrate that components of the IIS/TOR pathways control lymph gland homeostasis at two levels. First, they cell-autonomously regulate the size and activity of the hematopoietic niche. Second, they are required within the prohemocytes to control their growth and maintenance. Moreover, we show that diet restriction or genetic alteration mimicking amino acid deprivation triggers progenitor cell differentiation. Hence, our study highlights the role of the IIS/TOR pathways in orchestrating hematopoietic progenitor fate and links blood cell fate to nutritional status.
Collapse
Affiliation(s)
- Billel Benmimoun
- Université de Toulouse, UPS, CBD (Centre de Biologie du Développement), Bâtiment 4R3, 118 route de Narbonne, F-31062 Toulouse, France
| | | | | | | |
Collapse
|
160
|
Chawla G, Sokol NS. Hormonal activation of let-7-C microRNAs via EcR is required for adult Drosophila melanogaster morphology and function. Development 2012; 139:1788-97. [PMID: 22510985 DOI: 10.1242/dev.077743] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Steroid hormones and their nuclear receptors drive developmental transitions in diverse organisms, including mammals. In this study, we show that the Drosophila steroid hormone 20-hydroxyecdysone (20E) and its nuclear receptor directly activate transcription of the evolutionarily conserved let-7-complex (let-7-C) locus, which encodes the co-transcribed microRNAs miR-100, let-7 and miR-125. These small RNAs post-transcriptionally regulate the expression of target genes, and are required for the remodeling of the Drosophila neuromusculature during the larval-to-adult transition. Deletion of three 20E responsive elements located in the let-7-C locus results in reduced levels of let-7-C microRNAs, leading to neuromuscular and behavioral defects in adults. Given the evolutionary conservation of let-7-C microRNA sequences and temporal expression profiles, these findings indicate that steroid hormone-coupled control of let-7-C microRNAs is part of an ancestral pathway controlling the transition from larval-to-reproductive animal forms.
Collapse
Affiliation(s)
- Geetanjali Chawla
- Jordan Hall A502, Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
161
|
Grewal SS. Controlling animal growth and body size - does fruit fly physiology point the way? F1000 BIOLOGY REPORTS 2012; 4:12. [PMID: 22685490 PMCID: PMC3369236 DOI: 10.3410/b4-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The question of how growth and size are controlled has fascinated generations of biologists. However, the underlying mechanisms still remain unclear. The last year or so has seen a flurry of reports on the control of growth and body size in Drosophila, and a central theme to these papers is the idea of signaling between organs as a control mechanism for overall body growth and development. While this concept is obviously not new, these fly studies now open up the possibility of using a genetically tractable system to dissect in detail how organ-to-organ communication dictates body size.
Collapse
Affiliation(s)
- Savraj S Grewal
- Clark Smith Brain Tumor Center, Southern Alberta Cancer Research Institute, Department of Biochemistry and Molecular Biology, University of Calgary Alberta, T2N 1N4 Canada
| |
Collapse
|
162
|
Small temporal RNAs in animal development. Curr Opin Genet Dev 2012; 22:368-73. [PMID: 22578317 DOI: 10.1016/j.gde.2012.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 04/03/2012] [Accepted: 04/08/2012] [Indexed: 11/21/2022]
Abstract
The lin-4/miR-125 and let-7 microRNAs are at the heart of the heterochronic pathway, which controls temporal cell fate determination during Caenorhabditis elegans development. These small temporal RNAs are clustered along with a third microRNA, miR-100, in the genomes of most animals. Their conserved temporal and neural expression profile suggests a general role in cell fate determination during nervous system differentiation. By triggering consecutive differentiation programs, these microRNAs probably help to determine birth-order dependent temporal identity and thereby contribute to neural stem cell multipotency.
Collapse
|
163
|
Garelli A, Gontijo AM, Miguela V, Caparros E, Dominguez M. Imaginal Discs Secrete Insulin-Like Peptide 8 to Mediate Plasticity of Growth and Maturation. Science 2012; 336:579-82. [DOI: 10.1126/science.1216735] [Citation(s) in RCA: 375] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
164
|
Poelchau MF, Reynolds JA, Denlinger DL, Elsik CG, Armbruster PA. A de novo transcriptome of the Asian tiger mosquito, Aedes albopictus, to identify candidate transcripts for diapause preparation. BMC Genomics 2011; 12:619. [PMID: 22185595 PMCID: PMC3258294 DOI: 10.1186/1471-2164-12-619] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 12/20/2011] [Indexed: 12/12/2022] Open
Abstract
Background Many temperate insects survive the harsh conditions of winter by undergoing photoperiodic diapause, a pre-programmed developmental arrest initiated by short day lengths. Despite the well-established ecological significance of photoperiodic diapause, the molecular basis of this crucial adaptation remains largely unresolved. The Asian tiger mosquito, Aedes albopictus (Skuse), represents an outstanding emerging model to investigate the molecular basis of photoperiodic diapause in a well-defined ecological and evolutionary context. Ae. albopictus is a medically significant vector and is currently considered the most invasive mosquito in the world. Traits related to diapause appear to be important factors contributing to the rapid spread of this mosquito. To generate novel sequence information for this species, as well as to discover transcripts involved in diapause preparation, we sequenced the transcriptome of Ae. albopictus oocytes destined to become diapausing or non-diapausing pharate larvae. Results 454 GS-FLX transcriptome sequencing yielded >1.1 million quality-filtered reads, which we assembled into 69,474 contigs (N50 = 1,009 bp). Our contig filtering approach, where we took advantage of strong sequence similarity to the fully sequenced genome of Aedes aegypti, as well as other reference organisms, resulted in 11,561 high-quality, conservative ESTs. Differential expression estimates based on normalized read counts revealed 57 genes with higher expression, and 257 with lower expression under diapause-inducing conditions. Analysis of expression by qPCR for 47 of these genes indicated a high correlation of expression levels between 454 sequence data and qPCR, but congruence of statistically significant differential expression was low. Seven genes identified as differentially expressed based on qPCR have putative functions that are consistent with the insect diapause syndrome; three genes have unknown function and represent novel candidates for the transcriptional basis of diapause. Conclusions Our transcriptome database provides a rich resource for the comparative genomics and functional genetics of Ae. albopictus, an invasive and medically important mosquito. Additionally, the identification of differentially expressed transcripts related to diapause enriches the limited knowledge base for the molecular basis of insect diapause, in particular for the preparatory stage. Finally, our analysis illustrates a useful approach that draws from a closely related reference genome to generate high-confidence ESTs in a non-model organism.
Collapse
Affiliation(s)
- Monica F Poelchau
- Department of Biology, Georgetown University, 37th and O Streets NW, Washington, DC, USA.
| | | | | | | | | |
Collapse
|
165
|
Rewitz KF, O’Connor MB. Timing is Everything: PTTH Mediated DHR4 Nucleocytoplasmic Trafficking Sets the Tempo of Drosophila Steroid Production. Front Endocrinol (Lausanne) 2011; 2:108. [PMID: 22649397 PMCID: PMC3355928 DOI: 10.3389/fendo.2011.00108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/06/2011] [Indexed: 11/13/2022] Open
Abstract
During development, multicellular organisms must become sexually mature in order to reproduce. The developmental timing of this transition is controlled by pulses of steroid hormones, but how these pulses are generated have remained unclear? A recent paper shows that in Drosophila larvae, nucleocytoplasmic trafficking of DHR4, a nuclear receptor, in response to prothoracicotropic hormone signaling, is critical for producing the correct temporal pulses of steroid hormones that coordinate the juvenile-adult transition.
Collapse
Affiliation(s)
- Kim F. Rewitz
- Department of Science, Systems and Models, Roskilde UniversityRoskilde, Denmark
| | - Michael B. O’Connor
- Department of Genetics, Cell Biology and Development, University of MinnesotaMinneapolis, MN, USA
- *Correspondence: Michael B. O’Connor, Department of Genetics Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, Minneapolis, MN 55455, USA. e-mail:
| |
Collapse
|