151
|
Röseler S, Sandrock K, Bartsch I, Busse A, Omran H, Loges NT, Zieger B. Lethal phenotype of mice carrying a Sept11 null mutation. Biol Chem 2012; 392:779-81. [PMID: 21824005 DOI: 10.1515/bc.2011.093] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Septins are cytoskeletal GTP-binding proteins involved in processes characterized by active membrane movement, such as cytokinesis, vesicle trafficking and exocytosis. Most septins are expressed ubiquitously, however, some septins accumulate in particular tissues. The ubiquitous SEPT11 also shows high expression levels in the central nervous system and in platelets. Here, SEPT11 is involved in vesicle trafficking and may play a role in synaptic connectivity. Interestingly, mice that harbor a homozygous Sept11 null mutation, die in utero. From day 11.5 post coitum onwards, development of homozygous embryos seems to be retarded and the embryos from day 13.5 onwards were dead.
Collapse
Affiliation(s)
- Sabrina Röseler
- Department of Pediatrics and Adolescent Medicine, University Medical Center Freiburg, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
152
|
Mandel-Gutfreund Y, Kosti I, Larisch S. ARTS, the unusual septin: structural and functional aspects. Biol Chem 2012; 392:783-90. [PMID: 21824006 DOI: 10.1515/bc.2011.089] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The human Septin 4 gene (Sept4) encodes two major protein isoforms; Sept4_i1 (H5/PNUTL2) and Sept4_i2/ARTS. Septins have been traditionally studied for their role in cytokinesis and their filament-forming abilities, but subsequently have been implicated in diverse functions, including membrane dynamics, cytoskeletal reorganization, vesicle trafficking, and tumorigenesis. ARTS is localized at mitochondria and promotes programmed cell death (apoptosis). These features distinguish ARTS from any other known human septin family member. This review compares the structural and functional properties of ARTS with other septins. In addition, it describes how a combination of two distinct promoters, differential splicing, and intron retention leads to the generation of two different Sept4 variants with diverse biological activity.
Collapse
Affiliation(s)
- Yael Mandel-Gutfreund
- Computational Molecular Biology Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | |
Collapse
|
153
|
Abstract
Programmed cell death (PCD) plays a fundamental role in animal development and tissue homeostasis. Abnormal regulation of this process is associated with a wide variety of human diseases, including immunological and developmental disorders, neurodegeneration, and cancer. Here, we provide a brief historical overview of the field and reflect on the regulation, roles, and modes of PCD during animal development. We also discuss the function and regulation of apoptotic proteins, including caspases, the key executioners of apoptosis, and review the nonlethal functions of these proteins in diverse developmental processes, such as cell differentiation and tissue remodeling. Finally, we explore a growing body of work about the connections between apoptosis, stem cells, and cancer, focusing on how apoptotic cells release a variety of signals to communicate with their cellular environment, including factors that promote cell division, tissue regeneration, and wound healing.
Collapse
|
154
|
Cyclin-dependent kinase 16/PCTAIRE kinase 1 is activated by cyclin Y and is essential for spermatogenesis. Mol Cell Biol 2011; 32:868-79. [PMID: 22184064 DOI: 10.1128/mcb.06261-11] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cyclin-dependent kinase 16 (CDK16, PCTK1) is a poorly characterized protein kinase, highly expressed in the testis and the brain. Here, we report that CDK16 is activated by membrane-associated cyclin Y (CCNY). Treatment of transfected human cells with the protein kinase A (PKA) activator forskolin blocked, while kinase inhibition promoted, CCNY-dependent targeting of CDK16-green fluorescent protein (GFP) to the cell membrane. CCNY binding to CDK16 required a region upstream of the kinase domain and was found to be inhibited by phosphorylation of serine 153, a potential PKA phosphorylation site. Thus, in contrast to other CDKs, CDK16 is regulated by phosphorylation-controlled cyclin binding. CDK16 isolated from murine testis was unphosphorylated, interacted with CCNY, and exhibited kinase activity. To investigate the function of CDK16 in vivo, we established a conditional knockout allele. Mice lacking CDK16 developed normally, but male mice were infertile. Spermatozoa isolated from their epididymis displayed thinning and elongation of the annulus region, adopted a bent shape, and showed impaired motility. Moreover, CDK16-deficient spermatozoa had malformed heads and excess residual cytoplasm, suggesting a role of CDK16 in spermiation. Thus, CDK16 is a membrane-targeted CDK essential for spermatogenesis.
Collapse
|
155
|
Bornstein B, Edison N, Gottfried Y, Lev T, Shekhtman A, Gonen H, Rajalingam K, Larisch S. X-linked Inhibitor of Apoptosis Protein promotes the degradation of its antagonist, the pro-apoptotic ARTS protein. Int J Biochem Cell Biol 2011; 44:489-95. [PMID: 22185822 DOI: 10.1016/j.biocel.2011.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 11/24/2011] [Accepted: 12/06/2011] [Indexed: 02/07/2023]
Abstract
ARTS (Sept4_i2) is a mitochondrial pro-apoptotic tumor suppressor protein. In response to apoptotic signals, ARTS translocates to the cytosol where it promotes caspase activation through caspase de-repression and proteasome mediated degradation of X-linked Inhibitor of Apoptosis Protein (XIAP). Here we show that XIAP regulates the levels of ARTS by serving as its ubiquitin ligase, thereby providing a potential feedback mechanism to protect against unwanted apoptosis. Using both in vitro and in vivo ubiquitination assays we found that ARTS is directly ubiquitinated by XIAP. Moreover, we found that XIAP-induced ubiquitination and degradation is prevented by removal of the first four amino acids in the N-terminus of ARTS, which contains a single lysine residue at position 3. Thus, this lysine at position 3 is a likely target for ubiquitination by XIAP. Importantly, although the stabilized ARTS lacking its first 4 residues binds XIAP as well as the full length ARTS, it is more potent in promoting apoptosis than the full length ARTS. This suggests that increased stability of ARTS has a significant effect on its ability to induce apoptosis. Collectively, our data reveal a mutual regulatory mechanism by which ARTS and XIAP control each other's levels through the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Bavat Bornstein
- Cell Death Research Laboratory, Department of Biology, Faculty of Natural Sciences, University of Haifa, Mount Carmel, Haifa 31905, Israel
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Bornstein B, Gottfried Y, Edison N, Shekhtman A, Lev T, Glaser F, Larisch S. ARTS binds to a distinct domain in XIAP-BIR3 and promotes apoptosis by a mechanism that is different from other IAP-antagonists. Apoptosis 2011; 16:869-81. [PMID: 21695558 DOI: 10.1007/s10495-011-0622-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
ARTS (Sept4_i2), is a pro-apoptotic protein localized at the mitochondria of living cells. In response to apoptotic signals, ARTS rapidly translocates to the cytosol where it binds and antagonizes XIAP to promote caspase activation. However, the mechanism of interaction between these two proteins and how it is regulated remained to be explored. In this study, we show that ARTS and XIAP bind directly to each other, as recombinant ARTS and XIAP proteins co-immunoprecipitate together. We also show that over expression of ARTS alone is sufficient to induce a strong down-regulation of XIAP protein levels and that this reduction occurs through the ubiquitin proteasome system (UPS). Using various deletion and mutation constructs of XIAP we show that ARTS specifically binds to the BIR3 domain in XIAP. Moreover, we found that ARTS binds to different sequences in BIR3 than other IAP antagonists such as SMAC/Diablo. Computational analysis comparing the location of the putative ARTS interface in BIR3 with the known interfaces of SMAC/Diablo and caspase 9 support our results indicating that ARTS interacts with residues in BIR3 that are different from those involved in binding SMAC/Diablo and caspase 9. We therefore suggest that ARTS binds and antagonizes XIAP in a way which is distinct from other IAP-antagonists to promote apoptosis.
Collapse
Affiliation(s)
- Bavat Bornstein
- Cell Death Research Laboratory, Department of Biology, University of Haifa, Mount Carmel, Israel
| | | | | | | | | | | | | |
Collapse
|
157
|
Rode B, Dirami T, Bakouh N, Rizk-Rabin M, Norez C, Lhuillier P, Lorès P, Jollivet M, Melin P, Zvetkova I, Bienvenu T, Becq F, Planelles G, Edelman A, Gacon G, Touré A. The testis anion transporter TAT1 (SLC26A8) physically and functionally interacts with the cystic fibrosis transmembrane conductance regulator channel: a potential role during sperm capacitation. Hum Mol Genet 2011; 21:1287-98. [PMID: 22121115 DOI: 10.1093/hmg/ddr558] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Slc26 gene family encodes several conserved anion transporters implicated in human genetic disorders, including Pendred syndrome, diastrophic dysplasia and congenital chloride diarrhea. We previously characterized the TAT1 (testis anion transporter 1; SLC26A8) protein specifically expressed in male germ cells and mature sperm and showed that in the mouse, deletion of Tat1 caused male sterility due to a lack of sperm motility, impaired sperm capacitation and structural defects of the flagella. Ca(2+), Cl(-) and HCO(3)(-) influxes trigger sperm capacitation events required for oocyte fertilization; these events include the intracellular rise of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA)-dependent protein phosphorylation. The cystic fibrosis transmembrane conductance regulator (CFTR) is expressed in mature sperm and has been shown to contribute to Cl(-) and HCO(3)(-) movements during capacitation. Furthermore, several members of the SLC26 family have been described to form complexes with CFTR, resulting in the reciprocal regulation of their activities. We show here that TAT1 and CFTR physically interact and that in Xenopus laevis oocytes and in CHO-K1 cells, TAT1 expression strongly stimulates CFTR activity. Consistent with this, we show that Tat1 inactivation in mouse sperm results in deregulation of the intracellular cAMP content, preventing the activation of PKA-dependent downstream phosphorylation cascades essential for sperm activation. These various results suggest that TAT1 and CFTR may form a molecular complex involved in the regulation of Cl(-) and HCO(3)(-) fluxes during sperm capacitation. In humans, mutations in CFTR and/or TAT1 may therefore be causes of asthenozoospermia and low fertilizing capacity of sperm.
Collapse
|
158
|
The emerging functions of septins in metazoans. EMBO Rep 2011; 12:1118-26. [PMID: 21997296 DOI: 10.1038/embor.2011.193] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/05/2011] [Indexed: 01/19/2023] Open
Abstract
Septins form a subfamily of highly related GTP-binding proteins conserved from eukaryotic protists to mammals. In most cases, septins function in close association with cell membranes and the actin and microtubule cytoskeleton to regulate a wide variety of key cellular processes. Further underscoring their importance, septin abnormalities are associated with several human diseases. Remarkably, septins have the ability to polymerize into assemblies of different sizes in vitro and in vivo. In cells, these structures act in the formation of diffusion barriers and scaffolds that maintain subcellular polarity. Here, we focus on the emerging roles of vertebrate septins in ciliogenesis, neurogenesis, tumorigenesis and host-pathogen interactions, and discuss whether unifying themes underlie the molecular function of septins in health and disease.
Collapse
|
159
|
Sellin ME, Holmfeldt P, Stenmark S, Gullberg M. Microtubules support a disk-like septin arrangement at the plasma membrane of mammalian cells. Mol Biol Cell 2011; 22:4588-601. [PMID: 21998205 PMCID: PMC3226477 DOI: 10.1091/mbc.e11-09-0754] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Septin assemblies during the interphase of animal cells remain poorly defined and are the topic of this report. The data point to a general model for assembly of higher-order septin arrangements at locations providing the greatest opportunity for binding cooperativity, which depends on both the cell type and external cues. Septin family proteins oligomerize through guanosine 5′-triphosphate–binding domains into core heteromers, which in turn polymerize at the cleavage furrow of dividing fungal and animal cells. Septin assemblies during the interphase of animal cells remain poorly defined and are the topic of this report. In this study, we developed protocols for visualization of authentic higher-order assemblies using tagged septins to effectively replace the endogenous gene product within septin core heteromers in human cells. Our analysis revealed that septins assemble into microtubule-supported, disk-like structures at the plasma membrane. In the absence of cell substrate adhesion, this is the predominant higher-order arrangement in interphase cells and each of the seven to eight septin family members expressed by the two analyzed cell types appears equally represented. However, studies of myeloid and lymphoid cell model systems revealed cell type–specific alterations of higher-order septin arrangements in response to substrate adhesion. Live-cell observations suggested that all higher-order septin assemblies are mutually exclusive with plasma membrane regions undergoing remodeling. The combined data point to a mechanism by which densely arranged cortical microtubules, which are typical for nonadhered spherical cells, support plasma membrane–bound, disk-like septin assemblies.
Collapse
Affiliation(s)
- Mikael E Sellin
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|
160
|
Lin YH, Kuo YC, Chiang HS, Kuo PL. The role of the septin family in spermiogenesis. SPERMATOGENESIS 2011; 1:298-302. [PMID: 22332113 DOI: 10.4161/spmg.1.4.18326] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 09/29/2011] [Accepted: 09/29/2011] [Indexed: 01/08/2023]
Abstract
SEPTINS (FULL NAME: Septin; symbol name: SEPT) belong to a family of polymerizing GTP-binding proteins that are required for many cellular functions, including membrane compartmentalization, vesicle trafficking, mitosis and cytoskeletal remodeling. Two of the 14 family members in the mammalian species, Septin12 and 14 are expressed specifically in the testis. In the mouse, knockout of Septin4 and Septin12 leads to male sterility with distinctive sperm pathology (defective annulus or bent neck). In humans, sperm with abnormal expression patterns of SEPT4, 7 and 12 are more prevalent in infertile men. How septin filament is assembled/dissembled and how the SEPT-related complex regulates spermatogenesis still await further investigation.
Collapse
Affiliation(s)
- Ying-Hung Lin
- Graduate Institute of Basic Medicine; Fu Jen Catholic University; Taipei, Taiwan
| | | | | | | |
Collapse
|
161
|
Involvement of SEPT4_i1 in hepatocellular carcinoma: SEPT4_i1 regulates susceptibility to apoptosis in hepatocellular carcinoma cells. Mol Biol Rep 2011; 39:4519-26. [PMID: 21952823 DOI: 10.1007/s11033-011-1242-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/14/2011] [Indexed: 11/27/2022]
Abstract
SEPT4 belongs to the Septin family with multiple functions in cell division, cytoskeletal organization and other processes. This study aims to investigate the relationship between SEPT4_i1 isoform and human hepatocellular carcinoma (HCC). We showed that over-expression of SEPT4_i1 in HCC cells was able to sensitize cells to serum starvation-induced apoptosis. By contrast, knockdown of SEPT4_i1 expression in HCC cells was able to rescue cells from apoptosis induced by serum deprivation and to promote cell growth. Expressional analysis of SEPT4_i1 in tumor tissues further revealed that SEPT4_i1 was significantly down-regulated in human HCC tissues. Taken together, these data suggests a tumor suppressor role of SEPT4_i1 in HCC through regulating HCC cell apoptosis.
Collapse
|
162
|
Pissuti Damalio JC, Garcia W, Alves Macêdo JN, de Almeida Marques I, Andreu JM, Giraldo R, Garratt RC, Ulian Araújo AP. Self assembly of human septin 2 into amyloid filaments. Biochimie 2011; 94:628-36. [PMID: 21967827 DOI: 10.1016/j.biochi.2011.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 09/15/2011] [Indexed: 11/15/2022]
Abstract
Septins are a conserved group of GTP-binding proteins that form hetero-oligomeric complexes which assemble into filaments. These are essential for septin function, including their role in cytokinesis, cell division, exocytosis and membrane trafficking. Septin 2 (SEPT2) is a member of the septin family and has been associated with neurofibrillary tangles and other pathological features of senile plaques in Alzheimer's disease. An in silico analysis of the amino acid sequence of SEPT2 identified regions with a significant tendency to aggregate and/or form amyloid. These were all observed within the GTP-binding domain. This was consistent with the experimental identification of a structure rich in β-sheet during temperature induced unfolding transitions observed for both the full length protein and the GTP-binding domain alone. This intermediate state is characterized by irreversible aggregation and has the ability to bind Thioflavin-T, suggesting its amyloid nature. Under electron microscopy, fibers extending for several micrometers in length could be visualized. The results shown in this study support the hypothesis that single septins, when present in excess or with unbalanced stoichiometries, may be unstable and assemble into amyloid-like structures.
Collapse
Affiliation(s)
- Julio Cesar Pissuti Damalio
- Centro de Biotecnologia Molecular Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Sãocarlense, 400, 13560-970 São Carlos, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Iyengar PV, Hirota T, Hirose S, Nakamura N. Membrane-associated RING-CH 10 (MARCH10 protein) is a microtubule-associated E3 ubiquitin ligase of the spermatid flagella. J Biol Chem 2011; 286:39082-90. [PMID: 21937444 DOI: 10.1074/jbc.m111.256875] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Spermiogenesis is a complex and dynamic process of the metamorphosis of spermatids into spermatozoa. There is a great deal that is still unknown regarding the regulatory mechanisms for the formation of the sperm flagellum. In this study, we determined that the membrane-associated RING-CH 10 (March10) gene is predominantly expressed in rat testis. We isolated two March10 isoforms encoding MARCH10a and MARCH10b, which are generated by alternative splicing. MARCH10a is a long RING finger protein, and MARCH10b is a short RING finger-less protein. Immunohistochemical staining revealed that the MARCH10 proteins are specifically expressed in elongating and elongated spermatids, and the expression is absent in epididymal spermatozoa. MARCH10 immunoreactivity was observed in the cytoplasmic lobes as well as the principal piece and annulus of the flagella. When overexpressed in COS7 cells, MARCH10a was localized along the microtubules, whereas MARCH10b was distributed throughout the cytoplasm. An in vitro microtubule cosedimentation assay showed that MARCH10a is directly associated with microtubules. An in vitro ubiquitination assay demonstrated that the RING finger domain of MARCH10a exhibits an E3 ubiquitin ligase activity along with the E2 ubiquitin-conjugating enzyme UBE2B. Moreover, MARCH10a undergoes proteasomal degradation by autoubiquitination in transfected COS7 cells, but this activity was abolished upon microtubule disassembly. These results suggest that MARCH10 is involved in spermiogenesis by regulating the formation and maintenance of the flagella in developing spermatids.
Collapse
Affiliation(s)
- Prasanna Vasudevan Iyengar
- Department of Biological Sciences, Tokyo Institute of Technology, 4259-B-19 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
164
|
Spiliotis ET, Gladfelter AS. Spatial guidance of cell asymmetry: septin GTPases show the way. Traffic 2011; 13:195-203. [PMID: 21883761 DOI: 10.1111/j.1600-0854.2011.01268.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/18/2011] [Accepted: 08/18/2011] [Indexed: 11/30/2022]
Abstract
Eukaryotic cells develop asymmetric shapes suited for specific physiological functions. Morphogenesis of polarized domains and structures requires the amplification of molecular asymmetries by scaffold proteins and regulatory feedback loops. Small monomeric GTPases signal polarity, but how their downstream effectors and targets are spatially co-ordinated to break cell symmetry is poorly understood. Septins comprise a novel family of GTPases that polymerize into non-polar filamentous structures which scaffold and restrict protein localization. Recent studies show that septins demarcate distinct plasma membrane domains and cytoskeletal tracks, enabling the formation of intracellular asymmetries. Here, we review these findings and discuss emerging mechanisms by which septins promote cell asymmetry in fungi and animals.
Collapse
Affiliation(s)
- Elias T Spiliotis
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
165
|
Zhu J, Qi ST, Wang YP, Wang ZB, Ouyang YC, Hou Y, Schatten H, Sun QY. Septin1 is required for spindle assembly and chromosome congression in mouse oocytes. Dev Dyn 2011; 240:2281-9. [PMID: 21932310 DOI: 10.1002/dvdy.22725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2011] [Indexed: 01/12/2023] Open
Abstract
The bipolar spindle is a complex molecular machinery that drives chromosome congression and segregation. During meiosis in the mouse multiple microtubule organizing centers aggregate to form a bipolar intermediate followed by elongation and establishment of the barrel-shaped acentriolar meiotic spindle. Previous studies have shown that septin1 is localized to spindle poles in mitosis, suggesting its possible involvement in spindle assembly. We, therefore, asked whether perturbation of septin1 will impair the process of spindle assembly and investigated localization and function during mouse oocyte meiotic maturation. Septin1 was localized to the spindle at metaphase and at the midbody during cytokinesis. Disruption of septin1 function using siRNA caused a decrease in PBE and extensive spindle defects. Moreover, the process of chromosome congression was impaired. However, septin1 depletion did not cause aneuploidy in oocyte with an extruded polar body. Taken together, our results show that septin1 is a key player in spindle assembly and chromosome congression in mouse meiosis.
Collapse
Affiliation(s)
- Jinliang Zhu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Graduate School, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Edison N, Zuri D, Maniv I, Bornstein B, Lev T, Gottfried Y, Kemeny S, Garcia-Fernandez M, Kagan J, Larisch S. The IAP-antagonist ARTS initiates caspase activation upstream of cytochrome C and SMAC/Diablo. Cell Death Differ 2011; 19:356-68. [PMID: 21869827 DOI: 10.1038/cdd.2011.112] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ARTS (Sept4_i2) is a pro-apoptotic tumor suppressor protein that functions as an antagonist of X-linked IAP (XIAP) to promote apoptosis. It is generally thought that mitochondrial outer membrane permeabilization (MOMP) occurs before activation of caspases and is required for it. Here, we show that ARTS initiates caspase activation upstream of MOMP. In living cells, ARTS is localized to the mitochondrial outer membrane. In response to apoptotic signals, ARTS translocates rapidly to the cytosol in a caspase-independent manner, where it binds XIAP and promotes caspase activation. This translocation precedes the release of cytochrome C and SMAC/Diablo, and ARTS function is required for the normal timing of MOMP. We also show that ARTS-induced caspase activation leads to cleavage of the pro-apoptotic Bcl-2 family protein Bid, known to promote MOMP. We propose that translocation of ARTS initiates a first wave of caspase activation that can promote MOMP. This leads to the subsequent release of additional mitochondrial factors, including cytochrome C and SMAC/Diablo, which then amplifies the caspase cascade and causes apoptosis.
Collapse
Affiliation(s)
- N Edison
- Department of Biology, Faculty of Natural Sciences, Cell Death Research Laboratory, University of Haifa, Multi-Purpose Building, Mount Carmel, Haifa 31905, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Hagiwara A, Tanaka Y, Hikawa R, Morone N, Kusumi A, Kimura H, Kinoshita M. Submembranous septins as relatively stable components of actin-based membrane skeleton. Cytoskeleton (Hoboken) 2011; 68:512-25. [PMID: 21800439 DOI: 10.1002/cm.20528] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 12/19/2022]
Abstract
The cell cortex is organized by the dynamic interplay between the plasma membrane, membrane proteins, and the cytoskeleton. Despite the cortical localization of septin heteropolymers in vivo and their direct interaction with phospholipid membranes in vitro, their behavior and roles remain elusive. This study characterizes the major cortical septin assembly found in mammalian tissue culture cells by fluorescence recovery after photobleaching analysis. GFP-tagged septin subunits, which colocalized with cortical actin, exhibited slower turnover than some other cortical proteins that were analyzed (e.g., actin, syntaxin-1A and a glutamate aspartate transporter [GLAST]). Perturbation of actin turnover by cytochalasin D or jasplakinolide retarded the cortical septin turnover, while septin depletion by RNAi did not recognizably affect cortical actin turnover. These phenomena are compatibly interpreted by septins' selective association with a subset of actin-based membrane skeleton, as revealed by rapid-freeze deep-etch immuno-replica electron microscopy. We applied the assay system to test septins' presumptive scaffold function on their physiological binding partners. Septin filament destabilization by RNAi-mediated subunit depletion facilitated the turnover of GLAST, depending on the carboxyl-terminal 29 residues, while a septin filament-stabilizing drug forchlorfenuron restrained more GLAST in the unexchangeable fraction. These data indicate that cortical septin heteropolymers are components of the actin-based membrane skeleton providing scaffolds for their interacting partners probably by impeding their lateral diffusion. We predict that diverse submembranous septin clusters found in vivo may serve as scaffolds or reserve pools for specific membrane-bound proteins.
Collapse
Affiliation(s)
- Akari Hagiwara
- Biochemistry and Cell Biology Unit, HMRO, Kyoto University Graduate School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
168
|
Nishihama R, Onishi M, Pringle JR. New insights into the phylogenetic distribution and evolutionary origins of the septins. Biol Chem 2011; 392:681-7. [PMID: 21824002 PMCID: PMC3951473 DOI: 10.1515/bc.2011.086] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Until recently, it had appeared that the septin family of proteins was restricted to the opisthokont eukaryotes (the fungi and animals and their close relatives the microsporidia and choanoflagellates). It has now become apparent that septins are also present in several other widely divergent eukaryotic lineages (chlorophyte algae, brown algae, and ciliates). This distribution and the details of the non-opisthokont septin sequences appear to require major revisions to hypotheses about the origins and early evolution of the septins.
Collapse
Affiliation(s)
- Ryuichi Nishihama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Masayuki Onishi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - John R. Pringle
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
169
|
Connolly D, Abdesselam I, Verdier-Pinard P, Montagna C. Septin roles in tumorigenesis. Biol Chem 2011; 392:725-38. [PMID: 21740328 DOI: 10.1515/bc.2011.073] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Septins are a family of cytoskeleton related proteins consisting of 14 members that associate and interact with actin and tubulin. From yeast to humans, septins maintain a conserved role in cytokinesis and they are also involved in a variety of other cellular functions including chromosome segregation, DNA repair, migration and apoptosis. Tumorigenesis entails major alterations in these processes. A substantial body of literature reveals that septins are overexpressed, downregulated or generate chimeric proteins with MLL in a plethora of solid tumors and in hematological malignancies. Thus, members of this gene family are emerging as key players in tumorigenesis. The analysis of septins during cancer initiation and progression is challenged by the presence of many family members and by their potential to produce numerous isoforms. However, the development and application of advanced technologies is allowing for a more detailed analysis of septins during tumorigenesis. Specifically, such applications have led to the establishment and validation of SEPT9 as a biomarker for the early detection of colorectal cancer. This review summarizes the current knowledge on the role of septins in tumorigenesis, emphasizing their significance and supporting their use as potential biomarkers in various cancer types.
Collapse
Affiliation(s)
- Diana Connolly
- Department of Genetics, Albert Einstein College of Medicine of Yeshiva University, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
170
|
Toure A, Rode B, Hunnicutt GR, Escalier D, Gacon G. Septins at the annulus of mammalian sperm. Biol Chem 2011; 392:799-803. [PMID: 21740329 DOI: 10.1515/bc.2011.074] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The annulus is an electron-dense ring structure connecting the midpiece and the principal piece of the mammalian sperm flagellum. Proteins from the septin family have been shown to localize to the annulus. A septin complex is assembled early in spermiogenesis with the cochaperone DNAJB13 and, in mature sperm, associates with Testis Anion Transporter 1; SLC26A8 (Tat1), a transmembrane protein of the SLC26 family. Studies in mice have shown that the annulus acts as a barrier to protein diffusion and controls correct organization of the midpiece. Consistent with these findings, absence of the annulus is associated with flagellum differentiation defects and asthenozoospermia in humans.
Collapse
|
171
|
Dynamics of Sept4 expression in fibrotic livers of mice infected with Schistosoma japonicum. Parasitology 2011; 138:1003-10. [DOI: 10.1017/s0031182011000667] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
SUMMARYIn order to investigate the dynamics of Septin4 (Sept4) expression and its function in the formation of fibrotic livers in mice infected with Schistosoma japonicum, we constructed the mouse model of S. japonicum egg-induced liver fibrosis for 24 weeks. Immunohistochemical staining, qRT-PCR and Western blot were used to detect the expression of Sept4 and α-smooth muscle actin (α-SMA). We found Sept4 localized in the perisinusoidal space where hepatic stellate cells (HSCs) distribute in the periphery of circumoval granulomas and the portal venule. The expression of Sept4 and α-SMA had a similar significant tendency of an up-regulation to a peak at 12 weeks post-infection (p.i.) followed by a down-regulation. At 24 weeks p.i. both were at a low level. These results suggest that Sept4 and α-SMA may interact together in HSCs. Based on this evidence, we hypothesize that Sept4 seems to be involved in the formation of inflammatory granulomata and subsequent liver fibrosis by regulating HSCs activation.
Collapse
|
172
|
Hu Q, Nelson WJ. Ciliary diffusion barrier: the gatekeeper for the primary cilium compartment. Cytoskeleton (Hoboken) 2011; 68:313-24. [PMID: 21634025 PMCID: PMC3143192 DOI: 10.1002/cm.20514] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 05/04/2011] [Indexed: 11/08/2022]
Abstract
The primary cilium is a cellular antenna that detects and transmits chemical and mechanical cues in the environment through receptors and downstream signal proteins enriched along the ciliary membrane. While it is known that ciliary membrane proteins enter the cilium by way of vesicular and intraflagellar transport, less is known about how ciliary membrane proteins are retained in, and how apical membrane proteins are excluded from the cilium. Here, we review evidence for a membrane diffusion barrier at the base of the primary cilium, and highlight the recent finding of a septin cytoskeleton diffusion barrier. We also discuss candidate ciliopathy genes that may be involved in formation of the barrier, and the role of a diffusion barrier as a common mechanism for compartmentalizing membranes and lipid domains.
Collapse
Affiliation(s)
- Qicong Hu
- Department of Biology, Stanford University, Stanford, CA 94305
| | - W. James Nelson
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305
| |
Collapse
|
173
|
Abstract
The PC (primary cilium) is present on most cell types in both developing and adult tissues in vertebrates. Despite multiple reports in the 1960s, the PC was almost forgotten for decades by most of the cell biology community, mainly because its function appeared enigmatic. This situation changed 10 years ago with the key discovery that this fascinating structure is the missing link between complex genetic diseases and key signalling pathways during development and tissue homoeostasis. A similar misfortune might have happened to an original membrane domain found at the base of PC in most cell types and recently termed the 'ciliary pocket'. A morphologically related structure has also been described at the connecting cilium of photoreceptors and at the flagellum in spermatids. Its organization is also reminiscent of the flagellar pocket, a plasma membrane invagination specialized in uptake and secretion encountered in kinetoplastid protozoa. The exact function of the ciliary pocket remains to be established, but the recent observation of endocytic activity coupled to the fact that vesicular trafficking plays important roles during ciliogenesis brought excitement in the ciliary community. Here, we have tried to decipher what this highly conserved membrane domain could tell us about the function and/or biogenesis of the associated cilium.
Collapse
|
174
|
Oh Y, Bi E. Septin structure and function in yeast and beyond. Trends Cell Biol 2011; 21:141-8. [PMID: 21177106 PMCID: PMC3073566 DOI: 10.1016/j.tcb.2010.11.006] [Citation(s) in RCA: 173] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 11/04/2010] [Accepted: 11/15/2010] [Indexed: 12/30/2022]
Abstract
Septins are conserved GTP-binding proteins that assemble into hetero-oligomeric complexes and higher-order structures such as filaments, rings, hourglasses or gauzes. Septins are usually associated with a discrete region of the plasma membrane and function as a cell scaffold or diffusion barrier to effect cytokinesis, cell polarity, and many other functions. Recent structural studies of septin complexes have provided mechanistic insights into septin filament assembly, but key questions concerning the assembly, dynamics, and function of different septin structures remain to be answered.
Collapse
Affiliation(s)
- Younghoon Oh
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
175
|
Lin YH, Chou CK, Hung YC, Yu IS, Pan HA, Lin SW, Kuo PL. SEPT12 deficiency causes sperm nucleus damage and developmental arrest of preimplantation embryos. Fertil Steril 2011; 95:363-5. [PMID: 20801438 DOI: 10.1016/j.fertnstert.2010.07.1064] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/02/2010] [Accepted: 07/12/2010] [Indexed: 10/19/2022]
Abstract
Oocytes fertilized with spermatozoa obtained from Septin 12+/- chimeric mice failed to develop beyond the morula stage after IVF and intracytoplasmic sperm injection because of significant DNA defects in the spermatozoa. Given that SEPT12 is expressed at the edge of the sperm nucleus in both humans and mice, we hypothesized the vital roles of Septin 12 in sperm head shaping, nuclear DNA condensation, and early embryonic development.
Collapse
Affiliation(s)
- Ying-Hung Lin
- Graduate Institute of Basic Medical Sciences, Department of Obstetrics and Gynecology, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
176
|
Nimmakayalu M, Major H, Sheffield V, Solomon DH, Smith RJ, Patil SR, Shchelochkov OA. Microdeletion of 17q22q23.2 encompassing TBX2 and TBX4 in a patient with congenital microcephaly, thyroid duct cyst, sensorineural hearing loss, and pulmonary hypertension. Am J Med Genet A 2011; 155A:418-23. [DOI: 10.1002/ajmg.a.33827] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 10/27/2010] [Indexed: 11/08/2022]
|
177
|
García-Fernández M, Kissel H, Brown S, Gorenc T, Schile AJ, Rafii S, Larisch S, Steller H. Sept4/ARTS is required for stem cell apoptosis and tumor suppression. Genes Dev 2010; 24:2282-93. [PMID: 20952537 DOI: 10.1101/gad.1970110] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Inhibitor of Apoptosis Proteins (IAPs) are frequently overexpressed in tumors and have become promising targets for developing anti-cancer drugs. IAPs can be inhibited by natural antagonists, but a physiological requirement of mammalian IAP antagonists remains to be established. Here we show that deletion of the mouse Sept4 gene, which encodes the IAP antagonist ARTS, promotes tumor development. Sept4-null mice have increased numbers of hematopoietic stem and progenitor cells, elevated XIAP protein, increased resistance to cell death, and accelerated tumor development in an Eμ-Myc background. These phenotypes are partially suppressed by inactivation of XIAP. Our results suggest that apoptosis plays an important role as a frontline defense against cancer by restricting the number of normal stem cells.
Collapse
Affiliation(s)
- María García-Fernández
- Laboratory of Apoptosis and Cancer Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Estey MP, Di Ciano-Oliveira C, Froese CD, Bejide MT, Trimble WS. Distinct roles of septins in cytokinesis: SEPT9 mediates midbody abscission. ACTA ACUST UNITED AC 2010; 191:741-9. [PMID: 21059847 PMCID: PMC2983063 DOI: 10.1083/jcb.201006031] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Septins are a family of GTP-binding proteins implicated in mammalian cell division. Most studies examining the role of septins in this process have treated the family as a whole, thus neglecting the possibility that individual members may have diverse functions. To address this, we individually depleted each septin family member expressed in HeLa cells by siRNA and assayed for defects in cell division by immunofluorescence and time-lapse microscopy. Depletion of SEPT2, SEPT7, and SEPT11 causes defects in the early stages of cytokinesis, ultimately resulting in binucleation. In sharp contrast, SEPT9 is dispensable for the early stages of cell division, but is critical for the final separation of daughter cells. Rescue experiments indicate that SEPT9 isoforms containing the N-terminal region are sufficient to drive cytokinesis. We demonstrate that SEPT9 mediates the localization of the vesicle-tethering exocyst complex to the midbody, providing mechanistic insight into the role of SEPT9 during abscission.
Collapse
Affiliation(s)
- Mathew P Estey
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | | | |
Collapse
|
179
|
Affiliation(s)
- Yves Barral
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
180
|
Shaha C, Tripathi R, Mishra DP. Male germ cell apoptosis: regulation and biology. Philos Trans R Soc Lond B Biol Sci 2010; 365:1501-15. [PMID: 20403866 DOI: 10.1098/rstb.2009.0124] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cellular apoptosis appears to be a constant feature in the adult testis and during early development. This is essential because mammalian spermatogenesis is a complex process that requires precise homeostasis of different cell types. This review discusses the latest information available on male germ cell apoptosis induced by hormones, toxins and temperature in the context of the type of apoptotic pathway either the intrinsic or the extrinsic that may be used under a variety of stimuli. The review also discusses the importance of mechanisms pertaining to cellular apoptosis during testicular development, which is independent of exogenous stimuli. Since instances of germ cell carcinoma have increased over the past few decades, the current status of research on apoptotic pathways in teratocarcinoma cells is included. One other important aspect that is covered in this review is microRNA-mediated control of germ cell apoptosis, a field of research that is going to see intense activity in near future. Since knockout models of various kinds have been used to study many aspects of germ cell development, a comprehensive summary of literature on knockout mice used in reproduction studies is also provided.
Collapse
Affiliation(s)
- Chandrima Shaha
- Cell Death and Differentiation Research Laboratory, National Institute of Immunology, New Delhi 110067, India.
| | | | | |
Collapse
|
181
|
Lhuillier P, Escalier D, Gacon G, Dulioust E, Touré A. Asthénozoospermie humaine et anomalies de l’annulus. Med Sci (Paris) 2010; 26:688-9. [DOI: 10.1051/medsci/2010268-9688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
182
|
Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV, Spiliotis ET, Nelson WJ. A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 2010; 329:436-9. [PMID: 20558667 PMCID: PMC3092790 DOI: 10.1126/science.1191054] [Citation(s) in RCA: 390] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
In animal cells, the primary cilium transduces extracellular signals through signaling receptors localized in the ciliary membrane, but how these ciliary membrane proteins are retained in the cilium is unknown. We found that ciliary membrane proteins were highly mobile, but their diffusion was impeded at the base of the cilium by a diffusion barrier. Septin 2 (SEPT2), a member of the septin family of guanosine triphosphatases that form a diffusion barrier in budding yeast, localized at the base of the ciliary membrane. SEPT2 depletion resulted in loss of ciliary membrane protein localization and Sonic hedgehog signal transduction, and inhibited ciliogenesis. Thus, SEPT2 is part of a diffusion barrier at the base of the ciliary membrane and is essential for retaining receptor-signaling pathways in the primary cilium.
Collapse
Affiliation(s)
- Qicong Hu
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Ljiljana Milenkovic
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Hua Jin
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Matthew P. Scott
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maxence V. Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - W. James Nelson
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
183
|
Abstract
Septins are highly conserved filamentous proteins first characterized in budding yeast and subsequently identified in must eukaryotes. Septins can bind and hydrolyze GTP, which is intrinsically related to their formation of septin hexamers and functional protein interactions. The human septin family is composed of 14 loci, SEPT1-SEPT14, which encode dozens of different septin proteins. Their central GTPase and polybasic domain regions are highly conserved but they diverge in their N-terminus and/or C-terminus. The mechanism by which the different isoforms are generated is not yet well understood, but one can hypothesize that the use of different promoters and/or alternative splicing could give rise to these variants. Septins perform diverse cellular functions according to tissue expression and their interacting partners. Functions identified to date include cell division, chromosome segregation, protein scaffolding, cellular polarity, motility, membrane dynamics, vesicle trafficking, exocytosis, apoptosis, and DNA damage response. Their expression is tightly regulated to maintain proper filament assembly and normal cellular functions. Alterations of these proteins, by mutation or expression changes, have been associated with a variety of cancers and neurological diseases. The association of septins with cancer results from alterations of expression in solid tumors or translocations in leukemias [mixed lineage leukemia (MLL)]. Expression changes in septins have also been associated with neurological conditions such as Alzheimer's and Parkinson's disease, as well as retinopathies, hepatitis C, spermatogenesis and Listeria infection. Pathogenic mutations of SEPT9 were identified in the autosomal dominant neurological disorder hereditary neuralgic amyotrophy (HNA). Human septin research over the past decade has established their importance in cell biology and human disease. Further functional characterization of septins is crucial to our understanding of their possible diagnostic, prognostic, and therapeutic applications.
Collapse
Affiliation(s)
- Esther A. Peterson
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, 48109, United States of America
| | - Elizabeth M. Petty
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, 48109, United States of America
| |
Collapse
|
184
|
Hermo L, Pelletier RM, Cyr DG, Smith CE. Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 3: developmental changes in spermatid flagellum and cytoplasmic droplet and interaction of sperm with the zona pellucida and egg plasma membrane. Microsc Res Tech 2010; 73:320-63. [PMID: 19941287 DOI: 10.1002/jemt.20784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Spermiogenesis constitutes the steps involved in the metamorphosis of spermatids into spermatozoa. It involves modification of several organelles in addition to the formation of several structures including the flagellum and cytoplasmic droplet. The flagellum is composed of a neck region and middle, principal, and end pieces. The axoneme composed of nine outer microtubular doublets circularly arranged to form a cylinder around a central pair of microtubules is present throughout the flagellum. The middle and principal pieces each contain specific components such as the mitochondrial sheath and fibrous sheath, respectively, while outer dense fibers are common to both. A plethora of proteins are constituents of each of these structures, with each playing key roles in functions related to the fertility of spermatozoa. At the end of spermiogenesis, a portion of spermatid cytoplasm remains associated with the released spermatozoa, referred to as the cytoplasmic droplet. The latter has as its main feature Golgi saccules, which appear to modify the plasma membrane of spermatozoa as they move down the epididymal duct and hence may be partly involved in male gamete maturation. The end product of spermatogenesis is highly streamlined and motile spermatozoa having a condensed nucleus equipped with an acrosome. Spermatozoa move through the female reproductive tract and eventually penetrate the zona pellucida and bind to the egg plasma membrane. Many proteins have been implicated in the process of fertilization as well as a plethora of proteins involved in the development of spermatids and sperm, and these are high lighted in this review.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada H3A 2B2.
| | | | | | | |
Collapse
|
185
|
Molla-Herman A, Ghossoub R, Blisnick T, Meunier A, Serres C, Silbermann F, Emmerson C, Romeo K, Bourdoncle P, Schmitt A, Saunier S, Spassky N, Bastin P, Benmerah A. The ciliary pocket: an endocytic membrane domain at the base of primary and motile cilia. J Cell Sci 2010; 123:1785-95. [PMID: 20427320 DOI: 10.1242/jcs.059519] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cilia and flagella are eukaryotic organelles involved in multiple cellular functions. The primary cilium is generally non motile and found in numerous vertebrate cell types where it controls key signalling pathways. Despite a common architecture, ultrastructural data suggest some differences in their organisation. Here, we report the first detailed characterisation of the ciliary pocket, a depression of the plasma membrane in which the primary cilium is rooted. This structure is found at low frequency in kidney epithelial cells (IMCD3) but is associated with virtually all primary cilia in retinal pigment epithelial cells (RPE1). Transmission and scanning electron microscopy, immunofluorescence analysis and videomicroscopy revealed that the ciliary pocket establishes closed links with the actin-based cytoskeleton and that it is enriched in active and dynamic clathrin-coated pits. The existence of the ciliary pocket was confirmed in mouse tissues bearing primary cilia (cumulus), as well as motile cilia and flagella (ependymal cells and spermatids). The ciliary pocket shares striking morphological and functional similarities with the flagellar pocket of Trypanosomatids, a trafficking-specialised membrane domain at the base of the flagellum. Our data therefore highlight the conserved role of membrane trafficking in the vicinity of cilia.
Collapse
Affiliation(s)
- Anahi Molla-Herman
- Institut Cochin, Université Paris Descartes, CNRS UMR 8104, Paris 75014, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Chao HCA, Lin YH, Kuo YC, Shen CJ, Pan HA, Kuo PL. The expression pattern of SEPT7 correlates with sperm morphology. J Assist Reprod Genet 2010; 27:299-307. [PMID: 20352323 DOI: 10.1007/s10815-010-9409-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Accepted: 03/11/2010] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To investigate the expression pattern of the SEPT7 protein during spermatogenesis and its potential role in sperm function. METHODS We first investigated the expression pattern of SEPT7 during different steps of mouse spermiogenesis using an immunofluorescence assay (IFA). IFA was also applied to study the expression pattern of SEPT7 in human ejaculated spermatozoa. Nine fertile men with normal semen parameters were used as the control group, and 21 infertile men with asthenozoospermia were recruited as the patient group. We assessed the frequency of the SEPT7 signal in the various morphological subgroups. RESULTS In humans, the frequency of a defective SEPT7 signal was significantly increased in men with asthenozoospermia. The absence of a SEPT7 signal was more prevalent in sperm containing morphological defects of various types. CONCLUSIONS The expression pattern of SEPT7 suggested that this protein may be involved in the regulation of subcellular-compartment formation during spermiogenesis in the mouse. The absence of a SEPT7 signal correlated with multiple sperm defects.
Collapse
Affiliation(s)
- Hsin-Chih Albert Chao
- Division of Obstetrics and Gynecology, National Cheng Kung University College of Medicine and Hospital, Dou-Liou Branch, Yunlin, Taiwan.
| | | | | | | | | | | |
Collapse
|
187
|
Schardt A, Brinkmann BG, Mitkovski M, Sereda MW, Werner HB, Nave KA. The SNARE protein SNAP-29 interacts with the GTPase Rab3A: Implications for membrane trafficking in myelinating glia. J Neurosci Res 2010; 87:3465-79. [PMID: 19170188 DOI: 10.1002/jnr.22005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
During myelin formation, vast amounts of specialized membrane proteins and lipids are trafficked toward the growing sheath in cell surface-directed transport vesicles. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment proteins (SNAPs) are important components of molecular complexes required for membrane fusion. We have analyzed the expression profile and molecular interactions of SNAP-29 in the nervous system. In addition to its known enrichment in neuronal synapses, SNAP-29 is abundant in oligodendrocytes during myelination and in noncompact myelin of the peripheral nervous system. By yeast two-hybrid screen and coimmunoprecipitation, we found that the GTPases Rab3A, Rab24, and septin 4 bind to the N-terminal domain of SNAP-29. The interaction with Rab24 or septin 4 was GTP independent. In contrast, interaction between SNAP-29 and Rab3A was GTP dependent, and colocalization was extensive both in synapses and in myelinating glia. In HEK293 cells, cytoplasmic SNAP-29 pools were redistributed upon coexpression with Rab3A, and surface-directed trafficking of myelin proteolipid protein was enhanced by overexpression of SNAP-29 and Rab3A. Interestingly, the abundance of SNAP-29 in sciatic nerves was increased during remyelination and in a rat model of Charcot-Marie-Tooth disease, two pathological situations with increased myelin membrane biogenesis. We suggest that Rab3A may regulate SNAP-29-mediated membrane fusion during myelination.
Collapse
Affiliation(s)
- Anke Schardt
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
188
|
Shang P, Baarends WM, Hoogerbrugge J, Ooms MP, van Cappellen WA, de Jong AAW, Dohle GR, van Eenennaam H, Gossen JA, Grootegoed JA. Functional transformation of the chromatoid body in mouse spermatids requires testis-specific serine/threonine kinases. J Cell Sci 2010; 123:331-9. [PMID: 20053632 DOI: 10.1242/jcs.059949] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The cytoplasmic chromatoid body (CB) organizes mRNA metabolism and small regulatory RNA pathways, in relation to haploid gene expression, in mammalian round spermatids. However, little is known about functions and fate of the CB at later steps of spermatogenesis, when elongating spermatids undergo chromatin compaction and transcriptional silencing. In mouse elongating spermatids, we detected accumulation of the testis-specific serine/threonine kinases TSSK1 and TSSK2, and the substrate TSKS, in a ring-shaped structure around the base of the flagellum and in a cytoplasmic satellite, both corresponding to structures described to originate from the CB. At later steps of spermatid differentiation, the ring is found at the caudal end of the newly formed mitochondrial sheath. Targeted deletion of the tandemly arranged genes Tssk1 and Tssk2 in mouse resulted in male infertility, with loss of the CB-derived ring structure, and with elongating spermatids possessing a collapsed mitochondrial sheath. These results reveal TSSK1- and TSSK2-dependent functions of a transformed CB in post-meiotic cytodifferentiation of spermatids.
Collapse
Affiliation(s)
- Peng Shang
- Department of Reproduction and Development, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Soustiel JF, Larisch S. Mitochondrial damage: a target for new therapeutic horizons. Neurotherapeutics 2010; 7:13-21. [PMID: 20129493 PMCID: PMC5084108 DOI: 10.1016/j.nurt.2009.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 11/04/2009] [Accepted: 11/04/2009] [Indexed: 12/30/2022] Open
Abstract
Traumatic brain injury (TBI) represents a leading cause of death and morbidity, as well as a considerable social and economical burden in western countries, and has thus emerged as a formidable therapeutic challenge. Yet despite tremendous efforts enlightening the mechanisms of neuronal death, hopes for the "magic bullet" have been repeatedly deceived, and TBI management has remained focused on the control of increased intracranial pressure. Indeed, impairment of cerebral metabolism is traditionally attributed to impaired oxygen delivery mediated by reduced cerebral perfusion in the swollen cerebral parenchyma. Although intuitively appealing, this hypothesis is not entirely supported by physiological facts and does not take into consideration mitochondrial dysfunction that has been repeatedly reported in both human and animal TBI. Although the nature and origin of the events leading to mitochondrial damage may be different, most share a permeabilization of mitochondrial membrane, which therefore may represent a logical target for new therapeutic strategies. Therefore, the proteins mediating these events may represent promising targets for new TBI therapies. Furthermore, mimicking anti-apoptotic proteins, such as Bcl-2 or XIAP, or inhibiting mitochondrial pro-apoptotic proteins, such as Smac/DIABLO, Omi/HTRA2, and ARTS (septin 4 isoform 2) may represent useful novel therapeutic strategies. This review focuses on mechanisms of the mitochondrial membrane permeabilization and its consequences and discusses the current and possible future therapeutic implications of this key event of neuronal death.
Collapse
Affiliation(s)
- Jean F Soustiel
- Acute Brain Injury Research Laboratory, Faculty of Medicine, Technion-Israel Institute of Technology, 31096 Haifa, Israel.
| | | |
Collapse
|
190
|
Kwitny S, Klaus AV, Hunnicutt GR. The annulus of the mouse sperm tail is required to establish a membrane diffusion barrier that is engaged during the late steps of spermiogenesis. Biol Reprod 2009; 82:669-78. [PMID: 20042538 DOI: 10.1095/biolreprod.109.079566] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The annulus is a higher order septin cytoskeletal structure located between the midpiece and principal piece regions of the sperm tail. The annulus has been hypothesized to generate the diffusion barrier that exists between these two membrane domains. We tested this premise directly on septin 4 knockout mice, whose sperm are viable but lack an annulus, by following the diffusing membrane protein basigin. Basigin is normally confined to the principal piece domain on testicular and caput sperm, but undergoes relocation into the midpiece during sperm epididymal transit. On Sept4(-/-) sperm, domain confinement was lost, and basigin localized over the entire plasma membrane. Both immunofluorescence and immunoblotting further revealed reduced levels of basigin expression on sperm from the knockout. Testicular immunohistochemistry showed similar basigin expression and tail targeting in wild-type (WT) and Sept4(-/-) tubules until step 15 of spermatid development, at which point basigin was redistributed throughout the plasma membrane of Sept4(-/-) spermatids. The basigin outside of the tail was subsequently lost around the time of sperm release into the lumen. The redistribution in the knockout coincides with the time in WT sperm when the annulus completes its migration from the neck down to the midpiece-principal piece junction. We posit that basigin may not diffuse freely until after the annulus arrives at the midpiece-principal piece junction to restrict lateral movement. These results are the strongest evidence to date of a mammalian septin structure establishing a membrane diffusion barrier.
Collapse
Affiliation(s)
- Susanna Kwitny
- Population Council, Center for Biomedical Research, Rockefeller University, New York, NY 10065, USA
| | | | | |
Collapse
|
191
|
Bader M, Steller H. Regulation of cell death by the ubiquitin-proteasome system. Curr Opin Cell Biol 2009; 21:878-84. [PMID: 19850458 DOI: 10.1016/j.ceb.2009.09.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/10/2009] [Accepted: 09/18/2009] [Indexed: 02/06/2023]
Abstract
The regulation of apoptosis (programmed cell death) has been the subject of a vast body of research because of its implications in normal development, tissue homeostasis and a wide range of diseases. The ubiquitin-proteasome system (UPS) plays a prominent role in the control of apoptosis by targeting key cell death proteins, including caspases, the central executioners of apoptosis. Here we summarize the major findings on the function of the UPS in both pro- and anti-apoptotic regulation.
Collapse
Affiliation(s)
- Maya Bader
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
192
|
Cao L, Yu W, Wu Y, Yu L. The evolution, complex structures and function of septin proteins. Cell Mol Life Sci 2009; 66:3309-23. [PMID: 19597764 PMCID: PMC11115805 DOI: 10.1007/s00018-009-0087-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/21/2009] [Accepted: 06/25/2009] [Indexed: 12/14/2022]
Abstract
The septin family is a conserved GTP-binding protein family and was originally discovered through genetic screening for budding yeast mutants. Septins are implicated in many cellular processes in fungi and metazoa. The function of septins usually depends on septin assembling into oligomeric complexes and highly ordered polymers. The expansion of the septin gene number in vertebrates increased the complex diversity of septins. In this review, we first discuss the evolution, structures and assembly of septin proteins in yeast and metazoa. Then, we review the function of septin proteins in cytokinesis, membrane remodeling and compartmentalization.
Collapse
Affiliation(s)
- Lihuan Cao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Wenbo Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Yanhua Wu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433 Shanghai, People’s Republic of China
| | - Long Yu
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, 200433 Shanghai, People’s Republic of China
| |
Collapse
|
193
|
Feinstein-Rotkopf Y, Arama E. Can't live without them, can live with them: roles of caspases during vital cellular processes. Apoptosis 2009; 14:980-95. [PMID: 19373560 DOI: 10.1007/s10495-009-0346-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the pioneering discovery that the genetic cell death program in C. elegans is executed by the cysteine-aspartate protease (caspase) CED3, caspase activation has become nearly synonymous with apoptosis. A critical mass of data accumulated in the past few years, have clearly established that apoptotic caspases can also participate in a variety of non-apoptotic processes. The roles of caspases during these processes and the regulatory mechanisms that prevent unrestrained caspase activity remain to be fully investigated, and may vary in different cellular contexts. Significantly, some of these processes, such as terminal differentiation of vertebrate lens fiber cells and red blood cells, as well as spermatid terminal differentiation and dendritic pruning of sensory neurons in Drosophila, all involve proteolytic degradation of major cellular compartments, and are conceptually, molecularly, biochemically, and morphologically reminiscent of apoptosis. Moreover, some of these model systems bear added values for the study of caspase activation/apoptosis. For example, the Drosophila sperm differentiation is the only system known in invertebrate which absolutely requires the mitochondrial pathway (i.e. Cyt c). The existence of testis-specific genes for many of the components in the electron transport chain, including Cyt c, facilitates the use of the Drosophila sperm system to investigate possible roles of these otherwise essential proteins in caspase activation. Caspases are also involved in a wide range of other vital processes of non-degenerative nature, indicating that these proteases play much more diverse roles than previously assumed. In this essay, we review genetic, cytological, and molecular studies conducted in Drosophila, vertebrate, and cultured cells, which underlie the foundations of this newly emerging field.
Collapse
|
194
|
Caudron F, Barral Y. Septins and the lateral compartmentalization of eukaryotic membranes. Dev Cell 2009; 16:493-506. [PMID: 19386259 DOI: 10.1016/j.devcel.2009.04.003] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Eukaryotic cells from neurons and epithelial cells to unicellular fungi frequently rely on cellular appendages such as axons, dendritic spines, cilia, and buds for their biology. The emergence and differentiation of these appendages depend on the formation of lateral diffusion barriers at their bases to insulate their membranes from the rest of the cell. Here, we review recent progress regarding the molecular mechanisms and functions of such barriers. This overview underlines the importance and conservation of septin-dependent diffusion barriers, which coordinately compartmentalize both plasmatic and internal membranes. We discuss their role in memory establishment and the control of cellular aging.
Collapse
Affiliation(s)
- Fabrice Caudron
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
195
|
Abstract
Tektins are evolutionarily conserved flagellar (and ciliary) filamentous proteins present in the axoneme and peri-axonemal structures in diverse metazoan species. We have previously shown that tektin 3 (TEKT3) and tektin 4 (TEKT4) are male germ cell-enriched proteins, and that TEKT4 is essential for coordinated and progressive sperm motility in mice. Here we report that male mice null for TEKT3 produce sperm with reduced motility (47.2% motility) and forward progression, and increased flagellar structural bending defects. Male TEKT3-null mice however maintain normal fertility in two different genetic backgrounds tested, in contrast to TEKT4-null mice. Furthermore, male mice null for both TEKT3 and TEKT4 show subfertility on a mixed B6;129 genetic background, significantly different from either single knockouts, suggesting partial nonredundant roles for these two proteins in sperm physiology. Our results suggest that tektins are potential candidate genes for nonsyndromic asthenozoospermia in humans.
Collapse
Affiliation(s)
- Angshumoy Roy
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Yi-Nan Lin
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Julio E. Agno
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Francesco J. DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| | - Martin M. Matzuk
- Department of Pathology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030
| |
Collapse
|
196
|
Lin YH, Lin YM, Wang YY, Yu IS, Lin YW, Wang YH, Wu CM, Pan HA, Chao SC, Yen PH, Lin SW, Kuo PL. The expression level of septin12 is critical for spermiogenesis. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1857-68. [PMID: 19359518 DOI: 10.2353/ajpath.2009.080955] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Septins belong to a family of polymerizing GTP-binding proteins that are required for many cellular functions, such as membrane compartmentalization, vesicular trafficking, mitosis, and cytoskeletal remodeling. One family member, septin12, is expressed specifically in the testis. In this study, we found septin12 expressed in multiple subcellular compartments during terminal differentiation of mouse germ cells. In humans, the testicular tissues of men with either hypospermatogenesis or maturation arrest had lower levels of SEPTIN12 transcripts than normal men. In addition, increased numbers of spermatozoa with abnormal head, neck, and tail morphologies lacked SEPT12 immunostaining signals, as compared with normal spermatozoa. To elucidate the role of septin12, we generated 129 embryonic stem cells containing a septin12 mutant allele with a deletion in the exons that encode the N-terminal GTP-binding domain. Most chimeras derived from the targeted embryonic stem cells were infertile, and the few fertile chimeras only produced offspring with a C57BL/6 background. Semen analysis of the infertile chimeras showed a decreased sperm count, decreased sperm motility, and spermatozoa with defects involving all subcellular compartments. The testicular phenotypes included maturation arrest of germ cells at the spermatid stage, sloughing of round spermatids, and increased apoptosis of germ cells. Electron microscopic examination of spermatozoa showed misshapen nuclei, disorganized mitochondria, and broken acrosomes. Our data indicate that Septin12 expression levels are critical for mammalian spermiogenesis.
Collapse
Affiliation(s)
- Ying-Hung Lin
- Graduate Institute of Basic Medical Sciences, National Cheng Kung University, College of Medicine, Tainan, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Smith DJ, Gaffney EA, Gadêlha H, Kapur N, Kirkman-Brown JC. Bend propagation in the flagella of migrating human sperm, and its modulation by viscosity. ACTA ACUST UNITED AC 2009; 66:220-36. [DOI: 10.1002/cm.20345] [Citation(s) in RCA: 139] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
198
|
Guan J, Kinoshita M, Yuan L. Spatiotemporal association of DNAJB13 with the annulus during mouse sperm flagellum development. BMC DEVELOPMENTAL BIOLOGY 2009; 9:23. [PMID: 19298648 PMCID: PMC2670831 DOI: 10.1186/1471-213x-9-23] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Accepted: 03/19/2009] [Indexed: 11/10/2022]
Abstract
BACKGROUND The sperm annulus is a septin-based fibrous ring structure connecting the midpiece and the principal piece of the mammalian sperm flagellum. Although ultrastructural abnormalities and functional importance of the annulus have been addressed in Sept4-null mutant mice and a subset of human patients with asthenospermia syndrome, little is known about how the structure is assembled and positioned to the midpiece-principal piece junction during mammalian sperm flagellum development. RESULTS By performing immunofluorescence and biochemical approaches with antibodies against DNAJB13 and an annulus constituent SEPT4, we report here a spatiotemporal association of DNAJB13 with sperm annulus during mouse sperm flagellum development. DNAJB13 co-localized with SEPT4 to the annulus, and both were first able to be detected in step 9 spermatids. As spermiogenesis proceeded, the annular DNAJB13 immunosignal increased until the annulus reached the midpiece-principal piece junction, and then gradually disappeared from it in late spermiogenesis. In contrast, the SEPT4 immunosignal was relatively unaltered, and still present on annulus of mature spermatozoa. In Sept4-null mouse spermatids lacking the annulus structure, the annulus-like DNAJB13 immunosignal was still able to be detected, albeit weaker, at the neck region of the flagella. In vitro DNAJB13 was co-localized and interacted with SEPT4 directly. CONCLUSION The direct interaction of DNAJB13 with SEPT4 in vitro and its spatiotemporal association with the annulus during sperm flagellum development, and even its annulus-like appearance in the annulus-deficient spermatids, suggest that DNAJB13 may be involved in assembling the annulus structure and positioning it towards the midpiece-principal piece junction.
Collapse
Affiliation(s)
- Jikui Guan
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | |
Collapse
|
199
|
Lhuillier P, Rode B, Escalier D, Lorès P, Dirami T, Bienvenu T, Gacon G, Dulioust E, Touré A. Absence of annulus in human asthenozoospermia: Case Report†. Hum Reprod 2009; 24:1296-303. [DOI: 10.1093/humrep/dep020] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
200
|
The septin cytoskeleton in myelinating glia. Mol Cell Neurosci 2009; 40:156-66. [DOI: 10.1016/j.mcn.2008.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/30/2008] [Accepted: 10/02/2008] [Indexed: 02/08/2023] Open
|