151
|
Liu Y, Huang Y, Xu C, An P, Luo Y, Jiao L, Luo J, Li Y. Mitochondrial Dysfunction and Therapeutic Perspectives in Cardiovascular Diseases. Int J Mol Sci 2022; 23:16053. [PMID: 36555691 PMCID: PMC9788331 DOI: 10.3390/ijms232416053] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/21/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
High mortality rates due to cardiovascular diseases (CVDs) have attracted worldwide attention. It has been reported that mitochondrial dysfunction is one of the most important mechanisms affecting the pathogenesis of CVDs. Mitochondrial DNA (mtDNA) mutations may result in impaired oxidative phosphorylation (OXPHOS), abnormal respiratory chains, and ATP production. In dysfunctional mitochondria, the electron transport chain (ETC) is uncoupled and the energy supply is reduced, while reactive oxygen species (ROS) production is increased. Here, we discussed and analyzed the relationship between mtDNA mutations, impaired mitophagy, decreased OXPHOS, elevated ROS, and CVDs from the perspective of mitochondrial dysfunction. Furthermore, we explored current potential therapeutic strategies for CVDs by eliminating mtDNA mutations (e.g., mtDNA editing and mitochondrial replacement), enhancing mitophagy, improving OXPHOS capacity (e.g., supplement with NAD+, nicotinamide riboside (NR), nicotinamide mononucleotide (NMN), and nano-drug delivery), and reducing ROS (e.g., supplement with Coenzyme Q10 and other antioxidants), and dissected their respective advantages and limitations. In fact, some therapeutic strategies are still a long way from achieving safe and effective clinical treatment. Although establishing effective and safe therapeutic strategies for CVDs remains challenging, starting from a mitochondrial perspective holds bright prospects.
Collapse
Affiliation(s)
- Yu Liu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Yuejia Huang
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Chong Xu
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Peng An
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongting Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Lei Jiao
- China Astronaut Research and Training Center, Beijing 100094, China
| | - Junjie Luo
- Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yongzhi Li
- China Astronaut Research and Training Center, Beijing 100094, China
| |
Collapse
|
152
|
Rosdah AA, Abbott BM, Langendorf CG, Deng Y, Truong JQ, Waddell HMM, Ling NXY, Smiles WJ, Delbridge LMD, Liu GS, Oakhill JS, Lim SY, Holien JK. A novel small molecule inhibitor of human Drp1. Sci Rep 2022; 12:21531. [PMID: 36513726 PMCID: PMC9747717 DOI: 10.1038/s41598-022-25464-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dynamin-related protein 1 (Drp1) is a large GTPase regulator of mitochondrial dynamics and is known to play an important role in numerous pathophysiological processes. Despite being the most widely used Drp1 inhibitor, the specificity of Mdivi-1 towards human Drp1 has not been definitively proven and there have been numerous issues reported with its use including off-target effects. In our hands Mdivi-1 showed varying binding affinities toward human Drp1, potentially impacted by compound aggregation. Herein, we sought to identify a novel small molecule inhibitor of Drp1. From an initial virtual screening, we identified DRP1i27 as a compound which directly bound to the human isoform 3 of Drp1 via surface plasmon resonance and microscale thermophoresis. Importantly, DRP1i27 was found to have a dose-dependent increase in the cellular networks of fused mitochondria but had no effect in Drp1 knock-out cells. Further analogues of this compound were identified and screened, though none displayed greater affinity to human Drp1 isoform 3 than DRP1i27. To date, this is the first small molecule inhibitor shown to directly bind to human Drp1.
Collapse
Affiliation(s)
- Ayeshah A. Rosdah
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.108126.c0000 0001 0557 0975Faculty of Medicine, Universitas Sriwijaya, Palembang, Indonesia ,grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia
| | - Belinda M. Abbott
- grid.1018.80000 0001 2342 0938Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC Australia
| | | | - Yali Deng
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia
| | - Jia Q. Truong
- grid.1017.70000 0001 2163 3550School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001 Australia
| | - Helen M. M. Waddell
- grid.1008.90000 0001 2179 088XDepartment of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Naomi X. Y. Ling
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| | - William J. Smiles
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia
| | - Lea M. D. Delbridge
- grid.1008.90000 0001 2179 088XDepartment of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010 Australia
| | - Guei-Sheung Liu
- grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia ,grid.410670.40000 0004 0625 8539Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC Australia ,grid.1009.80000 0004 1936 826XMenzies Institute for Medical Research, University of Tasmania, Hobart, TAS Australia
| | - Jonathan S. Oakhill
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.411958.00000 0001 2194 1270Australian Catholic University, Fitzroy, VIC Australia
| | - Shiang Y. Lim
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia ,grid.1002.30000 0004 1936 7857Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Melbourne, VIC Australia ,grid.419385.20000 0004 0620 9905National Heart Centre, National Heart Research Institute Singapore, Singapore, Singapore
| | - Jessica K. Holien
- grid.1073.50000 0004 0626 201XSt Vincent’s Institute of Medical Research, Fitzroy, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Surgery and Medicine, University of Melbourne, Melbourne, VIC Australia ,grid.1017.70000 0001 2163 3550School of Science, RMIT University, GPO Box 2476, Melbourne, VIC 3001 Australia
| |
Collapse
|
153
|
CENP-F-dependent DRP1 function regulates APC/C activity during oocyte meiosis I. Nat Commun 2022; 13:7732. [PMID: 36513638 PMCID: PMC9747930 DOI: 10.1038/s41467-022-35461-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 12/05/2022] [Indexed: 12/15/2022] Open
Abstract
Chromosome segregation is initiated by cohesin degradation, which is driven by anaphase-promoting complex/cyclosome (APC/C). Chromosome cohesin is removed by activated separase, with the degradation of securin and cyclinB1. Dynamin-related protein 1 (DRP1), a component of the mitochondrial fission machinery, is related to cyclin dynamics in mitosis progression. Here, we show that DRP1 is recruited to the kinetochore by centromeric Centromere protein F (CENP-F) after nuclear envelope breakdown in mouse oocytes. Loss of DRP1 during prometaphase leads to premature cohesin degradation and chromosome segregation. Importantly, acute DRP1 depletion activates separase by initiating cyclinB1 and securin degradation during the metaphase-to-anaphase transition. Finally, we demonstrate that DRP1 is bound to APC2 to restrain the E3 ligase activity of APC/C. In conclusion, DRP1 is a CENP-F-dependent atypical spindle assembly checkpoint (SAC) protein that modulates metaphase-to-anaphase transition by controlling APC/C activity during meiosis I in oocytes.
Collapse
|
154
|
Shen X, Sun P, Zhang H, Yang H. Mitochondrial quality control in the brain: The physiological and pathological roles. Front Neurosci 2022; 16:1075141. [PMID: 36578825 PMCID: PMC9791200 DOI: 10.3389/fnins.2022.1075141] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
The human brain has high energetic expenses and consumes over 20% of total oxygen metabolism. Abnormal brain energy homeostasis leads to various brain diseases. Among multiple factors that contribute to these diseases, mitochondrial dysfunction is one of the most common causes. Maintenance of mitochondrial integrity and functionality is of pivotal importance to brain energy generation. Mitochondrial quality control (MQC), employing the coordination of multiple mechanisms, is evolved to overcome many mitochondrial defects. Thus, not surprisingly, aberrant mitochondrial quality control results in a wide range of brain disorders. Targeting MQC to preserve and restore mitochondrial function has emerged as a promising therapeutic strategy for the prevention and treatment of brain diseases. Here, we set out to summarize the current understanding of mitochondrial quality control in brain homeostasis. We also evaluate potential pharmaceutically and clinically relevant targets in MQC-associated brain disorders.
Collapse
|
155
|
Cervantes-Silva MP, Carroll RG, Wilk MM, Moreira D, Payet CA, O’Siorain JR, Cox SL, Fagan LE, Klavina PA, He Y, Drewinski T, McGinley A, Buel SM, Timmons GA, Early JO, Preston RJS, Hurley JM, Finlay DK, Schoen I, Javier Sánchez-García F, Mills KHG, Curtis AM. The circadian clock influences T cell responses to vaccination by regulating dendritic cell antigen processing. Nat Commun 2022; 13:7217. [PMID: 36470865 PMCID: PMC9722918 DOI: 10.1038/s41467-022-34897-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/09/2022] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells play a key role in processing and presenting antigens to naïve T cells to prime adaptive immunity. Circadian rhythms are known to regulate many aspects of immunity; however, the role of circadian rhythms in dendritic cell function is still unclear. Here, we show greater T cell responses when mice are immunised in the middle of their rest versus their active phase. We find a circadian rhythm in antigen processing that correlates with rhythms in both mitochondrial morphology and metabolism, dependent on the molecular clock gene, Bmal1. Using Mdivi-1, a compound that promotes mitochondrial fusion, we are able to rescue the circadian deficit in antigen processing and mechanistically link mitochondrial morphology and antigen processing. Furthermore, we find that circadian changes in mitochondrial Ca2+ are central to the circadian regulation of antigen processing. Our results indicate that rhythmic changes in mitochondrial calcium, which are associated with changes in mitochondrial morphology, regulate antigen processing.
Collapse
Affiliation(s)
- Mariana P. Cervantes-Silva
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Richard G. Carroll
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Mieszko M. Wilk
- grid.8217.c0000 0004 1936 9705School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland ,grid.5522.00000 0001 2162 9631Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Diana Moreira
- grid.8217.c0000 0004 1936 9705School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Cloe A. Payet
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - James R. O’Siorain
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Shannon L. Cox
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Lauren E. Fagan
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Paula A. Klavina
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Yan He
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland ,grid.263761.70000 0001 0198 0694Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Tabea Drewinski
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Alan McGinley
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Sharleen M. Buel
- grid.33647.350000 0001 2160 9198Department of Biological Sciences & Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - George A. Timmons
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - James O. Early
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Roger J. S. Preston
- grid.4912.e0000 0004 0488 7120Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - Jennifer M. Hurley
- grid.33647.350000 0001 2160 9198Department of Biological Sciences & Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
| | - David K. Finlay
- grid.8217.c0000 0004 1936 9705School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Ingmar Schoen
- grid.4912.e0000 0004 0488 7120Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| | - F. Javier Sánchez-García
- grid.418275.d0000 0001 2165 8782Immunoregulation Laboratory, Department of Immunology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, Mexico
| | - Kingston H. G. Mills
- grid.8217.c0000 0004 1936 9705School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Annie M. Curtis
- grid.4912.e0000 0004 0488 7120Curtis Clock Laboratory, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland ,grid.8217.c0000 0004 1936 9705School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Tissue Engineering Research Group (TERG), Royal College of Surgeons in Ireland RCSI, Dublin, Ireland ,grid.4912.e0000 0004 0488 7120Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland RCSI, Dublin, Ireland
| |
Collapse
|
156
|
Lin N, Jin JW, Lai ZM, Zhang DF, Chen Y, Guo HG, Liu JL. Mdivi-1 improves postoperative neurocognitive disorders in aged rats undergoing splenectomy by inhibiting dynamin-related protein-1. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1338. [PMID: 36660632 PMCID: PMC9843339 DOI: 10.21037/atm-22-5496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022]
Abstract
Background The regulatory role of mitochondria in the inflammatory response of the nervous system postoperatively remains unclear. This study explored the relationship between mitochondria and postoperative neurocognitive dysfunction (PNCD) by regulating mitochondrial function in aged rats undergoing splenectomy. Methods A total of 120 aged rats were randomly divided into five groups (n=24) as follows: Control group (not subjected to any form of treatment), Sham group (subjected only to sham-splenectomized operation after anesthesia), Splenectomy group (only underwent splenectomy after anesthesia), Synonyms Mitochondrial division inhibitor 1 (Mdivi-1) group [treated with Mdivi-1, a dynamin-relatedprotein 1 (Drp1) inhibitor], and Dimethyl Sulfoxide (DMSO) group (treated with DMSO, a solvent). Inflammatory markers, namely interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α), were measured in the plasma and brains of the rats. Cognitive function was assessed using the Morris water maze test. Results During the perioperative period, the physiological parameters did not differ among the five groups (P>0.05). The results of the Morris water maze experiments showed that the memory of the rats was significantly impaired after splenectomy, which was alleviated by Mdivi-1 administration (P=0.04). Postoperatively, the proinflammatory cytokine levels in the serum and hippocampus tissue were upregulated, while Mdivi-1 administration reduced this increase. The electron microscopy and hematoxylin-eosin (HE) staining results indicated that the structure of neurons and mitochondria was minimally impaired in the Mdivi-1 group. Conclusions Aged rats that underwent splenectomy exhibited significant postoperative cognitive impairments. The selective inhibitor of Drp1, Mdivi-1, exerted protective effects against PNCD by ameliorating mitochondrial dysfunction and reducing the inflammatory response.
Collapse
Affiliation(s)
- Nan Lin
- Department of Anesthesiology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Jian-Wen Jin
- Department of Clinical Medicine, Fujian Health College, Fuzhou, China
| | - Zhong-Meng Lai
- Department of Anesthesiology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Dan-Feng Zhang
- Department of Anesthesiology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Ye Chen
- Department of Anesthesiology, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Hong-Gang Guo
- Hangzhou Medical College, Zhejiang Provincial Key Laboratory of laboratory Animal and Safety Research, Hangzhou, China
| | - Jun-Le Liu
- Department of Anesthesiology, Union Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
157
|
Ye W, Fan C, Fu K, Wang X, Lin J, Nian S, Liu C, Zhou W. The SAR and action mechanisms of autophagy inhibitors that eliminate drug resistance. Eur J Med Chem 2022; 244:114846. [DOI: 10.1016/j.ejmech.2022.114846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/02/2022] [Accepted: 10/10/2022] [Indexed: 11/03/2022]
|
158
|
Katti P, Ajayi PT, Aponte A, Bleck CKE, Glancy B. Identification of evolutionarily conserved regulators of muscle mitochondrial network organization. Nat Commun 2022; 13:6622. [PMID: 36333356 PMCID: PMC9636386 DOI: 10.1038/s41467-022-34445-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/25/2022] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial networks provide coordinated energy distribution throughout muscle cells. However, pathways specifying mitochondrial networks are incompletely understood and it is unclear how they might affect contractile fiber-type. Here, we show that natural energetic demands placed on Drosophila melanogaster muscles yield native cell-types among which contractile and mitochondrial network-types are regulated differentially. Proteomic analyses of indirect flight, jump, and leg muscles, together with muscles misexpressing known fiber-type specification factor salm, identified transcription factors H15 and cut as potential mitochondrial network regulators. We demonstrate H15 operates downstream of salm regulating flight muscle contractile and mitochondrial network-type. Conversely, H15 regulates mitochondrial network configuration but not contractile type in jump and leg muscles. Further, we find that cut regulates salm expression in flight muscles and mitochondrial network configuration in leg muscles. These data indicate cell type-specific regulation of muscle mitochondrial network organization through evolutionarily conserved transcription factors cut, salm, and H15.
Collapse
Affiliation(s)
- Prasanna Katti
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Peter T Ajayi
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Angel Aponte
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Christopher K E Bleck
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
159
|
Quiles JM, Gustafsson ÅB. The role of mitochondrial fission in cardiovascular health and disease. Nat Rev Cardiol 2022; 19:723-736. [PMID: 35523864 PMCID: PMC10584015 DOI: 10.1038/s41569-022-00703-y] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/02/2022] [Indexed: 02/07/2023]
Abstract
Mitochondria are organelles involved in the regulation of various important cellular processes, ranging from ATP generation to immune activation. A healthy mitochondrial network is essential for cardiovascular function and adaptation to pathological stressors. Mitochondria undergo fission or fusion in response to various environmental cues, and these dynamic changes are vital for mitochondrial function and health. In particular, mitochondrial fission is closely coordinated with the cell cycle and is linked to changes in mitochondrial respiration and membrane permeability. Another key function of fission is the segregation of damaged mitochondrial components for degradation by mitochondrial autophagy (mitophagy). Mitochondrial fission is induced by the large GTPase dynamin-related protein 1 (DRP1) and is subject to sophisticated regulation. Activation requires various post-translational modifications of DRP1, actin polymerization and the involvement of other organelles such as the endoplasmic reticulum, Golgi apparatus and lysosomes. A decrease in mitochondrial fusion can also shift the balance towards mitochondrial fission. Although mitochondrial fission is necessary for cellular homeostasis, this process is often aberrantly activated in cardiovascular disease. Indeed, strong evidence exists that abnormal mitochondrial fission directly contributes to disease development. In this Review, we compare the physiological and pathophysiological roles of mitochondrial fission and discuss the therapeutic potential of preventing excessive mitochondrial fission in the heart and vasculature.
Collapse
Affiliation(s)
- Justin M Quiles
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
160
|
Yanagaki M, Shirai Y, Shimada Y, Hamura R, Taniai T, Horiuchi T, Takada N, Haruki K, Furukawa K, Uwagawa T, Kobayashi H, Ikegami T. Inhibition of lysosomal acid β-glucosidase induces cell apoptosis via impairing mitochondrial clearance in pancreatic cancer. Carcinogenesis 2022; 43:826-837. [PMID: 35781559 DOI: 10.1093/carcin/bgac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 06/12/2022] [Accepted: 07/02/2022] [Indexed: 11/13/2022] Open
Abstract
Sphingolipid metabolism plays an important role in the formation of cellular membranes and is associated with malignant potential and chemosensitivity of cancer cells. Sphingolipid degradation depends on multiple lysosomal glucosidases. We focused on acid β-glucosidase (GBA), a lysosomal enzyme the deficiency of which is related to mitochondrial dysfunction. We analyzed the function of GBA in pancreatic ductal adenocarcinoma (PDAC). Human PDAC cell lines (PANC-1, BxPC-3 and AsPC-1) were examined under conditions of GBA knockdown via the short interfering RNA (siRNA) method. We assessed the morphological changes, GBA enzyme activity, GBA protein expression, cell viability, reactive oxygen species (ROS) generation, mitochondrial membrane potential (MMP) and mitophagy flux of PDAC cells. The GBA protein level and enzyme activity differed among cell lines. GBA knockdown suppressed cell proliferation and induced apoptosis, especially in PANC-1 and BxPC-3 cells, with low GBA enzyme activity. GBA knockdown also decreased the MMP and impaired mitochondrial clearance. This impaired mitochondrial clearance further induced dysfunctional mitochondria accumulation and ROS generation in PDAC cells, inducing apoptosis. The antiproliferative effects of the combination of GBA suppression and gemcitabine were higher than those of gemcitabine alone. These results showed that GBA suppression exerts a significant antitumor effect and may have therapeutic potential in the clinical treatment of PDAC.
Collapse
Affiliation(s)
- Mitsuru Yanagaki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshihiro Shirai
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Yohta Shimada
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryoga Hamura
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Tomohiko Taniai
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Horiuchi
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Naoki Takada
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichiro Haruki
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenei Furukawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Uwagawa
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Hiroshi Kobayashi
- Division of Gene Therapy, Research Center for Medical Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Toru Ikegami
- Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
161
|
Liu D, Li J, Rong X, Li J, Peng Y, Shen Q. Cdk5 Promotes Mitochondrial Fission via Drp1 Phosphorylation at S616 in Chronic Ethanol Exposure-Induced Cognitive Impairment. Mol Neurobiol 2022; 59:7075-7094. [PMID: 36083519 DOI: 10.1007/s12035-022-03008-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022]
Abstract
Excessive alcohol consumption can lead to alterations in brain structure and function, even causing irreversible learning and memory disorders. The hippocampus is one of the most sensitive areas to alcohol neurotoxicity in the brain. Accumulating evidence indicates that mitochondrial dysfunction contributes to alcohol neurotoxicity. However, little is known about the underlying molecular mechanisms. In this study, we found that chronic exposure to ethanol caused abnormal mitochondrial fission/fusion and morphology by activating the mitochondrial fission protein dynamin-related protein 1 (Drp1) and upregulating Drp1 receptors, such as fission protein 1 (Fis1), mitochondrial dynamics protein of 49 kDa (Mid49), and mitochondrial fission factor (Mff), combined with decreasing optic atrophy 1 (Opa1) and mitochondrial fusion protein mitofusin 1 (Mfn1) levels. In addition, mitochondrial division inhibitor 1 (mdivi-1) abrogated ethanol-induced mitochondrial dysfunction and improved hippocampal synapses and cognitive function in ethanol-exposed mice. Chronic ethanol exposure also resulted in cyclin-dependent kinase 5 (Cdk5) overactivation, as shown by the increase in the levels of Cdk5 and its activator P25 in the hippocampus. Furthermore, a Cdk5/P25 inhibitor (roscovitine) or Cdk5 knockdown using small interfering RNA (LVi-Cdk5) exerted neuroprotection by inhibiting abnormal mitochondrial fission through Drp1 phosphorylation at Ser616 and mitochondrial translocation after chronic ethanol exposure. Taken together, the present study demonstrated that inhibition of aberrant Cdk5 activation attenuates hippocampal neuron injury and cognitive deficits induced by chronic exposure to ethanol through Drp1-mediated mitochondrial fission and mitochondrial dysfunction. Interfering with this pathway might serve as a potential therapeutic approach to prevent ethanol-induced neurotoxicity in the brain.
Collapse
Affiliation(s)
- Dandan Liu
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiande Li
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoming Rong
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jie Li
- The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ying Peng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Qingyu Shen
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
162
|
Mdivi-1 Induced Mitochondrial Fusion as a Potential Mechanism to Enhance Stress Tolerance in Wheat. Life (Basel) 2022; 12:life12091386. [PMID: 36143422 PMCID: PMC9503966 DOI: 10.3390/life12091386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Mitochondria play a key role in providing energy to cells. This paper is dedicated to elucidating mitochondria-dependent mechanisms that may enhance abiotic stress tolerance in wheat. Mitochondria are constantly undergoing dynamic processes of fusion and fission. In plants, stressful conditions tend to favor mitochondrial fusion processes. The role of mitochondrial fusion was studied by applying Mdivi-1, an inhibitor of mitochondrial fission, to wheat roots subjected to a wounding stress. Increased mitochondrial functional activity and upregulation of genes involved in energy metabolism suggest that mitochondrial fusion is associated with a general activation of energy metabolism. Controlling mitochondrial fusion rates could change the physiology of wheat plants by altering the energy status of the cell and helping to reduce the effects of stress. Abstract Mitochondria play a key role in providing energy to cells. These organelles are constantly undergoing dynamic processes of fusion and fission that change in stressful conditions. The role of mitochondrial fusion in wheat root cells was studied using Mdivi-1, an inhibitor of the mitochondrial fragmentation protein Drp1. The effect of the inhibitor was studied on mitochondrial dynamics in the roots of wheat seedlings subjected to a wounding stress, simulated by excision. Treatment of the stressed roots with the inhibitor increased the size of the mitochondria, enhanced their functional activity, and elevated their membrane potentials. Mitochondrial fusion was accompanied by a decrease in ROS formation and associated cell damage. Exposure to Mdivi-1 also upregulated genes encoding the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and an energy sensor AMP-dependent protein sucrose non-fermenting-related kinase (SnRK1), suggesting that mitochondrial fusion is associated with a general activation of energy metabolism. Controlling mitochondrial fusion rates could change the physiology of wheat plants by altering the energy status of the cell and helping to mitigate the effects of stress.
Collapse
|
163
|
Bai Y, Wu J, Yang Z, Wang X, Zhang D, Ma J. Mitochondrial quality control in cardiac ischemia/reperfusion injury: new insights into mechanisms and implications. Cell Biol Toxicol 2022; 39:33-51. [PMID: 35951200 DOI: 10.1007/s10565-022-09716-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
The current effective method for the treatment of myocardial infarction is timely restoration of the blood supply to the ischemic area of the heart. Although reperfusion is essential for reestablishing oxygen and nutrient supplies, it often leads to additional myocardial damage, creating an important clinical dilemma. Reports from long-term studies have confirmed that mitochondrial damage is the critical mechanism in cardiac ischemia/reperfusion (I/R) injury. Mitochondria are dynamic and possess a quality control system that targets mitochondrial quantity and quality by modifying mitochondrial fusion, fission, mitophagy, and biogenesis and protein homeostasis to maintain a healthy mitochondrial network. The system of mitochondrial quality control involves complex molecular machinery that is highly interconnected and associated with pathological changes such as oxidative stress, calcium overload, and endoplasmic reticulum (ER) stress. Because of the critical role of the mitochondrial quality control systems, many reports have suggested that defects in this system are among the molecular mechanisms underlying myocardial reperfusion injury. In this review, we briefly summarize the important role of the mitochondrial quality control in cardiomyocyte function and focus on the current understanding of the regulatory mechanisms and molecular pathways involved in mitochondrial quality control in cardiac I/R damage.
Collapse
Affiliation(s)
- Yang Bai
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jinjing Wu
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Zhenyu Yang
- Department of Endocrinology, South China Hospital of Shenzhen University, Shenzhen, People's Republic of China
| | - Xu'an Wang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Dongni Zhang
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China
| | - Jun Ma
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No.2 Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| |
Collapse
|
164
|
Xue R, Li S, Wei Z, Zhang Z, Cao Y. Melatonin attenuates di-(2-ethylhexyl) phthalate-induced apoptosis of human granulosa cells by inhibiting mitochondrial fission. Reprod Toxicol 2022; 113:18-29. [PMID: 35952901 DOI: 10.1016/j.reprotox.2022.08.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/19/2022] [Accepted: 08/06/2022] [Indexed: 10/15/2022]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is one of the most used plasticizers which have contaminated environment widely, and its extensive use causes female reproductive injury. Melatonin has a substantial protective effect against female reproductive toxicity. This study was undertaken to investigate the influence of melatonin on DEHP-induced damage of human granulosa cells (GCs) in vitro and explore the potential mechanisms. Here, we found that melatonin treatment alleviated DEHP-induced human GCs apoptosis and improved mitochondrial function via inhibiting dynamin-related protein 1 (Drp1) mediated mitochondrial fission. Melatonin inhibited the expression, activation and oligomerization of Drp1, which decreased translocation of Drp1 to mitochondria in DEHP-exposed human GCs. Inhibition of mitochondrial fission reduced intracellular reactive oxygen species (ROS) production, sustained mitochondrial membrane potential and decreased cytochrome c release. Further research showed that AMPK-PGC-1α signal pathway was involved in the inhibition of melatonin on Drp1 expression and activation. Melatonin treatment promoted AMPK activation suppressed by DEHP, and activated AMPK recovered the balance of Drp1 phosphorylation at Ser616 and Ser637 sites and enhanced PGC-1α expression. Moreover, PGC-1α could prevent mitochondrial fission by decreasing Drp1 expression directly via binding to its promoter. In contrast, blocking of AMPK or PGC-1α with specific inhibitor negated the protective effects of melatonin on mitochondrial homeostasis and GCs apoptosis. In summary, our results indicated the protective effects of melatonin on improving mitochondrial function and attenuating cells injury in DEHP-exposed human GCs. Melatonin treatment may be a promising therapeutic approach against DEHP-induced reproductive disorder.
Collapse
Affiliation(s)
- Rufeng Xue
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| | - Shuhang Li
- Department of Oncology of The First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui, China; Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhaolian Wei
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, Hefei, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, Hefei, Anhui, China
| | - Zhiguo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, Anhui, China.
| |
Collapse
|
165
|
Zhou Y, Long D, Zhao Y, Li S, Liang Y, Wan L, Zhang J, Xue F, Feng L. Oxidative stress-mediated mitochondrial fission promotes hepatic stellate cell activation via stimulating oxidative phosphorylation. Cell Death Dis 2022; 13:689. [PMID: 35933403 PMCID: PMC9357036 DOI: 10.1038/s41419-022-05088-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
Previous studies have demonstrated dysregulated mitochondrial dynamics in fibrotic livers and hepatocytes. Little is currently known about how mitochondrial dynamics are involved, nor is it clear how mitochondrial dynamics participate in hepatic stellate cell (HSC) activation. In the present study, we investigated the role of mitochondrial dynamics in HSC activation and the underlying mechanisms. We verified that mitochondrial fission was enhanced in human and mouse fibrotic livers and active HSCs. Moreover, increased mitochondrial fission driven by fis1 overexpression could promote HSC activation. Inhibiting mitochondrial fission using mitochondrial fission inhibitor-1 (Mdivi-1) could inhibit activation and induce apoptosis of active HSCs, indicating that increased mitochondrial fission is essential for HSC activation. Mdivi-1 treatment also induced apoptosis in active HSCs in vivo and thus ameliorated CCl4-induced liver fibrosis. We also found that oxidative phosphorylation (OxPhos) was increased in active HSCs, and OxPhos inhibitors inhibited activation and induced apoptosis in active HSCs. Moreover, increasing mitochondrial fission upregulated OxPhos, while inhibiting mitochondrial fission downregulated OxPhos, suggesting that mitochondrial fission stimulates OxPhos during HSC activation. Next, we found that inhibition of oxidative stress using mitoquinone mesylate (mitoQ) and Tempol inhibited mitochondrial fission and OxPhos and induced apoptosis in active HSCs, suggesting that oxidative stress contributes to excessive mitochondrial fission during HSC activation. In conclusion, our study revealed that oxidative stress contributes to enhanced mitochondrial fission, which triggers OxPhos during HSC activation. Importantly, inhibiting mitochondrial fission has huge prospects for alleviating liver fibrosis by eliminating active HSCs.
Collapse
Affiliation(s)
- Yanni Zhou
- grid.13291.380000 0001 0807 1581Key Lab of Transplant Engineering and Immunology of the Ministry of Health, Laboratory of Transplant Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Dan Long
- grid.13291.380000 0001 0807 1581Key Lab of Transplant Engineering and Immunology of the Ministry of Health, Laboratory of Transplant Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Ying Zhao
- grid.13291.380000 0001 0807 1581Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Shengfu Li
- grid.13291.380000 0001 0807 1581Key Lab of Transplant Engineering and Immunology of the Ministry of Health, Laboratory of Transplant Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Yan Liang
- grid.13291.380000 0001 0807 1581Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Lin Wan
- grid.13291.380000 0001 0807 1581Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Jingyao Zhang
- grid.13291.380000 0001 0807 1581Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Fulai Xue
- grid.13291.380000 0001 0807 1581Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Li Feng
- grid.13291.380000 0001 0807 1581Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| |
Collapse
|
166
|
Ahmed A, Trezza A, Gentile M, Paccagnini E, Lupetti P, Spiga O, Bova S, Fusi F. The drp-1-mediated mitochondrial fission inhibitor mdivi-1 impacts the function of ion channels and pathways underpinning vascular smooth muscle tone. Biochem Pharmacol 2022; 203:115205. [DOI: 10.1016/j.bcp.2022.115205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/07/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022]
|
167
|
Ren L, Xu P, Yao J, Wang Z, Shi K, Han W, Wang H. Targeting the Mitochondria with Pseudo-Stealthy Nanotaxanes to Impair Mitochondrial Biogenesis for Effective Cancer Treatment. ACS NANO 2022; 16:10242-10259. [PMID: 35820199 DOI: 10.1021/acsnano.1c08008] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The clinical success of anticancer therapy is usually limited by drug resistance and the metastatic dissemination of cancer cells. Mitochondria are essential generators of cellular energy and play a crucial role in sustaining cell survival and metastatic escape. Selective drug strategies targeting mitochondria are able to rewire mitochondrial metabolism and may provide an alternative paradigm to treat many aggressive cancers with high efficiency and low toxicity. Here, we present a pseudo-stealthy mitochondria-targeted pro-nanotaxane and test it against recurrent and metastatic tumor xenografts. The nanoparticle encapsulates a mitochondria-targetable pro-taxane agent, which can be converted into the chemically unmodified cabazitaxel drug, with further surface cloaking with a low-density lipophilic triphenylphosphonium cation. The resultant nanotaxane could be effectively taken up by cells and consequently specifically localized to the mitochondria. The in situ activated cabazitaxel causes mitochondrial dysfunction and ultimately results in potent cell apoptosis. After intravenous administration to animals, pro-nanotaxane mimics the stealthy behavior of polyethylene glycol-cloaked nanoparticles to provide a long circulation time. The antitumor efficacy of this mitochondria-targeted system was validated in multiple preclinical drug-resistant tumor models. Notably, in a patient-derived metastatic melanoma model that was initially pretreated with cabazitaxel, nanotaxane administration not only produced durable tumor reduction but also substantially suppressed metastatic recurrence. Taken together, these results demonstrate that this combination of a pseudo-stealthy platform with a rationally designed pro-drug is an attractive approach to target mitochondria and enhance drug efficacy.
Collapse
Affiliation(s)
- Lulu Ren
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, People's Republic of China
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Peirong Xu
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
- Department of Chemical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Jie Yao
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
- Department of Chemical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, People's Republic of China
| | - Zihan Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Kewei Shi
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, People's Republic of China
| | - Hangxiang Wang
- NHC Key Laboratory of Combined Multi-Organ Transplantation, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, People's Republic of China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, People's Republic of China
| |
Collapse
|
168
|
Tan N, Liu T, Wang X, Shao M, Zhang M, Li W, Ling G, Jiang J, Wang Q, Li J, Li C, Wang W, Wang Y. The multi-faced role of FUNDC1 in mitochondrial events and human diseases. Front Cell Dev Biol 2022; 10:918943. [PMID: 35959490 PMCID: PMC9358025 DOI: 10.3389/fcell.2022.918943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Mitophagy plays a vital role in the selective elimination of dysfunctional and unwanted mitochondria. As a receptor of mitophagy, FUN14 domain containing 1 (FUNDC1) is attracting considerably critical attention. FUNDC1 is involved in the mitochondria fission, the clearance of unfolded protein, iron metabolism in mitochondria, and the crosstalk between mitochondria and endoplasmic reticulum besides mitophagy. Studies have demonstrated that FUNDC1 is associated with the progression of ischemic disease, cancer, and metabolic disease. In this review, we systematically examine the recent advancements in FUNDC1 and the implications of this protein in health and disease.
Collapse
Affiliation(s)
- Nannan Tan
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Tianhua Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoping Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Mingyan Shao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Miao Zhang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Weili Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Guanjing Ling
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jinchi Jiang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Li
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Chun Li, ; Wei Wang, ; Yong Wang,
| | - Wei Wang
- School of Basic Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Chun Li, ; Wei Wang, ; Yong Wang,
| | - Yong Wang
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Chun Li, ; Wei Wang, ; Yong Wang,
| |
Collapse
|
169
|
Zacharioudakis E, Agianian B, Kumar Mv V, Biris N, Garner TP, Rabinovich-Nikitin I, Ouchida AT, Margulets V, Nordstrøm LU, Riley JS, Dolgalev I, Chen Y, Wittig AJH, Pekson R, Mathew C, Wei P, Tsirigos A, Tait SWG, Kirshenbaum LA, Kitsis RN, Gavathiotis E. Modulating mitofusins to control mitochondrial function and signaling. Nat Commun 2022; 13:3775. [PMID: 35798717 PMCID: PMC9262907 DOI: 10.1038/s41467-022-31324-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/10/2022] [Indexed: 02/01/2023] Open
Abstract
Mitofusins reside on the outer mitochondrial membrane and regulate mitochondrial fusion, a physiological process that impacts diverse cellular processes. Mitofusins are activated by conformational changes and subsequently oligomerize to enable mitochondrial fusion. Here, we identify small molecules that directly increase or inhibit mitofusins activity by modulating mitofusin conformations and oligomerization. We use these small molecules to better understand the role of mitofusins activity in mitochondrial fusion, function, and signaling. We find that mitofusin activation increases, whereas mitofusin inhibition decreases mitochondrial fusion and functionality. Remarkably, mitofusin inhibition also induces minority mitochondrial outer membrane permeabilization followed by sub-lethal caspase-3/7 activation, which in turn induces DNA damage and upregulates DNA damage response genes. In this context, apoptotic death induced by a second mitochondria-derived activator of caspases (SMAC) mimetic is potentiated by mitofusin inhibition. These data provide mechanistic insights into the function and regulation of mitofusins as well as small molecules to pharmacologically target mitofusins.
Collapse
Affiliation(s)
- Emmanouil Zacharioudakis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bogos Agianian
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vasantha Kumar Mv
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nikolaos Biris
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Thomas P Garner
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Inna Rabinovich-Nikitin
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Research Centre, Winnipeg, MB, Canada
| | - Amanda T Ouchida
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Victoria Margulets
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Research Centre, Winnipeg, MB, Canada
| | | | - Joel S Riley
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Igor Dolgalev
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA
| | - Yun Chen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andre J H Wittig
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ryan Pekson
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chris Mathew
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Peter Wei
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura & Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY, USA
| | - Stephen W G Tait
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Lorrie A Kirshenbaum
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Institute of Cardiovascular Sciences, St. Boniface Research Centre, Winnipeg, MB, Canada
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
- Institute for Aging Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
170
|
Luo M, Liu YQ, Zhang H, Luo CH, Liu Q, Wang WY, He ZC, Chen C, Zhang XN, Mao M, Yang KD, Wang C, Chen XQ, Fu WJ, Niu Q, Bian XW, Shi Y, Ping YF. Overexpression of carnitine palmitoyltransferase 1A promotes mitochondrial fusion and differentiation of glioblastoma stem cells. J Transl Med 2022; 102:722-730. [PMID: 34963686 DOI: 10.1038/s41374-021-00724-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/09/2022] Open
Abstract
Glioma stem cells (GSCs) are self-renewing tumor cells with multi-lineage differentiation potential and the capacity of construct glioblastoma (GBM) heterogenicity. Mitochondrial morphology is associated with the metabolic plasticity of GBM cells. Previous studies have revealed distinct mitochondrial morphologies and metabolic phenotypes between GSCs and non-stem tumor cells (NSTCs), whereas the molecules regulating mitochondrial dynamics in GBM cells are largely unknown. Herein, we report that carnitine palmitoyltransferase 1A (CPT1A) is preferentially expressed in NSTCs, and governs mitochondrial dynamics and GSC differentiation. Expressions of CPT1A and GSC marker CD133 were mutually exclusive in human GBMs. Overexpression of CPT1A inhibited GSC self-renewal but promoted mitochondrial fusion. In contrast, disruption of CPT1A in NSTCs promoted mitochondrial fission and reprogrammed NSTCs toward GSC feature. Mechanistically, CPT1A overexpression increased the phosphorylation of dynamin-related protein 1 at Ser-637 to promote mitochondrial fusion. In vivo, CPT1A overexpression decreased the percentage of GSCs, impaired GSC-derived xenograft growth and prolonged tumor-bearing mice survival. Our work identified CPT1A as a critical regulator of mitochondrial dynamics and GSC differentiation, indicating that CPT1A could be developed as a molecular target for GBM cell-differentiation strategy.
Collapse
Affiliation(s)
- Min Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yu-Qi Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Hua Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Chun-Hua Luo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qing Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Wen-Ying Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Zhi-Cheng He
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Cong Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xiao-Ning Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Min Mao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Kai-Di Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Chao Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xiao-Qing Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Wen-Juan Fu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Qin Niu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University) and Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing, China.
| |
Collapse
|
171
|
Lu Y, Chang P, Ding W, Bian J, Wang D, Wang X, Luo Q, Wu X, Zhu L. Pharmacological inhibition of mitochondrial division attenuates simulated high-altitude exposure-induced cerebral edema in mice: Involvement of inhibition of the NF-κB signaling pathway in glial cells. Eur J Pharmacol 2022; 929:175137. [DOI: 10.1016/j.ejphar.2022.175137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
|
172
|
Protective roles of MITOL against myocardial senescence and ischemic injury partly via Drp1 regulation. iScience 2022; 25:104582. [PMID: 35789860 PMCID: PMC9249672 DOI: 10.1016/j.isci.2022.104582] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/30/2021] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
Abnormal mitochondrial fragmentation by dynamin-related protein1 (Drp1) is associated with the progression of aging-associated heart diseases, including heart failure and myocardial infarction (MI). Here, we report a protective role of outer mitochondrial membrane (OMM)-localized E3 ubiquitin ligase MITOL/MARCH5 against cardiac senescence and MI, partly through Drp1 clearance by OMM-associated degradation (OMMAD). Persistent Drp1 accumulation in cardiomyocyte-specific MITOL conditional-knockout mice induced mitochondrial fragmentation and dysfunction, including reduced ATP production and increased ROS generation, ultimately leading to myocardial senescence and chronic heart failure. Furthermore, ischemic stress-induced acute downregulation of MITOL, which permitted mitochondrial accumulation of Drp1, resulted in mitochondrial fragmentation. Adeno-associated virus-mediated delivery of the MITOL gene to cardiomyocytes ameliorated cardiac dysfunction induced by MI. Our findings suggest that OMMAD activation by MITOL can be a therapeutic target for aging-associated heart diseases, including heart failure and MI. MITOL is essential for maintaining cardiac function partly via Drp1 clearance MITOL deficiency causes cardiac aging partly via Drp1 accumulation Ischemic stress induces a rapid downregulation of MITOL MITOL expression attenuates cardiac dysfunction in acute myocardial infarction
Collapse
|
173
|
Huang T, Chang C, Chien C, Huang G, Chen Y, Su L, Tsai H, Lin Y, Fang F, Chen C. DRP1 contributes to head and neck cancer progression and induces glycolysis through modulated FOXM1/MMP12 axis. Mol Oncol 2022; 16:2585-2606. [PMID: 35313071 PMCID: PMC9251862 DOI: 10.1002/1878-0261.13212] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 02/19/2022] [Accepted: 03/18/2022] [Indexed: 12/24/2022] Open
Abstract
Abnormal DRP1 expression has been identified in a variety of human cancers. However, the prognostic potential and mechanistic role of DRP1 in head and neck cancer (HNC) are currently poorly understood. Here, we demonstrated a significant upregulation of DRP1 in HNC tissues, and that DRP1 expression correlates with poor survival of HNC patients. Diminished DRP1 expression suppressed tumor growth and metastasis in both in vitro and in vivo models. DRP1 expression was positively correlated with FOXM1 and MMP12 expression in HNC patient samples, suggesting pathological relevance in the context of HNC development. Moreover, DRP1 depletion affected aerobic glycolysis through the downregulation of glycolytic genes, and overexpression of MMP12 in DRP1-depleted cells could help restore glucose consumption and lactate production. Using ChIP-qPCR, we showed that DRP1 modulates FOXM1 expression, which can enhance MMP12 transcription by binding to its promoter. We also showed that miR-575 could target 3'UTR of DRP1 mRNA and suppress DRP1 expression. Collectively, our study provides mechanistic insights into the role of DRP1 in HNC and highlights the potential of targeting the miR-575/DRP1/FOXM1/MMP12 axis as a novel therapy for the prevention of HNC progression.
Collapse
Affiliation(s)
- Tai‐Lin Huang
- Division of Hematology‐OncologyDepartment of Internal MedicineKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineTaiwan
- Institute of Biotechnology and Department of Medical ScienceNational Tsing Hua UniversityHsinchuTaiwan
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer CenterKaohsiung Chang Gung Memorial HospitalTaiwan
| | - Chuang‐Rung Chang
- Institute of Biotechnology and Department of Medical ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Chih‐Yen Chien
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer CenterKaohsiung Chang Gung Memorial HospitalTaiwan
- Department of OtolaryngologyKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineTaiwan
| | - Gong‐Kai Huang
- Department of Anatomic PathologyChang Gung Memorial HospitalKaohsiungTaiwan
| | - Yi‐Fan Chen
- Department of Orthopedic SurgeryChang Gung Memorial HospitalKaohsiungTaiwan
| | - Li‐Jen Su
- Department of Biomedical Sciences and Engineering, Education and Research Center for Technology Assisted Substance Abuse Prevention and Management, and Core Facilities for High Throughput Experimental AnalysisNational Central UniversityTaoyuan CountyTaiwan
| | - Hsin‐Ting Tsai
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Medical ResearchChung Shan Medical University HospitalTaichungTaiwan
| | - Yu‐Sheng Lin
- State Key Laboratory of Optoelectronic Materials and TechnologiesSchool of Electronics and Information TechnologySun Yat‐Sen UniversityGuangzhouChina
| | - Fu‐Min Fang
- Kaohsiung Chang Gung Head and Neck Oncology Group, Cancer CenterKaohsiung Chang Gung Memorial HospitalTaiwan
- Department of Radiation OncologyKaohsiung Chang Gung Memorial Hospital and Chang Gung University College of MedicineTaiwan
| | - Chang‐Han Chen
- Institute of MedicineChung Shan Medical UniversityTaichungTaiwan
- Department of Medical ResearchChung Shan Medical University HospitalTaichungTaiwan
| |
Collapse
|
174
|
Vezza T, Díaz-Pozo P, Canet F, de Marañón AM, Abad-Jiménez Z, García-Gargallo C, Roldan I, Solá E, Bañuls C, López-Domènech S, Rocha M, Víctor VM. The Role of Mitochondrial Dynamic Dysfunction in Age-Associated Type 2 Diabetes. World J Mens Health 2022; 40:399-411. [PMID: 35021300 PMCID: PMC9253806 DOI: 10.5534/wjmh.210146] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/15/2022] Open
Abstract
Mitochondrial dynamics, such as fusion and fission, play a critical role in maintaining cellular metabolic homeostasis. The molecular mechanisms underlying these processes include fusion proteins (Mitofusin 1 [MFN1], Mitofusin 2 [MFN2], and optic atrophy 1 [OPA1]) and fission mediators (mitochondrial fission 1 [FIS1] and dynamin-related protein 1 [DRP1]), which interact with each other to ensure mitochondrial quality control. Interestingly, defects in these proteins can lead to the loss of mitochondrial DNA (mtDNA) integrity, impairment of mitochondrial function, a severe alteration of mitochondrial morphology, and eventually cell death. Emerging evidence has revealed a causal relationship between dysregulation of mitochondria dynamics and age-associated type 2 diabetes, a metabolic disease whose rates have reached an alarming epidemic-like level with the majority of cases (59%) recorded in men aged 65 and over. In this sense, fragmentation of mitochondrial networks is often associated with defects in cellular energy production and increased apoptosis, leading, in turn, to excessive reactive oxygen species release, mitochondrial dysfunction, and metabolic alterations, which can ultimately contribute to β-cell dysfunction and insulin resistance. The present review discusses the processes of mitochondrial fusion and fission and their dysfunction in type 2 diabetes, with special attention given to the therapeutic potential of targeting mitochondrial dynamics in this complex metabolic disorder.
Collapse
Affiliation(s)
- Teresa Vezza
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Pedro Díaz-Pozo
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Francisco Canet
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Aranzazu M de Marañón
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Zaida Abad-Jiménez
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Celia García-Gargallo
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Ildefonso Roldan
- Service of Cardiology, University Hospital Doctor Peset, FISABIO, Valencia, Spain
| | - Eva Solá
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Celia Bañuls
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain.
| | - Sandra López-Domènech
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
| | - Milagros Rocha
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain.
| | - Víctor M Víctor
- Service of Endocrinology and Nutrition, University Hospital Doctor Peset, Foundation for the Promotion of Health and Biomedical Research in the Valencian Region (FISABIO), Valencia, Spain
- National Network of Biomedical Research on Hepatic and Digestive Diseases (CIBERehd), Valencia, Spain
- Department of Physiology, University of Valencia, Valencia, Spain.
| |
Collapse
|
175
|
Ju S, Chen H, Wang S, Lin J, Ma Y, Aroian RV, Peng D, Sun M. C. elegans monitor energy status via the AMPK pathway to trigger innate immune responses against bacterial pathogens. Commun Biol 2022; 5:643. [PMID: 35773333 PMCID: PMC9246835 DOI: 10.1038/s42003-022-03589-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Pathogen recognition and the triggering of host innate immune system are critical to understanding pathogen-host interaction. Cellular surveillance systems have been identified as an important strategy for the identification of microbial infection. In the present study, using Bacillus thuringiensis-Caenorhabditis elegans as a model, we found an approach for surveillance systems to sense pathogens. We report that Bacillus thuringiensis Cry5Ba, a typical pore-forming toxin, caused mitochondrial damage and energy imbalance by triggering potassium ion leakage, instead of directly targeting mitochondria. Interestingly, we find C. elegans can monitor intracellular energy status to trigger innate immune responses via AMP-activated protein kinase (AMPK), secreting multiple effectors to defend against pathogenic attacks. Our study indicates that the imbalance of energy status is a prevalent side effect of pathogen infection. Furthermore, the AMPK-dependent surveillance system may serve as a practicable strategy for the host to recognize and defense against pathogens. Bacillus thuringiensis toxin Cry5Ba triggers potassium ion leakage, causing mitochondrial damage and energy imbalance. C. elegans can monitor this intracellular energy imbalance via AMP-activated protein kinase to trigger innate immune responses.
Collapse
Affiliation(s)
- Shouyong Ju
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanqiao Chen
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoying Wang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Lin
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yanli Ma
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China
| | - Raffi V Aroian
- Program in Molecular Medicine, University of Massachusetts Chan Medical School Worcester, Worcester, MA, 01605-2377, USA
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, National Engineering Research Center of Microbial Pesticides, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
176
|
Poznyak AV, Sadykhov NK, Kartuesov AG, Borisov EE, Sukhorukov VN, Orekhov AN. Aging of Vascular System Is a Complex Process: The Cornerstone Mechanisms. Int J Mol Sci 2022; 23:ijms23136926. [PMID: 35805936 PMCID: PMC9266404 DOI: 10.3390/ijms23136926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Aging is one of the most intriguing processes of human ontogenesis. It is associated with the development of a wide variety of diseases affecting all organs and their systems. The victory over aging is the most desired goal of scientists; however, it is hardly achievable in the foreseeable future due to the complexity and ambiguity of the process itself. All body systems age, lose their performance, and structural disorders accumulate. The cardiovascular system is no exception. And it is cardiovascular diseases that occupy a leading position as a cause of death, especially among the elderly. The aging of the cardiovascular system is well described from a mechanical point of view. Moreover, it is known that at the cellular level, a huge number of mechanisms are involved in this process, from mitochondrial dysfunction to inflammation. It is on these mechanisms, as well as the potential for taking control of the aging of the cardiovascular system, that we focused on in this review.
Collapse
Affiliation(s)
- Anastasia V. Poznyak
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia;
- Correspondence: (A.V.P.); (A.N.O.)
| | - Nikolay K. Sadykhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia; (N.K.S.); (A.G.K.)
| | - Andrey G. Kartuesov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia; (N.K.S.); (A.G.K.)
| | - Evgeny E. Borisov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia;
| | - Vasily N. Sukhorukov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia;
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia;
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia;
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, 8 Baltiiskaya Street, 125315 Moscow, Russia; (N.K.S.); (A.G.K.)
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia;
- Correspondence: (A.V.P.); (A.N.O.)
| |
Collapse
|
177
|
Chung CL, Huang YH, Lin CJ, Chong YB, Wu SC, Chai CY, Tsai HP, Kwan AL. Therapeutic Effect of Mitochondrial Division Inhibitor-1 (Mdivi-1) on Hyperglycemia-Exacerbated Early and Delayed Brain Injuries after Experimental Subarachnoid Hemorrhage. Int J Mol Sci 2022; 23:ijms23136924. [PMID: 35805932 PMCID: PMC9267000 DOI: 10.3390/ijms23136924] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Neurological deficits following subarachnoid hemorrhage (SAH) are caused by early or delayed brain injuries. Our previous studies have demonstrated that hyperglycemia induces profound neuronal apoptosis of the cerebral cortex. Morphologically, we found that hyperglycemia exacerbated late vasospasm following SAH. Thus, our previous studies strongly suggest that post-SAH hyperglycemia is not only a response to primary insult, but also an aggravating factor for brain injuries. In addition, mitochondrial fusion and fission are vital to maintaining cellular functions. Current evidence also shows that the suppression of mitochondrial fission alleviates brain injuries after experimental SAH. Hence, this study aimed to determine the effects of mitochondrial dynamic modulation in hyperglycemia-related worse SAH neurological prognosis. Materials and methods: In vitro, we employed an enzyme-linked immunosorbent assay (ELISA) to detect the effect of mitochondrial division inhibitor-1 (Mdivi-1) on lipopolysaccharide (LPS)-induced BV-2 cells releasing inflammatory factors. In vivo, we produced hyperglycemic rats via intraperitoneal streptozotocin (STZ) injections. Hyperglycemia was confirmed using blood-glucose measurements (>300 mg/dL) 7 days after the STZ injection. The rodent model of SAH, in which fresh blood was instilled into the craniocervical junction, was used 7 days after STZ administration. We investigated the mechanism and effect of Mdivi-1, a selective inhibitor of dynamin-related protein (Drp1) to downregulate mitochondrial fission, on SAH-induced apoptosis in a hyperglycemic state, and evaluated the results in a dose−response manner. The rats were divided into the following five groups: (1) control, (2) SAH only, (3) Diabetes mellitus (DM) + SAH, (4) Mdivi-1 (0.24 mg/kg) + DM + SAH, and (5) Mdivi-1 (1.2 mg/kg) + DM + SAH. Results: In vitro, ELISA revealed that Mdivi-1 inhibited microglia from releasing inflammatory factors, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6. In vivo, neurological outcomes in the high-dose (1.2 mg/kg) Mdivi-1 treatment group were significantly reduced compared with the SAH and DM + SAH groups. Furthermore, immunofluorescence staining and ELISA revealed that a high dose of Mdivi-1 had attenuated inflammation and neuron cell apoptosis by inhibiting Hyperglycemia-aggravated activation, as well as microglia and astrocyte proliferation, following SAH. Conclusion: Mdivi-1, a Drp-1 inhibitor, attenuates cerebral vasospasm, poor neurological outcomes, inflammation, and neuron cell apoptosis following SAH + hyperglycemia.
Collapse
Affiliation(s)
- Chia-Li Chung
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Department of Surgery, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 81267, Taiwan
| | - Yu-Hua Huang
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833401, Taiwan;
| | - Chien-Ju Lin
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Yoon-Bin Chong
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (Y.-B.C.); (S.-C.W.)
| | - Shu-Chuan Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (Y.-B.C.); (S.-C.W.)
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan;
- Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (Y.-B.C.); (S.-C.W.)
- Correspondence: (H.-P.T.); (A.-L.K.); Tel.: +886-7-3121101 (H.-P.T. & A.-L.K.); Fax: +886-7-3215039 (H.-P.T. & A.-L.K.)
| | - Aij-Lie Kwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; (Y.-B.C.); (S.-C.W.)
- Department of Surgery, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Neurosurgery, University of Virginia, Charlottesville, VA 22903, USA
- Correspondence: (H.-P.T.); (A.-L.K.); Tel.: +886-7-3121101 (H.-P.T. & A.-L.K.); Fax: +886-7-3215039 (H.-P.T. & A.-L.K.)
| |
Collapse
|
178
|
Liu X, Song L, Yu J, Huang F, Li Y, Ma C. Mdivi-1: a promising drug and its underlying mechanisms in the treatment of neurodegenerative diseases. Histol Histopathol 2022; 37:505-512. [PMID: 35199329 DOI: 10.14670/hh-18-443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mitochondria are energy-producing organelles, and neurons are high energy consumption cells. Therefore, mitochondrial dysfunction is a critical factor in neurodegenerative processes. Mitochondrial division inhibitor-1 (Mdivi-1) is a small chemical inhibitor of mitochondrial division dynamin, which plays multiple roles in mitochondrial dynamics, mitochondrial autophagy, ATP production, the immune response, and Ca²⁺ homeostasis. Mdivi-1 inhibition of excessive mitochondrial fission exerted cytoprotective effects in neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), and multiple sclerosis (MS). Mdivi-1 changed the mRNA expression of the electron transport chain (ETC) and reduced Ca²⁺ overload against neuronal injury. Elucidation of the molecular mechanism of Mdivi-1 in neurodegenerative diseases will help evaluate its therapeutic potential and promote its application in clinical studies. The present article focused on the multiple effects of Mdivi-1 on mitochondrial function and its potential therapeutic effects in neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaoqin Liu
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Lijuan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jiezhong Yu
- Institute of Brain Science, Shanxi Datong University, Datong, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China
- Department of Neurology, The Fourth People's Hospital, Datong, China
| | - Fang Huang
- Institute of Brain Science, Shanxi Datong University, Datong, China
| | - Yanhua Li
- Institute of Brain Science, Shanxi Datong University, Datong, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Cungen Ma
- Institute of Brain Science, Shanxi Datong University, Datong, China
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, China.
| |
Collapse
|
179
|
Zirngibl M, Assinck P, Sizov A, Caprariello AV, Plemel JR. Oligodendrocyte death and myelin loss in the cuprizone model: an updated overview of the intrinsic and extrinsic causes of cuprizone demyelination. Mol Neurodegener 2022; 17:34. [PMID: 35526004 PMCID: PMC9077942 DOI: 10.1186/s13024-022-00538-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/08/2022] [Indexed: 12/15/2022] Open
Abstract
The dietary consumption of cuprizone – a copper chelator – has long been known to induce demyelination of specific brain structures and is widely used as model of multiple sclerosis. Despite the extensive use of cuprizone, the mechanism by which it induces demyelination are still unknown. With this review we provide an updated understanding of this model, by showcasing two distinct yet overlapping modes of action for cuprizone-induced demyelination; 1) damage originating from within the oligodendrocyte, caused by mitochondrial dysfunction or reduced myelin protein synthesis. We term this mode of action ‘intrinsic cell damage’. And 2) damage to the oligodendrocyte exerted by inflammatory molecules, brain resident cells, such as oligodendrocytes, astrocytes, and microglia or peripheral immune cells – neutrophils or T-cells. We term this mode of action ‘extrinsic cellular damage’. Lastly, we summarize recent developments in research on different forms of cell death induced by cuprizone, which could add valuable insights into the mechanisms of cuprizone toxicity. With this review we hope to provide a modern understanding of cuprizone-induced demyelination to understand the causes behind the demyelination in MS.
Collapse
Affiliation(s)
- Martin Zirngibl
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Peggy Assinck
- Wellcome Trust- MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.,Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Anastasia Sizov
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Andrew V Caprariello
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Cumming School of Medicine, Calgary, Canada
| | - Jason R Plemel
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada. .,Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada. .,Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
180
|
Burtscher J, Romani M, Bernardo G, Popa T, Ziviani E, Hummel FC, Sorrentino V, Millet GP. Boosting mitochondrial health to counteract neurodegeneration. Prog Neurobiol 2022; 215:102289. [DOI: 10.1016/j.pneurobio.2022.102289] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/23/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022]
|
181
|
Reiss AB, Ahmed S, Dayaramani C, Glass AD, Gomolin IH, Pinkhasov A, Stecker MM, Wisniewski T, De Leon J. The role of mitochondrial dysfunction in Alzheimer's disease: A potential pathway to treatment. Exp Gerontol 2022; 164:111828. [DOI: 10.1016/j.exger.2022.111828] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
|
182
|
Buchke S, Sharma M, Bora A, Relekar M, Bhanu P, Kumar J. Mitochondria-Targeted, Nanoparticle-Based Drug-Delivery Systems: Therapeutics for Mitochondrial Disorders. Life (Basel) 2022; 12:657. [PMID: 35629325 PMCID: PMC9144057 DOI: 10.3390/life12050657] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 02/07/2023] Open
Abstract
Apart from ATP generation, mitochondria are involved in a wide range of functions, making them one of the most prominent organelles of the human cell. Mitochondrial dysfunction is involved in the pathophysiology of several diseases, such as cancer, neurodegenerative diseases, cardiovascular diseases, and metabolic disorders. This makes it a target for a variety of therapeutics for the diagnosis and treatment of these diseases. The use of nanoparticles to target mitochondria has significant importance in modern times because they provide promising ways to deliver drug payloads to the mitochondria by overcoming challenges, such as low solubility and poor bioavailability, and also resolve the issues of the poor biodistribution of drugs and pharmacokinetics with increased specificity. This review assesses nanoparticle-based drug-delivery systems, such as liposomes, DQAsome, MITO-Porters, micelles, polymeric and metal nanocarriers, as well as quantum dots, as mitochondria-targeted strategies and discusses them as a treatment for mitochondrial disorders.
Collapse
Affiliation(s)
- Sakshi Buchke
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali Road, Dist, Tonk 304022, India; (S.B.); (M.S.)
| | - Muskan Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Vanasthali Road, Dist, Tonk 304022, India; (S.B.); (M.S.)
| | - Anusuiya Bora
- School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore Campus, Tiruvalam Road, Katpadi, Vellore 632014, India;
| | - Maitrali Relekar
- KEM Hospital Research Centre, KEM Hospital, Rasta Peth, Pune 411011, India;
| | - Piyush Bhanu
- Xome Life Sciences, Bangalore Bioinnovation Centre (BBC), Helix Biotech Park, Electronics City Phase 1, Bengaluru 560100, India;
| | - Jitendra Kumar
- Bangalore Bioinnovation Centre (BBC), Helix Biotech Park, Electronics City Phase 1, Bengaluru 560100, India
| |
Collapse
|
183
|
Song J, Yi X, Gao R, Sun L, Wu Z, Zhang S, Huang L, Han C, Ma J. Impact of Drp1-Mediated Mitochondrial Dynamics on T Cell Immune Modulation. Front Immunol 2022; 13:873834. [PMID: 35432303 PMCID: PMC9008543 DOI: 10.3389/fimmu.2022.873834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In recent years, various breakthroughs have been made in tumor immunotherapy that have contributed to prolonging the survival of tumor patients. However, only a subset of patients respond to immunotherapy, which limits its use. One reason for this is that the tumor microenvironment (TME) hinders the migration and infiltration of T cells and affects their continuous functioning, resulting in an exhausted phenotype. Therefore, clarifying the mechanism by which T cells become exhausted is of significance for improving the efficacy of immunotherapy. Several recent studies have shown that mitochondrial dynamics play an important role in the immune surveillance function of T cells. Dynamin-related protein 1 (Drp1) is a key protein that mediates mitochondrial fission and maintains the mitochondrial dynamic network. Drp1 regulates various activities of T cells in vivo by mediating the activation of a series of pathways. In addition, abnormal mitochondrial dynamics were observed in exhausted T cells in the TME. As a potential target for immunotherapy, in this review, we describe in detail how Drp1 regulates various physiological functions of T cells and induces changes in mitochondrial dynamics in the TME, providing a theoretical basis for further research.
Collapse
Affiliation(s)
- Jun Song
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaofang Yi
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ruolin Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Sun
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhixuan Wu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuling Zhang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Letian Huang
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chengbo Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jietao Ma
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
184
|
p38 MAPK priming boosts VSMC proliferation and arteriogenesis by promoting PGC1α-dependent mitochondrial dynamics. Sci Rep 2022; 12:5938. [PMID: 35396524 PMCID: PMC8994030 DOI: 10.1038/s41598-022-09757-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/28/2022] [Indexed: 12/05/2022] Open
Abstract
Vascular smooth muscle cell (VSMC) proliferation is essential for arteriogenesis to restore blood flow after artery occlusion, but the mechanisms underlying this response remain unclear. Based on our previous findings showing increased VSMC proliferation in the neonatal aorta of mice lacking the protease MT4-MMP, we aimed at discovering new players in this process. We demonstrate that MT4-MMP absence boosted VSMC proliferation in vitro in response to PDGF-BB in a cell-autonomous manner through enhanced p38 MAPK activity. Increased phospho-p38 in basal MT4-MMP-null VSMCs augmented the rate of mitochondrial degradation by promoting mitochondrial morphological changes through the co-activator PGC1α as demonstrated in PGC1α−/− VSMCs. We tested the in vivo implications of this pathway in a novel conditional mouse line for selective MT4-MMP deletion in VSMCs and in mice pre-treated with the p38 MAPK activator anisomycin. Priming of p38 MAPK activity in vivo by the absence of the protease MT4-MMP or by anisomycin treatment led to enhanced arteriogenesis and improved flow recovery after femoral artery occlusion. These findings may open new therapeutic opportunities for peripheral vascular diseases.
Collapse
|
185
|
Yin X, Li Z, Lyu C, Wang Y, Ding S, Ma C, Wang J, Cui S, Wang J, Guo D, Xu R. Induced Effect of Zinc oxide nanoparticles on human acute myeloid leukemia cell apoptosis by regulating mitochondrial division. IUBMB Life 2022; 74:519-531. [PMID: 35383422 DOI: 10.1002/iub.2615] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/28/2022] [Accepted: 03/31/2022] [Indexed: 11/11/2022]
Abstract
Zinc oxide nanoparticles (ZnO NPs) have exhibited excellent anti-tumor, the present study aimed to elucidate the underlying mechanism of ZnO NPs induced apoptosis in acute myeloid leukemia (AML) cells by regulating mitochondrial division. THP-1 cells, an AML cell line, were first incubated with different concentrations ZnO NPs for 24 h. Next, the expression of Drp-1, Bcl-2, Bax mRNA and protein was detected, and the effects of ZnO NPs on the levels of reactive oxygen species (ROS), mitochondrial membrane potential (Δψm), apoptosis and ATP generation in THP-1 cells were measured. Moreover, the effect of Drp-1 inhibitor Mdivi-1 and ZnO NPs on THP-1 cells was also detected. The results showed that the THP-1 cells survival rate decreased with the increment of ZnO NPs concentration and incubation time in a dose- and time-dependent manner. ZnO NPs can reduce the cell Δψm and ATP levels, induce the ROS production, and increase the levels of mitochondrial division and apoptosis. In contrast, the apoptotic level was significantly reduced after intervention of Drp-1 inhibitor, suggesting that ZnO NPs can induce the apoptosis of THP-1 cells by regulating mitochondrial division. Overall, ZnO NPs may provide a new basis and idea in treating human acute myeloid leukemia in clinical practice. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xuewei Yin
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zonghong Li
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunyi Lyu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Wang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Shumin Ding
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Chenchen Ma
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Jingyi Wang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Siyuan Cui
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Jinxin Wang
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Shandong Academy of Eye Disease Prevention and Therapy, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ruirong Xu
- Shandong University of Traditional Chinese Medicine Affiliated Hospital, Jinan, China
| |
Collapse
|
186
|
Maneechote C, Chunchai T, Apaijai N, Chattipakorn N, Chattipakorn SC. Pharmacological Targeting of Mitochondrial Fission and Fusion Alleviates Cognitive Impairment and Brain Pathologies in Pre-diabetic Rats. Mol Neurobiol 2022; 59:3690-3702. [PMID: 35364801 DOI: 10.1007/s12035-022-02813-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
It has recently been accepted that long-term high-fat diet (HFD) intake is a significant possible cause for prediabetes and cognitive and brain dysfunction through the disruption of brain mitochondrial function and dynamic balance. Although modulation of mitochondrial dynamics by inhibiting fission and promoting fusion has been shown to reduce the morbidity and mortality associated with a variety of chronic diseases, the impact of either pharmacological inhibition of mitochondrial fission (Mdivi-1) or stimulation of fusion (M1) on brain function in HFD-induced prediabetic models has never been studied. Thirty-two male Wistar rats were separated into 2 groups and fed either a normal diet (ND, n = 8) or HFD (n = 24) for 14 weeks. At week 12, HFD-fed rats were divided into 3 subgroups (n = 8/subgroup) and given an intraperitoneal injection of either saline, Mdivi-1 (1.2 mg/kg/day), or M1 (2 mg/kg/day) for 2 weeks. Cognitive function and metabolic parameters were determined toward the end of the protocol. The rats then were euthanized, and the brain was immediately removed in order to evaluate brain mitochondrial function and mitochondrial dynamics. HFD-fed rats experienced prediabetes, evidenced by elevated plasma insulin and the HOMA index, impaired mitochondrial function in the brain, altered dynamic regulation, and cognitive impairment were also found. Mdivi-1 and M1 treatment exerted neuroprotection to a similar extent by improving metabolic parameters, balancing mitochondrial dynamics, and reducing mitochondrial dysfunction, resulting in a gradual increase in cognitive function. Therefore, pharmacological targeting of mitochondrial fission and fusion protected the brain against chronic HFD-induced prediabetes.
Collapse
Affiliation(s)
- Chayodom Maneechote
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand.,Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
187
|
Yokoi K, Yamaguchi K, Umezawa M, Tsuchiya K, Aoki S. Induction of Paraptosis by Cyclometalated Iridium Complex-Peptide Hybrids and CGP37157 via a Mitochondrial Ca 2+ Overload Triggered by Membrane Fusion between Mitochondria and the Endoplasmic Reticulum. Biochemistry 2022; 61:639-655. [PMID: 35363482 PMCID: PMC9022229 DOI: 10.1021/acs.biochem.2c00061] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We previously reported that a cyclometalated iridium (Ir) complex-peptide hybrid (IPH) 4 functionalized with a cationic KKKGG peptide unit on the 2-phenylpyridine ligand induces paraptosis, a relatively newly found programmed cell death, in cancer cells (Jurkat cells) via the direct transport of calcium (Ca2+) from the endoplasmic reticulum (ER) to mitochondria. Here, we describe that CGP37157, an inhibitor of a mitochondrial sodium (Na+)/Ca2+ exchanger, induces paraptosis in Jurkat cells via intracellular pathways similar to those induced by 4. The findings allow us to suggest that the induction of paraptosis by 4 and CGP37157 is associated with membrane fusion between mitochondria and the ER, subsequent Ca2+ influx from the ER to mitochondria, and a decrease in the mitochondrial membrane potential (ΔΨm). On the contrary, celastrol, a naturally occurring triterpenoid that had been reported as a paraptosis inducer in cancer cells, negligibly induces mitochondria-ER membrane fusion. Consequently, we conclude that the paraptosis induced by 4 and CGP37157 (termed paraptosis II herein) proceeds via a signaling pathway different from that of the previously known paraptosis induced by celastrol, a process that negligibly involves membrane fusion between mitochondria and the ER (termed paraptosis I herein).
Collapse
Affiliation(s)
- Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Kohei Yamaguchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Masakazu Umezawa
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Koji Tsuchiya
- Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan.,Research Institute for Biomedical Science (RIBS), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
188
|
Jeon KI, Kumar A, Wozniak KT, Nehrke K, Huxlin KR. Defining the Role of Mitochondrial Fission in Corneal Myofibroblast Differentiation. Invest Ophthalmol Vis Sci 2022; 63:2. [PMID: 35377925 PMCID: PMC8994166 DOI: 10.1167/iovs.63.4.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Fibrosis caused by corneal wounding can lead to scar formation, impairing vision. Although preventing fibroblast-to-myofibroblast differentiation has therapeutic potential, effective mechanisms for doing so remain elusive. Recent work shows that mitochondria contribute to differentiation in several tissues. Here, we tested the hypothesis that mitochondrial dynamics, and specifically fission, are key for transforming growth factor (TGF)-β1-induced corneal myofibroblast differentiation. Methods Mitochondrial fission was inhibited pharmacologically in cultured primary cat corneal fibroblasts. We measured its impact on molecular markers of myofibroblast differentiation and assessed changes in mitochondrial morphology through fluorescence imaging. The phosphorylation status of established regulatory proteins, both of myofibroblast differentiation and mitochondrial fission, was assessed by Western analysis. Results Pharmacological inhibition of mitochondrial fission suppressed TGF-β1-induced increases in alpha-smooth muscle actin, collagen 1, and fibronectin expression, and prevented phosphorylation of c-Jun N-terminal kinase (JNK), but not small mothers against decapentaplegic 3, p38 mitogen-activated protein kinase (p38), extracellular signal-regulated kinase 1 (ERK1), or protein kinase B (AKT). TGF-β1 increased phosphorylation of dynamin-related protein 1 (DRP1), a mitochondrial fission regulator, and caused fragmentation of the mitochondrial network. Although inhibition of JNK, ERK1, or AKT prevented phosphorylation of DRP1, none sufficed to independently suppress TGF-β1-induced fragmentation. Conclusions Mitochondrial dynamics play a key role in early corneal fibrogenesis, acting together with profibrotic signaling. This is consistent with mitochondria's role as signaling hubs that coordinate metabolic decision-making. This suggests a feed-forward cascade through which mitochondria, at least in part through fission, reinforce noncanonical TGF-β1 signaling to attain corneal myofibroblast differentiation.
Collapse
Affiliation(s)
- Kye-Im Jeon
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States.,Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Ankita Kumar
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
| | - Kaitlin T Wozniak
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States.,Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Keith Nehrke
- Department of Medicine - Nephrology Division, University of Rochester, Rochester, New York, United States
| | - Krystel R Huxlin
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States.,Center for Visual Science, University of Rochester, Rochester, New York, United States
| |
Collapse
|
189
|
Huang Y, Si X, Shao M, Teng X, Xiao G, Huang H. Rewiring mitochondrial metabolism to counteract exhaustion of CAR-T cells. J Hematol Oncol 2022; 15:38. [PMID: 35346311 PMCID: PMC8960222 DOI: 10.1186/s13045-022-01255-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/11/2022] [Indexed: 12/16/2022] Open
Abstract
Short persistence and early exhaustion of T cells are major limits to the efficacy and broad application of immunotherapy. Exhausted T and chimeric antigen receptor (CAR)-T cells upregulate expression of genes associated with terminated T cell differentiation, aerobic glycolysis and apoptosis. Among cell exhaustion characteristics, impaired mitochondrial function and dynamics are considered hallmarks. Here, we review the mitochondrial characteristics of exhausted T cells and particularly discuss different aspects of mitochondrial metabolism and plasticity. Furthermore, we propose a novel strategy of rewiring mitochondrial metabolism to emancipate T cells from exhaustion and of targeting mitochondrial plasticity to boost CAR-T cell therapy efficacy.
Collapse
Affiliation(s)
- Yue Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xiaohui Si
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Mi Shao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Xinyi Teng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China.,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.,Institute of Hematology, Zhejiang University, Hangzhou, China.,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Gang Xiao
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China. .,Institute of Immunology, Zhejiang University, Hangzhou, China.
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, No. 79 Qingchun Road, Hangzhou, China. .,Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China. .,Institute of Hematology, Zhejiang University, Hangzhou, China. .,Zhejiang Province Engineering Laboratory for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
190
|
Drp1-Mediated Mitochondrial Metabolic Dysfunction Inhibits the Tumor Growth of Pituitary Adenomas. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5652586. [PMID: 35368865 PMCID: PMC8967574 DOI: 10.1155/2022/5652586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/01/2021] [Accepted: 02/10/2022] [Indexed: 12/04/2022]
Abstract
Metabolic changes have been suggested to be a hallmark of tumors and are closely associated with tumorigenesis. In a previous study, we demonstrated the role of lactate dehydrogenase in regulating abnormal glucose metabolism in pituitary adenomas (PA). As the key organelle of oxidative phosphorylation (OXPHOS), mitochondria play a vital role in the energy supply for tumor cells. However, few attempts have been made to elucidate mitochondrial metabolic homeostasis in PA. Dynamin-related protein 1 (Drp1) is a member of the dynamin superfamily of GTPases, which mediates mitochondrial fission. This study is aimed at investigating whether Drp1 affects the progression of PA through abnormal mitochondrial metabolism. We analyzed the expression of dynamin-related protein 1 (Drp1) in 20 surgical PA samples. The effects of Drp1 on PA growth were assessed in vitro and in xenograft models. We found an upregulation of Drp1 in PA samples with a low proliferation index. Knockdown or inhibition of Drp1 enhanced the proliferation of PA cell lines in vitro, while overexpression of Drp1 could reversed such effects. Mechanistically, overexpressed Drp1 damaged mitochondria by overproduction of reactive oxygen species (ROS), which induced mitochondrial OXPHOS inhibition and decline of ATP production. The energy deficiency inhibited proliferation of PA cells. In addition, overexpressed Drp1 promoted cytochrome c release from damaged mitochondria into the cytoplasm and then activated the downstream caspase apoptotic cascade reaction, which induced apoptosis of PA cells. Moreover, the decreased ATP production induced by Drp1 overexpressing activated the AMPK cellular energy stress sensor and enhanced autophagy through the AMPK-ULK1 pathway, which might play a protective role in PA growth. Furthermore, overexpression of Drp1 repressed PA growth in vivo. Our data indicates that Drp1-mediated mitochondrial metabolic dysfunction inhibits PA growth by affecting cell proliferation, apoptosis, and autophagy. Selectively targeting mitochondrial metabolic homeostasis stands out as a promising antineoplastic strategy for PA therapy.
Collapse
|
191
|
Prescription Drugs and Mitochondrial Metabolism. Biosci Rep 2022; 42:231068. [PMID: 35315490 PMCID: PMC9016406 DOI: 10.1042/bsr20211813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are central to the physiology and survival of nearly all eukaryotic cells and house diverse metabolic processes including oxidative phosphorylation, reactive oxygen species buffering, metabolite synthesis/exchange, and Ca2+ sequestration. Mitochondria are phenotypically heterogeneous and this variation is essential to the complexity of physiological function among cells, tissues, and organ systems. As a consequence of mitochondrial integration with so many physiological processes, small molecules that modulate mitochondrial metabolism induce complex systemic effects. In the case of many common prescribed drugs, these interactions may contribute to drug therapeutic mechanisms, induce adverse drug reactions, or both. The purpose of this article is to review historical and recent advances in the understanding of the effects of prescription drugs on mitochondrial metabolism. Specific 'modes' of xenobiotic-mitochondria interactions are discussed to provide a set of qualitative models that aid in conceptualizing how the mitochondrial energy transduction system may be affected. Findings of recent in vitro high-throughput screening studies are reviewed, and a few candidate drug classes are chosen for additional brief discussion (i.e. antihyperglycemics, antidepressants, antibiotics, and antihyperlipidemics). Finally, recent improvements in pharmacokinetic models that aid in quantifying systemic effects of drug-mitochondria interactions are briefly considered.
Collapse
|
192
|
Guo Z, Buonanno M, Harken A, Zhou G, Hei TK. Mitochondrial Damage Response and Fate of Normal Cells Exposed to FLASH Irradiation with Protons. Radiat Res 2022; 197:569-582. [PMID: 35290449 DOI: 10.1667/rade-21-00181.1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/24/2022] [Indexed: 11/03/2022]
Abstract
Radiation therapy (RT) plays an important role in cancer treatment. The clinical efficacy of radiation therapy is, however, limited by normal tissue toxicity in areas surrounding the irradiated tumor. Compared to conventional radiation therapy (CONV-RT) in which doses are typically delivered at dose rates between 0.03-0.05 Gy/s, there is evidence that radiation delivered at dose rates of orders of magnitude higher (known as FLASH-RT), dramatically reduces the adverse side effects in normal tissues while achieving similar tumor control. The present study focused on normal cell response and tested the hypothesis that proton-FLASH irradiation preserves mitochondria function of normal cells through the induction of phosphorylated Drp1. Normal human lung fibroblasts (IMR90) were irradiated under ambient oxygen concentration (21%) with protons (LET = 10 keV/μm) delivered at dose rates of either 0.33 Gy/s or 100 Gy/s. Mitochondrial dynamics, functions, cell growth and changes in protein expression levels were investigated. Compared to lower dose-rate proton irradiation, FLASH-RT prevented mitochondria damage characterized by morphological changes, functional changes (membrane potential, mtDNA copy number and oxidative enzyme levels) and oxyradical production. After CONV-RT, the phosphorylated form of Dynamin-1-like protein (p-Drp1) underwent dephosphorylation and aggregated into the mitochondria resulting in mitochondria fission and subsequent cell death. In contrast, p-Drp1 protein level did not significantly change after delivery of similar FLASH doses. Compared with CONV irradiation, FLASH irradiation using protons induces minimal mitochondria damage; our results highlight a possible contribution of Drp1-mediated mitochondrial homeostasis in this potential novel cancer treatment modality.
Collapse
Affiliation(s)
- Ziyang Guo
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, New York.,State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China.,Department of Ultrasound Medicine, Peking University First Hospital, Beijing, China
| | - Manuela Buonanno
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, New York
| | - Andrew Harken
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, New York
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Institute of Space Life Sciences, Medical College of Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Tom K Hei
- Center for Radiological Research, College of Physician and Surgeons, Columbia University Medical Center, New York, New York
| |
Collapse
|
193
|
Li Y, Chen H, Yang Q, Wan L, Zhao J, Wu Y, Wang J, Yang Y, Niu M, Liu H, Liu J, Yang H, Wan S, Wang Y, Bao D. Increased Drp1 promotes autophagy and ESCC progression by mtDNA stress mediated cGAS-STING pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:76. [PMID: 35209954 PMCID: PMC8867650 DOI: 10.1186/s13046-022-02262-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/14/2022] [Indexed: 12/30/2022]
Abstract
Background Mitochondrial dynamics homeostasis is important for cell metabolism, growth, proliferation, and immune responses. The critical GTPase for mitochondrial fission, Drp1 is frequently upregulated in many cancers and is closely implicated in tumorigenesis. However, the mechanism underling Drp1 to influence tumor progression is largely unknown, especially in esophageal squamous cell carcinoma (ESCC). Methods Immunohistochemistry was used to examine Drp1 and LC3B expression in tissues of ESCC patients. Autophagic vesicles were investigated by transmission electron microscopy. Fluorescent LC3B puncta and mitochondrial nucleoid were observed by fluorescent and confocal microscopy. Mitochondrial function was evaluated by mitochondrial membrane potential, ROS and ATP levels. Xenograft tumor model was performed in BALB/c nude mice to analyze the role of Drp1 on ESCC progression. Results We found that Drp1 high expression is correlated with poor overall survival of ESCC patients. Drp1 overexpression promotes cell proliferation and xenograft ESCC tumor growth by triggering autophagy. Furthermore, we demonstrated that Drp1 overexpression disturbs mitochondrial function and subsequent induces mitochondrial DNA (mtDNA) released into the cytosol thereby inducing cytosolic mtDNA stress. Mechanistically, cytosolic mtDNA activates the cGAS-STING pathway and facilitates autophagy, which promotes ESCC cancer growth. Moreover, mtDNA digestion with DNase I and autophagy inhibition with chloroquine attenuates the cGAS-STING pathway activation and ESCC cancer growth. Conclusions Our finding reveals that Drp1 overexpression induces mitochondrial dysfunction and cytosolic mtDNA stress, which subsequently activates the cGAS-STING pathway, triggers autophagy and promotes ESCC progression. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02262-z.
Collapse
Affiliation(s)
- Yujia Li
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China.,School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Hui Chen
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Qi Yang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China.,School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Lixin Wan
- Nanyang Central Hospital, Henan University, Nanyang, 473000, Henan, China
| | - Jing Zhao
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Yuanyuan Wu
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Jiaxin Wang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Yating Yang
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Menglan Niu
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Hongliang Liu
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Junqi Liu
- Department of Radiation Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hushan Yang
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Shaogui Wan
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China. .,Center for Molecular Pathology, First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, Jiangxi, China.
| | - Yanming Wang
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Dengke Bao
- Laboratory of Cancer Biomarkers and Liquid Biopsy, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China. .,Nanyang Central Hospital, Henan University, Nanyang, 473000, Henan, China.
| |
Collapse
|
194
|
Bordt EA, Zhang N, Waddell J, Polster BM. The Non-Specific Drp1 Inhibitor Mdivi-1 Has Modest Biochemical Antioxidant Activity. Antioxidants (Basel) 2022; 11:antiox11030450. [PMID: 35326100 PMCID: PMC8944504 DOI: 10.3390/antiox11030450] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondrial division inhibitor-1 (mdivi-1), a non-specific inhibitor of Drp1-dependent mitochondrial fission, is neuroprotective in numerous preclinical disease models. These include rodent models of Alzheimer’s disease and ischemic or traumatic brain injury. Among its Drp1-independent actions, the compound was found to suppress mitochondrial Complex I-dependent respiration but with less resultant mitochondrial reactive oxygen species (ROS) emission compared with the classical Complex I inhibitor rotenone. We employed two different methods of quantifying Trolox-equivalent antioxidant capacity (TEAC) to test the prediction that mdivi-1 can directly scavenge free radicals. Mdivi-1 exhibited moderate antioxidant activity in the 2,2′-azinobis (3-ethylbenzothiazoline 6-sulfonate) (ABTS) assay. Half-maximal ABTS radical depletion was observed at ~25 μM mdivi-1, equivalent to that achieved by ~12.5 μM Trolox. Mdivi-1 also showed antioxidant activity in the α, α-diphenyl-β-picrylhydrazyl (DPPH) assay. However, mdivi-1 exhibited a reduced capacity to deplete the DPPH radical, which has a more sterically hindered radical site compared with ABTS, with 25 μM mdivi-1 displaying only 0.8 μM Trolox equivalency. Both assays indicate that mdivi-1 possesses biochemical antioxidant activity but with modest potency relative to the vitamin E analog Trolox. Future studies are needed to evaluate whether the ability of mdivi-1 to directly scavenge free radicals contributes to its mechanisms of neuroprotection.
Collapse
Affiliation(s)
- Evan A. Bordt
- Center for Shock, Trauma and Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Lurie Center for Autism, Department of Pediatrics, Massachusetts General Hospital for Children, Harvard Medical School, Boston, MA 02129, USA
- Correspondence: (E.A.B.); (B.M.P.); Tel.: +01-617-643-4351 (E.A.B.); +01-410-706-3418 (B.M.P.)
| | - Naibo Zhang
- Center for Shock, Trauma and Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jaylyn Waddell
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Brian M. Polster
- Center for Shock, Trauma and Anesthesiology Research, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Correspondence: (E.A.B.); (B.M.P.); Tel.: +01-617-643-4351 (E.A.B.); +01-410-706-3418 (B.M.P.)
| |
Collapse
|
195
|
Metabolism, Mitochondrial Dysfunction, and Redox Homeostasis in Pulmonary Hypertension. Antioxidants (Basel) 2022; 11:antiox11020428. [PMID: 35204311 PMCID: PMC8869288 DOI: 10.3390/antiox11020428] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023] Open
Abstract
Pulmonary hypertension (PH) represents a group of disorders characterized by elevated mean pulmonary artery (PA) pressure, progressive right ventricular failure, and often death. Some of the hallmarks of pulmonary hypertension include endothelial dysfunction, intimal and medial proliferation, vasoconstriction, inflammatory infiltration, and in situ thrombosis. The vascular remodeling seen in pulmonary hypertension has been previously linked to the hyperproliferation of PA smooth muscle cells. This excess proliferation of PA smooth muscle cells has recently been associated with changes in metabolism and mitochondrial biology, including changes in glycolysis, redox homeostasis, and mitochondrial quality control. In this review, we summarize the molecular mechanisms that have been reported to contribute to mitochondrial dysfunction, metabolic changes, and redox biology in PH.
Collapse
|
196
|
Mdivi-1 alleviates cardiac fibrosis post myocardial infarction at infarcted border zone, possibly via inhibition of Drp1-Activated mitochondrial fission and oxidative stress. Arch Biochem Biophys 2022; 718:109147. [PMID: 35143784 DOI: 10.1016/j.abb.2022.109147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 01/17/2023]
Abstract
Mitochondrial division inhibitor 1(Mdivi-1) has been shown to play a beneficial role in a variety of diseases, mainly by inhibiting Drp1-mediated mitochondrial fission. The effects of Mdivi-1 on cardiac fibrosis at infarcted border zone area and its possible mechanism remain unclear. This study aimed to investigate the effects of Mdivi-1 on reactive cardiac fibrosis and cardiac function post myocardial infarction and its potential mechanisms. Mice were randomly divided into six groups(n = 9 for each group): Sham; Mdivi-1; MI 7d; MI 14d; MI 28d; MI 28d + Mdivi-1. The MI model was induced by ligation of LAD coronary artery. Mdivi-1 (1mg/kg) was administered to mice every other day at a time from the second day until the sacrifice of the mice (total 14 injection of Mdivi-1). In vitro experiments, the effect of Mdivi-1 on TGF-β1-induced fibrosis-related pathophysiological changes of fibroblasts was examined in NIH3T3 cells. We found that Mdivi-1 significantly attenuated fibroblast activation, collagen production and fibrosis at infarcted border zone after MI, improved impaired heart function. Mechanistically, we observed that Mdivi-1 reduced the protein expression of P-Drp1-S616 and abnormal mitochondrial fission of cardiac fibroblasts in the infarcted border zone area. In addition, we found that the effects of Mdivi-1 partially relied on increasing the expression of Hmox1 and inhibiting oxidative stress. In conclusion, Mdivi-1 could attenuate cardiac fibrosis at infarcted border zone and improve impaired heart function partially through attenuation of Drp1-mediated mitochondrial fission. Moreover, inhibition of oxidative stress, which is possible due to the up-regulation of Hmox1, may be another potential mechanism of action of Mdivi-1.
Collapse
|
197
|
Choi CY, Vo MT, Nicholas J, Choi YB. Autophagy-competent mitochondrial translation elongation factor TUFM inhibits caspase-8-mediated apoptosis. Cell Death Differ 2022; 29:451-464. [PMID: 34511600 PMCID: PMC8817016 DOI: 10.1038/s41418-021-00868-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
Mitochondria support multiple cell functions, but an accumulation of dysfunctional or excessive mitochondria is detrimental to cells. We previously demonstrated that a defect in the autophagic removal of mitochondria, termed mitophagy, leads to the acceleration of apoptosis induced by herpesvirus productive infection. However, the exact molecular mechanisms underlying activation of mitophagy and regulation of apoptosis remain poorly understood despite the identification of various mitophagy-associated proteins. Here, we report that the mitochondrial translation elongation factor Tu, a mitophagy-associated protein encoded by the TUFM gene, locates in part on the outer membrane of mitochondria (OMM) where it acts as an inhibitor of altered mitochondria-induced apoptosis through its autophagic function. Inducible depletion of TUFM potentiated caspase-8-mediated apoptosis in virus-infected cells with accumulation of altered mitochondria. In addition, TUFM depletion promoted caspase-8 activation induced by treatment with TNF-related apoptosis-inducing ligand in cancer cells, potentially via dysregulation of mitochondrial dynamics and mitophagy. Importantly, we revealed the existence of and structural requirements for autophagy-competent TUFM on the OMM; the GxxxG motif within the N-terminal mitochondrial targeting sequences of TUFM was required for self-dimerization and mitophagy. Furthermore, we found that autophagy-competent TUFM was subject to ubiquitin-proteasome-mediated degradation but stabilized upon mitophagy or autophagy activation. Moreover, overexpression of autophagy-competent TUFM could inhibit caspase-8 activation. These studies extend our knowledge of mitophagy regulation of apoptosis and could provide a novel strategic basis for targeted therapy of cancer and viral diseases.
Collapse
Affiliation(s)
- Chang-Yong Choi
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Mai Tram Vo
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - John Nicholas
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Young Bong Choi
- grid.21107.350000 0001 2171 9311Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| |
Collapse
|
198
|
Ansari MY, Novak K, Haqqi TM. ERK1/2-mediated activation of DRP1 regulates mitochondrial dynamics and apoptosis in chondrocytes. Osteoarthritis Cartilage 2022; 30:315-328. [PMID: 34767958 PMCID: PMC8792336 DOI: 10.1016/j.joca.2021.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/19/2021] [Accepted: 11/01/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE To determine the Dynamin-related protein 1 (DRP1) regulation of mitochondrial fission in chondrocytes under pathological conditions, an area which is underexplored in osteoarthritis pathogenesis. DESIGN DRP1 protein expression was determined by immunohistochemistry (IHC) or immunofluorescence (IF) staining of cartilage sections. IL-1β-induced DRP1 mRNA expression in chondrocytes was quantified by qPCR and protein expression by immunoblotting. Mitochondrial fragmentation in chondrocytes was visualized by MitoTracker staining or IF staining of mitochondrial marker proteins or by transient expression of mitoDsRed. Mitochondrial reactive oxygen species (ROS) levels were determined by MitoSOX staining. Apoptosis was determined by lactate dehydrogenase (LDH) release assay, Caspase 3/7 activity assay, propidium iodide (PI), and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining and IF staining of cleaved caspase 3. Cytochrome c release was determined by confocal microscopy. Surgical destabilization of the medial meniscus (DMM) was used to induce osteoarthritis (OA) in mice. RESULTS Expression of DRP1 and mitochondrial damage was high in human OA cartilage and in the joints of mice subjected to DMM surgery which also showed increased chondrocytes apoptosis. IL-1β-induced mitochondrial network fragmentation and chondrocyte apoptosis via modulation of DRP1 expression and activity and induce apoptosis via Bax-mediated release of Cytochrome c. Pharmacological inhibition of DRP1 activity by Mdivi-1 blocked IL-1β-induced mitochondrial damage and apoptosis in chondrocytes. Additionally, IL-1β-induced activation of extracellular signal-regulated kinase 1/2 (ERK1/2) is crucial for DRP1 activation and induction of mitochondrial network fragmentation in chondrocytes as these were blocked by inhibiting ERK1/2 activation. CONCLUSIONS These findings demonstrate that ERK1/2 is a critical player in DRP1-mediated induction of mitochondrial fission and apoptosis in IL-1β-stimulated chondrocytes.
Collapse
Affiliation(s)
- Mohammad Y. Ansari
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA, 44272
| | - Kimberly Novak
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA, 44272
| | - Tariq M. Haqqi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, Ohio, USA, 44272,Corresponding author: Telephone number: +1 330 325 6704, TMH:
| |
Collapse
|
199
|
Romani P, Nirchio N, Arboit M, Barbieri V, Tosi A, Michielin F, Shibuya S, Benoist T, Wu D, Hindmarch CCT, Giomo M, Urciuolo A, Giamogante F, Roveri A, Chakravarty P, Montagner M, Calì T, Elvassore N, Archer SL, De Coppi P, Rosato A, Martello G, Dupont S. Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance. Nat Cell Biol 2022; 24:168-180. [PMID: 35165418 PMCID: PMC7615745 DOI: 10.1038/s41556-022-00843-w] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/06/2022] [Indexed: 01/07/2023]
Abstract
Metastatic breast cancer cells disseminate to organs with a soft microenvironment. Whether and how the mechanical properties of the local tissue influence their response to treatment remains unclear. Here we found that a soft extracellular matrix empowers redox homeostasis. Cells cultured on a soft extracellular matrix display increased peri-mitochondrial F-actin, promoted by Spire1C and Arp2/3 nucleation factors, and increased DRP1- and MIEF1/2-dependent mitochondrial fission. Changes in mitochondrial dynamics lead to increased production of mitochondrial reactive oxygen species and activate the NRF2 antioxidant transcriptional response, including increased cystine uptake and glutathione metabolism. This retrograde response endows cells with resistance to oxidative stress and reactive oxygen species-dependent chemotherapy drugs. This is relevant in a mouse model of metastatic breast cancer cells dormant in the lung soft tissue, where inhibition of DRP1 and NRF2 restored cisplatin sensitivity and prevented disseminated cancer-cell awakening. We propose that targeting this mitochondrial dynamics- and redox-based mechanotransduction pathway could open avenues to prevent metastatic relapse.
Collapse
Affiliation(s)
- Patrizia Romani
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
| | - Nunzia Nirchio
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
| | - Mattia Arboit
- Department of Biology (DiBio), University of Padua, Padua, Italy
| | - Vito Barbieri
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Anna Tosi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Federica Michielin
- Institute of Child Health, NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Soichi Shibuya
- Institute of Child Health, NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Thomas Benoist
- Institute of Child Health, NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Danchen Wu
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | | | - Monica Giomo
- Department of Industrial Engineering (DII), University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Anna Urciuolo
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
- Fondazione Istituto di Ricerca Pediatrica (IRP), Città della Speranza, Padua, Italy
| | - Flavia Giamogante
- Department of Biomedical Sciences (DSB), University of Padua, Padua, Italy
| | - Antonella Roveri
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
| | | | - Marco Montagner
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy
| | - Tito Calì
- Department of Biomedical Sciences (DSB), University of Padua, Padua, Italy
| | - Nicola Elvassore
- Institute of Child Health, NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL, London, UK
- Department of Industrial Engineering (DII), University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Stephen L Archer
- Department of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Paolo De Coppi
- Institute of Child Health, NIHR Biomedical Research Centre, Great Ormond Street Institute of Child Health, UCL, London, UK
| | - Antonio Rosato
- Department of Surgery, Oncology and Gastroenterology (DiSCOG), University of Padua, Padua, Italy
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Sirio Dupont
- Department of Molecular Medicine (DMM), University of Padua, Padua, Italy.
| |
Collapse
|
200
|
Quiring L, Walter B, Lohaus N, Schwan D, Rech A, Dlugos A, Rauen U. Characterisation of cold-induced mitochondrial fission in porcine aortic endothelial cells. Mol Med 2022; 28:13. [PMID: 35100966 PMCID: PMC8802553 DOI: 10.1186/s10020-021-00430-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/27/2021] [Indexed: 12/21/2022] Open
Abstract
Background Previously, we observed that hypothermia, widely used for organ preservation, elicits mitochondrial fission in different cell types. However, temperature dependence, mechanisms and consequences of this cold-induced mitochondrial fission are unknown. Therefore, we here study cold-induced mitochondrial fission in endothelial cells, a cell type generally displaying a high sensitivity to cold-induced injury. Methods Porcine aortic endothelial cells were incubated at 4–25 °C in modified Krebs–Henseleit buffer (plus glucose to provide substrate and deferoxamine to prevent iron-dependent hypothermic injury). Results Cold-induced mitochondrial fission occurred as early as after 3 h at 4 °C and at temperatures below 21 °C, and was more marked after longer cold incubation periods. It was accompanied by the formation of unusual mitochondrial morphologies such as donuts, blobs, and lassos. Under all conditions, re-fusion was observed after rewarming. Cellular ATP content dropped to 33% after 48 h incubation at 4 °C, recovering after rewarming. Drp1 protein levels showed no significant change during cold incubation, but increased phosphorylation at both phosphorylation sites, activating S616 and inactivating S637. Drp1 receptor protein levels were unchanged. Instead of increased mitochondrial accumulation of Drp1 decreased mitochondrial localization was observed during hypothermia. Moreover, the well-known Drp1 inhibitor Mdivi-1 showed only partial protection against cold-induced mitochondrial fission. The inner membrane fusion-mediating protein Opa1 showed a late shift from the long to the fusion-incompetent short isoform during prolonged cold incubation. Oma1 cleavage was not observed. Conclusions Cold-induced mitochondrial fission appears to occur over almost the whole temperature range relevant for organ preservation. Unusual morphologies appear to be related to fission/auto-fusion. Fission appears to be associated with lower mitochondrial function/ATP decline, mechanistically unusual, and after cold incubation in physiological solutions reversible at 37 °C. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00430-z.
Collapse
|