151
|
Morinaka A, Yamada M, Itofusa R, Funato Y, Yoshimura Y, Nakamura F, Yoshimura T, Kaibuchi K, Goshima Y, Hoshino M, Kamiguchi H, Miki H. Thioredoxin mediates oxidation-dependent phosphorylation of CRMP2 and growth cone collapse. Sci Signal 2011; 4:ra26. [PMID: 21521879 DOI: 10.1126/scisignal.2001127] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Semaphorin3A (Sema3A) is a repulsive guidance molecule for axons, which acts by inducing growth cone collapse through phosphorylation of CRMP2 (collapsin response mediator protein 2). Here, we show a role for CRMP2 oxidation and thioredoxin (TRX) in the regulation of CRMP2 phosphorylation and growth cone collapse. Sema3A stimulation generated hydrogen peroxide (H2O2) through MICAL (molecule interacting with CasL) and oxidized CRMP2, enabling it to form a disulfide-linked homodimer through cysteine-504. Oxidized CRMP2 then formed a transient disulfide-linked complex with TRX, which stimulated CRMP2 phosphorylation by glycogen synthase kinase-3, leading to growth cone collapse. We also reconstituted oxidation-dependent phosphorylation of CRMP2 in vitro, using a limited set of purified proteins. Our results not only clarify the importance of H2O2 and CRMP2 oxidation in Sema3A-induced growth cone collapse but also indicate an unappreciated role for TRX in linking CRMP2 oxidation to phosphorylation.
Collapse
Affiliation(s)
- Akifumi Morinaka
- Laboratory of Intracellular Signaling, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Collapsin response mediator protein-2: an emerging pathologic feature and therapeutic target for neurodisease indications. Mol Neurobiol 2011; 43:180-91. [PMID: 21271304 DOI: 10.1007/s12035-011-8166-4] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 01/05/2011] [Indexed: 10/18/2022]
Abstract
Collapsin response mediator protein-2 (DPYSL2 or CRMP2) is a multifunctional adaptor protein within the central nervous system. In the developing brain or cell cultures, CRMP2 performs structural and regulatory functions related to cytoskeletal dynamics, vesicle trafficking and synaptic physiology whereas CRMP2 functions in adult brain are still being elucidated. CRMP2 has been associated with several neuropathologic or psychiatric conditions including Alzheimer's disease (AD) and schizophrenia, either at the level of genetic polymorphisms; protein expression; post-translational modifications; or protein/protein interactions. In AD, CRMP2 is phosphorylated by glycogen synthase kinase-3β (GSK3β) and cyclin dependent protein kinase-5 (CDK5), the same kinases that act on tau protein in generating neurofibrillary tangles (NFTs). Phosphorylated CRMP2 collects in NFTs in association with the synaptic structure-regulating SRA1/WAVE1 (specifically Rac1-associated protein-1/WASP family verprolin-homologous protein-1) complex. This phenomenon could plausibly contribute to deficits in neural and synaptic structure that have been well documented in AD. This review discusses the essential biology of CRMP2 in the context of nascent data implicating CRMP2 perturbations as either a correlate of, or plausible contributor to, diverse neuropathologies. A discussion is made of recent findings that the atypical antidepressant tianeptine increases CRMP2 expression, whereas other, neuroactive small molecules including the epilepsy drug lacosamide and the natural brain metabolite lanthionine ketimine appear to bind CRMP2 directly with concomitant affects on neural structure. These findings constitute proofs-of-concept that pharmacological manipulation of CRMP2 is possible and hence, may offer new opportunities for therapy development against certain neurological diseases.
Collapse
|
153
|
Vaegter CB, Jansen P, Fjorback AW, Glerup S, Skeldal S, Richner M, Erdmann B, Nyengaard JR, Tessarollo L, Lewin GR, Willnow TE, Chao MV, Nykjaer A. Sortilin associates with Trk receptors to enhance anterograde transport and neurotrophin signaling. Nat Neurosci 2011; 14:54-61. [PMID: 21102451 PMCID: PMC3808973 DOI: 10.1038/nn.2689] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/12/2010] [Indexed: 02/05/2023]
Abstract
Binding of target-derived neurotrophins to Trk receptors at nerve terminals is required to stimulate neuronal survival, differentiation, innervation and synaptic plasticity. The distance between the soma and nerve terminal is great, making efficient anterograde Trk transport critical for Trk synaptic translocation and signaling. The mechanism responsible for this trafficking remains poorly understood. Here we show that the sorting receptor sortilin interacts with TrkA, TrkB and TrkC and enables their anterograde axonal transport, thereby enhancing neurotrophin signaling. Cultured DRG neurons lacking sortilin showed blunted MAP kinase signaling and reduced neurite outgrowth upon stimulation with NGF. Moreover, deficiency for sortilin markedly aggravated TrkA, TrkB and TrkC phenotypes present in p75(NTR) knockouts, and resulted in increased embryonic lethality and sympathetic neuropathy in mice heterozygous for TrkA. Our findings demonstrate a role for sortilin as an anterograde trafficking receptor for Trk and a positive modulator of neurotrophin-induced neuronal survival.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/deficiency
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Adaptor Proteins, Vesicular Transport/physiology
- Animals
- Axonal Transport/genetics
- Axonal Transport/physiology
- Cell Culture Techniques
- Cerebral Cortex/metabolism
- Embryo, Mammalian/pathology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/metabolism
- HEK293 Cells
- Hippocampus/metabolism
- Humans
- Mice
- Mice, Knockout
- Nerve Growth Factor/pharmacology
- Nerve Growth Factors/physiology
- Neurites/drug effects
- Neurites/physiology
- Receptor Cross-Talk/physiology
- Receptor, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Nerve Growth Factor/physiology
- Signal Transduction/physiology
- Superior Cervical Ganglion/metabolism
- Superior Cervical Ganglion/pathology
Collapse
Affiliation(s)
- Christian B. Vaegter
- The Lundbeck Foundation Research Center MIND, Department of Medical Biochemistry, Ole Worms Allé 1170, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Pernille Jansen
- The Lundbeck Foundation Research Center MIND, Department of Medical Biochemistry, Ole Worms Allé 1170, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Anja W. Fjorback
- MIND Center, Stereology and Electron Microscopy Laboratory, Aarhus University, 8000 Aarhus C, Denmark
| | - Simon Glerup
- The Lundbeck Foundation Research Center MIND, Department of Medical Biochemistry, Ole Worms Allé 1170, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Sune Skeldal
- The Lundbeck Foundation Research Center MIND, Department of Medical Biochemistry, Ole Worms Allé 1170, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Mette Richner
- The Lundbeck Foundation Research Center MIND, Department of Medical Biochemistry, Ole Worms Allé 1170, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bettina Erdmann
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | - Jens R. Nyengaard
- MIND Center, Stereology and Electron Microscopy Laboratory, Aarhus University, 8000 Aarhus C, Denmark
| | - Lino Tessarollo
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, USA
| | - Gary R. Lewin
- Max-Delbrück-Center for Molecular Medicine, 13125 Berlin, Germany
| | | | - Moses V. Chao
- Kimmel Center at Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York 10016, USA
| | - Anders Nykjaer
- The Lundbeck Foundation Research Center MIND, Department of Medical Biochemistry, Ole Worms Allé 1170, Aarhus University, DK-8000 Aarhus C, Denmark
- NeuronIcon, Gustav Wieds vej 10, DK-8000 Aarhus C, Denmark
| |
Collapse
|
154
|
Hirokawa N, Niwa S, Tanaka Y. Molecular Motors in Neurons: Transport Mechanisms and Roles in Brain Function, Development, and Disease. Neuron 2010; 68:610-38. [DOI: 10.1016/j.neuron.2010.09.039] [Citation(s) in RCA: 668] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2010] [Indexed: 12/11/2022]
|
155
|
Liu D, Meckel T, Long EO. Distinct role of rab27a in granule movement at the plasma membrane and in the cytosol of NK cells. PLoS One 2010; 5:e12870. [PMID: 20877725 PMCID: PMC2943471 DOI: 10.1371/journal.pone.0012870] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 08/27/2010] [Indexed: 02/05/2023] Open
Abstract
Protocols were developed to automate image analysis and to track the movement of thousands of vesicular compartments in live cells. Algorithms were used to discriminate among different types of movement (e.g. random, caged, and directed). We applied these tools to investigate the steady-state distribution and movement of lytic granules (LG) in live natural killer (NK) cells by high-speed 3-dimensional (3D) spinning disc confocal and 2-dimensional total internal reflection fluorescence microscopy. Both mouse NK cells and a human NK cell line deficient in the small GTPase Rab27a were examined. The unbiased analysis of large datasets led to the following observations and conclusions. The majority of LG in the cytosol and at the plasma membrane of unstimulated NK cells are mobile. The use of inhibitors indicated that movement in the cytosol required microtubules but not actin, whereas movement at the plasma membrane required both. Rab27a deficiency resulted in fewer LG, and in a reduced fraction of mobile LG, at the plasma membrane. In contrast, loss of Rab27a increased the fraction of mobile LG and the extent of their movement in the cytosol. Therefore, in addition to its documented role in LG delivery to the plasma membrane, Rab27a may restrict LG movement in the cytosol.
Collapse
Affiliation(s)
- Dongfang Liu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Tobias Meckel
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Eric O. Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
156
|
CRMP5 interacts with tubulin to inhibit neurite outgrowth, thereby modulating the function of CRMP2. J Neurosci 2010; 30:10639-54. [PMID: 20702696 DOI: 10.1523/jneurosci.0059-10.2010] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Collapsin response mediator proteins (CRMPs) are involved in signaling of axon guidance and neurite outgrowth during neural development and regeneration. Among these, CRMP2 has been identified as an important actor in neuronal polarity and axon outgrowth, these activities being correlated with the reorganization of cytoskeletal proteins. In contrast, the function of CRMP5, expressed during brain development, remains obscure. Here, we find that, in contrast to CRMP2, CRMP5 inhibits tubulin polymerization and neurite outgrowth. Knockdown of CRMP5 expression by small interfering RNA confirms its inhibitory functions. CRMP5 forms a ternary complex with MAP2 and tubulin, the latter involving residues 475-522 of CRMP5, exposed at the molecule surface. Using different truncated CRMP5 constructs, we demonstrate that inhibition of neurite outgrowth by CRMP5 is mediated by tubulin binding. When both CRMP5 and CRMP2 are overexpressed, the inhibitory effect of CRMP5 abrogates neurite outgrowth promotion induced by CRMP2, suggesting that CRMP5 acts as a dominant signal. In cultured hippocampal neurons, CRMP5 shows no effect on axon growth, whereas it inhibits dendrite outgrowth and formation, at an early developmental stage, correlated with its strong expression in neurites. At later stages, when dendrites begin to extend, CRMP5 expression is absent. However, CRMP2 is constantly expressed. Overexpression of CRMP5 with CRMP2 inhibits CRMP2-induced outgrowth both on the axonal and dendritic levels. Deficiency of CRMP5 expression enhanced the CRMP2 effect. This antagonizing effect of CRMP5 is exerted through a tubulin-based mechanism. Thus, the CRMP5 binding to tubulin modulates CRMP2 regulation of neurite outgrowth and neuronal polarity during brain development.
Collapse
|
157
|
Rahajeng J, Giridharan SSP, Naslavsky N, Caplan S. Collapsin response mediator protein-2 (Crmp2) regulates trafficking by linking endocytic regulatory proteins to dynein motors. J Biol Chem 2010; 285:31918-22. [PMID: 20801876 DOI: 10.1074/jbc.c110.166066] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endocytosis is a conserved cellular process in which nutrients, lipids, and receptors are internalized and transported to early endosomes, where they are sorted and either channeled to degradative pathways or recycled to the plasma membrane. MICAL-L1 and EHD1 are important regulatory proteins that control key endocytic transport steps. However, the precise mechanisms by which they mediate transport, and particularly the mode by which they connect to motor proteins, have remained enigmatic. Here we have identified the collapsin response mediator protein-2 (Crmp2) as an interaction partner of MICAL-L1 in non-neuronal cells. Crmp2 interacts with tubulin dimers and kinesin and negatively regulates dynein-based transport in neuronal cells, but its expression and function in non-neuronal cells have remained poorly characterized. Upon Crmp2 depletion, we observed dramatic relocalization of internalized transferrin (Tf) from peripheral vesicles to the endocytic recycling compartment (ERC), similar to the effect of depleting either MICAL-L1 or EHD1. Moreover, Tf relocalization to the ERC could be inhibited by interfering with microtubule polymerization, consistent with a role for uncoupled motor protein-based transport upon depletion of Crmp2, MICAL-L1, or EHD1. Finally, transfection of dynamitin, a component of the dynactin complex whose overexpression inhibits dynein activity, prevented the relocalization of internalized Tf to the ERC upon depletion of Crmp2, MICAL-L1, or EHD1. These data provide the first trafficking regulatory role for Crmp2 in non-neuronal cells and support a model in which Crmp2 is an important endocytic regulatory protein that links MICAL-L1·EHD1-based vesicular transport to dynein motors.
Collapse
Affiliation(s)
- Juliati Rahajeng
- Department of Biochemistry and Molecular Biology and Eppley Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198-5870, USA
| | | | | | | |
Collapse
|
158
|
Akhmanova A, Hammer JA. Linking molecular motors to membrane cargo. Curr Opin Cell Biol 2010; 22:479-87. [PMID: 20466533 DOI: 10.1016/j.ceb.2010.04.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/02/2010] [Accepted: 04/16/2010] [Indexed: 12/30/2022]
Abstract
Three types of motors, myosins, kinesins, and cytoplasmic dynein, cooperate to transport intracellular membrane organelles. Transport of each cargo is determined by recruitment of specific sets of motors and their regulation. Targeting of motors to membranes often depends on the formation of large multiprotein assemblies and can be influenced by membrane lipid composition. Motor activity can be regulated by cargo-induced conformational changes such as unfolding or dimerization. The architecture and function of motor: cargo complexes can also be controlled by phosphorylation, calcium signaling, and proteolysis. The complexity of transport systems is further increased by mechanical and functional cross-talk between different types of motors on the same cargo and by participation of the same motor in the movement of different organelles.
Collapse
Affiliation(s)
- Anna Akhmanova
- Department of Cell Biology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | |
Collapse
|
159
|
Amano M, Tsumura Y, Taki K, Harada H, Mori K, Nishioka T, Kato K, Suzuki T, Nishioka Y, Iwamatsu A, Kaibuchi K. A proteomic approach for comprehensively screening substrates of protein kinases such as Rho-kinase. PLoS One 2010; 5:e8704. [PMID: 20090853 PMCID: PMC2806833 DOI: 10.1371/journal.pone.0008704] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 12/22/2009] [Indexed: 01/19/2023] Open
Abstract
Background Protein kinases are major components of signal transduction pathways in multiple cellular processes. Kinases directly interact with and phosphorylate downstream substrates, thus modulating their functions. Despite the importance of identifying substrates in order to more fully understand the signaling network of respective kinases, efficient methods to search for substrates remain poorly explored. Methodology/Principal Findings We combined mass spectrometry and affinity column chromatography of the catalytic domain of protein kinases to screen potential substrates. Using the active catalytic fragment of Rho-kinase/ROCK/ROK as the model bait, we obtained about 300 interacting proteins from the rat brain cytosol fraction, which included the proteins previously reported as Rho-kinase substrates. Several novel interacting proteins, including doublecortin, were phosphorylated by Rho-kinase both in vitro and in vivo. Conclusions/Significance This method would enable identification of novel specific substrates for kinases such as Rho-kinase with high sensitivity.
Collapse
Affiliation(s)
- Mutsuki Amano
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
|
161
|
Schlager MA, Hoogenraad CC. Basic mechanisms for recognition and transport of synaptic cargos. Mol Brain 2009; 2:25. [PMID: 19653898 PMCID: PMC2732917 DOI: 10.1186/1756-6606-2-25] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 08/04/2009] [Indexed: 12/15/2022] Open
Abstract
Synaptic cargo trafficking is essential for synapse formation, function and plasticity. In order to transport synaptic cargo, such as synaptic vesicle precursors, mitochondria, neurotransmitter receptors and signaling proteins to their site of action, neurons make use of molecular motor proteins. These motors operate on the microtubule and actin cytoskeleton and are highly regulated so that different cargos can be transported to distinct synaptic specializations at both pre- and post-synaptic sites. How synaptic cargos achieve specificity, directionality and timing of transport is a developing area of investigation. Recent studies demonstrate that the docking of motors to their cargos is a key control point. Moreover, precise spatial and temporal regulation of motor-cargo interactions is important for transport specificity and cargo recruitment. Local signaling pathways - Ca2+ influx, CaMKII signaling and Rab GTPase activity - regulate motor activity and cargo release at synaptic locations. We discuss here how different motors recognize their synaptic cargo and how motor-cargo interactions are regulated by neuronal activity.
Collapse
Affiliation(s)
- Max A Schlager
- Department of Neuroscience, Erasmus Medical Center, 3015GE, Rotterdam, The Netherlands.
| | | |
Collapse
|
162
|
Arimura N, Hattori A, Kimura T, Nakamuta S, Funahashi Y, Hirotsune S, Furuta K, Urano T, Toyoshima YY, Kaibuchi K. CRMP-2 directly binds to cytoplasmic dynein and interferes with its activity. J Neurochem 2009; 111:380-90. [PMID: 19659462 DOI: 10.1111/j.1471-4159.2009.06317.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The active transport of proteins and organelles is critical for cellular organization and function in eukaryotic cells. A substantial portion of long-distance transport depends on the opposite polarity of the kinesin and dynein family molecular motors to move cargo along microtubules. It is increasingly clear that many cargo molecules are moved bi-directionally by both sets of motors; however, the regulatory mechanism that determines the directionality of transport remains unclear. We previously reported that collapsin response mediator protein-2 (CRMP-2) played key roles in axon elongation and neuronal polarization. CRMP-2 was also found to associate with the anterograde motor protein Kinesin-1 and was transported with other cargoes toward the axon terminal. In this study, we investigated the association of CRMP-2 with a retrograde motor protein, cytoplasmic dynein. Immunoprecipitation assays showed that CRMP-2 interacted with cytoplasmic dynein heavy chain. Dynein heavy chain directly bound to the N-terminus of CRMP-2, which is the distinct side of CRMP-2's kinesin light chain-binding region. Furthermore, over-expression of the dynein-binding fragments of CRMP-2 prevented dynein-driven microtubule transport in COS-7 cells. Given that CRMP-2 is a key regulator of axon elongation, this interference with cytoplasmic dynein function by CRMP-2 might have an important role in axon formation, and neuronal development.
Collapse
Affiliation(s)
- Nariko Arimura
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Showa, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|