151
|
Nicolson GL. The Fluid—Mosaic Model of Membrane Structure: Still relevant to understanding the structure, function and dynamics of biological membranes after more than 40years. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1451-66. [DOI: 10.1016/j.bbamem.2013.10.019] [Citation(s) in RCA: 429] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/08/2013] [Accepted: 10/18/2013] [Indexed: 12/21/2022]
|
152
|
Clay L, Caudron F, Denoth-Lippuner A, Boettcher B, Buvelot Frei S, Snapp EL, Barral Y. A sphingolipid-dependent diffusion barrier confines ER stress to the yeast mother cell. eLife 2014; 3:e01883. [PMID: 24843009 PMCID: PMC4009826 DOI: 10.7554/elife.01883] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In many cell types, lateral diffusion barriers compartmentalize the plasma membrane and, at least in budding yeast, the endoplasmic reticulum (ER). However, the molecular nature of these barriers, their mode of action and their cellular functions are unclear. Here, we show that misfolded proteins of the ER remain confined into the mother compartment of budding yeast cells. Confinement required the formation of a lateral diffusion barrier in the form of a distinct domain of the ER-membrane at the bud neck, in a septin-, Bud1 GTPase- and sphingolipid-dependent manner. The sphingolipids, but not Bud1, also contributed to barrier formation in the outer membrane of the dividing nucleus. Barrier-dependent confinement of ER stress into the mother cell promoted aging. Together, our data clarify the physical nature of lateral diffusion barriers in the ER and establish the role of such barriers in the asymmetric segregation of proteotoxic misfolded proteins during cell division and aging. DOI:http://dx.doi.org/10.7554/eLife.01883.001 Cell division isn't always about splitting a cell into two identical parts. The diversity of many of our own cells relies on asymmetric cell divisions. The yeast used to make bread rely on a process called ‘budding’ that involves a small daughter cell emerging from the surface of the mother cell. Mother cells can only produce around 20–50 daughter cells before dying from old age. However, their daughters are always born rejuvenated, and not aged like their mothers. Budding involves part of the plasma membrane that surrounds the mother cell being pinched off to produce the daughter cell. This part of the membrane contains diffusion barriers that prevent various factors—including factors that cause aging—from entering the daughter cell. The barriers are known to contain several layers, but the details of how they work were not understood. Inside the budding cell, the membrane of the endoplasmic reticulum (ER) also contains lateral diffusion barriers. The ER is the structure in the cell responsible for folding newly made proteins correctly. Any misfolded, toxic proteins are kept in the ER to be refolded or destroyed. However, if there are too many misfolded proteins, the ER gets stressed and triggers a mechanism that in extreme cases causes the cell to self-destruct. Clay, Caudron et al. have now shown that ER stress causes yeast cells to age. Moreover, when the ER is stressed, the ER diffusion barrier prevents the stress that causes aging entering the daughter cells. Clay, Caudron et al. also established that the diffusion barrier in the ER is made up of three layers. A layer of fatty molecules called sphingolipids is found at the bottom of the barrier, and such a layer is also present in other diffusion barriers. This could therefore act as the skeleton on which diffusion barriers form. Further investigation of this layer should provide a better understanding of how diffusion barriers work. DOI:http://dx.doi.org/10.7554/eLife.01883.002
Collapse
Affiliation(s)
- Lori Clay
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Fabrice Caudron
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | - Barbara Boettcher
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | - Erik Lee Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine of Yeshiva University, New York, United States
| | - Yves Barral
- Institute of Biochemistry, Department of Biology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
153
|
In silico docking of forchlorfenuron (FCF) to septins suggests that FCF interferes with GTP binding. PLoS One 2014; 9:e96390. [PMID: 24787956 PMCID: PMC4008567 DOI: 10.1371/journal.pone.0096390] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/07/2014] [Indexed: 11/19/2022] Open
Abstract
Septins are GTP-binding proteins that form cytoskeleton-like filaments, which are essential for many functions in eukaryotic organisms. Small molecule compounds that disrupt septin filament assembly are valuable tools for dissecting septin functions with high temporal control. To date, forchlorfenuron (FCF) is the only compound known to affect septin assembly and functions. FCF dampens the dynamics of septin assembly inducing the formation of enlarged stable polymers, but the underlying mechanism of action is unknown. To investigate how FCF binds and affects septins, we performed in silico simulations of FCF docking to all available crystal structures of septins. Docking of FCF with SEPT2 and SEPT3 indicated that FCF interacts preferentially with the nucleotide-binding pockets of septins. Strikingly, FCF is predicted to form hydrogen bonds with residues involved in GDP-binding, mimicking nucleotide binding. FCF docking with the structure of SEPT2-GppNHp, a nonhydrolyzable GTP analog, and SEPT7 showed that FCF may assume two alternative non-overlapping conformations deeply into and on the outer side of the nucleotide-binding pocket. Surprisingly, FCF was predicted to interact with the P-loop Walker A motif GxxxxGKS/T, which binds the phosphates of GTP, and the GTP specificity motif AKAD, which interacts with the guanine base of GTP, and highly conserved amino acids including a threonine, which is critical for GTP hydrolysis. Thus, in silico FCF exhibits a conserved mechanism of binding, interacting with septin signature motifs and residues involved in GTP binding and hydrolysis. Taken together, our results suggest that FCF stabilizes septins by locking them into a conformation that mimics a nucleotide-bound state, preventing further GTP binding and hydrolysis. Overall, this study provides the first insight into how FCF may bind and stabilize septins, and offers a blueprint for the rational design of FCF derivatives that could target septins with higher affinity and specificity.
Collapse
|
154
|
Ageta-Ishihara N, Miyata T, Ohshima C, Watanabe M, Sato Y, Hamamura Y, Higashiyama T, Mazitschek R, Bito H, Kinoshita M. Septins promote dendrite and axon development by negatively regulating microtubule stability via HDAC6-mediated deacetylation. Nat Commun 2014; 4:2532. [PMID: 24113571 PMCID: PMC3826633 DOI: 10.1038/ncomms3532] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/02/2013] [Indexed: 11/11/2022] Open
Abstract
Neurite growth requires two guanine nucleotide-binding protein polymers of tubulins and septins. However, whether and how those cytoskeletal systems are coordinated was unknown. Here we show that the acute knockdown or knockout of the pivotal septin subunit SEPT7 from cerebrocortical neurons impairs their interhemispheric and cerebrospinal axon projections and dendritogenesis in perinatal mice, when the microtubules are severely hyperacetylated. The resulting hyperstabilization and growth retardation of microtubules are demonstrated in vitro. The phenotypic similarity between SEPT7 depletion and the pharmacological inhibition of α-tubulin deacetylase HDAC6 reveals that HDAC6 requires SEPT7 not for its enzymatic activity, but to associate with acetylated α-tubulin. These and other findings indicate that septins provide a physical scaffold for HDAC6 to achieve efficient microtubule deacetylation, thereby negatively regulating microtubule stability to an optimal level for neuritogenesis. Our findings shed light on the mechanisms underlying the HDAC6-mediated coupling of the two ubiquitous cytoskeletal systems during neural development. Septins are a family of heteropolymerizing GTP/GDP-binding proteins and are implicated in neuritogenesis in nematodes. Ageta-Ishihara et al. show that septins also facilitate this process in the developing mouse brain as scaffolds that coordinate HDAC6-mediated deacetylation of microtubules.
Collapse
Affiliation(s)
- Natsumi Ageta-Ishihara
- Division of Biological Sciences, Nagoya University Graduate School of Science, Nagoya 464-8602, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Aimon S, Callan-Jones A, Berthaud A, Pinot M, Toombes GES, Bassereau P. Membrane shape modulates transmembrane protein distribution. Dev Cell 2014; 28:212-8. [PMID: 24480645 DOI: 10.1016/j.devcel.2013.12.012] [Citation(s) in RCA: 175] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 07/22/2013] [Accepted: 12/19/2013] [Indexed: 01/01/2023]
Abstract
Although membrane shape varies greatly throughout the cell, the contribution of membrane curvature to transmembrane protein targeting is unknown because of the numerous sorting mechanisms that take place concurrently in cells. To isolate the effect of membrane shape, we used cell-sized giant unilamellar vesicles (GUVs) containing either the potassium channel KvAP or the water channel AQP0 to form membrane nanotubes with controlled radii. Whereas the AQP0 concentrations in flat and curved membranes were indistinguishable, KvAP was enriched in the tubes, with greater enrichment in more highly curved membranes. Fluorescence recovery after photobleaching measurements showed that both proteins could freely diffuse through the neck between the tube and GUV, and the effect of each protein on membrane shape and stiffness was characterized using a thermodynamic sorting model. This study establishes the importance of membrane shape for targeting transmembrane proteins and provides a method for determining the effective shape and flexibility of membrane proteins.
Collapse
Affiliation(s)
- Sophie Aimon
- Centre de Recherche, Institut Curie, Paris F-75248, France; CNRS, PhysicoChimie Curie, UMR168, Paris F-75248, France; Université Pierre et Marie Curie, Paris F-75252, France; Kavli Institute for Brain and Mind, UCSD, La Jolla, CA 92093, USA
| | - Andrew Callan-Jones
- Laboratoire Matière et Systèmes Complexes, CNRS/Université Paris-Diderot, UMR 7057, 75205 Paris Cedex 13, France
| | - Alice Berthaud
- Centre de Recherche, Institut Curie, Paris F-75248, France; CNRS, PhysicoChimie Curie, UMR168, Paris F-75248, France; Université Pierre et Marie Curie, Paris F-75252, France; CelTisPhyBio Labex, Paris Sciences et Lettres, 75005 Paris, France
| | - Mathieu Pinot
- Centre de Recherche, Institut Curie, Paris F-75248, France; CelTisPhyBio Labex, Paris Sciences et Lettres, 75005 Paris, France; CNRS, Subcellular Structure and Cellular Dynamics, UMR144, Paris F-75248, France
| | - Gilman E S Toombes
- Molecular Physiology and Biophysics Section, Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3017, USA.
| | - Patricia Bassereau
- Centre de Recherche, Institut Curie, Paris F-75248, France; CNRS, PhysicoChimie Curie, UMR168, Paris F-75248, France; Université Pierre et Marie Curie, Paris F-75252, France; CelTisPhyBio Labex, Paris Sciences et Lettres, 75005 Paris, France
| |
Collapse
|
156
|
Mavrakis M, Azou-Gros Y, Tsai FC, Alvarado J, Bertin A, Iv F, Kress A, Brasselet S, Koenderink GH, Lecuit T. Septins promote F-actin ring formation by crosslinking actin filaments into curved bundles. Nat Cell Biol 2014; 16:322-34. [PMID: 24633326 DOI: 10.1038/ncb2921] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 01/23/2014] [Indexed: 11/09/2022]
Abstract
Animal cell cytokinesis requires a contractile ring of crosslinked actin filaments and myosin motors. How contractile rings form and are stabilized in dividing cells remains unclear. We address this problem by focusing on septins, highly conserved proteins in eukaryotes whose precise contribution to cytokinesis remains elusive. We use the cleavage of the Drosophila melanogaster embryo as a model system, where contractile actin rings drive constriction of invaginating membranes to produce an epithelium in a manner akin to cell division. In vivo functional studies show that septins are required for generating curved and tightly packed actin filament networks. In vitro reconstitution assays show that septins alone bundle actin filaments into rings, accounting for the defects in actin ring formation in septin mutants. The bundling and bending activities are conserved for human septins, and highlight unique functions of septins in the organization of contractile actomyosin rings.
Collapse
Affiliation(s)
- Manos Mavrakis
- Institut de Biologie du Développement de Marseille, CNRS UMR 7288, Aix-Marseille Université, 13288 Marseille, France
| | - Yannick Azou-Gros
- Institut de Biologie du Développement de Marseille, CNRS UMR 7288, Aix-Marseille Université, 13288 Marseille, France
| | - Feng-Ching Tsai
- 1] FOM Institute AMOLF, 1098 XG Amsterdam, The Netherlands [2]
| | - José Alvarado
- 1] FOM Institute AMOLF, 1098 XG Amsterdam, The Netherlands [2]
| | - Aurélie Bertin
- 1] Institut Curie, CNRS UMR 168, 75231 Paris, France [2]
| | - Francois Iv
- Institut de Biologie du Développement de Marseille, CNRS UMR 7288, Aix-Marseille Université, 13288 Marseille, France
| | - Alla Kress
- Institut Fresnel, CNRS UMR 7249, Aix-Marseille Université, Ecole Centrale Marseille, 13397 Marseille, France
| | - Sophie Brasselet
- Institut Fresnel, CNRS UMR 7249, Aix-Marseille Université, Ecole Centrale Marseille, 13397 Marseille, France
| | | | - Thomas Lecuit
- Institut de Biologie du Développement de Marseille, CNRS UMR 7288, Aix-Marseille Université, 13288 Marseille, France
| |
Collapse
|
157
|
Denoth Lippuner A, Julou T, Barral Y. Budding yeast as a model organism to study the effects of age. FEMS Microbiol Rev 2014; 38:300-25. [PMID: 24484434 DOI: 10.1111/1574-6976.12060] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 12/13/2013] [Accepted: 01/06/2014] [Indexed: 12/20/2022] Open
Abstract
Although a budding yeast culture can be propagated eternally, individual yeast cells age and eventually die. The detailed knowledge of this unicellular eukaryotic species as well as the powerful tools developed to study its physiology makes budding yeast an ideal model organism to study the mechanisms involved in aging. Considering both detrimental and positive aspects of age, we review changes occurring during aging both at the whole-cell level and at the intracellular level. The possible mechanisms allowing old cells to produce rejuvenated progeny are described in terms of accumulation and inheritance of aging factors. Based on the dynamic changes associated with age, we distinguish different stages of age: early age, during which changes do not impair cell growth; intermediate age, during which aging factors start to accumulate; and late age, which corresponds to the last divisions before death. For each aging factor, we examine its asymmetric segregation and whether it plays a causal role in aging. Using the example of caloric restriction, we describe how the aging process can be modulated at different levels and how changes in different organelles might interplay with each other. Finally, we discuss the beneficial aspects that might be associated with age.
Collapse
|
158
|
Kalay Z, Fujiwara TK, Otaka A, Kusumi A. Lateral diffusion in a discrete fluid membrane with immobile particles. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022724. [PMID: 25353525 DOI: 10.1103/physreve.89.022724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Indexed: 06/04/2023]
Abstract
Due to the coupling between the plasma membrane and the actin cytoskeleton, membrane molecules such as receptor proteins can become immobilized by binding to cytoskeletal structures. We investigate the effect of immobile membrane molecules on the diffusion of mobile ones by modeling the membrane as a two-dimensional (2D) fluid composed of hard particles and performing event-driven molecular dynamics simulations at a particle density where the system is in an isotropic liquid state. We show that the diffusion coefficient sharply decreases with increasing immobile fraction, dropping by a factor of ∼ 3 as the fraction of immobile particles increases from 0 to 0.1, in a system-size dependent manner. By combining our results with earlier calculations, we estimate that a factor-of-∼ 20 reduction in diffusion coefficients in live cell membranes, a puzzling finding in cell biology, can be accounted for when less than ∼ 22% of the particles in our model system is immobilized. Furthermore, we investigate the effects of confinement induced by a correlated distribution of immobile particles by calculating the distribution of the time it takes for particles to escape from a corral. In the regime where the particles can always escape from the corral, it is found that the escape times follow an exponential distribution, and the mean escape time grows exponentially with the density of obstacles at the corral boundary, increasing by a factor of 3-5 when immobile particles cover 50% of the boundary, and is approximately proportional to the area of the corral. We believe that our findings will be useful in interpreting (1) single molecule observations of membrane molecules and (2) results of particle based simulations that explore the effect of fluid dynamics on molecular transport in a 2D fluid.
Collapse
Affiliation(s)
- Ziya Kalay
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Akihisa Otaka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan and Department of Mechanical Engineering and Science, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| | - Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8501, Japan and Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
159
|
Mostowy S, Bi E, Füchtbauer EM, Goryachev AB, Montagna C, Nagata KI, Trimble WS, Werner HB, Yao X, Zieger B, Spiliotis ET. Highlight: the 5th International Workshop on Septin Biology. Biol Chem 2014; 395:119-21. [PMID: 24334412 DOI: 10.1515/hsz-2013-0291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
160
|
Cornejo E, Abreu N, Komeili A. Compartmentalization and organelle formation in bacteria. Curr Opin Cell Biol 2014; 26:132-8. [PMID: 24440431 DOI: 10.1016/j.ceb.2013.12.007] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 12/17/2013] [Accepted: 12/17/2013] [Indexed: 12/19/2022]
Abstract
A number of bacterial species rely on compartmentalization to gain specific functionalities that will provide them with a selective advantage. Here, we will highlight several of these modes of bacterial compartmentalization with an eye toward describing the mechanisms of their formation and their evolutionary origins. Spore formation in Bacillus subtilis, outer membrane biogenesis in Gram-negative bacteria and protein diffusion barriers of Caulobacter crescentus will be used to demonstrate the physical, chemical, and compositional remodeling events that lead to compartmentalization. In addition, magnetosomes and carboxysomes will serve as models to examine the interplay between cytoskeletal systems and the subcellular positioning of organelles.
Collapse
Affiliation(s)
- Elias Cornejo
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720-3102, United States
| | - Nicole Abreu
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720-3102, United States
| | - Arash Komeili
- Department of Plant and Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720-3102, United States.
| |
Collapse
|
161
|
Abstract
A membrane barrier important for assembly of the nodes of Ranvier is found at the paranodal junction. This junction is comprised of axonal and glial adhesion molecules linked to the axonal actin–spectrin membrane cytoskeleton through specific adaptors. In this issue, Zhang et al. (2013. J. Cell Biol.http://dx.doi.org/10.1083/jcb.201308116) show that axonal βII spectrin maintains the diffusion barrier at the paranodal junction. Thus, βII spectrin serves to compartmentalize the membrane of myelinated axons at specific locations that are determined either intrinsically (i.e., at the axonal initial segment), or by axoglial contacts (i.e., at the paranodal junction).
Collapse
Affiliation(s)
- Yael Eshed-Eisenbach
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
162
|
How carbohydrates sculpt cells: chemical control of morphogenesis in the yeast cell wall. Nat Rev Microbiol 2013; 11:648-55. [PMID: 23949603 DOI: 10.1038/nrmicro3090] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In budding yeast, the neck that connects the mother and daughter cell is the site of essential functions such as organelle trafficking, septum formation and cytokinesis. Therefore, the morphology of this region, which depends on the surrounding cell wall, must be maintained throughout the cell cycle. Growth at the neck is prevented, redundantly, by a septin ring inside the cell membrane and a chitin ring in the cell wall. Here, we describe recent work supporting the hypothesis that attachment of the chitin ring, which forms at the mother-bud neck during budding, to β-1,3-glucan in the cell wall is necessary to stop growth at the neck. Thus, in this scenario, chemistry controls morphogenesis.
Collapse
|
163
|
de Val N, McMurray MA, Lam LH, Hsiung CCS, Bertin A, Nogales E, Thorner J. Native cysteine residues are dispensable for the structure and function of all five yeast mitotic septins. Proteins 2013; 81:1964-79. [PMID: 23775754 PMCID: PMC3880206 DOI: 10.1002/prot.24345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/30/2013] [Accepted: 05/31/2013] [Indexed: 01/19/2023]
Abstract
Budding yeast septins assemble into hetero-octamers and filaments required for cytokinesis. Solvent-exposed cysteine (Cys) residues provide sites for attaching substituents useful in assessing assembly kinetics and protein interactions. To introduce Cys at defined locations, site-directed mutagenesis was used, first, to replace the native Cys residues in Cdc3 (C124 C253 C279), Cdc10 (C266), Cdc11 (C43 C137 C138), Cdc12 (C40 C278), and Shs1 (C29 C148) with Ala, Ser, Val, or Phe. When plasmid-expressed, each Cys-less septin mutant rescued the cytokinesis defects caused by absence of the corresponding chromosomal gene. When integrated and expressed from its endogenous promoter, the same mutants were fully functional, except Cys-less Cdc12 mutants (which were viable, but exhibited slow growth and aberrant morphology) and Cdc3(C124V C253V C279V) (which was inviable). No adverse phenotypes were observed when certain pairs of Cys-less septins were co-expressed as the sole source of these proteins. Cells grew less well when three Cys-less septins were co-expressed, suggesting some reduction in fitness. Nonetheless, cells chromosomally expressing Cys-less Cdc10, Cdc11, and Cdc12, and expressing Cys-less Cdc3 from a plasmid, grew well at 30°C. Moreover, recombinant Cys-less septins--or where one of the Cys-less septins contained a single Cys introduced at a new site--displayed assembly properties in vitro indistinguishable from wild-type.
Collapse
Affiliation(s)
- Natalia de Val
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Michael A. McMurray
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Lisa H. Lam
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Chris C.-S. Hsiung
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Aurélie Bertin
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| | - Eva Nogales
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland 20815–6789
| | - Jeremy Thorner
- Division of Biochemistry, Biophysics and Structural Biology, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202
| |
Collapse
|
164
|
Caudron F, Barral Y. Bud building by septin patch hole punching. Dev Cell 2013; 26:115-6. [PMID: 23906060 DOI: 10.1016/j.devcel.2013.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Small GTPase Cdc42 triggers polarity establishment in budding yeast. In this issue of Developmental Cell, Okada et al. (2013) combine in silico modeling and cell biology to show that Cdc42, septins, and the exocytosis pathway are integrated in a feedback system to define and insulate the site of polarity in the membrane.
Collapse
Affiliation(s)
- Fabrice Caudron
- Department of Biology, Institute of Biochemistry, ETH Zurich, Schafmattstrasse 18, 8093 Zurich, Switzerland
| | | |
Collapse
|
165
|
Okada S, Leda M, Hanna J, Savage N, Bi E, Goryachev A. Daughter cell identity emerges from the interplay of Cdc42, septins, and exocytosis. Dev Cell 2013; 26:148-61. [PMID: 23906065 PMCID: PMC3730058 DOI: 10.1016/j.devcel.2013.06.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 04/23/2013] [Accepted: 06/13/2013] [Indexed: 11/19/2022]
Abstract
Asymmetric cell division plays a crucial role in cell differentiation, unequal replicative senescence, and stem cell maintenance. In budding yeast, the identities of mother and daughter cells begin to diverge at bud emergence when distinct plasma-membrane domains are formed and separated by a septin ring. However, the mechanisms underlying this transformation remain unknown. Here, we show that septins recruited to the site of polarization by Cdc42-GTP inhibit Cdc42 activity in a negative feedback loop, and this inhibition depends on Cdc42 GTPase-activating proteins. Combining live-cell imaging and computational modeling, we demonstrate that the septin ring is sculpted by polarized exocytosis, which creates a hole in the accumulating septin density and relieves the inhibition of Cdc42. The nascent ring generates a sharp boundary that confines the Cdc42 activity and exocytosis strictly to its enclosure and thus clearly delineates the daughter cell identity. Our findings define a fundamental mechanism underlying eukaryotic cell fate differentiation. Septins provide negative feedback to Cdc42 activity that depends on Cdc42 GAPs Septin ring is formed by highly focused polarized exocytosis Suppression of exocytosis causes chasing behavior of septins Septin ring size is primarily determined by size of the underlying Cdc42 cluster
Collapse
Affiliation(s)
- Satoshi Okada
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marcin Leda
- SynthSys—Centre for Systems and Synthetic Biology and Institute for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Julia Hanna
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natasha S. Savage
- SynthSys—Centre for Systems and Synthetic Biology and Institute for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
| | - Erfei Bi
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding author
| | - Andrew B. Goryachev
- SynthSys—Centre for Systems and Synthetic Biology and Institute for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK
- Corresponding author
| |
Collapse
|
166
|
Sharma S, Quintana A, Findlay GM, Mettlen M, Baust B, Jain M, Nilsson R, Rao A, Hogan PG. An siRNA screen for NFAT activation identifies septins as coordinators of store-operated Ca2+ entry. Nature 2013; 499:238-42. [PMID: 23792561 DOI: 10.1038/nature12229] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 04/26/2013] [Indexed: 12/18/2022]
Abstract
The STIM1-ORAI1 pathway of store-operated Ca(2+) entry is an essential component of cellular Ca(2+) signalling. STIM1 senses depletion of intracellular Ca(2+) stores in response to physiological stimuli, and relocalizes within the endoplasmic reticulum to plasma-membrane-apposed junctions, where it recruits and gates open plasma membrane ORAI1 Ca(2+) channels. Here we use a genome-wide RNA interference screen in HeLa cells to identify filamentous septin proteins as crucial regulators of store-operated Ca(2+) entry. Septin filaments and phosphatidylinositol-4,5-bisphosphate (also known as PtdIns(4,5)P2) rearrange locally at endoplasmic reticulum-plasma membrane junctions before and during formation of STIM1-ORAI1 clusters, facilitating STIM1 targeting to these junctions and promoting the stable recruitment of ORAI1. Septin rearrangement at junctions is required for PtdIns(4,5)P2 reorganization and efficient STIM1-ORAI1 communication. Septins are known to demarcate specialized membrane regions such as dendritic spines, the yeast bud and the primary cilium, and to serve as membrane diffusion barriers and/or signalling hubs in cellular processes such as vesicle trafficking, cell polarity and cytokinesis. Our data show that septins also organize the highly localized plasma membrane domains that are important in STIM1-ORAI1 signalling, and indicate that septins may organize membrane microdomains relevant to other signalling processes.
Collapse
Affiliation(s)
- Sonia Sharma
- La Jolla Institute for Allergy and Immunology, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Abstract
Septins are a family of GTP-binding, membrane-interacting cytoskeletal proteins, highly conserved and essential in all eukaryotes (with the exception of plants). Septins play important roles in a number of cellular events that involve membrane remodeling and compartmentalization. One such event is cytokinesis, the last stage of cell division. While cytokinesis is ultimately achieved via the mechanical contraction of an actomyosin ring at the septum, determination of the location where cytokinesis will take place, and recruitment of factors involved in signaling events leading to septation requires the activity of septins. We are working towards dissecting the properties of septins from the budding yeast Saccharomyces cerevisiae, where they were first discovered as cell cycle mutants. In our studies we have employed several complementary electron microscopy techniques to describe the organization and structure of septins both in vitro and in situ.
Collapse
Affiliation(s)
- Aurélie Bertin
- Institut de Biochimie et Biophysique Moleculaire et Cellulaire; UMR 8619; Université Paris Sud; Orsay, France
| | | |
Collapse
|
168
|
Abstract
Productive cell proliferation involves efficient and accurate splitting of the dividing cell into two separate entities. This orderly process reflects coordination of diverse cytological events by regulatory systems that drive the cell from mitosis into G1. In the budding yeast Saccharomyces cerevisiae, separation of mother and daughter cells involves coordinated actomyosin ring contraction and septum synthesis, followed by septum destruction. These events occur in precise and rapid sequence once chromosomes are segregated and are linked with spindle organization and mitotic progress by intricate cell cycle control machinery. Additionally, critical paarts of the mother/daughter separation process are asymmetric, reflecting a form of fate specification that occurs in every cell division. This chapter describes central events of budding yeast cell separation, as well as the control pathways that integrate them and link them with the cell cycle.
Collapse
|
169
|
Lin YC, Phua SC, Lin B, Inoue T. Visualizing molecular diffusion through passive permeability barriers in cells: conventional and novel approaches. Curr Opin Chem Biol 2013; 17:663-71. [PMID: 23731778 DOI: 10.1016/j.cbpa.2013.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/23/2013] [Indexed: 12/19/2022]
Abstract
Diffusion barriers are universal solutions for cells to achieve distinct organizations, compositions, and activities within a limited space. The influence of diffusion barriers on the spatiotemporal dynamics of signaling molecules often determines cellular physiology and functions. Over the years, the passive permeability barriers in various subcellular locales have been characterized using elaborate analytical techniques. In this review, we will summarize the current state of knowledge on the various passive permeability barriers present in mammalian cells. We will conclude with a description of several conventional techniques and one new approach based on chemically inducible diffusion trap (CIDT) for probing permeable barriers.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, United States.
| | | | | | | |
Collapse
|
170
|
Pearring JN, Salinas RY, Baker SA, Arshavsky VY. Protein sorting, targeting and trafficking in photoreceptor cells. Prog Retin Eye Res 2013; 36:24-51. [PMID: 23562855 DOI: 10.1016/j.preteyeres.2013.03.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 03/22/2013] [Accepted: 03/26/2013] [Indexed: 01/24/2023]
Abstract
Vision is the most fundamental of our senses initiated when photons are absorbed by the rod and cone photoreceptor neurons of the retina. At the distal end of each photoreceptor resides a light-sensing organelle, called the outer segment, which is a modified primary cilium highly enriched with proteins involved in visual signal transduction. At the proximal end, each photoreceptor has a synaptic terminal, which connects this cell to the downstream neurons for further processing of the visual information. Understanding the mechanisms involved in creating and maintaining functional compartmentalization of photoreceptor cells remains among the most fascinating topics in ocular cell biology. This review will discuss how photoreceptor compartmentalization is supported by protein sorting, targeting and trafficking, with an emphasis on the best-studied cases of outer segment-resident proteins.
Collapse
Affiliation(s)
- Jillian N Pearring
- Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
171
|
The structure and properties of septin 3: a possible missing link in septin filament formation. Biochem J 2013; 450:95-105. [PMID: 23163726 DOI: 10.1042/bj20120851] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The human genome codes for 13 members of a family of filament-forming GTP-binding proteins known as septins. These have been divided into four different subgroups on the basis of sequence similarity. The differences between the subgroups are believed to control their correct assembly into heterofilaments which have specific roles in membrane remodelling events. Many different combinations of the 13 proteins are theoretically possible and it is therefore important to understand the structural basis of specific filament assembly. However, three-dimensional structures are currently available for only three of the four subgroups. In the present study we describe the crystal structure of a construct of human SEPT3 which belongs to the outstanding subgroup. This construct (SEPT3-GC), which includes the GTP-binding and C-terminal domains, purifies as a nucleotide-free monomer, allowing for its characterization in terms of GTP-binding and hydrolysis. In the crystal structure, SEPT3-GC forms foreshortened filaments which employ the same NC and G interfaces observed in the heterotrimeric complex of human septins 2, 6 and 7, reinforcing the notion of 'promiscuous' interactions described previously. In the present study we describe these two interfaces and relate the structure to its tendency to form monomers and its efficiency in the hydrolysis of GTP. The relevance of these results is emphasized by the fact that septins from the SEPT3 subgroup may be important determinants of polymerization by occupying the terminal position in octameric units which themselves form the building blocks of at least some heterofilaments.
Collapse
|
172
|
Abstract
Bacteria lack many of the features that eukaryotic cells use to compartmentalize cytoplasm and membranes. In this issue, Schlimpert et al. describe a new mechanism of spatial confinment in the bacterium Caulobacter crescentus that prevents the exchange of soluble and membrane proteins between the stalk and cell body.
Collapse
Affiliation(s)
- Sandro Baldi
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| | | |
Collapse
|
173
|
Structures of septin filaments prepared from rat brain and expressed in bacteria. Protein Expr Purif 2013; 87:67-71. [DOI: 10.1016/j.pep.2012.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 10/19/2012] [Accepted: 10/22/2012] [Indexed: 11/20/2022]
|
174
|
Tartakoff AM, Aylyarov I, Jaiswal P. Septin-containing barriers control the differential inheritance of cytoplasmic elements. Cell Rep 2012; 3:223-36. [PMID: 23273916 DOI: 10.1016/j.celrep.2012.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Revised: 09/27/2012] [Accepted: 11/27/2012] [Indexed: 01/12/2023] Open
Abstract
Fusion of haploid cells of Saccharomyces cerevisiae generates zygotes. We observe that the zygote midzone includes a septin annulus and differentially affects redistribution of supramolecular complexes and organelles. Redistribution across the midzone of supramolecular complexes (polysomes and Sup35p-GFP [PSI+]) is unexpectedly delayed relative to soluble proteins; however, in [psi-] × [PSI+] crosses, all buds eventually receive Sup35p-GFP [PSI+]. Encounter between parental mitochondria is further delayed until septins relocate to the bud site, where they are required for repolarization of the actin cytoskeleton. This delay allows rationalization of the longstanding observation that terminal zygotic buds preferentially inherit a single mitochondrial genotype. The rate of redistribution of complexes and organelles determines whether their inheritance will be uniform.
Collapse
Affiliation(s)
- Alan Michael Tartakoff
- Pathology Department and Cell Biology Program, Case Western Reserve University, 2103 Cornell Road, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
175
|
Maimaitiyiming M, Kobayashi Y, Kumanogoh H, Nakamura S, Morita M, Maekawa S. Identification of dynamin as a septin-binding protein. Neurosci Lett 2012; 534:322-6. [PMID: 23260429 DOI: 10.1016/j.neulet.2012.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 11/20/2012] [Accepted: 12/04/2012] [Indexed: 11/29/2022]
Abstract
Lipid rafts (detergent-resistant low-density membrane microdomain: DRM) are signal-transducing membrane platforms. In a previous study, we showed maturation-dependent localization of septin in the DRM fraction of rat brain. Mammalian septin is composed with 13-14 isoforms and these isoforms assemble to form rod-shaped hetero-oligomeric complexes. End-to-end polymerization of these complexes results in the formation of higher order structures such as filamentous sheets or bundles of filaments that restrict the fluid-like diffusion of the membrane proteins and lipids. Considering the function of septin as the membrane scaffold, elucidation of the molecular interaction of septin in DRM could be a breakthrough to understand another role of lipid rafts. In order to identify septin-binding proteins in DRM, solubilization and fractionation of septin from DRM was attempted. Several proteins were co-fractionated with septin and LC-MS/MS analysis identified one of these proteins as dynamin and Western blotting using anti-dynamin confirmed this result. Immunoprecipitation of septin11 in a crude supernatant showed co-precipitation of dynamin and dynamin fraction prepared from brain contained several septin isoforms. Within bacterially expressed septin isoforms, septin5 and septin11 bound dynamin but septin9 did not. These results suggest that some septin isoforms participate in the dynamin-related membrane dynamics.
Collapse
|
176
|
Abstract
Cells compartmentalize their biochemical functions in a variety of ways, notably by creating physical barriers that separate a compartment via membranes or proteins. Eukaryotes have a wide diversity of membrane-based compartments, many that are lineage- or tissue-specific. In recent years, it has become increasingly evident that membrane-based compartmentalization of the cytosolic space is observed in multiple prokaryotic lineages, giving rise to several types of distinct prokaryotic organelles. Endosymbionts, previously believed to be a hallmark of eukaryotes, have been described in several bacteria. Protein-based compartments, frequent in bacteria, are also found in eukaryotes. In the present review, we focus on selected intracellular compartments from each of these three categories, membrane-based, endosymbiotic and protein-based, in both prokaryotes and eukaryotes. We review their diversity and the current theories and controversies regarding the evolutionary origins. Furthermore, we discuss the evolutionary processes acting on the genetic basis of intracellular compartments and how those differ across the domains of life. We conclude that the distinction between eukaryotes and prokaryotes no longer lies in the existence of a compartmentalized cell plan, but rather in its complexity.
Collapse
|
177
|
Abstract
In eukaryotes, the differentiation of cellular extensions such as cilia or neuronal axons depends on the partitioning of proteins to distinct plasma membrane domains by specialized diffusion barriers. However, examples of this compartmentalization strategy are still missing for prokaryotes, although complex cellular architectures are also widespread among this group of organisms. This study reveals the existence of a protein-mediated membrane diffusion barrier in the stalked bacterium Caulobacter crescentus. We show that the Caulobacter cell envelope is compartmentalized by macromolecular complexes that prevent the exchange of both membrane and soluble proteins between the polar stalk extension and the cell body. The barrier structures span the cross-sectional area of the stalk and comprise at least four proteins that assemble in a cell-cycle-dependent manner. Their presence is critical for cellular fitness because they minimize the effective cell volume, allowing faster adaptation to environmental changes that require de novo synthesis of envelope proteins.
Collapse
|
178
|
Abstract
Nearly every cell type exhibits some form of polarity, yet the molecular mechanisms vary widely. Here we examine what we term 'chemical systems' where cell polarization arises through biochemical interactions in signaling pathways, 'mechanical systems' where cells polarize due to forces, stresses and transport, and 'mechanochemical systems' where polarization results from interplay between mechanics and chemical signaling. To reveal potentially unifying principles, we discuss mathematical conceptualizations of several prototypical examples. We suggest that the concept of local activation and global inhibition - originally developed to explain spatial patterning in reaction-diffusion systems - provides a framework for understanding many cases of cell polarity. Importantly, we find that the core ingredients in this framework - symmetry breaking, self-amplifying feedback, and long-range inhibition - involve processes that can be chemical, mechanical, or even mechanochemical in nature.
Collapse
|
179
|
Moreira KE, Schuck S, Schrul B, Fröhlich F, Moseley JB, Walther TC, Walter P. Seg1 controls eisosome assembly and shape. ACTA ACUST UNITED AC 2012; 198:405-20. [PMID: 22869600 PMCID: PMC3413353 DOI: 10.1083/jcb.201202097] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Seg1 establishes a platform for the assembly of eisosomes and is important for determining their length. Eisosomes are stable domains at the plasma membrane of the budding yeast Saccharomyces cerevisiae and have been proposed to function in endocytosis. Eisosomes are composed of two main cytoplasmic proteins, Pil1 and Lsp1, that form a scaffold around furrow-like plasma membrane invaginations. We show here that the poorly characterized eisosome protein Seg1/Ymr086w is important for eisosome biogenesis and architecture. Seg1 was required for efficient incorporation of Pil1 into eisosomes and the generation of normal plasma membrane furrows. Seg1 preceded Pil1 during eisosome formation and established a platform for the assembly of other eisosome components. This platform was further shaped and stabilized upon the arrival of Pil1 and Lsp1. Moreover, Seg1 abundance controlled the shape of eisosomes by determining their length. Similarly, the Schizosaccharomyces pombe Seg1-like protein Sle1 was necessary to generate the filamentous eisosomes present in fission yeast. The function of Seg1 in the stepwise biogenesis of eisosomes reveals striking architectural similarities between eisosomes in yeast and caveolae in mammals.
Collapse
Affiliation(s)
- Karen E Moreira
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | |
Collapse
|
180
|
Blanco N, Reidy M, Arroyo J, Cabib E. Crosslinks in the cell wall of budding yeast control morphogenesis at the mother-bud neck. J Cell Sci 2012; 125:5781-9. [PMID: 23077181 DOI: 10.1242/jcs.110460] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous work has shown that, in cla4Δ cells of budding yeast, where septin ring organization is compromised, the chitin ring at the mother-daughter neck becomes essential for prevention of neck widening and for cytokinesis. Here, we show that it is not the chitin ring per se, but its linkage to β(1-3)glucan that is required for control of neck growth. When in a cla4Δ background, crh1Δ crh2Δ mutants, in which the chitin ring is not connected to β(1-3)glucan, grew very slowly and showed wide and growing necks, elongated buds and swollen cells with large vacuoles. A similar behavior was elicited by inhibition of the Crh proteins. This aberrant morphology matched that of cla4Δ chs3Δ cells, which have no chitin at the neck. Thus, this is a clear case in which a specific chemical bond between two substances, chitin and glucan, is essential for the control of morphogenesis. This defines a new paradigm, in which chemistry regulates growth.
Collapse
Affiliation(s)
- Noelia Blanco
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
181
|
Thavarajah R, Vidya K, Joshua E, Rao UK, Ranganathan K. Potential role of septins in oral carcinogenesis: An update and avenues for future research. J Oral Maxillofac Pathol 2012; 16:73-8. [PMID: 22438646 PMCID: PMC3303527 DOI: 10.4103/0973-029x.92977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Septins belong to the GTPase superclass of conserved proteins and have been identified to play a role in diverse aspects of cell biology, from cytokinesis to the maintenance of cellular morphology. At least 14 septins have been identified in humans. With their complex patterns in gene expressions and interaction, it has been reported that alterations in septin expression are observed in human diseases. Although much is not known about the role of human septins in oral carcinogenesis, circumstantial evidence does indicate that it may play a major role. This review intends to summarize the basis of septin biology, with the focus being on the evidence for septin involvement in human oral cancer.
Collapse
Affiliation(s)
- Rooban Thavarajah
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, Chennai, India
| | | | | | | | | |
Collapse
|
182
|
Garcia-Gonzalo FR, Reiter JF. Scoring a backstage pass: mechanisms of ciliogenesis and ciliary access. ACTA ACUST UNITED AC 2012; 197:697-709. [PMID: 22689651 PMCID: PMC3373398 DOI: 10.1083/jcb.201111146] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Cilia are conserved, microtubule-based cell surface projections that emanate from basal bodies, membrane-docked centrioles. The beating of motile cilia and flagella enables cells to swim and epithelia to displace fluids. In contrast, most primary cilia do not beat but instead detect environmental or intercellular stimuli. Inborn defects in both kinds of cilia cause human ciliopathies, diseases with diverse manifestations such as heterotaxia and kidney cysts. These diseases are caused by defects in ciliogenesis or ciliary function. The signaling functions of cilia require regulation of ciliary composition, which depends on the control of protein traffic into and out of cilia.
Collapse
Affiliation(s)
- Francesc R Garcia-Gonzalo
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
183
|
Kusumi A, Fujiwara TK, Chadda R, Xie M, Tsunoyama TA, Kalay Z, Kasai RS, Suzuki KGN. Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson's fluid-mosaic model. Annu Rev Cell Dev Biol 2012; 28:215-50. [PMID: 22905956 DOI: 10.1146/annurev-cellbio-100809-151736] [Citation(s) in RCA: 301] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The recent rapid accumulation of knowledge on the dynamics and structure of the plasma membrane has prompted major modifications of the textbook fluid-mosaic model. However, because the new data have been obtained in a variety of research contexts using various biological paradigms, the impact of the critical conceptual modifications on biomedical research and development has been limited. In this review, we try to synthesize our current biological, chemical, and physical knowledge about the plasma membrane to provide new fundamental organizing principles of this structure that underlie every molecular mechanism that realizes its functions. Special attention is paid to signal transduction function and the dynamic aspect of the organizing principles. We propose that the cooperative action of the hierarchical three-tiered mesoscale (2-300 nm) domains--actin-membrane-skeleton induced compartments (40-300 nm), raft domains (2-20 nm), and dynamic protein complex domains (3-10 nm)--is critical for membrane function and distinguishes the plasma membrane from a classical Singer-Nicolson-type model.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
184
|
A Candida albicans temperature-sensitive cdc12-6 mutant identifies roles for septins in selection of sites of germ tube formation and hyphal morphogenesis. EUKARYOTIC CELL 2012; 11:1210-8. [PMID: 22886998 DOI: 10.1128/ec.00216-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Septins were identified for their role in septation in Saccharomyces cerevisiae and were subsequently implicated in other morphogenic processes. To study septins in Candida albicans hyphal morphogenesis, a temperature-sensitive mutation was created that altered the C terminus of the essential Cdc12 septin. The cdc12-6 cells grew well at room temperature, but at 37°C they displayed expected defects in septation, nuclear localization, and bud morphogenesis. Although serum stimulated the cdc12-6 cells at 37°C to form germ tube outgrowths, the mutant could not maintain polarized hyphal growth and instead formed chains of elongated cell compartments. Serum also stimulated the cdc12-6 mutant to induce a hyphal reporter gene (HWP1-GFP) and a characteristic zone of filipin staining at the leading edge of growth. Interestingly, cdc12-6 cells shifted to 37°C in the absence of serum gradually displayed enriched filipin staining at the tip, which may be due to the altered cell cycle regulation. A striking difference from the wild type was that the cdc12-6 cells frequently formed a second germ tube in close proximity to the first. The mutant cells also failed to form the diffuse band of septins at the base of germ tubes and hyphae, indicating that this septin band plays a role in preventing proximal formation of germ tubes in a manner analogous to bud site selection. These studies demonstrate that not only are septins important for cytokinesis, but they also promote polarized morphogenesis and selection of germ tube sites that may help disseminate an infection in host tissues.
Collapse
|
185
|
Moon IS, Lee H, Walikonis RS. Septin 6 localizes to microtubules in neuronal dendrites. Cytotechnology 2012; 65:179-86. [PMID: 22717660 DOI: 10.1007/s10616-012-9477-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 04/23/2012] [Indexed: 02/01/2023] Open
Abstract
In neuronal dendrites, septins localize to the base of the spine, a unique position which is sandwiched between the microtubule (MT)-rich dendritic shaft and the actin filament-rich spine. Here, we provide evidence for the association of SEPT6 with MTs in cultured rat hippocampal neurons. In normal cultures, SEPT6 clusters localized to MTs, but not to actin clusters. Only MT-disrupting agents (vincristine and nocodazole), but not microfilament-disrupting one (latrunculin A), induced the redistribution of SEPT6 to the disrupted MTs. The nascent MT fibers that were recovered from vincristine or nocodazole treatments also accompanied SEPT6. Blocking MT disruption by Taxol prevented such phenomena, proving that the redistribution of SEPT6 was due to the MT disruption. Our results indicate that SEPT6 complexes at the base of the dendritic spine are associated with MTs.
Collapse
Affiliation(s)
- Il Soo Moon
- Department of Anatomy, Dongguk Medical Institute, College of Medicine, Dongguk University, Gyeongju, 780-714, Korea,
| | | | | |
Collapse
|
186
|
Mueller NS, Wedlich-Söldner R, Spira F. From mosaic to patchwork: matching lipids and proteins in membrane organization. Mol Membr Biol 2012; 29:186-96. [PMID: 22594654 DOI: 10.3109/09687688.2012.687461] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Biological membranes encompass and compartmentalize cells and organelles and are a prerequisite to life as we know it. One defining feature of membranes is an astonishing diversity of building blocks. The mechanisms and principles organizing the thousands of proteins and lipids that make up membrane bilayers in cells are still under debate. Many terms and mechanisms have been introduced over the years to account for certain phenomena and aspects of membrane organization and function. Recently, the different viewpoints - focusing on lipids vs. proteins or physical vs. molecular driving forces for membrane organization - are increasingly converging. Here we review the basic properties of biological membranes and the most common theories for lateral segregation of membrane components before discussing an emerging model of a self-organized, multi-domain membrane or 'patchwork membrane'.
Collapse
Affiliation(s)
- Nikola S Mueller
- Cellular Dynamics and Cell Patterning, Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | |
Collapse
|
187
|
Yoshida A, Yamamoto N, Kinoshita M, Hiroi N, Hiramoto T, Kang G, Trimble WS, Tanigaki K, Nakagawa T, Ito J. Localization of septin proteins in the mouse cochlea. Hear Res 2012; 289:40-51. [PMID: 22575789 DOI: 10.1016/j.heares.2012.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 04/21/2012] [Accepted: 04/23/2012] [Indexed: 11/30/2022]
Abstract
Septins are a family of GTP binding proteins that are well conserved in eukaryotic species except plants. Septins contribute to the lateral compartmentalization of membranes, cortical rigidity, and the regulation of membrane trafficking by associating with membrane lipids, actin, and microtubules. The organ of Corti in the cochlea has pivotal roles in auditory perception and includes two kinds of highly polarized cells, hair and supporting cells, both of which are rich in actin and microtubules. To identify the roles of septins in the cochlea, we analyzed the localization of three septin proteins, septin 4 (SEPT4), septin 5 (SEPT5), and septin 7 (SEPT7) that are abundantly expressed in brain tissues, and also examined auditory functions of Sept4 and Sept5 null mice. SEPT4, SEPT5, and SEPT7 were expressed in inner and outer pillar cells and Deiters' cells but the distribution patterns of each protein in Deiters' cells were different. SEPT4 and SEPT7 were expressed in the phalangeal process where SEPT5 was not detected. In addition to these cells SEPT5 and SEPT7 were co-localized with presynaptic vesicles of efferent nerve terminals. Only SEPT7 was expressed in the cochlea at embryonic stages. Although expression patterns of septin proteins suggested their important roles in the function of the cochlea, both Sept4 and Sept5 null mice had similar auditory functions to their wild type littermates. Immunohistochemical analysis of Sept4 null mice showed that compensatory expression of SEPT5 in the phalangeal process of Deiters' cells may have caused functional compensation of hearing ability in Sept4 null mice.
Collapse
Affiliation(s)
- Atsuhiro Yoshida
- Department of Otolaryngology Head and Neck Surgery, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto City, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 2012; 92:273-366. [PMID: 22298658 DOI: 10.1152/physrev.00005.2011] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of endocytosis has evolved remarkably in little more than a decade. This is the result not only of advances in our knowledge of its molecular and biological workings, but also of a true paradigm shift in our understanding of what really constitutes endocytosis and of its role in homeostasis. Although endocytosis was initially discovered and studied as a relatively simple process to transport molecules across the plasma membrane, it was subsequently found to be inextricably linked with almost all aspects of cellular signaling. This led to the notion that endocytosis is actually the master organizer of cellular signaling, providing the cell with understandable messages that have been resolved in space and time. In essence, endocytosis provides the communications and supply routes (the logistics) of the cell. Although this may seem revolutionary, it is still likely to be only a small part of the entire story. A wealth of new evidence is uncovering the surprisingly pervasive nature of endocytosis in essentially all aspects of cellular regulation. In addition, many newly discovered functions of endocytic proteins are not immediately interpretable within the classical view of endocytosis. A possible framework, to rationalize all this new knowledge, requires us to "upgrade" our vision of endocytosis. By combining the analysis of biochemical, biological, and evolutionary evidence, we propose herein that endocytosis constitutes one of the major enabling conditions that in the history of life permitted the development of a higher level of organization, leading to the actuation of the eukaryotic cell plan.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | |
Collapse
|
189
|
Ziółkowska NE, Christiano R, Walther TC. Organized living: formation mechanisms and functions of plasma membrane domains in yeast. Trends Cell Biol 2012; 22:151-8. [DOI: 10.1016/j.tcb.2011.12.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/09/2011] [Accepted: 12/12/2011] [Indexed: 11/25/2022]
|
190
|
Presence of a large β(1-3)glucan linked to chitin at the Saccharomyces cerevisiae mother-bud neck suggests involvement in localized growth control. EUKARYOTIC CELL 2012; 11:388-400. [PMID: 22366124 DOI: 10.1128/ec.05328-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous results suggested that the chitin ring present at the yeast mother-bud neck, which is linked specifically to the nonreducing ends of β(1-3)glucan, may help to suppress cell wall growth at the neck by competing with β(1-6)glucan and thereby with mannoproteins for their attachment to the same sites. Here we explored whether the linkage of chitin to β(1-3)glucan may also prevent the remodeling of this polysaccharide that would be necessary for cell wall growth. By a novel mild procedure, β(1-3)glucan was isolated from cell walls, solubilized by carboxymethylation, and fractionated by size exclusion chromatography, giving rise to a very high-molecular-weight peak and to highly polydisperse material. The latter material, soluble in alkali, may correspond to glucan being remodeled, whereas the large-size fraction would be the final cross-linked structural product. In fact, the β(1-3)glucan of buds, where growth occurs, is solubilized by alkali. A gas1 mutant with an expected defect in glucan elongation showed a large increase in the polydisperse fraction. By a procedure involving sodium hydroxide treatment, carboxymethylation, fractionation by affinity chromatography on wheat germ agglutinin-agarose, and fractionation by size chromatography on Sephacryl columns, it was shown that the β(1-3)glucan attached to chitin consists mostly of high-molecular-weight material. Therefore, it appears that linkage to chitin results in a polysaccharide that cannot be further remodeled and does not contribute to growth at the neck. In the course of these experiments, the new finding was made that part of the chitin forms a noncovalent complex with β(1-3)glucan.
Collapse
|
191
|
Sacristan C, Reyes A, Roncero C. Neck compartmentalization as the molecular basis for the different endocytic behaviour of Chs3 during budding or hyperpolarized growth in yeast cells. Mol Microbiol 2012; 83:1124-35. [DOI: 10.1111/j.1365-2958.2012.07995.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
192
|
Abstract
Septins belong to a family of proteins that is highly conserved in eukaryotes and is increasingly recognized as a novel component of the cytoskeleton. All septins are GTP-binding proteins that form hetero-oligomeric complexes and higher-order structures, including filaments and rings. Recent studies have provided structural information about the different levels of septin organization; however, the crucial structural determinants and factors responsible for septin assembly remain unclear. Investigations on the molecular functions of septins have highlighted their roles as scaffolds for protein recruitment and as diffusion barriers for subcellular compartmentalization in numerous biological processes, including cell division and host-microorganism interactions.
Collapse
|
193
|
Ikenouchi J, Suzuki M, Umeda K, Ikeda K, Taguchi R, Kobayashi T, Sato SB, Kobayashi T, Stolz DB, Umeda M. Lipid polarity is maintained in absence of tight junctions. J Biol Chem 2012; 287:9525-33. [PMID: 22294698 DOI: 10.1074/jbc.m111.327064] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of tight junctions (TJs) in the establishment and maintenance of lipid polarity in epithelial cells has long been a subject of controversy. We have addressed this issue using lysenin, a toxin derived from earthworms, and an influenza virus labeled with a fluorescent lipid, octadecylrhodamine B (R18). When epithelial cells are stained with lysenin, lysenin selectively binds to their apical membranes. Using an artificial liposome, we demonstrated that lysenin recognizes the membrane domains where sphingomyelins are clustered. Interestingly, lysenin selectively stained the apical membranes of epithelial cells depleted of zonula occludens proteins (ZO-deficient cells), which completely lack TJs. Furthermore, the fluorescent lipid inserted into the apical membrane by fusion with the influenza virus did not diffuse to the lateral membrane in ZO-deficient epithelial cells. This study revealed that sphingomyelin-cluster formation occurs only in the apical membrane and that lipid polarity is maintained even in the absence of TJs.
Collapse
Affiliation(s)
- Junichi Ikenouchi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Kusumi A, Fujiwara TK, Morone N, Yoshida KJ, Chadda R, Xie M, Kasai RS, Suzuki KGN. Membrane mechanisms for signal transduction: the coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes. Semin Cell Dev Biol 2012; 23:126-44. [PMID: 22309841 DOI: 10.1016/j.semcdb.2012.01.018] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/24/2012] [Indexed: 01/09/2023]
Abstract
Virtually all biological membranes on earth share the basic structure of a two-dimensional liquid. Such universality and peculiarity are comparable to those of the double helical structure of DNA, strongly suggesting the possibility that the fundamental mechanisms for the various functions of the plasma membrane could essentially be understood by a set of simple organizing principles, developed during the course of evolution. As an initial effort toward the development of such understanding, in this review, we present the concept of the cooperative action of the hierarchical three-tiered meso-scale (2-300 nm) domains in the plasma membrane: (1) actin membrane-skeleton-induced compartments (40-300 nm), (2) raft domains (2-20 nm), and (3) dynamic protein complex domains (3-10nm). Special attention is paid to the concept of meso-scale domains, where both thermal fluctuations and weak cooperativity play critical roles, and the coupling of the raft domains to the membrane-skeleton-induced compartments as well as dynamic protein complexes. The three-tiered meso-domain architecture of the plasma membrane provides an excellent perspective for understanding the membrane mechanisms of signal transduction.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Kyoto 606-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
195
|
Simons M, Snaidero N, Aggarwal S. Cell polarity in myelinating glia: from membrane flow to diffusion barriers. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1146-53. [PMID: 22314181 DOI: 10.1016/j.bbalip.2012.01.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 01/18/2012] [Accepted: 01/19/2012] [Indexed: 11/18/2022]
Abstract
Myelin-forming glia are highly polarized cells that synthesize as an extension of their plasma membrane, a multilayered myelin membrane sheath, with a unique protein and lipid composition. In most cells polarity is established by the polarized exocytosis of membrane vesicles to the distinct plasma membrane domains. Since myelin is composed of a stack of tightly packed membrane layers that do not leave sufficient space for the vesicular trafficking, we hypothesize that myelin does not use polarized exocytosis as a primary mechanism, but rather depends on lateral transport of membrane components in the plasma membrane. We suggest a model in which vesicle-mediated transport is confined to the cytoplasmic channels, from where transport to the compacted areas occurs by lateral flow of cargo within the plasma membrane. A diffusion barrier that is formed by MBP and the two adjacent cytoplasmic leaflets of the myelin bilayers acts a molecular sieve and regulates the flow of the components. Finally, we highlight potential mechanism that may contribute to the assembly of specific lipids within myelin. This article is part of a Special Issue entitled Lipids and Vesicular Transport.
Collapse
Affiliation(s)
- Mikael Simons
- Max-Planck-Institute of Experimental Medicine, Hermann-Rein-Str. 3, Göttingen, Germany.
| | | | | |
Collapse
|
196
|
Merlini L, Piatti S. The mother-bud neck as a signaling platform for the coordination between spindle position and cytokinesis in budding yeast. Biol Chem 2012; 392:805-12. [PMID: 21824008 DOI: 10.1515/bc.2011.090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During asymmetric cell division, spindle positioning is critical for ensuring the unequal inheritance of polarity factors. In budding yeast, the mother-bud neck determines the cleavage plane and a correct nuclear division between mother and daughter cell requires orientation of the mitotic spindle along the mother-bud axis. A surveillance device called the spindle position/orientation checkpoint (SPOC) oversees this process and delays mitotic exit and cytokinesis until the spindle is properly oriented along the division axis, thus ensuring genome stability. Cytoskeletal proteins called septins form a ring at the bud neck that is essential for cytokinesis. Furthermore, septins and septin-associated proteins are implicated in spindle positioning and SPOC. In this review, we discuss the emerging connections between septins and the SPOC and the role of the mother-bud neck as a signaling platform to couple proper chromosome segregation to cytokinesis.
Collapse
Affiliation(s)
- Laura Merlini
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milan, Italy
| | | |
Collapse
|
197
|
Fisch C, Dupuis-Williams P. [The rebirth of the ultrastructure of cilia and flagella]. Biol Aujourdhui 2012; 205:245-67. [PMID: 22251859 DOI: 10.1051/jbio/2011023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Indexed: 11/14/2022]
Abstract
The sensory and motility functions of eukaryotic cilia and flagella are essential for cell survival in protozoans and for cell differentiation and homoeostasis in metazoans. Ciliary biology has benefited early on from the input of electron microscopy. Over the last decade, the visualization of cellular structures has greatly progressed, thus it becomes timely to review the ultrastructure of cilia and flagella. Briefly touching upon the typical features of a 9+2 axoneme, we dwell extensively on the transition zone, the singlet zone, the ciliary necklace, cap and crown. The relation of the singlet zone to sensory and/or motile function, the link of the ciliary cap to microtubule dynamics and to ciliary beat, the involvement of the ciliary crown in ovocyte and mucosal propulsion, and the role of the transition zone/the ciliary necklace in axonemal stabilization, autotomy and as a diffusion barrier will all be discussed.
Collapse
Affiliation(s)
- Cathy Fisch
- ATIGE Centriole et Pathologies Associées, INSERM/UEVE U829, 91000 Évry, France.
| | | |
Collapse
|
198
|
Abstract
Initially identified as the Caenorhabditis elegans PAR-4 homologue, the serine threonine kinase LKB1 is conserved throughout evolution and ubiquitously expressed. In humans, LKB1 is causally linked to the Peutz-Jeghers syndrome and is one of the most commonly mutated genes in several cancers like lung and cervical carcinomas. These observations have led to classify LKB1 as tumour suppressor gene. Although, considerable dark zones remain, an impressive leap in the understanding of LKB1 functions has been done during the last decade. Role of LKB1 as a major actor of the AMPK/mTOR pathway connecting cellular metabolism, cell growth and tumorigenesis has been extensively studied probably to the detriment of other functions of equal importance. This review will discuss about LKB1 activity regulation, its effectors and clues on their involvement in cell polarity.
Collapse
|
199
|
Konno A, Setou M, Ikegami K. Ciliary and flagellar structure and function--their regulations by posttranslational modifications of axonemal tubulin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:133-70. [PMID: 22364873 DOI: 10.1016/b978-0-12-394305-7.00003-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Eukaryotic cilia and flagella are evolutionarily conserved microtubule-based organelles protruding from the cell surface. They perform dynein-driven beating which contributes to cell locomotion or flow generation. They also play important roles in sensing as cellular antennae, which allows cells to respond to various external stimuli. The main components of cilia and flagella, α- and β-tubulins, are known to undergo various posttranslational modifications (PTMs), including phosphorylation, palmitoylation, tyrosination/detyrosination, Δ2 modification, acetylation, glutamylation, and glycylation. Recent identification of tubulin-modifying enzymes, especially tubulin tyrosine ligase-like proteins which perform tubulin glutamylation and glycylation, has demonstrated the importance of tubulin modifications for the assembly and functions of cilia and flagella. In this chapter, we review recent work on PTMs of ciliary and flagellar tubulins in conjunction with discussing the basic knowledge.
Collapse
Affiliation(s)
- Alu Konno
- Department of Cell Biology and Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | |
Collapse
|
200
|
Cyclin-dependent kinase 16/PCTAIRE kinase 1 is activated by cyclin Y and is essential for spermatogenesis. Mol Cell Biol 2011; 32:868-79. [PMID: 22184064 DOI: 10.1128/mcb.06261-11] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cyclin-dependent kinase 16 (CDK16, PCTK1) is a poorly characterized protein kinase, highly expressed in the testis and the brain. Here, we report that CDK16 is activated by membrane-associated cyclin Y (CCNY). Treatment of transfected human cells with the protein kinase A (PKA) activator forskolin blocked, while kinase inhibition promoted, CCNY-dependent targeting of CDK16-green fluorescent protein (GFP) to the cell membrane. CCNY binding to CDK16 required a region upstream of the kinase domain and was found to be inhibited by phosphorylation of serine 153, a potential PKA phosphorylation site. Thus, in contrast to other CDKs, CDK16 is regulated by phosphorylation-controlled cyclin binding. CDK16 isolated from murine testis was unphosphorylated, interacted with CCNY, and exhibited kinase activity. To investigate the function of CDK16 in vivo, we established a conditional knockout allele. Mice lacking CDK16 developed normally, but male mice were infertile. Spermatozoa isolated from their epididymis displayed thinning and elongation of the annulus region, adopted a bent shape, and showed impaired motility. Moreover, CDK16-deficient spermatozoa had malformed heads and excess residual cytoplasm, suggesting a role of CDK16 in spermiation. Thus, CDK16 is a membrane-targeted CDK essential for spermatogenesis.
Collapse
|