151
|
Myant K, Sansom OJ. Wnt/Myc interactions in intestinal cancer: partners in crime. Exp Cell Res 2011; 317:2725-31. [PMID: 21851818 DOI: 10.1016/j.yexcr.2011.08.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 07/29/2011] [Accepted: 08/01/2011] [Indexed: 02/03/2023]
Abstract
Loss of the APC (adenomatous polyposis coli) gene in colorectal cancer leads to a rapid deregulation of TCF/LEF target genes. Of all these target genes, the transcription factor c-MYC appears the most critical. In this review we will discuss the interplay of Wnt and c-MYC signaling during intestinal homeostasis and transformation. Furthermore, we will discuss recent data showing that further deregulation of c-MYC levels during colorectal carcinogenesis may drive tumor progression. Moreover, understanding these additional control mechanisms may allow targeting of c-MYC during colorectal carcinogenesis.
Collapse
Affiliation(s)
- Kevin Myant
- Beatson Institute for Cancer Research, Garscube Estate, Switchback Road, Glasgow, Scotland G61 1BD, UK
| | | |
Collapse
|
152
|
Owen KA, Abshire MY, Tilghman RW, Casanova JE, Bouton AH. FAK regulates intestinal epithelial cell survival and proliferation during mucosal wound healing. PLoS One 2011; 6:e23123. [PMID: 21887232 PMCID: PMC3160839 DOI: 10.1371/journal.pone.0023123] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 07/11/2011] [Indexed: 12/29/2022] Open
Abstract
Background Following damage to the intestinal epithelium, restoration of epithelial barrier integrity is triggered by a robust proliferative response. In other tissues, focal adhesion kinase (FAK) regulates many of the cellular processes that are critical for epithelial homeostasis and restitution, including cell migration, proliferation and survival. However, few studies to date have determined how FAK contributes to mucosal wound healing in vivo. Methodology and Principal Findings To examine the role of FAK in intestinal epithelial homeostasis and during injury, we generated intestinal epithelium (IE)-specific conditional FAK knockout mice. Colitis was induced with dextran-sulfate-sodium (DSS) and intestinal tissues were analyzed by immunohistochemistry and immunoblotting. While intestinal development occurred normally in mice lacking FAK, FAK-deficient animals were profoundly susceptible to colitis. The loss of epithelial FAK resulted in elevated p53 expression and an increased sensitivity to apoptosis, coincident with a failure to upregulate epithelial cell proliferation. FAK has been reported to function as a mechanosensor, inducing cyclin D1 expression and promoting cell cycle progression under conditions in which tissue/matrix stiffness is increased. Collagen deposition, a hallmark of inflammatory injury resulting in increased tissue rigidity, was observed in control and FAK knockout mice during colitis. Despite this fibrotic response, the colonic epithelium in FAK-deficient mice exhibited significantly reduced cyclin D1 expression, suggesting that proliferation is uncoupled from fibrosis in the absence of FAK. In support of this hypothesis, proliferation of Caco-2 cells increased proportionally with matrix stiffness in vitro only under conditions of normal FAK expression; FAK depleted cells exhibited reduced proliferation concomitant with attenuated cyclin D1 expression. Conclusions In the colon, FAK functions as a regulator of epithelial cell survival and proliferation under conditions of mucosal injury and a mechanosensor of tissue compliance, inducing repair-driven proliferation in the colonic epithelium through upregulation of cyclin D1.
Collapse
Affiliation(s)
- Katherine A. Owen
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Michelle Y. Abshire
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - Robert W. Tilghman
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia, United States of America
| | - James E. Casanova
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia, United States of America
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia, United States of America
- * E-mail: (AHB); (JEC)
| | - Amy H. Bouton
- Department of Microbiology, University of Virginia Health System, Charlottesville, Virginia, United States of America
- * E-mail: (AHB); (JEC)
| |
Collapse
|
153
|
Koch S, Nusrat A. The life and death of epithelia during inflammation: lessons learned from the gut. ANNUAL REVIEW OF PATHOLOGY 2011; 7:35-60. [PMID: 21838548 DOI: 10.1146/annurev-pathol-011811-120905] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epithelial cells form protective barriers that physically separate an organism from the outside world. Rather than being merely static, impregnable shields, epithelia are highly dynamic structures that can adjust their proliferation, differentiation, and death in response to intrinsic and extrinsic signals. The advantages as well as pitfalls of this flexibility are highlighted in inflammatory disorders such as inflammatory bowel diseases and psoriasis, which are characterized by a chronically dysregulated homeostasis of the epithelium. In recent years, it has become increasingly apparent that epithelial cells communicate with their surroundings through converging, integrated signaling cascades and that even minor alterations in these pathways can have dramatic pathologic consequences. In this review, we discuss how inflammatory cytokines and other signaling molecules, directly or through cross talk, regulate epithelial homeostasis in the intestine, and we highlight parallels and differences in a few other organs.
Collapse
Affiliation(s)
- Stefan Koch
- Epithelial Pathobiology Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
154
|
Kato H, Gruenwald A, Suh JH, Miner JH, Barisoni-Thomas L, Taketo MM, Faul C, Millar SE, Holzman LB, Susztak K. Wnt/β-catenin pathway in podocytes integrates cell adhesion, differentiation, and survival. J Biol Chem 2011; 286:26003-15. [PMID: 21613219 PMCID: PMC3138306 DOI: 10.1074/jbc.m111.223164] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/04/2011] [Indexed: 12/23/2022] Open
Abstract
Diabetic kidney disease (DKD) is the single most common cause of albuminuria and end-stage kidney disease in the United States. We found increased expression of Wnt/β-catenin (Ctnnb1) pathway transcripts and proteins in glomeruli and podocytes of patients and mouse models of DKD. Mice with podocyte-specific expression of stabilized Ctnnb1 exhibited basement membrane abnormalities, albuminuria, and increased susceptibility to glomerular injury. Mice with podocyte-specific deletion of Ctnnb1 or podocyte-specific expression of the canonical Wnt inhibitor Dickkopf-related protein 1 (Dkk1) also showed increased susceptibility to DKD. Podocytes with stabilized Ctnnb1 were less motile and less adhesive to different matrices. Deletion of Ctnnb1 in cultured podocytes increased the expression of podocyte differentiation markers and enhanced cell motility; however, these cells were more susceptible to apoptosis. These results indicate that Wnt/Ctnnb1 signaling in podocytes plays a critical role in integrating cell adhesion, motility, cell death, and differentiation. Balanced Ctnnb1 expression is critical for glomerular filtration barrier maintenance.
Collapse
Affiliation(s)
- Hideki Kato
- From the Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, New York, New York 10461
| | - Antje Gruenwald
- From the Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, New York, New York 10461
| | - Jung Hee Suh
- the Renal Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jeffrey H. Miner
- the Renal Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Laura Barisoni-Thomas
- the Department of Pathology, New York University School of Medicine, New York, New York 10016
| | - Makoto M. Taketo
- the Department of Pharmacology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Christian Faul
- the Department of Medicine, Division of Nephrology, Miller School of Medicine, University of Miami, Coral Gables, Florida 33136
| | - Sarah E. Millar
- the Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6100
| | - Lawrence B. Holzman
- the Department of Medicine, Renal, Electrolyte, and Hypertension Division, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, and
| | - Katalin Susztak
- From the Department of Medicine, Division of Nephrology, Albert Einstein College of Medicine, New York, New York 10461
- the Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
155
|
Fonar Y, Gutkovich YE, Root H, Malyarova A, Aamar E, Golubovskaya VM, Elias S, Elkouby YM, Frank D. Focal adhesion kinase protein regulates Wnt3a gene expression to control cell fate specification in the developing neural plate. Mol Biol Cell 2011; 22:2409-21. [PMID: 21551070 PMCID: PMC3128541 DOI: 10.1091/mbc.e10-12-0932] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
FAK is linked to aggressive tumors, but its normal function is not clear. FAK knockdown early in Xenopus development anteriorizes the embryo via a loss of Wnt signaling. Wnt3a expression is FAK dependent in both embryos and human breast cancer cells, suggesting that a FAK–Wnt linkage is highly conserved. Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase protein localized to regions called focal adhesions, which are contact points between cells and the extracellular matrix. FAK protein acts as a scaffold to transfer adhesion-dependent and growth factor signals into the cell. Increased FAK expression is linked to aggressive metastatic and invasive tumors. However, little is known about its normal embryonic function. FAK protein knockdown during early Xenopus laevis development anteriorizes the embryo. Morphant embryos express increased levels of anterior neural markers, with reciprocally reduced posterior neural marker expression. Posterior neural plate folding and convergence-extension is also inhibited. This anteriorized phenotype resembles that of embryos knocked down zygotically for canonical Wnt signaling. FAK and Wnt3a genes are both expressed in the neural plate, and Wnt3a expression is FAK dependent. Ectopic Wnt expression rescues this FAK morphant anteriorized phenotype. Wnt3a thus acts downstream of FAK to balance anterior–posterior cell fate specification in the developing neural plate. Wnt3a gene expression is also FAK dependent in human breast cancer cells, suggesting that this FAK–Wnt linkage is highly conserved. This unique observation connects the FAK- and Wnt-signaling pathways, both of which act to promote cancer when aberrantly activated in mammalian cells.
Collapse
Affiliation(s)
- Yuri Fonar
- Department of Biochemistry, Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Yu HG, Nam JO, Miller NLG, Tanjoni I, Walsh C, Shi L, Kim L, Chen XL, Tomar A, Lim ST, Schlaepfer DD. p190RhoGEF (Rgnef) promotes colon carcinoma tumor progression via interaction with focal adhesion kinase. Cancer Res 2011; 71:360-70. [PMID: 21224360 PMCID: PMC3064514 DOI: 10.1158/0008-5472.can-10-2894] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Focal adhesion kinase (FAK) functions downstream of integrins and growth factor receptors to promote tumor cell motility and invasion. In colorectal cancer, FAK is activated by amidated gastrin, a protumorigenic hormone. However, it is unclear how FAK receives signals from the gastrin receptor or other G-protein-coupled receptors that can promote cell motility and invasion. The Rho guanine-nucleotide exchange factor p190RhoGEF (Rgnef) binds FAK and facilitates fibroblast focal adhesion formation on fibronectin. Here we report that Rgnef mRNA and protein expression are significantly increased during colorectal tumor progression. In human colon carcinoma cells, Rgnef forms a complex with FAK and upon gastrin stimulation, FAK translocates to newly-forming focal adhesions where it facilitates tyrosine phosphorylation of paxillin. short hairpin (shRNA)-mediated knockdown of Rgnef or FAK, or pharmacological inhibition of FAK activity, is sufficient to block gastrin-stimulated paxillin phosphorylation, cell motility, and invadopodia formation in a manner dependent upon upstream cholecystokinin-2 receptor expression. Overexpression of the C-terminal region of Rgnef (Rgnef-C, amino acid 1,279-1,582) but not Rgnef-CΔFAK (amino acid 1,302-1,582 lacking the FAK binding site) disrupted endogenous Rgnef-FAK interaction and prevented paxillin phosphorylation and cell motility stimulated by gastrin. Rgnef-C-expressing cells formed smaller, less invasive tumors with reduced tyrosine phosphorylation of paxillin upon orthotopic implantation, compared with Rgnef-CΔFAK-expressing cells. Our studies identify Rgnef as a novel regulator of colon carcinoma motility and invasion, and they show that a Rgnef-FAK linkage promotes colon carcinoma progression in vivo.
Collapse
Affiliation(s)
- Hong-Gang Yu
- Dept. Reproductive Medicine, Moores Cancer Center, UCSD, La Jolla, CA 92093
| | - Ju-Ock Nam
- Dept. Reproductive Medicine, Moores Cancer Center, UCSD, La Jolla, CA 92093
| | | | - Isabelle Tanjoni
- Dept. Reproductive Medicine, Moores Cancer Center, UCSD, La Jolla, CA 92093
| | - Colin Walsh
- Dept. Reproductive Medicine, Moores Cancer Center, UCSD, La Jolla, CA 92093
| | | | - Linda Kim
- Dept. Reproductive Medicine, Moores Cancer Center, UCSD, La Jolla, CA 92093
| | - Xiao-Lei Chen
- Dept. Reproductive Medicine, Moores Cancer Center, UCSD, La Jolla, CA 92093
| | - Alok Tomar
- Dept. Reproductive Medicine, Moores Cancer Center, UCSD, La Jolla, CA 92093
| | - Ssang-Taek Lim
- Dept. Reproductive Medicine, Moores Cancer Center, UCSD, La Jolla, CA 92093
| | | |
Collapse
|
157
|
Frame MC, Patel H, Serrels B, Lietha D, Eck MJ. The FERM domain: organizing the structure and function of FAK. Nat Rev Mol Cell Biol 2010; 11:802-14. [PMID: 20966971 DOI: 10.1038/nrm2996] [Citation(s) in RCA: 288] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Focal adhesion kinase (FAK) is a scaffold and tyrosine kinase protein that binds to itself and cellular partners through its four-point-one, ezrin, radixin, moesin (FERM) domain. Recent structural work reveals that regulatory protein partners convert auto-inhibited FAK into its active state by binding to its FERM domain. Further, the identity of FAK FERM domain-interacting proteins yields clues as to how FAK coordinates diverse cellular responses, including cell adhesion, polarization, migration, survival and death, and suggests that FERM domains might mediate information transfer between the cell cortex and nucleus. Importantly, the FAK FERM domain might act as a paradigm for the actions of other FERM domain-containing proteins.
Collapse
Affiliation(s)
- Margaret C Frame
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh EH4 2XR, UK.
| | | | | | | | | |
Collapse
|
158
|
Abstract
Focal adhesion kinase (FAK) is a pivotal regulator of integrin signaling and responses to cell adhesive dynamics. In this issue of Developmental Cell, Ashton et al. demonstrate that Fak is critical for intestinal oncogenesis and regeneration after injury but not for day-to-day homeostasis, providing novel insights into intestinal biology and colorectal cancer therapy.
Collapse
Affiliation(s)
- Gerard Evan
- Department of Biochemistry, University of Cambridge, UK.
| |
Collapse
|