151
|
Jacquemet G, Humphries MJ, Caswell PT. Role of adhesion receptor trafficking in 3D cell migration. Curr Opin Cell Biol 2013; 25:627-32. [PMID: 23797030 PMCID: PMC3759831 DOI: 10.1016/j.ceb.2013.05.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/13/2013] [Accepted: 05/31/2013] [Indexed: 01/28/2023]
Abstract
Adhesion receptor trafficking makes a major contribution to cell migration in 3D. Integrin and syndecan receptors synergise to control signals for migration. Specific integrin heterodimers perform different roles during migration.
This review discusses recent advances in our understanding of adhesion receptor trafficking in vitro, and extrapolates them as far as what is currently possible towards an understanding of migration in three dimensions in vivo. Our specific focus is the mechanisms for endocytosis and recycling of the two major classes of cell-matrix adhesion receptors, integrins and syndecans. We review the signalling networks that are employed to regulate trafficking and conversely the effects of trafficking on signalling itself. We then define the contribution that this element of the migration process makes to processes such as wound healing and tumour invasion.
Collapse
Affiliation(s)
- Guillaume Jacquemet
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, M13 9PT, UK
| | | | | |
Collapse
|
152
|
Chen PH, Chen X, Lin Z, Fang D, He X. The structural basis of R-spondin recognition by LGR5 and RNF43. Genes Dev 2013; 27:1345-50. [PMID: 23756651 DOI: 10.1101/gad.219915.113] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
R-spondins (RSPOs) enhance Wnt signaling, affect stem cell behavior, bind to leucine-rich repeat-containing G-protein-coupled receptors 4-6, (LGR4-6) and the transmembrane E3 ubiquitin ligases RING finger 43/zinc and RING finger 3 (RNF43/ZNRF3). The structure of RSPO1 bound to both LGR5 and RNF43 ectodomains confirms their physical linkage. RSPO1 is sandwiched by LGR5 and RNF43, with its rod module of the cysteine-rich domain (CRD) contacting LGR5 and a hairpin inserted into RNF43. LGR5 does not contact RNF43 but increases the affinity of RSPO1 to RNF43, supporting LGR5 as an engagement receptor and RNF43 as an effector receptor. Disease mutations map to the RSPO1-RNF43 interface, which promises therapeutic targeting.
Collapse
Affiliation(s)
- Po-Han Chen
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | |
Collapse
|
153
|
Abstract
Planar cell polarity (PCP), a process controlling coordinated, uniformly polarized cellular behaviors in a field of cells, has been identified to be critically required for many fundamental developmental processes. However, a global directional cue that establishes PCP in a three-dimensional tissue or organ with respect to the body axes remains elusive. In vertebrate, while Wnt-secreted signaling molecules have been implicated in regulating PCP in a β-catenin-independent manner, whether they function permissively or act as a global cue to convey directional information is not clearly defined. In addition, the underlying molecular mechanism by which Wnt signal is transduced to core PCP proteins is largely unknown. In this chapter, I review the roles of Wnt signaling in regulating PCP during vertebrate development and update our knowledge of its regulatory mechanism.
Collapse
Affiliation(s)
- Bo Gao
- National Human Genome Research Institute, Bethesda, Maryland, USA.
| |
Collapse
|
154
|
Brooks R, Williamson R, Bass M. Syndecan-4 independently regulates multiple small GTPases to promote fibroblast migration during wound healing. Small GTPases 2013; 3:73-9. [PMID: 22790193 PMCID: PMC3408980 DOI: 10.4161/sgtp.19301] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Upon wounding, syndecan-4 detects the appearance of fibronectin in the wound bed and mediates regulation of the small GTPases, Rac1, RhoA and RhoG. Cohesive regulation of these molecules results in cycles of membrane protrusion and cytoskeletal contraction, and triggers the endocytosis of α5β1-integrin, which collectively lead to immigration of fibroblasts into the wound bed. In this manuscript we identify the regulation of a fourth GTPase, Arf6 that is responsible for α5β1-integrin recycling and thereby completes the cycle of syndecan-4-regulated integrin trafficking. We demonstrate that each of the GTPase signals can be regulated by syndecan-4, but that they are independent of one another. By doing so we identify syndecan-4 as the coordinating center of pro-migratory signals.
Collapse
|
155
|
Cruciat CM, Niehrs C. Secreted and transmembrane wnt inhibitors and activators. Cold Spring Harb Perspect Biol 2013; 5:a015081. [PMID: 23085770 DOI: 10.1101/cshperspect.a015081] [Citation(s) in RCA: 494] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Signaling by the Wnt family of secreted glycoproteins plays important roles in embryonic development and adult homeostasis. Wnt signaling is modulated by a number of evolutionarily conserved inhibitors and activators. Wnt inhibitors belong to small protein families, including sFRP, Dkk, WIF, Wise/SOST, Cerberus, IGFBP, Shisa, Waif1, APCDD1, and Tiki1. Their common feature is to antagonize Wnt signaling by preventing ligand-receptor interactions or Wnt receptor maturation. Conversely, the Wnt activators, R-spondin and Norrin, promote Wnt signaling by binding to Wnt receptors or releasing a Wnt-inhibitory step. With few exceptions, these antagonists and agonists are not pure Wnt modulators, but also affect additional signaling pathways, such as TGF-β and FGF signaling. Here we discuss their interactions with Wnt ligands and Wnt receptors, their role in developmental processes, as well as their implication in disease.
Collapse
Affiliation(s)
- Cristina-Maria Cruciat
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | |
Collapse
|
156
|
Montrose K, Yang Y, Sun X, Wiles S, Krissansen GW. Xentry, a new class of cell-penetrating peptide uniquely equipped for delivery of drugs. Sci Rep 2013; 3:1661. [PMID: 23588666 PMCID: PMC3627194 DOI: 10.1038/srep01661] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/27/2013] [Indexed: 01/25/2023] Open
Abstract
Here we describe an entirely new class of cell-penetrating peptide (CPP) represented by the short peptide Xentry (LCLRPVG) derived from an N-terminal region of the X-protein of the hepatitis B virus. Xentry permeates adherent cells using syndecan-4 as a portal for entry, and is uniquely restricted from entering syndecan-deficient, non-adherent cells, such as resting blood cells. Intravenous injection of Xentry alone or conjugated to β-galactosidase led to its delivery to most tissues in mice, except circulating blood cells. There was a predilection for uptake by epithelia. Anti-B-raf antibodies and siRNAs linked to Xentry were capable of killing B-raf-dependent melanoma cells. Xentry represents a new class of CPP with properties that are potentially advantageous for life science and therapeutic applications.
Collapse
Affiliation(s)
- Kristopher Montrose
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1005, New Zealand
| | - Yi Yang
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1005, New Zealand
| | - Xueying Sun
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1005, New Zealand
| | - Siouxsie Wiles
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1005, New Zealand
| | - Geoffrey W. Krissansen
- Department of Molecular Medicine & Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1005, New Zealand
| |
Collapse
|
157
|
Lui JC, Nilsson O, Chan Y, Palmer CD, Andrade AC, Hirschhorn JN, Baron J. Synthesizing genome-wide association studies and expression microarray reveals novel genes that act in the human growth plate to modulate height. Hum Mol Genet 2012; 21:5193-201. [PMID: 22914739 PMCID: PMC3490510 DOI: 10.1093/hmg/dds347] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/13/2012] [Accepted: 08/15/2012] [Indexed: 02/03/2023] Open
Abstract
Previous meta-analysis of genome-wide association (GWA) studies has identified 180 loci that influence adult height. However, each GWA locus typically comprises a set of contiguous genes, only one of which presumably modulates height. We reasoned that many of the causative genes within these loci influence height because they are expressed in and function in the growth plate, a cartilaginous structure that causes bone elongation and thus determines stature. Therefore, we used expression microarray studies of mouse and rat growth plate, human disease databases and a mouse knockout phenotype database to identify genes within the GWAS loci that are likely required for normal growth plate function. Each of these approaches identified significantly more genes within the GWA height loci than at random genomic locations (P < 0.0001 each), supporting the validity of the approach. The combined analysis strongly implicates 78 genes in growth plate function, including multiple genes that participate in PTHrP-IHH, BMP and CNP signaling, and many genes that have not previously been implicated in the growth plate. Thus, this analysis reveals a large number of novel genes that regulate human growth plate chondrogenesis and thereby contribute to the normal variations in human adult height. The analytic approach developed for this study may be applied to GWA studies for other common polygenic traits and diseases, thus providing a new general strategy to identify causative genes within GWA loci and to translate genetic associations into mechanistic biological insights.
Collapse
Affiliation(s)
- Julian C Lui
- Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
158
|
Abstract
30 years after the identification of WNTs, their signal transduction has become increasingly complex, with the discovery of more than 15 receptors and co-receptors in seven protein families. The recent discovery of three receptor classes for the R-spondin family of WNT agonists further adds to this complexity. What emerges is an intricate network of receptors that form higher-order ligand-receptor complexes routing downstream signalling. These are regulated both extracellularly by agonists such as R-spondin and intracellularly by post-translational modifications such as phosphorylation, proteolytic processing and endocytosis.
Collapse
Affiliation(s)
- Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
159
|
Chassot AA, Bradford ST, Auguste A, Gregoire EP, Pailhoux E, de Rooij DG, Schedl A, Chaboissier MC. WNT4 and RSPO1 together are required for cell proliferation in the early mouse gonad. Development 2012; 139:4461-72. [PMID: 23095882 DOI: 10.1242/dev.078972] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The gonad arises from the thickening of the coelomic epithelium and then commits into the sex determination process. Testis differentiation is activated by the expression of the Y-linked gene Sry, which promotes cell proliferation and differentiation of Sertoli cells, the supporting cells of the testis. In absence of Sry (XX individuals), activation of WNT/CTNNB1 signalling, via the upregulation of Rspo1 and Wnt4, promotes ovarian differentiation. However, Rspo1 and Wnt4 are expressed in the early undifferentiated gonad of both sexes, and Axin2-lacZ, a reporter of canonical WNT/CTNNB1 signalling, is expressed in the coelomic region of the E11.5 gonadal primordium, suggesting a role of these factors in early gonadal development. Here, we show that simultaneous ablation of Rspo1 and Wnt4 impairs proliferation of the cells of the coelomic epithelium, reducing the number of progenitors of Sertoli cells in XY mutant gonads. As a consequence, in XY Wnt4(-/-); Rspo1(-/-) foetuses, this leads to the differentiation of a reduced number of Sertoli cells and the formation of a hypoplastic testis exhibiting few seminiferous tubules. Hence, this study identifies Rspo1 and Wnt4 as two new regulators of cell proliferation in the early gonad regardless of its sex, in addition to the specific role of these genes in ovarian differentiation.
Collapse
|
160
|
Abstract
Syndecans are transmembrane heparan sulphate proteoglycans (HSPGs) that have gained increasing interest as regulators of a variety of tissue responses, including cartilage development and remodelling. These proteoglycans are composed of a core protein to which extracellular glycosaminoglycan (GAG) chains are attached. Through these GAG chains, syndecans can interact with a variety of extracellular matrix molecules and bind to a number of soluble mediators including morphogens, growth factors, chemokines and cytokines. The structure and post-translational modification of syndecan GAG chains seem to differ not only from cell to cell, but also during different stages of cellular differentiation, leading to a complexity of syndecan function that is unique among membrane-bound HSPGs. Unlike other membrane-bound HSPGs, syndecans contain intracellular signalling motifs that can initiate signalling mainly through protein kinase C. This Review summarizes our knowledge of the biology of syndecans and the mechanisms by which binding of molecules to syndecans exert different biological effects, particularly in the joints. On the basis of the structural and functional peculiarities of syndecans, we discuss the regulation of syndecans and their roles in the developing joint as well as during degenerative and inflammatory cartilage remodelling as understood from expression studies and functional analyses involving syndecan-deficient mice.
Collapse
Affiliation(s)
- Thomas Pap
- Institute of Experimental Musculoskeletal Medicine, University Hospital Münster, Domagkstraße 3, D-48149 Münster, Germany.
| | | |
Collapse
|
161
|
Abstract
The four vertebrate R-spondin proteins are secreted agonists of the canonical Wnt/β-catenin signaling pathway. These proteins are approximately 35 kDa, and are characterized by two amino-terminal furin-like repeats, which are necessary and sufficient for Wnt signal potentiation, and a thrombospondin domain situated more towards the carboxyl terminus that can bind matrix glycosaminoglycans and/or proteoglycans. Although R-spondins are unable to initiate Wnt signaling, they can potently enhance responses to low-dose Wnt proteins. In humans, rare disruptions of the gene encoding R-spondin1 cause a syndrome of XX sex reversal (phenotypic male), palmoplantar keratosis (a thickening of the palms and soles caused by excess keratin formation) and predisposition to squamous cell carcinoma of the skin. Mutations in the gene encoding R-spondin4 cause anonychia (absence or hypoplasia of nails on fingers and toes). Recently, leucine-rich repeat-containing G-protein-coupled receptor (Lgr)4, Lgr5 and Lgr6, three closely related orphans of the leucine-rich repeat family of G-protein-coupled receptors, have been identified as receptors for R-spondins. Lgr5 and Lgr6 are markers for adult stem cells. Because R-spondins are potent stimulators of adult stem cell proliferation in vivo and in vitro, these findings might guide the therapeutic use of R-spondins in regenerative medicine.
Collapse
Affiliation(s)
- Wim B M de Lau
- Hubrecht Institute, Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht, The Netherlands
| | | | | |
Collapse
|
162
|
Jin YR, Yoon JK. The R-spondin family of proteins: emerging regulators of WNT signaling. Int J Biochem Cell Biol 2012; 44:2278-87. [PMID: 22982762 DOI: 10.1016/j.biocel.2012.09.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/06/2012] [Accepted: 09/07/2012] [Indexed: 02/07/2023]
Abstract
Recently, the R-spondin (RSPO) family of proteins has emerged as important regulators of WNT signaling. Considering the wide spectrum of WNT signaling functions in normal biological processes and disease conditions, there has been a significantly growing interest in understanding the functional roles of RSPOs in multiple biological processes and determining the molecular mechanisms by which RSPOs regulate the WNT signaling pathway. Recent advances in the RSPO research field revealed some of the in vivo functions of RSPOs and provided new information regarding the mechanistic roles of RSPO activity in regulation of WNT signaling. Herein, we review recent progress in RSPO research with an emphasis on signaling mechanisms and biological functions.
Collapse
Affiliation(s)
- Yong-Ri Jin
- Program in Stem Cell and Regenerative Medicine, Center for Molecular Medicine, Maine Medial Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | | |
Collapse
|
163
|
Abstract
In a recent issue of Nature, Hao et al. report an unexpected link between the secreted stem cell factor/Wnt agonist R-spondin and Wnt receptors through the transmembrane ZNRF3 protein, a RING finger ubiquitin ligase. ZNRF3 acts to turn over Frizzled and LRP6 receptors. R-spondin binds to ZNRF3, in addition to transmembrane LGR4/5 receptors, to antagonize degradation of the Wnt receptors by ZNRF3, thereby resulting in increased Frizzled and LRP6 levels and a greater Wnt response.
Collapse
Affiliation(s)
- Bryan T MacDonald
- The F. M. Kirby Neurobiology Center, Boston Children's Hospital, Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
164
|
Bakker ERM, Raghoebir L, Franken PF, Helvensteijn W, van Gurp L, Meijlink F, van der Valk MA, Rottier RJ, Kuipers EJ, van Veelen W, Smits R. Induced Wnt5a expression perturbs embryonic outgrowth and intestinal elongation, but is well-tolerated in adult mice. Dev Biol 2012; 369:91-100. [PMID: 22691362 DOI: 10.1016/j.ydbio.2012.06.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 06/01/2012] [Accepted: 06/04/2012] [Indexed: 01/09/2023]
Abstract
Wnt5a is essential during embryonic development, as indicated by mouse Wnt5a knockout embryos displaying outgrowth defects of multiple structures including the gut. The dynamics of Wnt5a involvement in these processes is unclear, and perinatal lethality of Wnt5a knockout embryos has hampered investigation of Wnt5a during postnatal stages in vivo. Although in vitro studies have suggested a relevant role for Wnt5a postnatally, solid evidence for a significant impact of Wnt5a within the complexity of an adult organism is lacking. We generated a tightly-regulated inducible Wnt5a transgenic mouse model and investigated the effects of Wnt5a induction during different time-frames of embryonic development and in adult mice, focusing on the gastrointestinal tract. When induced in embryos from 10.5 dpc onwards, Wnt5a expression led to severe outgrowth defects affecting the gastrointestinal tracts, limbs, facial structures and tails, closely resembling the defects observed in Wnt5a knockout mice. However, Wnt5a induction from 13.5 dpc onwards did not cause this phenotype, indicating that the most critical period for Wnt5a in embryonic development is prior to 13.5 dpc. In adult mice, induced Wnt5a expression did not reveal abnormalities, providing the first in vivo evidence that Wnt5a has no major impact on mouse intestinal homeostasis postnatally. Protein expression of Wnt5a receptor Ror2 was strongly reduced in adult intestine compared to embryonic stages. Moreover, we uncovered a regulatory process where induction of Wnt5a causes downregulation of its receptor Ror2. Taken together, our results indicate a role for Wnt5a during a restricted time-frame of embryonic development, but suggest no impact during homeostatic postnatal stages.
Collapse
Affiliation(s)
- Elvira R M Bakker
- Departments of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, 's Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Pegoraro C, Monsoro-Burq AH. Signaling and transcriptional regulation in neural crest specification and migration: lessons from xenopus embryos. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:247-59. [PMID: 24009035 DOI: 10.1002/wdev.76] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The neural crest is a population of highly migratory and multipotent cells, which arises from the border of the neural plate in vertebrate embryos. In the last few years, the molecular actors of neural crest early development have been intensively studied, notably by using the frog embryo, as a prime model for the analysis of the earliest embryonic inductions. In addition, tremendous progress has been made in understanding the molecular and cellular basis of Xenopus cranial neural crest migration, by combining in vitro and in vivo analysis. In this review, we examine how the action of previously known neural crest-inducing signals [bone morphogenetic protein (BMP), wingless-int (Wnt), fibroblast growth factor (FGF)] is controlled by newly discovered modulators during early neural plate border patterning and neural crest specification. This regulation controls the induction of key transcription factors that cooperate to pattern the premigratory neural crest progenitors. These data are discussed in the perspective of the gene regulatory network that controls neural and neural crest patterning. We then address recent findings on noncanonical Wnt signaling regulation, cell polarization, and collective cell migration which highlight how cranial neural crest cells populate their target tissue, the branchial arches, in vivo. More than ever, the neural crest stands as a powerful and attractive model to decipher complex vertebrate regulatory circuits in vivo.
Collapse
Affiliation(s)
- Caterina Pegoraro
- Institut Curie, INSERM U1021, CNRS UMR 3347, F-91405 Orsay, France; Université Paris Sud-11, F-91405 Orsay, France
| | | |
Collapse
|
166
|
Schuijers J, Clevers H. Adult mammalian stem cells: the role of Wnt, Lgr5 and R-spondins. EMBO J 2012; 31:2685-96. [PMID: 22617424 DOI: 10.1038/emboj.2012.149] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 04/26/2012] [Indexed: 12/12/2022] Open
Abstract
After its discovery as oncogen and morphogen, studies on Wnt focused initially on its role in animal development. With the finding that the colorectal tumour suppressor gene APC is a negative regulator of the Wnt pathway in (colorectal) cancer, attention gradually shifted to the study of the role of Wnt signalling in the adult. The first indication that adult Wnt signalling controls stem cells came from a Tcf4 knockout experiment: mutant mice failed to build crypt stem cell compartments. This observation was followed by similar findings in multiple other tissues. Recent studies have indicated that Wnt agonists of the R-spondin family provide potent growth stimuli for crypts in vivo and in vitro. Independently, Lgr5 was found as an exquisite marker for these crypt stem cells. The story has come full circle with the finding that the stem cell marker Lgr5 constitutes the receptor for R-spondins and occurs in complex with Frizzled/Lrp.
Collapse
Affiliation(s)
- Jurian Schuijers
- Hubrecht Institute-KNAW, University Medical Centre Utrecht, The Netherlands
| | | |
Collapse
|
167
|
ZNRF3 promotes Wnt receptor turnover in an R-spondin-sensitive manner. Nature 2012; 485:195-200. [PMID: 22575959 DOI: 10.1038/nature11019] [Citation(s) in RCA: 718] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 03/06/2012] [Indexed: 12/11/2022]
Abstract
R-spondin proteins strongly potentiate Wnt signalling and function as stem-cell growth factors. Despite the biological and therapeutic significance, the molecular mechanism of R-spondin action remains unclear. Here we show that the cell-surface transmembrane E3 ubiquitin ligase zinc and ring finger 3 (ZNRF3) and its homologue ring finger 43 (RNF43) are negative feedback regulators of Wnt signalling. ZNRF3 is associated with the Wnt receptor complex, and inhibits Wnt signalling by promoting the turnover of frizzled and LRP6. Inhibition of ZNRF3 enhances Wnt/β-catenin signalling and disrupts Wnt/planar cell polarity signalling in vivo. Notably, R-spondin mimics ZNRF3 inhibition by increasing the membrane level of Wnt receptors. Mechanistically, R-spondin interacts with the extracellular domain of ZNRF3 and induces the association between ZNRF3 and LGR4, which results in membrane clearance of ZNRF3. These data suggest that R-spondin enhances Wnt signalling by inhibiting ZNRF3. Our study provides new mechanistic insights into the regulation of Wnt receptor turnover, and reveals ZNRF3 as a tractable target for therapeutic exploration.
Collapse
|
168
|
Jiang Y, He X, Howe PH. Disabled-2 (Dab2) inhibits Wnt/β-catenin signalling by binding LRP6 and promoting its internalization through clathrin. EMBO J 2012; 31:2336-49. [PMID: 22491013 PMCID: PMC3364753 DOI: 10.1038/emboj.2012.83] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 03/14/2012] [Indexed: 01/23/2023] Open
Abstract
Wnt signalling requires caveolin-dependent endocytic uptake of the Fz/LRP6 receptor complex. The tumour suppressor Disabled-2 inhibits Wnt signalling by sequestering CK2-phosphorylated LRP6 into an alternative clathrin-dependent endocytic pathway. Canonical Wnt signalling requires caveolin-dependent internalization of low-density lipoprotein receptor-related protein 6 (LRP6). Here we report that the tumour suppressor and endocytic adaptor disabled-2 (Dab2), previously described as an inhibitor of Wnt/β-catenin signalling, selectively recruits LRP6 to the clathrin-dependent endocytic route, thereby sequestering it from caveolin-mediated endocytosis. Wnt stimulation induces the casein kinase 2 (CK2)-dependent phosphorylation of LRP6 at S1579, promoting its binding to Dab2 and internalization with clathrin. LRP6 receptor mutant (S1579A), deficient in CK2-mediated phosphorylation and Dab2 binding, fails to associate with clathrin, and thus escapes the inhibitory effects of Dab2 on Wnt/β-catenin signalling. Our data suggest that the S1579 site of LRP6 is a negative regulatory point during LRP6-mediated dorsoventral patterning in zebrafish and in allograft mouse tumour models. We conclude that the tumour suppressor functions of Dab2 involve modulation of canonical Wnt signalling by regulating the endocytic fate of the LRP6 receptor.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
169
|
Klauzinska M, Baljinnyam B, Raafat A, Rodriguez-Canales J, Strizzi L, Greer YE, Rubin JS, Callahan R. Rspo2/Int7 regulates invasiveness and tumorigenic properties of mammary epithelial cells. J Cell Physiol 2012; 227:1960-71. [PMID: 21732367 DOI: 10.1002/jcp.22924] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rspo2 was identified as a novel common integration site (CIS) for the mouse mammary tumor virus (MMTV) in viral induced mouse mammary tumors. Here we show that Rspo2 modulates Wnt signaling in mouse mammary epithelial cells. Co-expression of both genes resulted in an intermediate growth phenotype on plastic and had minor effects on the growth-promoting properties of Wnt1 in soft agar. However, individual Rspo2 and Wnt1 HC11 transfectants as well as the double transfectant were tumorigenic in athymic nude mice, with tumors from each line having distinctive histological characteristics. Rspo2 and Rspo2/Wnt1 tumors contained many spindle cells, consistent with an epithelial-mesenchymal transformation (EMT) phenotype. When Rspo2 and Rspo2/Wnt1 tumor cells were transferred into naïve mice, they exhibited greater metastatic activity than cells derived from Wnt1 tumors. For comparison, C57MG/Wnt1/Rspo2 co-transfectants exhibited invasive properties in three-dimensional (3D) Matrigel cultures that were not seen with cells transfected only with Wnt1 or Rspo2. Use of Dickkopf-1, a specific antagonist of the Wnt/β-catenin pathway, or short hairpin RNA targeting β-catenin expression demonstrated that the invasive activity was not mediated by β-catenin. Our results indicate that Rspo2 and Wnt1 have mutually distinct effects on mammary epithelial cell growth and these effects are context-dependent. While Rspo2 and Wnt1 act synergistically in the β-catenin pathway, other mechanisms are responsible for the invasive properties of stable double transfectants observed in 3D Matrigel cultures.
Collapse
Affiliation(s)
- Malgorzata Klauzinska
- Oncogenetics Section, Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Kikuchi A, Yamamoto H, Sato A, Matsumoto S. New insights into the mechanism of Wnt signaling pathway activation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 291:21-71. [PMID: 22017973 DOI: 10.1016/b978-0-12-386035-4.00002-1] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wnts compromise a large family of secreted, hydrophobic glycoproteins that control a variety of developmental and adult processes in all metazoan organisms. Recent advances in the Wnt-signal studies have revealed that distinct Wnts activate multiple intracellular cascades that regulate cellular proliferation, differentiation, migration, and polarity. Although the mechanism by which Wnts regulate different pathways selectively remains to be clarified, evidence has accumulated that in addition to the formation of ligand-receptor pairs, phosphorylation of receptors, receptor-mediated endocytosis, acidification, and the presence of cofactors, such as heparan sulfate proteoglycans, are also involved in the activation of specific Wnt pathways. Here, we review the mechanism of activation in Wnt signaling initiated on the cell-surface membrane. In addition, the mechanisms for fine-tuning by cross talk between Wnt and other signaling are also discussed.
Collapse
Affiliation(s)
- Akira Kikuchi
- Department of Biochemistry, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | |
Collapse
|
171
|
Sakane H, Yamamoto H, Matsumoto S, Sato A, Kikuchi A. Localization of glypican-4 in different membrane microdomains is involved in the regulation of Wnt signaling. J Cell Sci 2012; 125:449-60. [PMID: 22302992 DOI: 10.1242/jcs.091876] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Glypicans are members of the heparan sulfate proteoglycans (HSPGs) and are involved in various growth factor signaling mechanisms. Although HSPGs affect the β-catenin-dependent and -independent pathways of Wnt signaling, how they regulate distinct Wnt pathways is not clear. It has been suggested that the β-catenin-dependent pathway is initiated through receptor endocytosis in lipid raft microdomains and the independent pathway is activated through receptor endocytosis in non-lipid raft microdomains. Here, evidence is presented that glypican-4 (GPC4) is localized to both membrane microdomains and that the localization affects its ability to regulate distinct Wnt pathways. GPC4 bound to Wnt3a and Wnt5a, which activate the β-catenin-dependent and -independent pathways, respectively, and colocalized with Wnts on the cell surface. LRP6, one of Wnt3a coreceptors, was present in lipid raft microdomains, whereas Ror2, one of Wnt5a coreceptors, was localized to non-lipid raft microdomains. Expression of GPC4 enhanced the Wnt3a-dependent β-catenin pathway and the Wnt5a-dependent β-catenin-independent pathway, and knockdown of GPC4 suppressed both pathways. A GPC4 mutant that was localized to only non-lipid raft microdomains inhibited the β-catenin-dependent pathway but enhanced the β-catenin-independent pathway. These results suggest that GPC4 concentrates Wnt3a and Wnt5a to the vicinity of their specific receptors in different membrane microdomains, thereby regulating distinct Wnt signaling.
Collapse
Affiliation(s)
- Hiroshi Sakane
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Faculty of Medicine, Osaka University, Suita 565-0871, Japan
| | | | | | | | | |
Collapse
|
172
|
Yoon JK, Lee JS. Cellular signaling and biological functions of R-spondins. Cell Signal 2012; 24:369-377. [PMID: 21982879 PMCID: PMC3237830 DOI: 10.1016/j.cellsig.2011.09.023] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/15/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
R-spondins (RSPOs) are a family of cysteine-rich secreted proteins containing a single thrombospondin type I repeat (TSR) domain. A vast amount of information regarding cellular signaling and biological functions of RSPOs has emerged over the last several years, especially with respect to their roles in the activation of the WNT signaling pathway. The identification of several classes of RSPO receptors may indicate that this family of proteins can affect several signaling cascades. Herein, we summarize the current understanding of RSPO signaling and its biological functions, and discuss its potential therapeutic implications to human diseases.
Collapse
Affiliation(s)
- Jeong Kyo Yoon
- Program in Stem Cell and Regenerative Medicine, Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA.
| | - Jin-Seon Lee
- Program in Stem Cell and Regenerative Medicine, Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| |
Collapse
|
173
|
Baljinnyam B, Klauzinska M, Saffo S, Callahan R, Rubin JS. Recombinant R-spondin2 and Wnt3a up- and down-regulate novel target genes in C57MG mouse mammary epithelial cells. PLoS One 2012; 7:e29455. [PMID: 22238613 PMCID: PMC3251591 DOI: 10.1371/journal.pone.0029455] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/29/2011] [Indexed: 01/05/2023] Open
Abstract
R-spondins (Rspos) comprise a family of four secreted proteins that have important roles in cell proliferation, cell fate determination and organogenesis. Rspos typically exert their effects by potentiating the Wnt/β-catenin signaling pathway. To systematically investigate the impact of Rspo/Wnt on gene expression, we performed a microarray analysis using C57MG mouse mammary epithelial cells treated with recombinant Rspo2 and/or Wnt3a. We observed the up- and down-regulation of several previously unidentified target genes, including ones that encode proteins involved in immune responses, effectors of other growth factor signaling pathways and transcription factors. Dozens of these changes were validated by quantitative real time RT-PCR. Time course experiments showed that Rspo2 typically had little or no effect on Wnt-dependent gene expression at 3 or 6 h, but enhanced expression at 24 h, consistent with biochemical data indicating that Rspo2 acts primarily to sustain rather than acutely increase Wnt pathway activation. Up-regulation of gene expression was inhibited by pre-treatment with Dickkopf1, a Wnt/β-catenin pathway antagonist, and by siRNA knockdown of β-catenin expression. While Dickkopf1 blocked Rspo2/Wnt3a-dependent down-regulation, a number of down-regulated genes were not affected by β-catenin knockdown, suggesting that in these instances down-regulation was mediated by a β-catenin-independent mechanism.
Collapse
Affiliation(s)
- Bolormaa Baljinnyam
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Malgorzata Klauzinska
- Oncogenetics Section, Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Saad Saffo
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Robert Callahan
- Oncogenetics Section, Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jeffrey S. Rubin
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
174
|
Abstract
Planar cell polarity is a fundamental concept to understanding the coordination of cell movements in the plane of a tissue. Since the planar cell polarity pathway was discovered in mesenchymal tissues involving cell interaction during vertebrate gastrulation, there is an emerging evidence that a variety of mesenchymal and epithelial cells utilize this genetic pathway to mediate the coordination of cells in directed movements. In this review, we focus on how the planar cell polarity pathway is mediated by migrating cells to communicate with one another in different developmental processes.
Collapse
|
175
|
Hanaki H, Yamamoto H, Sakane H, Matsumoto S, Ohdan H, Sato A, Kikuchi A. An anti-Wnt5a antibody suppresses metastasis of gastric cancer cells in vivo by inhibiting receptor-mediated endocytosis. Mol Cancer Ther 2011; 11:298-307. [PMID: 22101459 DOI: 10.1158/1535-7163.mct-11-0682] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wnt5a is a representative ligand that activates the β-catenin-independent pathway in Wnt signaling. It was reported that the expression of Wnt5a in human gastric cancer is associated with aggressiveness and poor prognosis and that knockdown of Wnt5a reduces the ability of gastric cancer cells to metastasize in nude mice. Therefore, Wnt5a and its signaling pathway might be important targets for the therapy of gastric cancer. The aim of this study was to examine whether an anti-Wnt5a antibody affects metastasis of gastric cancer cells. One anti-Wnt5a polyclonal antibody (pAb5a-5) inhibited migration and invasion activities in vitro of gastric cancer cells with a high expression level of Wnt5a. Previously, it was shown that Wnt5a induces the internalization of receptors, which is required for Wnt5a-dependent activation of Rac1. pAb5a-5 inhibited Wnt5a-dependent internalization of receptors, thereby suppressed Wnt5a-dependent activation of Rac1. Laminin γ2 is one of target genes of Wnt5a signaling and Rac1 was involved in its expression. pAb5a-5 also inhibited Wnt5a-dependent expression of laminin γ2. In an experimental liver metastasis assay, gastric cancer cells were introduced into the spleens of nude mice. Laminin γ2 was required for liver metastatic ability of gastric cancer cells in vivo. Furthermore, intraperitoneal injection of pAb5a-5 inhibited the metastatic ability of gastric cancer cells. These results suggest that an anti-Wnt5a antibody was capable of suppressing Wnt5a-dependent internalization of receptors, resulting in the prevention of metastasis of gastric cancer cells by inhibiting the activation of Rac1 and the expression of laminin γ2.
Collapse
Affiliation(s)
- Hideaki Hanaki
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
176
|
Gore AV, Swift MR, Cha YR, Lo B, McKinney MC, Li W, Castranova D, Davis A, Mukouyama YS, Weinstein BM. Rspo1/Wnt signaling promotes angiogenesis via Vegfc/Vegfr3. Development 2011; 138:4875-86. [PMID: 22007135 DOI: 10.1242/dev.068460] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Here, we show that a novel Rspo1-Wnt-Vegfc-Vegfr3 signaling pathway plays an essential role in developmental angiogenesis. A mutation in R-spondin1 (rspo1), a Wnt signaling regulator, was uncovered during a forward-genetic screen for angiogenesis-deficient mutants in the zebrafish. Embryos lacking rspo1 or the proposed rspo1 receptor kremen form primary vessels by vasculogenesis, but are defective in subsequent angiogenesis. Endothelial cell-autonomous inhibition of canonical Wnt signaling also blocks angiogenesis in vivo. The pro-angiogenic effects of Rspo1/Wnt signaling are mediated by Vegfc/Vegfr3(Flt4) signaling. Vegfc expression is dependent on Rspo1 and Wnt, and Vegfc and Vegfr3 are necessary to promote angiogenesis downstream from Rspo1-Wnt. As all of these molecules are expressed by the endothelium during sprouting stages, these results suggest that Rspo1-Wnt-VegfC-Vegfr3 signaling plays a crucial role as an endothelial-autonomous permissive cue for developmental angiogenesis.
Collapse
Affiliation(s)
- Aniket V Gore
- Program in Genomics of Differentiation, National Institute of Child Health and Human Development, National Institutes of Health, 6B/3B309, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Topczewski J, Dale RM, Sisson BE. Planar cell polarity signaling in craniofacial development. Organogenesis 2011; 7:255-9. [PMID: 22134372 DOI: 10.4161/org.7.4.18797] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Out of the several signaling pathways controlling craniofacial development, the role of planar cell polarity (PCP) signaling is relatively poorly understood. This pathway, originally identified as a mechanism to maintain cell polarity within the epithelial cells of the Drosophila wing, has been linked to the proper development of a wide variety of tissues in vertebrates and invertebrates. While many of the pathway members are conserved, it appears that some of the members of the pathway act in a tissue-specific manner. Here, we discuss the role of this pathway in vertebrate craniofacial development, highlighting cranial neural crest migration, skull and palate formation and the role of non-traditional modulators of PCP signaling within this developmental process.
Collapse
Affiliation(s)
- Jacek Topczewski
- Northwestern University, Feinberg School of Medicine, Department of Pediatrics, Children’s Memorial Research Center, Chicago, IL, USA.
| | | | | |
Collapse
|
178
|
Glinka A, Dolde C, Kirsch N, Huang YL, Kazanskaya O, Ingelfinger D, Boutros M, Cruciat CM, Niehrs C. LGR4 and LGR5 are R-spondin receptors mediating Wnt/β-catenin and Wnt/PCP signalling. EMBO Rep 2011; 12:1055-61. [PMID: 21909076 DOI: 10.1038/embor.2011.175] [Citation(s) in RCA: 452] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 12/27/2022] Open
Abstract
R-spondins are secreted Wnt signalling agonists, which regulate embryonic patterning and stem cell proliferation, but whose mechanism of action is poorly understood. Here we show that R-spondins bind to the orphan G-protein-coupled receptors LGR4 and LGR5 by their Furin domains. Gain- and loss-of-function experiments in mammalian cells and Xenopus embryos indicate that LGR4 and LGR5 promote R-spondin-mediated Wnt/β-catenin and Wnt/PCP signalling. R-spondin-triggered β-catenin signalling requires Clathrin, while Wnt3a-mediated β-catenin signalling requires Caveolin-mediated endocytosis, suggesting that internalization has a mechanistic role in R-spondin signalling.
Collapse
Affiliation(s)
- Andrei Glinka
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, DKFZ, Im Neuenheimer Feld 580, Heidelberg D-69120, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Lgr5 homologues associate with Wnt receptors and mediate R-spondin signalling. Nature 2011; 476:293-7. [PMID: 21727895 DOI: 10.1038/nature10337] [Citation(s) in RCA: 978] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 06/27/2011] [Indexed: 02/06/2023]
Abstract
The adult stem cell marker Lgr5 and its relative Lgr4 are often co-expressed in Wnt-driven proliferative compartments. We find that conditional deletion of both genes in the mouse gut impairs Wnt target gene expression and results in the rapid demise of intestinal crypts, thus phenocopying Wnt pathway inhibition. Mass spectrometry demonstrates that Lgr4 and Lgr5 associate with the Frizzled/Lrp Wnt receptor complex. Each of the four R-spondins, secreted Wnt pathway agonists, can bind to Lgr4, -5 and -6. In HEK293 cells, RSPO1 enhances canonical WNT signals initiated by WNT3A. Removal of LGR4 does not affect WNT3A signalling, but abrogates the RSPO1-mediated signal enhancement, a phenomenon rescued by re-expression of LGR4, -5 or -6. Genetic deletion of Lgr4/5 in mouse intestinal crypt cultures phenocopies withdrawal of Rspo1 and can be rescued by Wnt pathway activation. Lgr5 homologues are facultative Wnt receptor components that mediate Wnt signal enhancement by soluble R-spondin proteins. These results will guide future studies towards the application of R-spondins for regenerative purposes of tissues expressing Lgr5 homologues.
Collapse
|