151
|
Kim M, Kim M, Lee MS, Kim CH, Lim DS. The MST1/2-SAV1 complex of the Hippo pathway promotes ciliogenesis. Nat Commun 2014; 5:5370. [PMID: 25367221 DOI: 10.1038/ncomms6370] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 09/25/2014] [Indexed: 01/08/2023] Open
Abstract
Primary cilia are microtubule-based organelles that protrude from polarized epithelial cells. Although many structural and trafficking molecules that regulate ciliogenesis have been discovered, signalling proteins are not well defined. Here we show that the MST1/2-SAV1 complex, a core component of the Hippo pathway, promotes ciliogenesis. MST1 is activated during ciliogenesis and localizes to the basal body of cilia. Depletion of MST1/2 or SAV1 impairs ciliogenesis in cultured cells and induces ciliopathy phenotypes in zebrafish. MST1/2-SAV1 regulates ciliogenesis through two independent mechanisms: MST1/2 binds and phosphorylates Aurora kinase A (AURKA), leading to dissociation of the AURKA/HDAC6 cilia-disassembly complex; and MST1/2-SAV1 associates with the NPHP transition-zone complex, promoting ciliary localization of multiple ciliary cargoes. Our results suggest that components of the Hippo pathway contribute to establish a polarized cell structure in addition to regulating proliferation.
Collapse
Affiliation(s)
- Miju Kim
- Department of Biological Sciences, National Creative Research Initiatives Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Minchul Kim
- Department of Biological Sciences, National Creative Research Initiatives Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Mi-Sun Lee
- Department of Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Dae-Sik Lim
- Department of Biological Sciences, National Creative Research Initiatives Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| |
Collapse
|
152
|
Hu L, Huang H, Li J, Yin MX, Lu Y, Wu W, Zeng R, Jiang J, Zhao Y, Zhang L. Drosophila casein kinase 2 (CK2) promotes warts protein to suppress Yorkie protein activity for growth control. J Biol Chem 2014; 289:33598-607. [PMID: 25320084 DOI: 10.1074/jbc.m114.580456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Drosophila Hippo signaling regulates Wts activity to phosphorylate and inhibit Yki in order to control tissue growth. CK2 is widely expressed and involved in a variety of signaling pathways. In this study we report that Drosophila CK2 promotes Wts activity to phosphorylate and inhibit Yki activity, which is independent of Hpo-induced Wts promotion. In vivo, CK2 overexpression suppresses hpo mutant-induced expanded (Ex) up-regulation and overgrowth phenotype, whereas it cannot affect wts mutant. Consistent with this, knockdown of CK2 up-regulates Hpo pathway target expression. We also found that Drosophila CK2 is essential for tissue growth as a cell death inhibitor as knockdown of CK2 in the developing disc induces severe growth defects as well as caspase3 signals. Taken together, our results uncover a dual role of CK2; although its major role is promoting cell survive, it may potentially be a growth inhibitor as well.
Collapse
Affiliation(s)
- Lianxin Hu
- From the State Key Laboratory of Cell Biology and
| | | | - Jinhui Li
- From the State Key Laboratory of Cell Biology and
| | - Meng-Xin Yin
- From the State Key Laboratory of Cell Biology and
| | - Yi Lu
- From the State Key Laboratory of Cell Biology and
| | - Wenqing Wu
- From the State Key Laboratory of Cell Biology and
| | - Rong Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Yue-Yang Road, Shanghai 200031, China and
| | - Jin Jiang
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390
| | - Yun Zhao
- From the State Key Laboratory of Cell Biology and
| | - Lei Zhang
- From the State Key Laboratory of Cell Biology and
| |
Collapse
|
153
|
Chen Y, Wang Z, Wang P, Li D, Zhou J, Wu S. CYLD negatively regulates Hippo signaling by limiting Hpo phosphorylation in Drosophila. Biochem Biophys Res Commun 2014; 452:808-12. [PMID: 25201729 DOI: 10.1016/j.bbrc.2014.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
Abstract
Cylindromatosis (CYLD), a deubiquitinase and regulator of microtubule dynamics, has important roles in the regulation of inflammation, immune response, apoptosis, mitosis, cell migration and tumorigenesis. Although great progress has been made in the biochemical and cellular functions of CYLD, its role in animal development remains elusive. In this study, we identified Drosophila CYLD (dCYLD) as a negative regulator of the Hippo pathway in vivo. dCYLD associates and colocalizes with Hpo, a core component of the Hippo pathway, in the cytoplasm, and decreases Hpo activity through limiting its phosphorylation at T195. We also showed that dCYLD limits Hippo signal transduction as evidenced by decreasing phosphorylation and thereby increasing activity of Yki, the key downstream effector of the Hippo pathway. These findings uncover dCYLD as a negative regulator of the Hippo pathway and provide new insights into the physiological function of dCYLD in animal development.
Collapse
Affiliation(s)
- Yan Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Zaizhu Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Ping Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| | - Shian Wu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
154
|
Chin HMS, Nandra K, Clark J, Draviam VM. Need for multi-scale systems to identify spindle orientation regulators relevant to tissue disorganization in solid cancers. Front Physiol 2014; 5:278. [PMID: 25120491 PMCID: PMC4110440 DOI: 10.3389/fphys.2014.00278] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/08/2014] [Indexed: 12/13/2022] Open
Affiliation(s)
| | | | | | - Viji M. Draviam
- Department of Genetics, Cancer Cell Biology, University of CambridgeCambridge, UK
| |
Collapse
|
155
|
Huang X, Shi L, Cao J, He F, Li R, Zhang Y, Miao S, Jin L, Qu J, Li Z, Lin X. The sterile 20-like kinase tao controls tissue homeostasis by regulating the hippo pathway in Drosophila adult midgut. J Genet Genomics 2014; 41:429-38. [PMID: 25160975 DOI: 10.1016/j.jgg.2014.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 04/30/2014] [Accepted: 05/17/2014] [Indexed: 12/27/2022]
Abstract
The proliferation and differentiation of adult stem cells must be tightly controlled in order to maintain resident tissue homeostasis. Dysfunction of stem cells is implicated in many human diseases, including cancer. However, the regulation of stem cell proliferation and differentiation is not fully understood. Here we show that the sterile-like 20 kinase, Tao, controls tissue homeostasis by regulating the Hippo pathway in the Drosophila adult midgut. Depletion of Tao in the progenitors leads to rapid intestinal stem cell (ISC) proliferation and midgut homeostasis loss. Meanwhile, we find that the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling activity and cytokine production are significantly increased, resulting in stimulated ISC proliferation. Furthermore, expression of the Hippo pathway downstream targets, Diap1 and bantam, is dramatically increased in Tao knockdown intestines. Consistently, we show that the Yorkie (Yki) acts downstream of Tao to regulate ISC proliferation. Together, our results provide insights into our understanding of the mechanisms of stem cell proliferation and tissue homeostasis control.
Collapse
Affiliation(s)
- Xudong Huang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Lai Shi
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Cao
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Fangfei He
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Renling Li
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Yan Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang Miao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Longjin Jin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou 325000, China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Zhouhua Li
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Capital Normal University, Beijing 100048, China.
| | - Xinhua Lin
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou 325000, China; State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati 45229, USA.
| |
Collapse
|
156
|
Shrestha RL, Tamura N, Fries A, Levin N, Clark J, Draviam VM. TAO1 kinase maintains chromosomal stability by facilitating proper congression of chromosomes. Open Biol 2014; 4:130108. [PMID: 24898139 PMCID: PMC4077056 DOI: 10.1098/rsob.130108] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 05/09/2014] [Indexed: 12/19/2022] Open
Abstract
Chromosomal instability can arise from defects in chromosome-microtubule attachment. Using a variety of drug treatments, we show that TAO1 kinase is required for ensuring the normal congression of chromosomes. Depletion of TAO1 reduces the density of growing interphase and mitotic microtubules in human cells, showing TAO1's role in controlling microtubule dynamics. We demonstrate the aneugenic nature of chromosome-microtubule attachment defects in TAO1-depleted cells using an error-correction assay. Our model further strengthens the emerging paradigm that microtubule regulatory pathways are important for resolving erroneous kinetochore-microtubule attachments and maintaining the integrity of the genome, regardless of the spindle checkpoint status.
Collapse
Affiliation(s)
- Roshan L Shrestha
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Naoka Tamura
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Anna Fries
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Nicolas Levin
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Joanna Clark
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Viji M Draviam
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| |
Collapse
|
157
|
Abstract
The Hippo signaling pathway, consisting of a highly conserved kinase cascade (MST and Lats) and downstream transcription coactivators (YAP and TAZ), plays a key role in tissue homeostasis and organ size control by regulating tissue-specific stem cells. Moreover, this pathway plays a prominent role in tissue repair and regeneration. Dysregulation of the Hippo pathway is associated with cancer development. Recent studies have revealed a complex network of upstream inputs, including cell density, mechanical sensation, and G-protein-coupled receptor (GPCR) signaling, that modulate Hippo pathway activity. This review focuses on the role of the Hippo pathway in stem cell biology and its potential implications in tissue homeostasis and cancer.
Collapse
Affiliation(s)
- Jung-Soon Mo
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Hyun Woo Park
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego La Jolla, CA, USA
| |
Collapse
|
158
|
Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment. Nat Rev Drug Discov 2013; 13:63-79. [PMID: 24336504 DOI: 10.1038/nrd4161] [Citation(s) in RCA: 730] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Hippo signalling pathway is an emerging growth control and tumour suppressor pathway that regulates cell proliferation and stem cell functions. Defects in Hippo signalling and hyperactivation of its downstream effectors Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) contribute to the development of cancer, which suggests that pharmacological inhibition of YAP and TAZ activity may be an effective anticancer strategy. Conversely, YAP and TAZ can also have beneficial roles in stimulating tissue repair and regeneration following injury, so their activation may be therapeutically useful in these contexts. A complex network of intracellular and extracellular signalling pathways that modulate YAP and TAZ activities have recently been identified. Here, we review the regulation of the Hippo signalling pathway, its functions in normal homeostasis and disease, and recent progress in the identification of small-molecule pathway modulators.
Collapse
Affiliation(s)
- Randy Johnson
- 1] Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. [2] Genes and Development Program, and Cancer Biology Program, Graduate School for Biological Sciences, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. [3] Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Georg Halder
- VIB Center for the Biology of Disease, KU Leuven Center for Human Genetics, University of Leuven 3000, Belgium
| |
Collapse
|
159
|
Wang W, Li X, Huang J, Feng L, Dolinta KG, Chen J. Defining the protein-protein interaction network of the human hippo pathway. Mol Cell Proteomics 2013; 13:119-31. [PMID: 24126142 DOI: 10.1074/mcp.m113.030049] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Hippo pathway, which is conserved from Drosophila to mammals, has been recognized as a tumor suppressor signaling pathway governing cell proliferation and apoptosis, two key events involved in organ size control and tumorigenesis. Although several upstream regulators, the conserved kinase cascade and key downstream effectors including nuclear transcriptional factors have been defined, the global organization of this signaling pathway is not been fully understood. Thus, we conducted a proteomic analysis of human Hippo pathway, which revealed the involvement of an extensive protein-protein interaction network in this pathway. The mass spectrometry data were deposited to ProteomeXchange with identifier PXD000415. Our data suggest that 550 interactions within 343 unique protein components constitute the central protein-protein interaction landscape of human Hippo pathway. Our study provides a glimpse into the global organization of Hippo pathway, reveals previously unknown interactions within this pathway, and uncovers new potential components involved in the regulation of this pathway. Understanding these interactions will help us further dissect the Hippo signaling-pathway and extend our knowledge of organ size control.
Collapse
Affiliation(s)
- Wenqi Wang
- Department of Experimental Radiation Oncology, Unit 66, The University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030
| | | | | | | | | | | |
Collapse
|
160
|
Abstract
The Hippo pathway is a kinase cascade, formed by Hippo, Salvador, Warts, and Mats, that regulates the subcellular distribution and transcriptional activity of Yorkie. Yorkie is a transcriptional coactivator that promotes the expression of genes that inhibit apoptosis and drive cell proliferation. We review recent studies indicating that activity of the Hippo pathway is controlled by cell-cell junctions, cell adhesion molecules, scaffolding proteins, and cytoskeletal proteins, as well as by regulators of apical-basal polarity and extracellular tension.
Collapse
Affiliation(s)
- Leonie Enderle
- 1Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | |
Collapse
|
161
|
Voolstra O, Bartels JP, Oberegelsbacher C, Pfannstiel J, Huber A. Phosphorylation of the Drosophila transient receptor potential ion channel is regulated by the phototransduction cascade and involves several protein kinases and phosphatases. PLoS One 2013; 8:e73787. [PMID: 24040070 PMCID: PMC3767779 DOI: 10.1371/journal.pone.0073787] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/29/2013] [Indexed: 12/02/2022] Open
Abstract
Protein phosphorylation plays a cardinal role in regulating cellular processes in eukaryotes. Phosphorylation of proteins is controlled by protein kinases and phosphatases. We previously reported the light-dependent phosphorylation of the Drosophila transient receptor potential (TRP) ion channel at multiple sites. TRP generates the receptor potential upon stimulation of the photoreceptor cell by light. An eye-enriched protein kinase C (eye-PKC) has been implicated in the phosphorylation of TRP by in vitro studies. Other kinases and phosphatases of TRP are elusive. Using phosphospecific antibodies and mass spectrometry, we here show that phosphorylation of most TRP sites depends on the phototransduction cascade and the activity of the TRP ion channel. A candidate screen to identify kinases and phosphatases provided in vivo evidence for an involvement of eye-PKC as well as other kinases and phosphatases in TRP phosphorylation.
Collapse
Affiliation(s)
- Olaf Voolstra
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
| | - Jonas-Peter Bartels
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
| | - Claudia Oberegelsbacher
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
| | - Jens Pfannstiel
- The Life Science Center, Universität Hohenheim, Stuttgart, Germany
| | - Armin Huber
- Department of Biosensorics, Institute of Physiology, Universität Hohenheim, Stuttgart, Germany
- The Life Science Center, Universität Hohenheim, Stuttgart, Germany
| |
Collapse
|
162
|
Hergovich A. Regulation and functions of mammalian LATS/NDR kinases: looking beyond canonical Hippo signalling. Cell Biosci 2013; 3:32. [PMID: 23985307 PMCID: PMC3849777 DOI: 10.1186/2045-3701-3-32] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 06/30/2013] [Indexed: 02/08/2023] Open
Abstract
The metazoan Hippo pathway is an essential tumour suppressor signalling cascade that ensures normal tissue growth by co-ordinating cell proliferation, cell death and cell differentiation. Over the past years, various genetic and biochemical studies in Drosophila and mammals have defined a conserved core Hippo signalling module, composed of members of the Ste20-like kinase, the MOB co-activator and the AGC kinase families. In Drosophila, stimulated Hippo kinase phosphorylates and thereby activates the Mats/Warts complex, which consequently phosphorylates and inactivates the transcriptional co-activator Yorkie. In mammals, the counterparts of the Hippo/Mats/Warts/Yorkie cascade, namely MST1/2, MOB1A/B, LATS1/2 and YAP/TAZ, function in a similar fashion. These canonical Hippo pathways are so highly conserved that human MST2, hMOB1A and LATS1 can compensate for the loss of Hippo, Mats and Warts in flies. However, recent reports have shown that Hippo signalling is more diverse and complex, in particular in mammals. In this review, we summarize our current understanding of mammalian LATS1/2 kinases together with their closest relatives, the NDR1/2 kinases. The regulation of the LATS/NDR family of kinases will be discussed, followed by a summary of all currently known LATS/NDR substrates. Last, but not least, the biological roles of LATS/NDR kinases will be reviewed with specific emphasis on recent discoveries of canonical and non-canonical LATS/NDR functions in the extended Hippo pathway.
Collapse
Affiliation(s)
- Alexander Hergovich
- Tumour Suppressor Signalling Networks laboratory, UCL Cancer Institute, University College London, London WC1E 6BT, UK.
| |
Collapse
|
163
|
Riquiqui and minibrain are regulators of the hippo pathway downstream of Dachsous. Nat Cell Biol 2013; 15:1176-85. [PMID: 23955303 DOI: 10.1038/ncb2829] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 07/17/2013] [Indexed: 12/12/2022]
Abstract
The atypical cadherins Fat (Ft) and Dachsous (Ds) control tissue growth through the Salvador-Warts-Hippo (SWH) pathway, and also regulate planar cell polarity and morphogenesis. Ft and Ds engage in reciprocal signalling as both proteins can serve as receptor and ligand for each other. The intracellular domains (ICDs) of Ft and Ds regulate the activity of the key SWH pathway transcriptional co-activator protein Yorkie (Yki). Signalling from the FtICD is well characterized and controls tissue growth by regulating the abundance of the Yki-repressive kinase Warts (Wts). Here we identify two regulators of the Drosophila melanogaster SWH pathway that function downstream of the DsICD: the WD40 repeat protein Riquiqui (Riq) and the DYRK-family kinase Minibrain (Mnb). Ds physically interacts with Riq, which binds to both Mnb and Wts. Riq and Mnb promote Yki-dependent tissue growth by stimulating phosphorylation-dependent inhibition of Wts. Thus, we describe a previously unknown branch of the SWH pathway that controls tissue growth downstream of Ds.
Collapse
|
164
|
Par-1 regulates tissue growth by influencing hippo phosphorylation status and hippo-salvador association. PLoS Biol 2013; 11:e1001620. [PMID: 23940457 PMCID: PMC3735459 DOI: 10.1371/journal.pbio.1001620] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/19/2013] [Indexed: 01/07/2023] Open
Abstract
The evolutionarily conserved Hippo (Hpo) signaling pathway plays a pivotal role in organ size control by balancing cell proliferation and cell death. Here, we reported the identification of Par-1 as a regulator of the Hpo signaling pathway using a gain-of-function EP screen in Drosophila melanogaster. Overexpression of Par-1 elevated Yorkie activity, resulting in increased Hpo target gene expression and tissue overgrowth, while loss of Par-1 diminished Hpo target gene expression and reduced organ size. We demonstrated that par-1 functioned downstream of fat and expanded and upstream of hpo and salvador (sav). In addition, we also found that Par-1 physically interacted with Hpo and Sav and regulated the phosphorylation of Hpo at Ser30 to restrict its activity. Par-1 also inhibited the association of Hpo and Sav, resulting in Sav dephosphorylation and destabilization. Furthermore, we provided evidence that Par-1-induced Hpo regulation is conserved in mammalian cells. Taken together, our findings identified Par-1 as a novel component of the Hpo signaling network.
Collapse
|
165
|
Wu H, Xiao Y, Zhang S, Ji S, Wei L, Fan F, Geng J, Tian J, Sun X, Qin F, Jin C, Lin J, Yin ZY, Zhang T, Luo L, Li Y, Song S, Lin SC, Deng X, Camargo F, Avruch J, Chen L, Zhou D. The Ets transcription factor GABP is a component of the hippo pathway essential for growth and antioxidant defense. Cell Rep 2013; 3:1663-77. [PMID: 23684612 DOI: 10.1016/j.celrep.2013.04.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Revised: 02/15/2013] [Accepted: 04/22/2013] [Indexed: 12/21/2022] Open
Abstract
The transcriptional coactivator Yes-associated protein (YAP) plays an important role in organ-size control and tumorigenesis. However, how Yap gene expression is regulated remains unknown. This study shows that the Ets family member GABP binds to the Yap promoter and activates YAP transcription. The depletion of GABP downregulates YAP, resulting in a G1/S cell-cycle block and increased cell death, both of which are substantially rescued by reconstituting YAP. GABP can be inactivated by oxidative mechanisms, and acetaminophen-induced glutathione depletion inhibits GABP transcriptional activity and depletes YAP. In contrast, activating YAP by deleting Mst1/Mst2 strongly protects against acetaminophen-induced liver injury. Similar to its effects on YAP, Hippo signaling inhibits GABP transcriptional activity through several mechanisms. In human liver cancers, enhanced YAP expression is correlated with increased nuclear expression of GABP. Therefore, we conclude that GABP is an activator of Yap gene expression and a potential therapeutic target for cancers driven by YAP.
Collapse
Affiliation(s)
- Hongtan Wu
- State Key Laboratory of Stress Cell Biology, School of Life Sciences, Xiamen University, Xiang'an District, Xiamen, Fujian 361102, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Gonzalez C. Drosophila melanogaster: a model and a tool to investigate malignancy and identify new therapeutics. Nat Rev Cancer 2013; 13:172-83. [PMID: 23388617 DOI: 10.1038/nrc3461] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
For decades, lower-model organisms such as Drosophila melanogaster have often provided the first glimpse into the mechanism of action of human cancer-related proteins, thus making a substantial contribution to elucidating the molecular basis of the disease. More recently, D. melanogaster strains that are engineered to recapitulate key aspects of specific types of human cancer have been paving the way for the future role of this 'workhorse' of biomedical research, helping to further investigate the process of malignancy, and serving as platforms for therapeutic drug discovery.
Collapse
Affiliation(s)
- Cayetano Gonzalez
- IRB-Barcelona, c/Baldiri Reixac 10-12, Barcelona, Spain. gonzalez@ irbbarcelona.org
| |
Collapse
|
167
|
Regué L, Mou F, Avruch J. G protein-coupled receptors engage the mammalian Hippo pathway through F-actin: F-Actin, assembled in response to Galpha12/13 induced RhoA-GTP, promotes dephosphorylation and activation of the YAP oncogene. Bioessays 2013; 35:430-5. [PMID: 23450633 DOI: 10.1002/bies.201200163] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Hippo pathway, a cascade of protein kinases that inhibits the oncogenic transcriptional coactivators YAP and TAZ, was discovered in Drosophila as a major determinant of organ size in development. Known modes of regulation involve surface proteins that mediate cell-cell contact or determine epithelial cell polarity which, in a tissue-specific manner, use intracellular complexes containing FERM domain and actin-binding proteins to modulate the kinase activities or directly sequester YAP. Unexpectedly, recent work demonstrates that GPCRs, especially those signaling through Galpha12/13 such as the protease activated receptor PAR1, cause potent YAP dephosphorylation and activation. This response requires active RhoA GTPase and increased assembly of filamentous (F-)actin. Morever, cell architectures that promote F-actin assembly per se also activate YAP by kinase-dependent and independent mechanisms. These findings unveil the ability of GPCRs to activate the YAP oncogene through a newly recognized signaling function of the actin cytoskeleton, likely to be especially important for normal and cancerous stem cells.
Collapse
Affiliation(s)
- Laura Regué
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | | | | |
Collapse
|
168
|
Gomez JM, Wang Y, Riechmann V. Tao controls epithelial morphogenesis by promoting Fasciclin 2 endocytosis. ACTA ACUST UNITED AC 2013; 199:1131-43. [PMID: 23266957 PMCID: PMC3529531 DOI: 10.1083/jcb.201207150] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tao initiates morphogenesis of a squamous epithelium by promoting the endocytosis of the adhesion molecule Fasciclin 2 from the lateral membrane. Regulation of epithelial cell shape, for example, changes in relative sizes of apical, basal, and lateral membranes, is a key mechanism driving morphogenesis. However, it is unclear how epithelial cells control the size of their membranes. In the epithelium of the Drosophila melanogaster ovary, cuboidal precursor cells transform into a squamous epithelium through a process that involves lateral membrane shortening coupled to apical membrane extension. In this paper, we report a mutation in the gene Tao, which resulted in the loss of this cuboidal to squamous transition. We show that the inability of Tao mutant cells to shorten their membranes was caused by the accumulation of the cell adhesion molecule Fasciclin 2, the Drosophila N-CAM (neural cell adhesion molecule) homologue. Fasciclin 2 accumulation at the lateral membrane of Tao mutant cells prevented membrane shrinking and thereby inhibited morphogenesis. In wild-type cells, Tao initiated morphogenesis by promoting Fasciclin 2 endocytosis at the lateral membrane. Thus, we identify here a mechanism controlling the morphogenesis of a squamous epithelium.
Collapse
Affiliation(s)
- Juan Manuel Gomez
- Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, D-68167 Mannheim, Germany
| | | | | |
Collapse
|
169
|
Abstract
During oogenesis in Drosophila melanogaster, the cells in the follicular epithelium of the ovary undergo a transition from a cuboidal to a squamous shape. In this issue, Gomez et al. (2012. J. Cell Biol.http://dx.doi.org/10.1083/jcb.201207150) show that the kinase Tao promotes the endocytosis of the cell adhesion molecule Fasciclin 2 from the lateral surface of the cell and is critical for the cuboidal to squamous cell shape transition. Their results indicate that Tao is rising as a regulator of cell height.
Collapse
Affiliation(s)
- Liang Cai
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai 200433, China
| | | |
Collapse
|
170
|
Abstract
Control of cell number is crucial in animal development and tissue homeostasis, and its dysregulation may result in tumor formation or organ degeneration. The Hippo pathway in both Drosophila and mammals regulates cell number by modulating cell proliferation, cell death, and cell differentiation. Recently, numerous upstream components involved in the Hippo pathway have been identified, such as cell polarity, mechanotransduction, and G-protein-coupled receptor (GPCR) signaling. Actin cytoskeleton or cellular tension appears to be the master mediator that integrates and transmits upstream signals to the core Hippo signaling cascade. Here, we review regulatory mechanisms of the Hippo pathway and discuss potential implications involved in different physiological and pathological conditions.
Collapse
Affiliation(s)
- Fa-Xing Yu
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology, Moores Cancer Center, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
171
|
Deng Y, Matsui Y, Zhang Y, Lai ZC. Hippo activation through homodimerization and membrane association for growth inhibition and organ size control. Dev Biol 2013; 375:152-9. [PMID: 23298890 DOI: 10.1016/j.ydbio.2012.12.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 12/28/2012] [Accepted: 12/31/2012] [Indexed: 11/28/2022]
Abstract
Hippo (Hpo) signaling plays a critical role in restricting tissue growth and organ size in both invertebrate and vertebrate animals. However, how the Hpo kinase is regulated during development has not been clearly understood. Using a Bimolecular Fluorescence Complementation assay, we have investigated the functional significance of Hpo homo-dimer formation and subcellular localization in living cells. We found that Hpo dimerization and membrane association are critical for its activation in growth inhibition. As dimerization facilitates Hpo to access its binding partner, Hpo kinases in the homo-dimer trans-phosphorylate each other to increase their enzymatic activity. Moreover, loss- and gain-of-function studies indicate that upstream regulators, Expanded, Merlin and Kibra, play a critical role in promoting Hpo dimerization as well as association to the cortical F-actin beneath the plasma membrane. Enforced Hpo localization to the plasma membrane increases Hpo dimerization and activity. Therefore, homo-dimerization and plasma membrane association are two important mechanisms for Hpo activation in growth control during animal development.
Collapse
Affiliation(s)
- Yaoting Deng
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
172
|
Wehr MC, Holder MV, Gailite I, Saunders RE, Maile TM, Ciirdaeva E, Instrell R, Jiang M, Howell M, Rossner MJ, Tapon N. Salt-inducible kinases regulate growth through the Hippo signalling pathway in Drosophila. Nat Cell Biol 2013; 15:61-71. [PMID: 23263283 PMCID: PMC3749438 DOI: 10.1038/ncb2658] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 11/21/2012] [Indexed: 12/11/2022]
Abstract
The specification of tissue size during development involves the coordinated action of many signalling pathways responding to organ-intrinsic signals, such as morphogen gradients, and systemic cues, such as nutrient status. The conserved Hippo (Hpo) pathway, which promotes both cell-cycle exit and apoptosis, is a major determinant of size control. The pathway core is a kinase cassette, comprising the kinases Hpo and Warts (Wts) and the scaffold proteins Salvador (Sav) and Mats, which inactivates the pro-growth transcriptional co-activator Yorkie (Yki). We performed a split-TEV-based genome-wide RNAi screen for modulators of Hpo signalling. We characterize the Drosophila salt-inducible kinases (Sik2 and Sik3) as negative regulators of Hpo signalling. Activated Sik kinases increase Yki target expression and promote tissue overgrowth through phosphorylation of Sav at Ser 413. As Sik kinases have been implicated in nutrient sensing, this suggests a link between the Hpo pathway and systemic growth control.
Collapse
Affiliation(s)
- Michael C. Wehr
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, United Kingdom
- Research Group Gene Expression, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, D-37075 Göttingen, Germany
| | - Maxine V. Holder
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, United Kingdom
| | - Ieva Gailite
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, United Kingdom
| | - Rebecca E. Saunders
- High-throughput Screening Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, United Kingdom
| | - Tobias M. Maile
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, United Kingdom
| | - Elena Ciirdaeva
- Research Group Gene Expression, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, D-37075 Göttingen, Germany
| | - Rachael Instrell
- High-throughput Screening Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, United Kingdom
| | - Ming Jiang
- High-throughput Screening Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, United Kingdom
| | - Michael Howell
- High-throughput Screening Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, United Kingdom
| | - Moritz J. Rossner
- Research Group Gene Expression, Max Planck Institute of Experimental Medicine, Hermann-Rein-Str. 3, D-37075 Göttingen, Germany
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London, WC2A 3LY, United Kingdom
| |
Collapse
|
173
|
Protein kinases of the Hippo pathway: regulation and substrates. Semin Cell Dev Biol 2012; 23:770-84. [PMID: 22898666 DOI: 10.1016/j.semcdb.2012.07.002] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/31/2012] [Indexed: 01/30/2023]
Abstract
The "Hippo" signaling pathway has emerged as a major regulator of cell proliferation and survival in metazoans. The pathway, as delineated by genetic and biochemical studies in Drosophila, consists of a kinase cascade regulated by cell-cell contact and cell polarity that inhibits the transcriptional coactivator Yorkie and its proliferative, anti-differentiation, antiapoptotic transcriptional program. The core pathway components are the GC kinase Hippo, which phosphorylates the noncatalytic polypeptide Mats/Mob1 and, with the assistance of the scaffold protein Salvador, phosphorylates the ndr-family kinase Lats. In turn phospho-Lats, after binding to phospho-Mats, autoactivates and phosphorylates Yorkie, resulting in its nuclear exit. Hippo also uses the scaffold protein Furry and a different Mob protein to control another ndr-like kinase, the morphogenetic regulator Tricornered. Architecturally homologous kinase cascades consisting of a GC kinase, a Mob protein, a scaffolding polypeptide and an ndr-like kinase are well described in yeast; in Saccharomyces cerevisiae, e.g., the MEN pathway promotes mitotic exit whereas the RAM network, using a different GC kinase, Mob protein, scaffold and ndr-like kinase, regulates cell polarity and morphogenesis. In mammals, the Hippo orthologs Mst1 and Mst2 utilize the Salvador ortholog WW45/Sav1 and other scaffolds to regulate the kinases Lats1/Lats2 and ndr1/ndr2. As in Drosophila, murine Mst1/Mst2, in a redundant manner, negatively regulate the Yorkie ortholog YAP in the epithelial cells of the liver and gut; loss of both Mst1 and Mst2 results in hyperproliferation and tumorigenesis that can be largely negated by reduction or elimination of YAP. Despite this conservation, considerable diversification in pathway composition and regulation is already evident; in skin, e.g., YAP phosphorylation is independent of Mst1Mst2 and Lats1Lats2. Moreover, in lymphoid cells, Mst1/Mst2, under the control of the Rap1 GTPase and independent of YAP, promotes integrin clustering, actin remodeling and motility while restraining the proliferation of naïve T cells. This review will summarize current knowledge of the structure and regulation of the kinases Hippo/Mst1&2, their noncatalytic binding partners, Salvador and the Rassf polypeptides, and their major substrates Warts/Lats1&2, Trc/ndr1&2, Mats/Mob1 and FOXO.
Collapse
|
174
|
Hippo signaling in mammalian stem cells. Semin Cell Dev Biol 2012; 23:818-26. [PMID: 23034192 DOI: 10.1016/j.semcdb.2012.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/24/2012] [Accepted: 08/02/2012] [Indexed: 11/23/2022]
Abstract
Over the past decade, the Hippo signaling cascade has been linked to organ size regulation in mammals. Indeed, modulation of the Hippo pathway can have potent effects on cellular proliferation and/or apoptosis and a deregulation of the pathway often leads to tumor development. Importantly, emerging evidence indicates that the Hippo pathway can modulate its effects on tissue size by the regulation of stem and progenitor cell activity. This role has recently been associated with the central position of the pathway in sensing spatiotemporal or mechanical cues, and translating them into specific cellular outputs. These results provide an attractive model for how the Hippo cascade might sense and transduce cellular 'neighborhood' cues into activation of tissue-specific stem or progenitors cells. A further understanding of this process could allow the development of new therapies for various degenerative diseases and cancers. Here, we review current and emerging data linking Hippo signaling to progenitor cell function.
Collapse
|
175
|
Tepass U. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol 2012; 28:655-85. [PMID: 22881460 DOI: 10.1146/annurev-cellbio-092910-154033] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial tissue formation and function requires the apical-basal polarization of individual epithelial cells. Apical polarity regulators (APRs) are an evolutionarily conserved group of key factors that govern polarity and several other aspects of epithelial differentiation. APRs compose a diverse set of molecules including a transmembrane protein (Crumbs), a serine/threonine kinase (aPKC), a lipid phosphatase (PTEN), a small GTPase (Cdc42), FERM domain proteins (Moesin, Yurt), and several adaptor or scaffolding proteins (Bazooka/Par3, Par6, Stardust, Patj). These proteins form a dynamic cooperative network that is engaged in negative-feedback regulation with basolateral polarity factors to set up the epithelial apical-basal axis. APRs support the formation of the apical junctional complex and the segregation of the junctional domain from the apical membrane. It is becoming increasingly clear that APRs interact with the cytoskeleton and vesicle trafficking machinery, regulate morphogenesis, and modulate epithelial cell growth and survival. Not surprisingly, APRs have multiple fundamental links to human diseases such as cancer and blindness.
Collapse
Affiliation(s)
- Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
176
|
Affiliation(s)
- Kieran F Harvey
- Peter MacCallum Cancer Centre, East Melbourne 3002, Australia
| | | |
Collapse
|
177
|
Homeodomain-interacting protein kinase regulates Hippo pathway-dependent tissue growth. Curr Biol 2012; 22:1587-94. [PMID: 22840515 DOI: 10.1016/j.cub.2012.06.075] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 06/12/2012] [Accepted: 06/27/2012] [Indexed: 12/31/2022]
Abstract
The Salvador-Warts-Hippo (SWH) pathway is an evolutionarily conserved regulator of tissue growth that is deregulated in human cancer. Upstream SWH pathway components convey signals from neighboring cells via a core kinase cassette to the transcription coactivator Yorkie (Yki). Yki controls tissue growth by modulating activity of transcription factors including Scalloped (Sd). To date, five SWH pathway kinases have been identified, but large-scale phosphoproteome studies suggest that unidentified SWH pathway kinases exist. To identify such kinases, we performed an RNA interference screen and isolated homeodomain-interacting protein kinase (Hipk). Unlike previously identified SWH pathway kinases, Hipk is unique in its ability to promote, rather than repress, Yki activity and does so in parallel to the Yki-repressive kinase, Warts (Wts). Hipk is required for basal Yki activity and is likely to regulate Yki function by promoting its accumulation in the nucleus. Like many SWH pathway proteins, Hipk's function is evolutionarily conserved as its closest human homolog, HIPK2, promotes activity of the Yki ortholog YAP in a kinase-dependent fashion. Further, HIPK2 promotes YAP abundance, suggesting that the mechanism by which HIPK2 regulates YAP has diverged in mammals.
Collapse
|
178
|
Abstract
The determination of final organ size is a highly coordinated and complex process that relies on the precise regulation of cell number and/or cell size. Perturbation of organ size control contributes to many human diseases, including hypertrophy, degenerative diseases, and cancer. Hippo and TOR are among the key signaling pathways involved in the regulation of organ size through their respective functions in the regulation of cell number and cell size. Here, we review the general mechanisms that regulate organ growth, describe how Hippo and TOR control key aspects of growth, and discuss recent findings that highlight a possible coordination between Hippo and TOR in organ size regulation.
Collapse
|
179
|
The Hippo pathway regulates stem cell proliferation, self-renewal, and differentiation. Protein Cell 2012; 3:291-304. [PMID: 22549587 DOI: 10.1007/s13238-012-2919-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 03/15/2012] [Indexed: 12/16/2022] Open
Abstract
Stem cells and progenitor cells are the cells of origin for multi-cellular organisms and organs. They play key roles during development and their dysregulation gives rise to human diseases such as cancer. The recent development of induced pluripotent stem cell (iPSC) technology which converts somatic cells to stem-like cells holds great promise for regenerative medicine. Nevertheless, the understanding of proliferation, differentiation, and self-renewal of stem cells and organ-specific progenitor cells is far from clear. Recently, the Hippo pathway was demonstrated to play important roles in these processes. The Hippo pathway is a newly established signaling pathway with critical functions in limiting organ size and suppressing tumorigenesis. This pathway was first found to inhibit cell proliferation and promote apoptosis, therefore regulating cell number and organ size in both Drosophila and mammals. However, in several organs, disturbance of the pathway leads to specific expansion of the progenitor cell compartment and manipulation of the pathway in embryonic stem cells strongly affects their self-renewal and differentiation. In this review, we summarize current observations on roles of the Hippo pathway in different types of stem cells and discuss how these findings changed our view on the Hippo pathway in organ development and tumorigenesis.
Collapse
|
180
|
Boggiano JC, Fehon RG. Growth control by committee: intercellular junctions, cell polarity, and the cytoskeleton regulate Hippo signaling. Dev Cell 2012; 22:695-702. [PMID: 22516196 PMCID: PMC3376383 DOI: 10.1016/j.devcel.2012.03.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Over the past decade, the Hippo tumor suppressor pathway has emerged as a central regulator of growth in epithelial tissues. Research in Drosophila and in mammals has shown that this kinase signaling cascade regulates the activity of the transcriptional coactivator and oncoprotein Yorkie/Yap. In this review, we discuss recent findings that emphasize the cell cortex-specifically the actin cytoskeleton, intercellular junctions, and protein complexes that determine cell polarity-as a key site for Hippo pathway regulation. We also highlight where additional research is needed to integrate known functional interactions between Hippo pathway components.
Collapse
Affiliation(s)
- Julian C. Boggiano
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Richard G. Fehon
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
181
|
Control of tissue growth and cell transformation by the Salvador/Warts/Hippo pathway. PLoS One 2012; 7:e31994. [PMID: 22359650 PMCID: PMC3281119 DOI: 10.1371/journal.pone.0031994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/17/2012] [Indexed: 11/19/2022] Open
Abstract
The Salvador-Warts-Hippo (SWH) pathway is an important regulator of tissue growth that is frequently subverted in human cancer. The key oncoprotein of the SWH pathway is the transcriptional co-activator, Yes-associated protein (YAP). YAP promotes tissue growth and transformation of cultured cells by interacting with transcriptional regulatory proteins via its WW domains, or, in the case of the TEAD1-4 transcription factors, an N-terminal binding domain. YAP possesses a putative transactivation domain in its C-terminus that is necessary to stimulate transcription factors in vitro, but its requirement for YAP function has not been investigated in detail. Interestingly, whilst the WW domains and TEAD-binding domain are highly conserved in the Drosophila melanogaster YAP orthologue, Yorkie, the majority of the C-terminal region of YAP is not present in Yorkie. To investigate this apparent conundrum, we assessed the functional roles of the YAP and Yorkie C-termini. We found that these regions were not required for Yorkie's ability to drive tissue growth in vivo, or YAP's ability to promote anchorage-independent growth or resistance to contact inhibition. However, the YAP transactivation domain was required for YAP's ability to induce cell migration and invasion. Moreover, a role for the YAP transactivation domain in cell transformation was uncovered when the YAP WW domains were mutated together with the transactivation domain. This shows that YAP can promote cell transformation in a flexible manner, presumably by contacting transcriptional regulatory proteins either via its WW domains or its transactivation domain.
Collapse
|