151
|
Yosypiv IV. Prorenin receptor in kidney development. Pediatr Nephrol 2017; 32:383-392. [PMID: 27160552 DOI: 10.1007/s00467-016-3365-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 01/11/2023]
Abstract
Prorenin receptor (PRR), a receptor for renin and prorenin and an accessory subunit of the vacuolar proton pump H+-ATPase, is expressed in the developing kidney. Global loss of PRR is lethal in mice, and PRR mutations are associated with a high blood pressure, left ventricular hypertrophy and X-linked mental retardation in humans. With the advent of modern gene targeting techniques, including conditional knockout approaches, several recent studies have demonstrated critical roles for the PRR in several lineages of the developing kidney. PRR signaling has been shown to be essential for branching morphogenesis of the ureteric bud (UB), nephron progenitor survival and nephrogenesis. PRR regulates these developmental events through interactions with other transcription and growth factors. Several targeted PRR knockout animal models have structural defects mimicking congenital anomalies of the kidney and urinary tract observed in humans. The aim of this review, is to highlight new insights into the cellular and molecular mechanisms by which PRR may regulate UB branching, terminal differentiation and function of UB-derived collecting ducts, nephron progenitor maintenance, progression of nephrogenesis and normal structural kidney development and function.
Collapse
Affiliation(s)
- Ihor V Yosypiv
- Section of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University Health Sciences Center, 1430 Tulane Avenue, SL-37, New Orleans, LA, 70112, USA.
| |
Collapse
|
152
|
Lefevre JG, Chiu HS, Combes AN, Vanslambrouck JM, Ju A, Hamilton NA, Little MH. Self-organisation after embryonic kidney dissociation is driven via selective adhesion of ureteric epithelial cells. Development 2017; 144:1087-1096. [PMID: 28174247 DOI: 10.1242/dev.140228] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022]
Abstract
Human pluripotent stem cells, after directed differentiation in vitro, can spontaneously generate complex tissues via self-organisation of the component cells. Self-organisation can also reform embryonic organ structure after tissue disruption. It has previously been demonstrated that dissociated embryonic kidneys can recreate component epithelial and mesenchymal relationships sufficient to allow continued kidney morphogenesis. Here, we investigate the timing and underlying mechanisms driving self-organisation after dissociation of the embryonic kidney using time-lapse imaging, high-resolution confocal analyses and mathematical modelling. Organotypic self-organisation sufficient for nephron initiation was observed within a 24 h period. This involved cell movement, with structure emerging after the clustering of ureteric epithelial cells, a process consistent with models of random cell movement with preferential cell adhesion. Ureteric epithelialisation rapidly followed the formation of ureteric cell clusters with the reformation of nephron-forming niches representing a later event. Disruption of P-cadherin interactions was seen to impair this ureteric epithelial cell clustering without affecting epithelial maturation. This understanding could facilitate improved regulation of patterning within organoids and facilitate kidney engineering approaches guided by cell-cell self-organisation.
Collapse
Affiliation(s)
- James G Lefevre
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Han S Chiu
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Alexander N Combes
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia.,Department of Anatomy and Neuroscience, Faculty of Science, University of Melbourne, Parkville 3052, Australia.,Murdoch Children's Research Institute, Parkville, Melbourne 3052, Australia
| | - Jessica M Vanslambrouck
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia.,Murdoch Children's Research Institute, Parkville, Melbourne 3052, Australia
| | - Ali Ju
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia.,Translational Research Institute, Woolloongabba, Brisbane 4102, Australia
| | - Nicholas A Hamilton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia.,Murdoch Children's Research Institute, Parkville, Melbourne 3052, Australia.,Department of Pediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville 3052, Australia
| |
Collapse
|
153
|
Tögel F, Valerius MT, Freedman BS, Iatrino R, Grinstein M, Bonventre JV. Repair after nephron ablation reveals limitations of neonatal neonephrogenesis. JCI Insight 2017; 2:e88848. [PMID: 28138555 DOI: 10.1172/jci.insight.88848] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The neonatal mouse kidney retains nephron progenitor cells in a nephrogenic zone for 3 days after birth. We evaluated whether de novo nephrogenesis can be induced postnatally beyond 3 days. Given the long-term implications of nephron number for kidney health, it would be useful to enhance nephrogenesis in the neonate. We induced nephron reduction by cryoinjury with or without contralateral nephrectomy during the neonatal period or after 1 week of age. There was no detectable compensatory de novo nephrogenesis, as determined by glomerular counting and lineage tracing. Contralateral nephrectomy resulted in additional adaptive healing, with little or no fibrosis, but did not also stimulate de novo nephrogenesis. In contrast, injury initiated at 1 week of age led to healing with fibrosis. Thus, despite the presence of progenitor cells and ongoing nephron maturation in the newborn mouse kidney, de novo nephrogenesis is not inducible by acute nephron reduction. This indicates that additional nephron progenitors cannot be recruited after birth despite partial renal ablation providing a reparative stimulus and suggests that nephron number in the mouse is predetermined at birth.
Collapse
Affiliation(s)
- Florian Tögel
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - M Todd Valerius
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Benjamin S Freedman
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Rossella Iatrino
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Mor Grinstein
- Center for Regenerative Medicine and Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joseph V Bonventre
- Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA.,Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
154
|
Short KM, Smyth IM. Imaging, Analysing and Interpreting Branching Morphogenesis in the Developing Kidney. Results Probl Cell Differ 2017; 60:233-256. [PMID: 28409348 DOI: 10.1007/978-3-319-51436-9_9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The kidney develops as an outgrowth of the epithelial nephric duct known as the ureteric bud, in a position specified by a range of rostral and caudal factors which serve to ensure two kidneys form in the appropriate positions in the body. At its simplest level, kidney development can be viewed as the process by which this single bud then undergoes a process of arborisation to form a complex connected network of ducts which will serve to drain urine from the nephrons in the adult organ. The process of bud elaboration is dictated by factors expressed by both the bud itself and by surrounding cells of the metanephric mesenchyme which control cell division and bifurcation. These cells play two critical roles. Firstly, they potentiate the ongoing elaboration of the ureteric tree: remove them and branching ceases. Secondly, they harbour progenitor cells which are fated to undergo their own process of tubulogenesis to form the nephrons of the adult organ. In this chapter, we will discuss how the ureteric bud arises in the developing embryo, how it undergoes branching, how we can measure and study this process and finally the likely relevance that this process has for our understanding of congenital and acquired kidney disease.
Collapse
Affiliation(s)
- Kieran M Short
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC, 3800, Australia
| | - Ian M Smyth
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC, 3800, Australia.
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, VIC, 3800, Australia.
| |
Collapse
|
155
|
Abstract
New nephrons are induced by the interaction between mesenchymal progenitor cells and collecting duct tips, both of which are located at the outer edge of the kidney. This leading edge of active nephron induction is known as the nephrogenic zone. Cell populations found within this zone include collecting duct tips, cap mesenchyme cells, pretubular aggregates, nephrogenic zone interstitium, hemoendothelial progenitor cells, and macrophages. The close association of these dynamic progenitor cell compartments enables the intricate and synchronized patterning of the epithelial and the vascular components of the nephron. Understanding signaling interactions between the distinct progenitor cells of the nephrogenic zone are essential to determining the basis for new nephron formation, an important goal in regenerative medicine. A variety of technologies have been applied to define essential signaling pathways, including organ culture, mouse genetics, and primary cell culture. This chapter provides an overview of essential signaling pathways and discusses how these may be integrated.
Collapse
|
156
|
Marciano DK. A holey pursuit: lumen formation in the developing kidney. Pediatr Nephrol 2017; 32:7-20. [PMID: 26902755 PMCID: PMC5495142 DOI: 10.1007/s00467-016-3326-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/23/2015] [Accepted: 01/12/2016] [Indexed: 02/07/2023]
Abstract
The formation of polarized epithelial tubules is a hallmark of kidney development. One of the fundamental principles in tubulogenesis is that epithelia coordinate the polarity of individual cells with the surrounding cells and matrix. A central feature in this process is the segregation of membranes into spatially and functionally distinct apical and basolateral domains, and the generation of a luminal space at the apical surface. This review examines our current understanding of the cellular and molecular mechanisms that underlie the establishment of apical-basal polarity and lumen formation in developing renal epithelia, including the roles of cell-cell and cell-matrix interactions and polarity complexes. We highlight growing evidence from animal models, and correlate these findings with models of tubulogenesis from other organ systems, and from in vitro studies.
Collapse
Affiliation(s)
- Denise K. Marciano
- Department of Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. H5.102, Dallas, TX 75390-8856
| |
Collapse
|
157
|
Song R, Janssen A, Li Y, El-Dahr S, Yosypiv IV. Prorenin receptor controls renal branching morphogenesis via Wnt/β-catenin signaling. Am J Physiol Renal Physiol 2016; 312:F407-F417. [PMID: 28031172 DOI: 10.1152/ajprenal.00563.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/20/2016] [Accepted: 12/23/2016] [Indexed: 11/22/2022] Open
Abstract
The prorenin receptor (PRR) is a receptor for renin and prorenin, and an accessory subunit of the vacuolar proton pump H+-ATPase. Renal branching morphogenesis, defined as growth and branching of the ureteric bud (UB), is essential for mammalian kidney development. Previously, we demonstrated that conditional ablation of the PRR in the UB in PRRUB-/- mice causes severe defects in UB branching, resulting in marked kidney hypoplasia at birth. Here, we investigated the UB transcriptome using whole genome-based analysis of gene expression in UB cells, FACS-isolated from PRRUB-/-, and control kidneys at birth (P0) to determine the primary role of the PRR in terminal differentiation and growth of UB-derived collecting ducts. Three genes with expression in UB cells that previously shown to regulate UB branching morphogenesis, including Wnt9b, β-catenin, and Fgfr2, were upregulated, whereas the expression of Wnt11, Bmp7, Etv4, and Gfrα1 was downregulated. We next demonstrated that infection of immortalized UB cells with shPRR in vitro or deletion of the UB PRR in double-transgenic PRRUB-/-/BatGal+ mice, a reporter strain for β-catenin transcriptional activity, in vivo increases β-catenin activity in the UB epithelia. In addition to UB morphogenetic genes, the functional groups of differentially expressed genes within the downregulated gene set included genes involved in molecular transport, metabolic disease, amino acid metabolism, and energy production. Together, these data demonstrate that UB PRR performs essential functions during UB branching and collecting duct morphogenesis via control of a hierarchy of genes that control UB branching and terminal differentiation of the collecting duct cells.
Collapse
Affiliation(s)
- Renfang Song
- Division of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Lousiana
| | - Adam Janssen
- Division of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Lousiana
| | - Yuwen Li
- Division of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Lousiana
| | - Samir El-Dahr
- Division of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Lousiana
| | - Ihor V Yosypiv
- Division of Pediatric Nephrology, Department of Pediatrics, Hypertension and Renal Center of Excellence, Tulane University School of Medicine, New Orleans, Lousiana
| |
Collapse
|
158
|
Abstract
PURPOSE OF REVIEW Allogenic kidney transplantation use is limited because of a shortage of kidney organ donors and the risks associated with a long-term immunosuppression. An emerging treatment prospect is autologous transplants of ex vivo produced human kidneys. Here we will review the research advances in this area. RECENT FINDINGS The creation of human induced pluripotent cells (iPSCs) from somatic cells and the emergence of several differentiation protocols that are able to convert iPSCs cells into self-organizing kidney organoids are two large steps toward assembling a human kidney in vitro. Several groups have successfully generated urine-producing kidney organoids upon transplantation in a mouse host. Additional advances in culturing nephron progenitors in vitro may provide another source for kidney engineering, and the emergence of genome editing technology will facilitate correction of congenital mutations. SUMMARY Basic research into the development of metanephric kidneys and iPSC differentiation protocols, the therapeutic use of iPSCs, along with emergence of new technologies such as CRISPR/Cas9 genome editing have accelerated a trend that may prove transformative in the treatment of ESRD and congenital kidney disorders.
Collapse
Affiliation(s)
- Oded Volovelsky
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
159
|
Short KM, Smyth IM. The contribution of branching morphogenesis to kidney development and disease. Nat Rev Nephrol 2016; 12:754-767. [DOI: 10.1038/nrneph.2016.157] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
160
|
Hokke S, Arias N, Armitage JA, Puelles VG, Fong K, Geraci S, Gretz N, Bertram JF, Cullen-McEwen LA. Maternal glucose intolerance reduces offspring nephron endowment and increases glomerular volume in adult offspring. Diabetes Metab Res Rev 2016; 32:816-826. [PMID: 27037899 DOI: 10.1002/dmrr.2805] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 03/09/2016] [Accepted: 03/25/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Animal studies report a nephron deficit in offspring exposed to maternal diabetes, yet are limited to models of severe hyperglycaemia which do not reflect the typical clinical condition and which are associated with foetal growth restriction that may confound nephron endowment. We aimed to assess renal morphology and function in offspring of leptin receptor deficient mice (Leprdb /+) and hypothesized that exposure to impaired maternal glucose tolerance (IGT) would be detrimental to the developing kidney. METHODS Nephron endowment was assessed in offspring of C57BKS/J Leprdb /+ and +/+ mice at embryonic day (E)18 and postnatal day (PN)21 using design-based stereology. Transcutaneous measurement of renal function and total glomerular volume were assessed in 6-month-old offspring. Only +/+ offspring of Leprdb /+ dams were analysed. RESULTS Compared with +/+ dams, Leprdb /+ dams had a 20% and 35% decrease in glucose tolerance prior to pregnancy and at E17.5 respectively. Offspring of IGT Leprdb /+ dams had approximately 15% fewer nephrons at E18.5 and PN21 than offspring of +/+ dams. There was no difference in offspring bodyweight. Despite normal renal function, total glomerular volume was 13% greater in 6-month-old offspring of IGT Leprdb /+ dams than in +/+ offspring. CONCLUSIONS IGT throughout gestation resulted in a nephron deficit that was established early in renal development. Maternal IGT was associated with glomerular hypertrophy in adult offspring, likely a compensatory response to maintain normal renal function. Given the increasing prevalence of IGT, monitoring glucose from early in gestation may be important to prevent altered kidney morphology. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stacey Hokke
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Nicole Arias
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - James A Armitage
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
- School of Medicine (Optometry), Deakin University, Waurn Ponds, VIC, Australia
| | - Victor G Puelles
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Karen Fong
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Stefania Geraci
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - Norbert Gretz
- Medical Research Center, University of Heidelberg, Mannheim, Germany
| | - John F Bertram
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
| | - Luise A Cullen-McEwen
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
161
|
Brzóska HŁ, d'Esposito AM, Kolatsi-Joannou M, Patel V, Igarashi P, Lei Y, Finnell RH, Lythgoe MF, Woolf AS, Papakrivopoulou E, Long DA. Planar cell polarity genes Celsr1 and Vangl2 are necessary for kidney growth, differentiation, and rostrocaudal patterning. Kidney Int 2016; 90:1274-1284. [PMID: 27597235 PMCID: PMC5126096 DOI: 10.1016/j.kint.2016.07.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 01/09/2023]
Abstract
The mammalian kidney contains nephrons comprising glomeruli and tubules joined to ureteric bud-derived collecting ducts. It has a characteristic bean-like shape, with near-complete rostrocaudal symmetry around the hilum. Here we show that Celsr1, a planar cell polarity (PCP) gene implicated in neural tube morphogenesis, is required for ureteric tree growth in early development and later in gestation prevents tubule overgrowth. We also found an interaction between Celsr1 and Vangl2 (another PCP gene) in ureteric tree growth, most marked in the caudal compartment of the kidneys from compound heterozygous mutant mice with a stunted rump. Furthermore, these genes together are required for the maturation of glomeruli. Interestingly, we demonstrated patients with CELSR1 mutations and spina bifida can have significant renal malformations. Thus, PCP genes are important in mammalian kidney development and have an unexpected role in rostrocaudal patterning during organogenesis.
Collapse
Affiliation(s)
- Hortensja Ł Brzóska
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Angela M d'Esposito
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Vishal Patel
- Department of Internal Medicine, University of Texas Southwestern School of Medicine, Dallas, Texas, USA
| | - Peter Igarashi
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yunping Lei
- Dell Pediatric Research Institute, Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Richard H Finnell
- Dell Pediatric Research Institute, Department of Nutritional Sciences, The University of Texas at Austin, Austin, Texas, USA
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, UK
| | - Adrian S Woolf
- Institute of Human Development, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Eugenia Papakrivopoulou
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK.
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Great Ormond Street Institute of Child Health, London, UK.
| |
Collapse
|
162
|
A critical role for NF2 and the Hippo pathway in branching morphogenesis. Nat Commun 2016; 7:12309. [PMID: 27480037 PMCID: PMC4974664 DOI: 10.1038/ncomms12309] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 06/22/2016] [Indexed: 01/14/2023] Open
Abstract
Branching morphogenesis is a complex biological process common to the development of most epithelial organs. Here we demonstrate that NF2, LATS1/2 and YAP play a critical role in branching morphogenesis in the mouse kidney. Removal of Nf2 or Lats1/2 from the ureteric bud (UB) lineage causes loss of branching morphogenesis that is rescued by loss of one copy of Yap and Taz, and phenocopied by YAP overexpression. Mosaic analysis demonstrates that cells with high YAP expression have reduced contribution to UB tips, similar to Ret−/− cells, and that YAP suppresses RET signalling and tip identity. Conversely, Yap/Taz UB-deletion leads to cyst-like branching and expansion of UB tip markers, suggesting a shift towards tip cell identity. Based on these data we propose that NF2 and the Hippo pathway locally repress YAP/TAZ activity in the UB to promote subsequent splitting of the tip to allow branching morphogenesis. Branching morphogenesis is essential for the formation of most epithelial organs. Here, the authors show that Neurofibromatosis 2 (NF2), the Hippo pathway kinases LATS1 and LATS2, and the transcriptional co-activators YAP and TAZ control tip identity, RET signalling and branching morphogenesis in the mouse kidney.
Collapse
|
163
|
Phua YL, Gilbert T, Combes A, Wilkinson L, Little MH. Neonatal vascularization and oxygen tension regulate appropriate perinatal renal medulla/papilla maturation. J Pathol 2016; 238:665-76. [PMID: 26800422 DOI: 10.1002/path.4690] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/21/2015] [Accepted: 01/11/2016] [Indexed: 11/11/2022]
Abstract
Congenital medullary dysplasia with obstructive nephropathy is a common congenital disorder observed in paediatric patients and represents the foremost cause of renal failure. However, the molecular processes regulating normal papillary outgrowth during the postnatal period are unclear. In this study, transcriptional profiling of the renal medulla across postnatal development revealed enrichment of non-canonical Wnt signalling, vascular development, and planar cell polarity genes, all of which may contribute to perinatal medulla/papilla maturation. These pathways were investigated in a model of papillary hypoplasia with functional obstruction, the Crim1(KST264/KST264) transgenic mouse. Postnatal elongation of the renal papilla via convergent extension was unaffected in the Crim1(KST264/KST264) hypoplastic renal papilla. In contrast, these mice displayed a disorganized papillary vascular network, tissue hypoxia, and elevated Vegfa expression. In addition, we demonstrate the involvement of accompanying systemic hypoxia arising from placental insufficiency, in appropriate papillary maturation. In conclusion, this study highlights the requirement for normal vascular development in collecting duct patterning, development of appropriate nephron architecture, and perinatal papillary maturation, such that disturbances contribute to obstructive nephropathy.
Collapse
Affiliation(s)
- Yu Leng Phua
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Rangos Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA.,School of Medicine, Department of Pediatrics, Division of Nephrology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Thierry Gilbert
- Centre for Developmental Biology, University Paul Sabatier, Toulouse, France
| | - Alexander Combes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, VIC, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Lorine Wilkinson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia.,Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
| |
Collapse
|
164
|
O'Brien LL, Guo Q, Lee Y, Tran T, Benazet JD, Whitney PH, Valouev A, McMahon AP. Differential regulation of mouse and human nephron progenitors by the Six family of transcriptional regulators. Development 2016; 143:595-608. [PMID: 26884396 DOI: 10.1242/dev.127175] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Nephron endowment is determined by the self-renewal and induction of a nephron progenitor pool established at the onset of kidney development. In the mouse, the related transcriptional regulators Six1 and Six2 play non-overlapping roles in nephron progenitors. Transient Six1 activity prefigures, and is essential for, active nephrogenesis. By contrast, Six2 maintains later progenitor self-renewal from the onset of nephrogenesis. We compared the regulatory actions of Six2 in mouse and human nephron progenitors by chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq). Surprisingly, SIX1 was identified as a SIX2 target unique to the human nephron progenitors. Furthermore, RNA-seq and immunostaining revealed overlapping SIX1 and SIX2 activity in 16 week human fetal nephron progenitors. Comparative bioinformatic analysis of human SIX1 and SIX2 ChIP-seq showed each factor targeted a similar set of cis-regulatory modules binding an identical target recognition motif. In contrast to the mouse where Six2 binds its own enhancers but does not interact with DNA around Six1, both human SIX1 and SIX2 bind homologous SIX2 enhancers and putative enhancers positioned around SIX1. Transgenic analysis of a putative human SIX1 enhancer in the mouse revealed a transient, mouse-like, pre-nephrogenic, Six1 regulatory pattern. Together, these data demonstrate a divergence in SIX-factor regulation between mouse and human nephron progenitors. In the human, an auto/cross-regulatory loop drives continued SIX1 and SIX2 expression during active nephrogenesis. By contrast, the mouse establishes only an auto-regulatory Six2 loop. These data suggest differential SIX-factor regulation might have contributed to species differences in nephron progenitor programs such as the duration of nephrogenesis and the final nephron count.
Collapse
Affiliation(s)
- Lori L O'Brien
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Qiuyu Guo
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA Division of Bioinformatics, Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - YoungJin Lee
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Tracy Tran
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jean-Denis Benazet
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter H Whitney
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Anton Valouev
- Division of Bioinformatics, Department of Preventative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Broad-CIRM Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
165
|
Kirita Y, Kami D, Ishida R, Adachi T, Tamagaki K, Matoba S, Kusaba T, Gojo S. Preserved Nephrogenesis Following Partial Nephrectomy in Early Neonates. Sci Rep 2016; 6:26792. [PMID: 27244673 PMCID: PMC4886582 DOI: 10.1038/srep26792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 05/10/2016] [Indexed: 12/11/2022] Open
Abstract
Reconstitution of total nephron segments after resection in the adult kidney has not been achieved; however, whether the neonatal kidney can maintain the capacity for neo-nephrogenesis after resection is unknown. We performed partial resection of the kidney in neonatal rats on postnatal days 1 (P1x kidney) and 4 (P4x kidney) and examined morphological changes and relevant factors. The P1x kidney bulged into the newly formed cortex from the wound edge, while nephrogenesis failure was prominent in the P4x kidney. Twenty-eight days post-resection, the glomerular number, cortex area, and collecting duct were preserved in the P1x kidney, whereas these parameters were markedly decreased in the P4x kidney. During normal development, Six2 expression and Six2+ nephron progenitor cells in the cap mesenchyme both rapidly disappear after birth. However, time course analysis for the P1x kidney showed that Six2 expression and Six2+ cells were well preserved in the tissue surrounding the resected area even 2 days after resection. In conclusion, our results indicate that kidneys in early neonate rats retain the capability for neo-nephrogenesis after resection; however, this ability is lost soon after birth, which may be attributed to a declining amount of Six2+ cells.
Collapse
Affiliation(s)
- Yuhei Kirita
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii cho, Kamigyo ku, Kyoto 602-8566, Japan
| | - Daisuke Kami
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii cho, Kamigyo ku, Kyoto 602-8566, Japan
| | - Ryo Ishida
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii cho, Kamigyo ku, Kyoto 602-8566, Japan
| | - Takaomi Adachi
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii cho, Kamigyo ku, Kyoto 602-8566, Japan
| | - Keiichi Tamagaki
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii cho, Kamigyo ku, Kyoto 602-8566, Japan
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii cho, Kamigyo ku, Kyoto 602-8566, Japan
| | - Tetsuro Kusaba
- Department of Nephrology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii cho, Kamigyo ku, Kyoto 602-8566, Japan
| | - Satoshi Gojo
- Department of Regenerative Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii cho, Kamigyo ku, Kyoto 602-8566, Japan
| |
Collapse
|
166
|
Urdy S, Goudemand N, Pantalacci S. Looking Beyond the Genes: The Interplay Between Signaling Pathways and Mechanics in the Shaping and Diversification of Epithelial Tissues. Curr Top Dev Biol 2016; 119:227-90. [PMID: 27282028 DOI: 10.1016/bs.ctdb.2016.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The core of Evo-Devo lies in the intuition that the way tissues grow during embryonic development, the way they sustain their structure and function throughout lifetime, and the way they evolve are closely linked. Epithelial tissues are ubiquitous in metazoans, covering the gut and internal branched organs, as well as the skin and its derivatives (ie, teeth). Here, we discuss in vitro, in vivo, and in silico studies on epithelial tissues to illustrate the conserved, dynamical, and complex aspects of their development. We then explore the implications of the dynamical and nonlinear nature of development on the evolution of their size and shape at the phenotypic and genetic levels. In rare cases, when the interplay between signaling and mechanics is well understood at the cell level, it is becoming clear that the structure of development leads to covariation of characters, an integration which in turn provides some predictable structure to evolutionary changes. We suggest that such nonlinear systems are prone to genetic drift, cryptic genetic variation, and context-dependent mutational effects. We argue that experimental and theoretical studies at the cell level are critical to our understanding of the phenotypic and genetic evolution of epithelial tissues, including carcinomas.
Collapse
Affiliation(s)
- S Urdy
- University of Zürich, Institute of Physics, Zürich, Switzerland.
| | - N Goudemand
- Univ Lyon, ENS Lyon, CNRS, Université Claude Bernard Lyon 1, Institut de Génomique Fonctionnelle de Lyon, UMR 5242, Lyon Cedex 07, France
| | - S Pantalacci
- Univ Lyon, ENS Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratory of Biology and Modelling of the Cell, UMR 5239, INSERM U1210, Lyon Cedex 07, France
| |
Collapse
|
167
|
Tanigawa S, Taguchi A, Sharma N, Perantoni AO, Nishinakamura R. Selective In Vitro Propagation of Nephron Progenitors Derived from Embryos and Pluripotent Stem Cells. Cell Rep 2016; 15:801-813. [PMID: 27149838 DOI: 10.1016/j.celrep.2016.03.076] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 02/18/2016] [Accepted: 03/18/2016] [Indexed: 01/22/2023] Open
Abstract
Nephron progenitors in the embryonic kidney propagate while generating differentiated nephrons. However, in mice, the progenitors terminally differentiate shortly after birth. Here, we report a method for selectively expanding nephron progenitors in vitro in an undifferentiated state. Combinatorial and concentration-dependent stimulation with LIF, FGF2/9, BMP7, and a WNT agonist is critical for expansion. The purified progenitors proliferated beyond the physiological limits observed in vivo, both for cell numbers and lifespan. Neonatal progenitors were maintained for a week, while progenitors from embryonic day 11.5 expanded 1,800-fold for nearly 20 days and still reconstituted 3D nephrons containing glomeruli and renal tubules. Furthermore, progenitors generated from mouse embryonic stem cells and human induced pluripotent cells could be expanded with retained nephron-forming potential. Thus, we have established in vitro conditions for promoting the propagation of nephron progenitors, which will be essential for dissecting the mechanisms of kidney organogenesis and for regenerative medicine.
Collapse
Affiliation(s)
- Shunsuke Tanigawa
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Atsuhiro Taguchi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Nirmala Sharma
- Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Alan O Perantoni
- Cancer and Developmental Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
168
|
Abstract
PURPOSE OF REVIEW Renal dysplasia is classically described as a developmental disorder whereby the kidneys fail to undergo appropriate differentiation, resulting in the presence of malformed renal tissue elements. It is the commonest cause of chronic kidney disease and renal failure in the neonate. Although several genes have been identified in association with renal dysplasia, the underlying molecular mechanisms are often complex and heterogeneous in nature, and remain poorly understood. RECENT FINDINGS In this review, we describe new insights into the fundamental process of normal kidney development, and how the renal cortex and medulla are patterned appropriately during gestation. We review the key genes that are indispensable for this process, and discuss how patterning of the kidney is perturbed in the absence of these signaling pathways. The recent use of whole exome sequencing has identified genetic mutations in patients with renal dysplasia, and the results of these studies have increased our understanding of the pathophysiology of renal dysplasia. SUMMARY At present, there are no specific treatments available for patients with renal dysplasia. Understanding the molecular mechanisms of normal kidney development and the pathogenesis of renal dysplasia may allow for improved therapeutic options for these patients.
Collapse
|
169
|
Leclerc K, Costantini F. Mosaic analysis of cell rearrangements during ureteric bud branching in dissociated/reaggregated kidney cultures and in vivo. Dev Dyn 2016; 245:483-96. [PMID: 26813041 PMCID: PMC4803602 DOI: 10.1002/dvdy.24387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Cell rearrangements mediated by GDNF/Ret signaling underlie the formation of the ureteric bud (UB) tip domain during kidney development. Whether FGF signaling also influences these rearrangements is unknown. Chimeric embryos are a powerful tool for examining the genetic controls of cellular behaviors, but generating chimeras by traditional methods is expensive and laborious. Dissociated fetal kidney cells can reorganize to form complex structures including branching UB tubules, providing an easier method to generate renal chimeras. RESULTS Cell behaviors in normal or chimeric kidney cultures were investigated using time-lapse imaging. In Spry1(-/-) ↔ wild-type chimeras, cells lacking Spry1 (a negative regulator of Ret and FGF receptor signaling) preferentially occupied the UB tips, as previously observed in traditional chimeras, thus validating this experimental system. In Fgfr2(UB-/-) ↔ wild-type chimeras, the wild-type cells preferentially occupied the tips. Independent evidence for a role of Fgfr2 in UB tip formation was obtained using Mosaic mutant Analysis with Spatial and Temporal control of Recombination (MASTR). CONCLUSIONS Dissociation and reaggregation of fetal kidney cells of different genotypes, with suitable fluorescent markers, provides an efficient way to analyze cell behaviors in chimeric cultures. FGF/Fgfr2 signaling promotes UB cell rearrangements that form the tip domain, similarly to GDNF/Ret signaling.
Collapse
Affiliation(s)
- Kevin Leclerc
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168 Street, New York, NY 10032
| | - Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168 Street, New York, NY 10032
| |
Collapse
|
170
|
Puelles VG, van der Wolde JW, Schulze KE, Short KM, Wong MN, Bensley JG, Cullen-McEwen LA, Caruana G, Hokke SN, Li J, Firth SD, Harper IS, Nikolic-Paterson DJ, Bertram JF. Validation of a Three-Dimensional Method for Counting and Sizing Podocytes in Whole Glomeruli. J Am Soc Nephrol 2016; 27:3093-3104. [PMID: 26975438 DOI: 10.1681/asn.2015121340] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/02/2016] [Indexed: 11/03/2022] Open
Abstract
Podocyte depletion is sufficient for the development of numerous glomerular diseases and can be absolute (loss of podocytes) or relative (reduced number of podocytes per volume of glomerulus). Commonly used methods to quantify podocyte depletion introduce bias, whereas gold standard stereologic methodologies are time consuming and impractical. We developed a novel approach for assessing podocyte depletion in whole glomeruli that combines immunofluorescence, optical clearing, confocal microscopy, and three-dimensional analysis. We validated this method in a transgenic mouse model of selective podocyte depletion, in which we determined dose-dependent alterations in several quantitative indices of podocyte depletion. This new approach provides a quantitative tool for the comprehensive and time-efficient analysis of podocyte depletion in whole glomeruli.
Collapse
Affiliation(s)
- Victor G Puelles
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - James W van der Wolde
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Keith E Schulze
- Monash Micro Imaging, Monash University, Melbourne, Australia; and
| | - Kieran M Short
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and Biochemistry and Molecular Biology, and
| | - Milagros N Wong
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Jonathan G Bensley
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Luise A Cullen-McEwen
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Georgina Caruana
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Stacey N Hokke
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Jinhua Li
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| | - Stephen D Firth
- Monash Micro Imaging, Monash University, Melbourne, Australia; and
| | - Ian S Harper
- Monash Micro Imaging, Monash University, Melbourne, Australia; and
| | | | - John F Bertram
- Departments of Anatomy and Developmental Biology, Development and Stem Cells Program, Monash Biomedicine Discovery Institute, and
| |
Collapse
|
171
|
Kann M, Bae E, Lenz MO, Li L, Trannguyen B, Schumacher VA, Taglienti ME, Bordeianou L, Hartwig S, Rinschen MM, Schermer B, Benzing T, Fan CM, Kreidberg JA. WT1 targets Gas1 to maintain nephron progenitor cells by modulating FGF signals. Development 2016; 142:1254-66. [PMID: 25804736 DOI: 10.1242/dev.119735] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Development of the metanephric kidney depends on tightly regulated interplay between self-renewal and differentiation of a nephron progenitor cell (NPC) pool. Several key factors required for the survival of NPCs have been identified, including fibroblast growth factor (FGF) signaling and the transcription factor Wilms' tumor suppressor 1 (WT1). Here, we present evidence that WT1 modulates FGF signaling by activating the expression of growth arrest-specific 1 (Gas1), a novel WT1 target gene and novel modulator of FGF signaling. We show that WT1 directly binds to a conserved DNA binding motif within the Gas1 promoter and activates Gas1 mRNA transcription in NPCs. We confirm that WT1 is required for Gas1 expression in kidneys in vivo. Loss of function of GAS1 in vivo results in hypoplastic kidneys with reduced nephron mass due to premature depletion of NPCs. Although kidney development in Gas1 knockout mice progresses normally until E15.5, NPCs show decreased rates of proliferation at this stage and are depleted as of E17.5. Lastly, we show that Gas1 is selectively required for FGF-stimulated AKT signaling in vitro. In summary, our data suggest a model in which WT1 modulates receptor tyrosine kinase signaling in NPCs by directing the expression of Gas1.
Collapse
Affiliation(s)
- Martin Kann
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA Department II of Medicine and Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Eunnyung Bae
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Maximilian O Lenz
- Department II of Medicine and Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Liangji Li
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21218, USA
| | - BaoTran Trannguyen
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Valerie A Schumacher
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Mary E Taglienti
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Liliana Bordeianou
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Sunny Hartwig
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada C1A 4P3
| | - Markus M Rinschen
- Department II of Medicine and Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Bernhard Schermer
- Department II of Medicine and Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, 50931 Cologne, Germany
| | - Thomas Benzing
- Department II of Medicine and Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany Cluster of Excellence on Cellular Stress Responses in Ageing-Associated Diseases (CECAD) and Systems Biology of Ageing Cologne, University of Cologne, 50931 Cologne, Germany
| | - Chen-Ming Fan
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD 21218, USA
| | - Jordan A Kreidberg
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| |
Collapse
|
172
|
Riccio P, Cebrian C, Zong H, Hippenmeyer S, Costantini F. Ret and Etv4 Promote Directed Movements of Progenitor Cells during Renal Branching Morphogenesis. PLoS Biol 2016; 14:e1002382. [PMID: 26894589 PMCID: PMC4760680 DOI: 10.1371/journal.pbio.1002382] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/13/2016] [Indexed: 11/18/2022] Open
Abstract
Branching morphogenesis of the epithelial ureteric bud forms the renal collecting duct system and is critical for normal nephron number, while low nephron number is implicated in hypertension and renal disease. Ureteric bud growth and branching requires GDNF signaling from the surrounding mesenchyme to cells at the ureteric bud tips, via the Ret receptor tyrosine kinase and coreceptor Gfrα1; Ret signaling up-regulates transcription factors Etv4 and Etv5, which are also critical for branching. Despite extensive knowledge of the genetic control of these events, it is not understood, at the cellular level, how renal branching morphogenesis is achieved or how Ret signaling influences epithelial cell behaviors to promote this process. Analysis of chimeric embryos previously suggested a role for Ret signaling in promoting cell rearrangements in the nephric duct, but this method was unsuited to study individual cell behaviors during ureteric bud branching. Here, we use Mosaic Analysis with Double Markers (MADM), combined with organ culture and time-lapse imaging, to trace the movements and divisions of individual ureteric bud tip cells. We first examine wild-type clones and then Ret or Etv4 mutant/wild-type clones in which the mutant and wild-type sister cells are differentially and heritably marked by green and red fluorescent proteins. We find that, in normal kidneys, most individual tip cells behave as self-renewing progenitors, some of whose progeny remain at the tips while others populate the growing UB trunks. In Ret or Etv4 MADM clones, the wild-type cells generated at a UB tip are much more likely to remain at, or move to, the new tips during branching and elongation, while their Ret-/- or Etv4-/- sister cells tend to lag behind and contribute only to the trunks. By tracking successive mitoses in a cell lineage, we find that Ret signaling has little effect on proliferation, in contrast to its effects on cell movement. Our results show that Ret/Etv4 signaling promotes directed cell movements in the ureteric bud tips, and suggest a model in which these cell movements mediate branching morphogenesis.
Collapse
Affiliation(s)
- Paul Riccio
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Cristina Cebrian
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| | - Hui Zong
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
- Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, Virginia, United States of America
| | - Simon Hippenmeyer
- Developmental Neurobiology, IST Austria (Institute of Science and Technology Austria), Klosterneuburg, Austria
| | - Frank Costantini
- Department of Genetics and Development, Columbia University, New York, New York, United States of America
| |
Collapse
|
173
|
Abstract
The basic unit of kidney function is the nephron. In the mouse, around 14,000 nephrons form in a 10-day period extending into early neonatal life, while the human fetus forms the adult complement of nephrons in a 32-week period completed prior to birth. This review discusses our current understanding of mammalian nephrogenesis: the contributing cell types and the regulatory processes at play. A conceptual developmental framework has emerged for the mouse kidney. This framework is now guiding studies of human kidney development enabled in part by in vitro systems of pluripotent stem cell-seeded nephrogenesis. A near future goal will be to translate our developmental knowledge-base to the productive engineering of new kidney structures for regenerative medicine.
Collapse
Affiliation(s)
- Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA.
| |
Collapse
|
174
|
Abstract
Although we know that mesenchymal progenitors give rise to nephrons in the kidney, how they balance self-renewal versus differentiation is still unclear. In this issue of Developmental Cell, Chen et al. (2015) show that nephron progenitors age, but not necessarily irreversibly: old progenitors can be "rejuvenated" by a young crowd.
Collapse
Affiliation(s)
- Melissa H Little
- Murdoch Childrens Research Institute, Royal Children's Hospital and Department of Pediatrics, University of Melbourne, Melbourne VIC, Australia.
| |
Collapse
|
175
|
Chen S, Brunskill EW, Potter SS, Dexheimer PJ, Salomonis N, Aronow BJ, Hong CI, Zhang T, Kopan R. Intrinsic Age-Dependent Changes and Cell-Cell Contacts Regulate Nephron Progenitor Lifespan. Dev Cell 2016; 35:49-62. [PMID: 26460946 DOI: 10.1016/j.devcel.2015.09.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 07/22/2015] [Accepted: 09/14/2015] [Indexed: 01/24/2023]
Abstract
During fetal development, nephrons of the metanephric kidney form from a mesenchymal progenitor population that differentiates en masse before or shortly after birth. We explored intrinsic and extrinsic mechanisms controlling progenitor lifespan in a transplantation assay that allowed us to compare engraftment of old and young progenitors into the same young niche. The progenitors displayed an age-dependent decrease in proliferation and concomitant increase in niche exit rates. Single-cell transcriptome profiling revealed progressive age-dependent changes, with heterogeneity increasing in older populations. Age-dependent elevation in mTor and reduction in Fgf20 could contribute to increased exit rates. Importantly, 30% of old progenitors remained in the niche for up to 1 week post engraftment, a net gain of 50% to their lifespan, but only if surrounded by young neighbors. We provide evidence in support of a model in which intrinsic age-dependent changes affect inter-progenitor interactions that drive cessation of nephrogenesis.
Collapse
Affiliation(s)
- Shuang Chen
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
| | - Eric W Brunskill
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
| | - S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
| | - Phillip J Dexheimer
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
| | - Bruce J Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA
| | - Christian I Hong
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Tongli Zhang
- Department of Molecular and Cellular Physiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45220, USA.
| |
Collapse
|
176
|
Combes AN. Towards a quantitative model of kidney morphogenesis. Nephrology (Carlton) 2016; 20:312-4. [PMID: 25619899 DOI: 10.1111/nep.12407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2015] [Indexed: 11/29/2022]
Abstract
Kidney growth is dependent on functional interactions between mesenchymal nephron progenitors, the ureteric epithelium and surrounding stroma, which together make up the nephrogenic niche. Signalling between these populations regulates nephron progenitor maintenance, branching morphogenesis and nephron induction. Nephron endowment is sensitive to changes in the size of the nephron progenitor pool and to decreases in factors that promote branching morphogenesis. However, determining the morphogenic consequences of these disruptions in vivo has been challenging as quantitating kidney morphogenesis is hampered by the size, opacity and three-dimensional complexity of the tissue. The recent application of whole mount immunofluorescence and tissue clearing, coupled with multiscale imaging and quantitative analysis, has begun to give insights into the dynamics of kidney formation. This review focuses on how the quantitative nature of this approach has enabled mathematical modelling of cell cycle lengths, growth rates, cell number and branching rates and is advancing our understanding of kidney organogenesis.
Collapse
Affiliation(s)
- Alexander N Combes
- Department of Anatomy & Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
177
|
Muthukrishnan SD, Yang X, Friesel R, Oxburgh L. Concurrent BMP7 and FGF9 signalling governs AP-1 function to promote self-renewal of nephron progenitor cells. Nat Commun 2015; 6:10027. [PMID: 26634297 PMCID: PMC4686668 DOI: 10.1038/ncomms10027] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/28/2015] [Indexed: 01/10/2023] Open
Abstract
Self-renewal of nephron progenitor cells (NPCs) is governed by BMP, FGF and WNT signalling. Mechanisms underlying cross-talk between these pathways at the molecular level are largely unknown. Here we delineate the pathway through which the proliferative BMP7 signal is transduced in NPCs in the mouse. BMP7 activates the MAPKs TAK1 and JNK to phosphorylate the transcription factor JUN, which in turn governs transcription of AP-1-element containing G1-phase cell cycle regulators such as Myc and Ccnd1 to promote NPC proliferation. Conditional inactivation of Tak1 or Jun in cap mesenchyme causes identical phenotypes characterized by premature depletion of NPCs. While JUN is regulated by BMP7, we find that its partner FOS is regulated by FGF9. We demonstrate that BMP7 and FGF9 coordinately regulate AP-1 transcription to promote G1-S cell cycle progression and NPC proliferation. Our findings identify a molecular mechanism explaining the important cooperation between two major NPC self-renewal pathways. The growth factors BMP and FGF both stimulate the self-renewal of nephron progenitor cells (NPCs), but how these signals overlap is unclear. Here in the mouse, Muthukrishnan et al. find BMP7 and FGF9 coordinately regulate AP-1 transcriptional activity, promoting G1-S cell cycle progression and NPC proliferation.
Collapse
Affiliation(s)
- Sree Deepthi Muthukrishnan
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine 04469, USA
| | - Xuehui Yang
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| | - Robert Friesel
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| | - Leif Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, Maine 04074, USA
| |
Collapse
|
178
|
Short KM, Smyth IM. A morphological investigation of sexual and lateral dimorphism in the developing metanephric kidney. Sci Rep 2015; 5:15209. [PMID: 26469293 PMCID: PMC4606730 DOI: 10.1038/srep15209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/21/2015] [Indexed: 11/15/2022] Open
Abstract
Sexual dimorphism is a prominent feature of renal physiology and as a consequence, it differentially affects predisposition to many adult kidney diseases. Furthermore the left and right kidneys differ in terms of their position, size and involvement in congenital malformations of the urogenital tract. We set out to determine whether differences in the program of branching morphogenesis that establishes the basic architecture of the kidney were apparent with respect to either sex or laterality in mouse embryonic kidneys. This was achieved using a combination of optical projection tomography imaging and computational analysis of many spatial metrics describing the branched ureteric tree. We undertook a comprehensive assessment of twelve aspects of ureteric morphology across developmental time and we found no consistent differences between kidneys of different sexes or laterality. These results suggest that dimorphism is established after birth or at a physiological or cellular level that is not reflected in the morphology of the ureteric tree.
Collapse
Affiliation(s)
- Kieran M Short
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, Melbourne, Australia, 3800
| | - Ian M Smyth
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Rd, Clayton, Melbourne, Australia, 3800.,Department of Anatomy and Developmental Biology, Monash University, Wellington Rd, Clayton, Melbourne, Australia, 3800
| |
Collapse
|
179
|
Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 2015; 526:564-8. [PMID: 26444236 DOI: 10.1038/nature15695] [Citation(s) in RCA: 1049] [Impact Index Per Article: 104.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/08/2015] [Indexed: 01/09/2023]
Abstract
The human kidney contains up to 2 million epithelial nephrons responsible for blood filtration. Regenerating the kidney requires the induction of the more than 20 distinct cell types required for excretion and the regulation of pH, and electrolyte and fluid balance. We have previously described the simultaneous induction of progenitors for both collecting duct and nephrons via the directed differentiation of human pluripotent stem cells. Paradoxically, although both are of intermediate mesoderm in origin, collecting duct and nephrons have distinct temporospatial origins. Here we identify the developmental mechanism regulating the preferential induction of collecting duct versus kidney mesenchyme progenitors. Using this knowledge, we have generated kidney organoids that contain nephrons associated with a collecting duct network surrounded by renal interstitium and endothelial cells. Within these organoids, individual nephrons segment into distal and proximal tubules, early loops of Henle, and glomeruli containing podocytes elaborating foot processes and undergoing vascularization. When transcription profiles of kidney organoids were compared to human fetal tissues, they showed highest congruence with first trimester human kidney. Furthermore, the proximal tubules endocytose dextran and differentially apoptose in response to cisplatin, a nephrotoxicant. Such kidney organoids represent powerful models of the human organ for future applications, including nephrotoxicity screening, disease modelling and as a source of cells for therapy.
Collapse
|
180
|
Takasato M, Little MH. The origin of the mammalian kidney: implications for recreating the kidney in vitro. Development 2015; 142:1937-47. [PMID: 26015537 DOI: 10.1242/dev.104802] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mammalian kidney, the metanephros, is a mesodermal organ classically regarded as arising from the intermediate mesoderm (IM). Indeed, both the ureteric bud (UB), which gives rise to the ureter and the collecting ducts, and the metanephric mesenchyme (MM), which forms the rest of the kidney, derive from the IM. Based on an understanding of the signalling molecules crucial for IM patterning and kidney morphogenesis, several studies have now generated UB or MM, or both, in vitro via the directed differentiation of human pluripotent stem cells. Although these results support the IM origin of the UB and the MM, they challenge the simplistic view of a common progenitor for these two populations, prompting a reanalysis of early patterning events within the IM. Here, we review our understanding of the origin of the UB and the MM in mouse, and discuss how this impacts on kidney regeneration strategies and furthers our understanding of human development.
Collapse
Affiliation(s)
- Minoru Takasato
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| |
Collapse
|
181
|
Zubkov V, Combes A, Short K, Lefevre J, Hamilton N, Smyth I, Little M, Byrne H. A spatially-averaged mathematical model of kidney branching morphogenesis. J Theor Biol 2015; 379:24-37. [DOI: 10.1016/j.jtbi.2015.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 04/09/2015] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
|
182
|
Podocyte Regeneration Driven by Renal Progenitors Determines Glomerular Disease Remission and Can Be Pharmacologically Enhanced. Stem Cell Reports 2015; 5:248-63. [PMID: 26235895 PMCID: PMC4618832 DOI: 10.1016/j.stemcr.2015.07.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/06/2015] [Accepted: 07/06/2015] [Indexed: 12/25/2022] Open
Abstract
Podocyte loss is a general mechanism of glomerular dysfunction that initiates and drives the progression of chronic kidney disease, which affects 10% of the world population. Here, we evaluate whether the regenerative response to podocyte injury influences chronic kidney disease outcome. In models of focal segmental glomerulosclerosis performed in inducible transgenic mice where podocytes are tagged, remission or progression of disease was determined by the amount of regenerated podocytes. When the same model was established in inducible transgenic mice where renal progenitors are tagged, the disease remitted if renal progenitors successfully differentiated into podocytes, while it persisted if differentiation was ineffective, resulting in glomerulosclerosis. Treatment with BIO, a GSK3s inhibitor, significantly increased disease remission by enhancing renal progenitor sensitivity to the differentiation effect of endogenous retinoic acid. These results establish renal progenitors as critical determinants of glomerular disease outcome and a pharmacological enhancement of their differentiation as a possible therapeutic strategy.
Collapse
|
183
|
Brown AC, Muthukrishnan SD, Oxburgh L. A synthetic niche for nephron progenitor cells. Dev Cell 2015; 34:229-41. [PMID: 26190145 DOI: 10.1016/j.devcel.2015.06.021] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 05/16/2015] [Accepted: 06/19/2015] [Indexed: 01/06/2023]
Abstract
FGF, BMP, and WNT balance embryonic nephron progenitor cell (NPC) renewal and differentiation. By modulating these pathways, we have created an in vitro niche in which NPCs from embryonic kidneys or derived from human embryonic stem cells can be propagated. NPC cultures expanded up to one billion-fold in this environment can be induced to form tubules expressing nephron differentiation markers. Single-cell culture reveals phenotypic variability within the early CITED1-expressing NPC compartment, indicating that it is a mixture of cells with varying progenitor potential. Furthermore, we find that the developmental age of NPCs does not correlate with propagation capacity, indicating that cessation of nephrogenesis is related to factors other than an intrinsic clock. This in vitro nephron progenitor niche will have important applications for expansion of cells for engraftment and will facilitate investigation of mechanisms that determine the balance between renewal and differentiation in these cells.
Collapse
Affiliation(s)
- Aaron C Brown
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | - Sree Deepthi Muthukrishnan
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | - Leif Oxburgh
- Center for Molecular Medicine, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA.
| |
Collapse
|
184
|
Wainwright EN, Wilhelm D, Combes AN, Little MH, Koopman P. ROBO2 restricts the nephrogenic field and regulates Wolffian duct-nephrogenic cord separation. Dev Biol 2015; 404:88-102. [PMID: 26116176 DOI: 10.1016/j.ydbio.2015.05.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/28/2015] [Accepted: 05/30/2015] [Indexed: 01/03/2023]
Abstract
ROBO2 plays a key role in regulating ureteric bud (UB) formation in the embryo, with mutations in humans and mice leading to supernumerary kidneys. Previous studies have established that the number and position of UB outgrowths is determined by the domain of metanephric mesenchymal Gdnf expression, which is expanded anteriorly in Robo2 mouse mutants. To clarify how this phenotype arises, we used high-resolution 3D imaging to reveal an increase in the number of nephrogenic cord cells, leading to extension of the metanephric mesenchyme field in Robo2-null mouse embryos. Ex vivo experiments suggested a dependence of this effect on proliferative signals from the Wolffian duct. Loss of Robo2 resulted in a failure of the normal separation of the mesenchyme from the Wolffian duct/ureteric epithelium, suggesting that aberrant juxtaposition of these two compartments in Robo2-null mice exposes the mesenchyme to abnormally high levels of proliferative stimuli. Our data suggest a new model in which SLIT-ROBO signalling acts not by attenuating Gdnf expression or activity, but instead by limiting epithelial/mesenchymal interactions in the nascent metanephros and restricting the extent of the nephrogenic field. These insights illuminate the aetiology of multiplex kidney formation in human individuals with ROBO2 mutations.
Collapse
Affiliation(s)
- Elanor N Wainwright
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Dagmar Wilhelm
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alexander N Combes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Koopman
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
185
|
Yuri S, Nishikawa M, Yanagawa N, Jo OD, Yanagawa N. Maintenance of Mouse Nephron Progenitor Cells in Aggregates with Gamma-Secretase Inhibitor. PLoS One 2015; 10:e0129242. [PMID: 26075891 PMCID: PMC4468097 DOI: 10.1371/journal.pone.0129242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/06/2015] [Indexed: 01/27/2023] Open
Abstract
Knowledge on how to maintain and expand nephron progenitor cells (NPC) in vitro is important to provide a potentially valuable source for kidney replacement therapies. In our present study, we examined the possibility of optimizing NPC maintenance in the "re-aggregate" system. We found that Six2-expressing (Six2(+))-NPC could be maintained in aggregates reconstituted with dispersed cells from E12.5 mouse embryonic kidneys for at least up to 21 days in culture. The maintenance of Six2(+)-NPC required the presence of ureteric bud cells. The number of Six2(+)-NPC increased by more than 20-fold at day 21, but plateaued after day 14. In an attempt to further sustain NPC proliferation by passage subculture, we found that the new (P1) aggregates reconstituted from the original (P0) aggregates failed to maintain NPC. However, based on the similarity between P1 aggregates and aggregates derived from E15.5 embryonic kidneys, we suspected that the differentiated NPC in P1 aggregates may interfere with NPC maintenance. In support of this notion, we found that preventing NPC differentiation by DAPT, a γ-secretase inhibitor that inhibits Notch signaling pathway, was effective to maintain and expand Six2(+)-NPC in P1 aggregates by up to 65-fold. The Six2(+)-NPC in P1 aggregates retained their potential to epithelialize upon exposure to Wnt signal. In conclusion, we demonstrated in our present study that the "re-aggregation" system can be useful for in vitro maintenance of NPC when combined with γ-secretase inhibitor.
Collapse
Affiliation(s)
- Shunsuke Yuri
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, California, United States of America
- University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
- * E-mail: (SY); (NY)
| | - Masaki Nishikawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, California, United States of America
- University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
| | - Naomi Yanagawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, California, United States of America
- University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
| | - Oak D. Jo
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, California, United States of America
- University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
| | - Norimoto Yanagawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, California, United States of America
- University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
- * E-mail: (SY); (NY)
| |
Collapse
|
186
|
Faire M, Skillern A, Arora R, Nguyen DH, Wang J, Chamberlain C, German MS, Fung JC, Laird DJ. Follicle dynamics and global organization in the intact mouse ovary. Dev Biol 2015; 403:69-79. [PMID: 25889274 DOI: 10.1016/j.ydbio.2015.04.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/23/2015] [Accepted: 04/08/2015] [Indexed: 10/23/2022]
Abstract
Quantitative analysis of tissues and organs can reveal large-scale patterning as well as the impact of perturbations and aging on biological architecture. Here we develop tools for imaging of single cells in intact organs and computational approaches to assess spatial relationships in 3D. In the mouse ovary, we use nuclear volume of the oocyte to read out quiescence or growth of oocyte-somatic cell units known as follicles. This in-ovary quantification of non-growing follicle dynamics from neonate to adult fits a mathematical function, which corroborates the model of fixed oocyte reserve. Mapping approaches show that radial organization of folliculogenesis established in the newborn ovary is preserved through adulthood. By contrast, inter-follicle clustering increases during aging with different dynamics depending on size. These broadly applicable tools can reveal high dimensional phenotypes and age-related architectural changes in other organs. In the adult mouse pancreas, we find stochastic radial organization of the islets of Langerhans but evidence for localized interactions among the smallest islets.
Collapse
Affiliation(s)
- Mehlika Faire
- Department of Ob/Gyn and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad, Center for Regeneration Medicine & Stem Cell Research, United States
| | - Amanda Skillern
- Department of Ob/Gyn and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad, Center for Regeneration Medicine & Stem Cell Research, United States
| | - Ripla Arora
- Department of Ob/Gyn and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad, Center for Regeneration Medicine & Stem Cell Research, United States
| | - Daniel H Nguyen
- Department of Ob/Gyn and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad, Center for Regeneration Medicine & Stem Cell Research, United States
| | - Jason Wang
- Diabetes Center UCSF, 35 Medical Center Way, San Francisco, CA 94043, United States
| | - Chester Chamberlain
- Diabetes Center UCSF, 35 Medical Center Way, San Francisco, CA 94043, United States
| | - Michael S German
- Diabetes Center UCSF, 35 Medical Center Way, San Francisco, CA 94043, United States
| | - Jennifer C Fung
- Department of Ob/Gyn and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad, Center for Regeneration Medicine & Stem Cell Research, United States
| | - Diana J Laird
- Department of Ob/Gyn and Reproductive Sciences, Center for Reproductive Sciences, Eli and Edythe Broad, Center for Regeneration Medicine & Stem Cell Research, United States.
| |
Collapse
|
187
|
Little MH. Improving our resolution of kidney morphogenesis across time and space. Curr Opin Genet Dev 2015; 32:135-43. [PMID: 25819979 DOI: 10.1016/j.gde.2015.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 12/23/2022]
Abstract
As with many mammalian organs, size and cellular complexity represent considerable challenges to the comprehensive analysis of kidney organogenesis. Traditional analyses in the mouse have revealed early patterning events and spatial cellular relationships. However, an understanding of later events is lacking. The generation of a comprehensive temporospatial atlas of gene expression during kidney development has facilitated advances in lineage definition, as well as selective compartment ablation. Advances in quantitative and dynamic imaging have allowed comprehensive analyses at the level of organ, component tissue and cell across kidney organogenesis. Such approaches will enhance our understanding of the links between kidney development and final postnatal organ function. The final frontier will be translating this understanding to outcomes for renal disease in humans.
Collapse
Affiliation(s)
- Melissa H Little
- The Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, Victoria, Australia.
| |
Collapse
|
188
|
Nagalakshmi VK, Yu J. The ureteric bud epithelium: morphogenesis and roles in metanephric kidney patterning. Mol Reprod Dev 2015; 82:151-66. [PMID: 25783232 DOI: 10.1002/mrd.22462] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/12/2015] [Indexed: 01/03/2023]
Abstract
The mammalian metanephric kidney is composed of two epithelial components, the collecting duct system and the nephron epithelium, that differentiate from two different tissues -the ureteric bud epithelium and the nephron progenitors, respectively-of intermediate mesoderm origin. The collecting duct system is generated through reiterative ureteric bud branching morphogenesis, whereas the nephron epithelium is formed in a process termed nephrogenesis, which is initiated with the mesenchymal-epithelial transition of the nephron progenitors. Ureteric bud branching morphogenesis is regulated by nephron progenitors, and in return, the ureteric bud epithelium regulates nephrogenesis. The metanephric kidney is physiologically divided along the corticomedullary axis into subcompartments that are enriched with specific segments of these two epithelial structures. Here, we provide an overview of the major molecular and cellular processes underlying the morphogenesis and patterning of the ureteric bud epithelium and its roles in the cortico-medullary patterning of the metanephric kidney.
Collapse
Affiliation(s)
- Vidya K Nagalakshmi
- Department of Cell Biology and Division of Center of Immunity, Inflammation and Regenerative Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | | |
Collapse
|
189
|
Abstract
The mammalian kidney forms via cell-cell interactions between an epithelial outgrowth of the nephric duct and the surrounding nephrogenic mesenchyme. Initial morphogenetic events include ureteric bud branching to form the collecting duct (CD) tree and mesenchymal-to-epithelial transitions to form the nephrons, requiring reciprocal induction between adjacent mesenchyme and epithelial cells. Within the tips of the branching ureteric epithelium, cells respond to mesenchyme-derived trophic factors by proliferation, migration, and mitosis-associated cell dispersal. Self-inhibition signals from one tip to another play a role in branch patterning. The position, survival, and fate of the nephrogenic mesenchyme are regulated by ECM and secreted signals from adjacent tip and stroma. Signals from the ureteric tip promote mesenchyme self-renewal and trigger nephron formation. Subsequent fusion to the CDs, nephron segmentation and maturation, and formation of a patent glomerular basement membrane also require specialized cell-cell interactions. Differential cadherin, laminin, nectin, and integrin expression, as well as intracellular kinesin and actin-mediated regulation of cell shape and adhesion, underlies these cell-cell interactions. Indeed, the capacity for the kidney to form via self-organization has now been established both via the recapitulation of expected morphogenetic interactions after complete dissociation and reassociation of cellular components during development as well as the in vitro formation of 3D kidney organoids from human pluripotent stem cells. As we understand more about how the many cell-cell interactions required for kidney formation operate, this enables the prospect of bioengineering replacement structures based on these self-organizing properties.
Collapse
|
190
|
Sampogna RV, Schneider L, Al-Awqati Q. Developmental Programming of Branching Morphogenesis in the Kidney. J Am Soc Nephrol 2015; 26:2414-22. [PMID: 25644110 DOI: 10.1681/asn.2014090886] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/03/2014] [Indexed: 11/03/2022] Open
Abstract
The kidney developmental program encodes the intricate branching and organization of approximately 1 million functional units (nephrons). Branching regulation is poorly understood, as is the source of a 10-fold variation in nephron number. Notably, low nephron count increases the risk for developing hypertension and renal failure. To better understand the source of this variation, we analyzed the complete gestational trajectory of mouse kidney development. We constructed a computerized architectural map of the branching process throughout fetal life and found that organogenesis is composed of two distinct developmental phases, each with stage-specific rate and morphologic parameters. The early phase is characterized by a rapid acceleration in branching rate and by branching divisions that repeat with relatively reproducible morphology. The latter phase, however, is notable for a significantly decreased yet constant branching rate and the presence of nonstereotyped branching events that generate progressive variability in tree morphology until birth. Our map identifies and quantitates the contribution of four developmental mechanisms that guide organogenesis: growth, patterning, branching rate, and nephron induction. When applied to organs that developed under conditions of malnutrition or in the setting of growth factor mutation, our normative map provided an essential link between kidney architecture and the fundamental morphogenetic mechanisms that guide development. This morphogenetic map is expected to find widespread applications and help identify modifiable targets to prevent developmental programming of common diseases.
Collapse
Affiliation(s)
- Rosemary V Sampogna
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Laura Schneider
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| | - Qais Al-Awqati
- Division of Nephrology, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
| |
Collapse
|
191
|
Hadsell DL, Hadsell LA, Olea W, Rijnkels M, Creighton CJ, Smyth I, Short KM, Cox LL, Cox TC. In-silico QTL mapping of postpubertal mammary ductal development in the mouse uncovers potential human breast cancer risk loci. Mamm Genome 2015; 26:57-79. [PMID: 25552398 DOI: 10.1007/s00335-014-9551-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/03/2014] [Indexed: 01/02/2023]
Abstract
Genetic background plays a dominant role in mammary gland development and breast cancer (BrCa). Despite this, the role of genetics is only partially understood. This study used strain-dependent variation in an inbred mouse mapping panel, to identify quantitative trait loci (QTL) underlying structural variation in mammary ductal development, and determined if these QTL correlated with genomic intervals conferring BrCa susceptibility in humans. For about half of the traits, developmental variation among the complete set of strains in this study was greater (P < 0.05) than that of previously studied strains, or strains in current common use for mammary gland biology. Correlations were also detected with previously reported variation in mammary tumor latency and metastasis. In-silico genome-wide association identified 20 mammary development QTL (Mdq). Of these, five were syntenic with previously reported human BrCa loci. The most significant (P = 1 × 10(-11)) association of the study was on MMU6 and contained the genes Plxna4, Plxna4os1, and Chchd3. On MMU5, a QTL was detected (P = 8 × 10(-7)) that was syntenic to a human BrCa locus on h12q24.5 containing the genes Tbx3 and Tbx5. Intersection of linked SNP (r(2) > 0.8) with genomic and epigenomic features, and intersection of candidate genes with gene expression and survival data from human BrCa highlighted several for further study. These results support the conclusion that mammary tumorigenesis and normal ductal development are influenced by common genetic factors and that further studies of genetically diverse mice can improve our understanding of BrCa in humans.
Collapse
Affiliation(s)
- Darryl L Hadsell
- Department of Pediatrics, USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates St. Suite 10072, Mail Stop: BCM-320, Houston, TX, 77030-2600, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Nagalakshmi VK, Lindner V, Wessels A, Yu J. microRNA-dependent temporal gene expression in the ureteric bud epithelium during mammalian kidney development. Dev Dyn 2014; 244:444-56. [PMID: 25369991 DOI: 10.1002/dvdy.24221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Our previous study on mouse mutants with the ureteric bud (UB) epithelium-specific Dicer deletion (Dicer UB mutants) demonstrated the significance of UB epithelium-derived miRNAs in UB development. RESULTS Our whole-genome transcriptional profiling showed that the Dicer mutant UB epithelium abnormally retained transcriptional features of the early UB epithelium and failed to express many genes associated with collecting duct differentiation. Furthermore, we identified a temporal expression pattern of early UB genes during UB epithelium development in which gene expression was detected at early developmental stages and became undetectable by embryonic day 14.5. In contrast, expression of early UB genes persisted at later stages in the Dicer mutant UB epithelium and increased at early stages. Our bioinformatic analysis of the abnormally persistently expressed early genes in the Dicer mutant UB epithelium showed significant enrichment of the let-7 family miRNA targets. We further identified a temporal expression pattern of let-7 miRNAs in the UB epithelium that is anti-parallel to that of some early UB genes during kidney development. CONCLUSIONS We propose a model in which the let-7 family miRNAs silence the expression of a subset of early genes in the UB epithelium at later developmental stages to promote collecting duct differentiation. Developmental Dynamics 244:444-456, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vidya K Nagalakshmi
- Department of Cell Biology and Child Health Research Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | | | | | | |
Collapse
|
193
|
Abstract
Developmental branching morphogenesis establishes organ architecture, and it is driven by iterative interactions between epithelial and mesenchymal progenitor cell populations. We describe an approach for analyzing this interaction and how it contributes to organ development. After initial in vivo cell labeling with the nucleoside analog 5-ethynyl-2'-deoxyuridine (EdU) and tissue-specific antibodies, optical projection tomography (OPT) and confocal microscopy are used to image the developing organ. These imaging data then inform a second analysis phase that quantifies (using Imaris and Tree Surveyor software), models and integrates these events at a cell and tissue level in 3D space and across developmental time. The protocol establishes a benchmark for assessing the impact of genetic change or fetal environment on organogenesis that does not rely on ex vivo organ culture or section-based reconstruction. By using this approach, examination of two developmental stages for an organ such as the kidney can be undertaken by a postdoctoral-level researcher in 6 weeks, with a full developmental analysis in mouse achievable in 5 months.
Collapse
|
194
|
Humphreys BD. Cutting to the chase: taking the pulse of label-retaining cells in kidney. Am J Physiol Renal Physiol 2014; 308:F29-30. [PMID: 25298529 DOI: 10.1152/ajprenal.00538.2014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Benjamin D Humphreys
- Brigham and Women's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; and Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
195
|
O'Brien LL, McMahon AP. Induction and patterning of the metanephric nephron. Semin Cell Dev Biol 2014; 36:31-8. [PMID: 25194660 DOI: 10.1016/j.semcdb.2014.08.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/18/2014] [Accepted: 08/25/2014] [Indexed: 12/14/2022]
Abstract
The functional unit of the mammalian metanephric kidney is the nephron: a complex tubular structure dedicated to blood filtration and maintenance of several important physiological functions. Nephrons are assembled from a nephron-restricted pool of mesenchymal progenitors over an extensive developmental period that is completed prior to (human), or shortly after (mouse), birth. An appropriate balance in the expansion and commitment of nephron progenitors to nephron formation is essential for normal kidney function. Too few nephrons increase risk of kidney disease later in life while the failure of normal progenitor differentiation in Wilm's tumor patients leads to massive growth of a nephroblast population often necessitating surgical removal of the kidney. An inductive process within the metanephric mesenchyme leads to the formation of a pretubular aggregate which transitions into an epithelial renal vesicle: the precursor for nephron assembly. Growth, morphogenesis and patterning transform this simple cyst-like structure into a highly elongated mature nephron with distinct cell types positioned along a proximal (glomerular) to distal (connecting segment) axis of functional organization. This review discusses our current understanding of the specification, maintenance and commitment of nephron progenitors, and the regulatory processes that transform the renal vesicle into a nephron.
Collapse
Affiliation(s)
- Lori L O'Brien
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA.
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
196
|
Wainstock D. New patterns and architectures. Dev Cell 2014; 29:129. [PMID: 24780730 DOI: 10.1016/j.devcel.2014.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|