151
|
Baringou S, Rouault JD, Koken M, Hardivillier Y, Hurtado L, Leignel V. Diversity of cytosolic HSP70 Heat Shock Protein from decapods and their phylogenetic placement within Arthropoda. Gene 2016; 591:97-107. [PMID: 27374152 DOI: 10.1016/j.gene.2016.06.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/25/2016] [Accepted: 06/29/2016] [Indexed: 01/16/2023]
Abstract
The 70kDa heat shock proteins (HSP70) are considered the most conserved members of the HSP family. These proteins are primordial to the cell, because of their implications in many cellular pathways (e. g., development, immunity) and also because they minimize the effects of multiple stresses (e. g., temperature, pollutants, salinity, radiations). In the cytosol, two ubiquitous HSP70s with either a constitutive (HSC70) or an inducible (HSP70) expression pattern are found in all metazoan species, encoded by 5 or 6 genes (Drosophila melanogaster or yeast and human respectively). The cytosolic HSP70 protein family is considered a major actor in environmental adaptation, and widely used in ecology as an important biomarker of environmental stress. Nevertheless, the diversity of cytosolic HSP70 remains unclear amongst the Athropoda phylum, especially within decapods. Using 122 new and 311 available sequences, we carried out analyses of the overall cytosolic HSP70 diversity in arthropods (with a focus on decapods) and inferred molecular phylogenies. Overall structural and phylogenetic analyses showed a surprisingly high diversity in cytosolic HSP70 and revealed the existence of several unrecognised groups. All crustacean HSP70 sequences present signature motifs and molecular weights characteristic of non-organellar HSP70, with multiple specific substitutions in the protein sequence. The cytosolic HSP70 family in arthropods appears to be constituted of at least three distinct groups (annotated as A, B and C), which comprise several subdivisions, including both constitutive and inducible forms. Group A is constituted by several classes of Arthropods, while group B and C seem to be specific to Malacostraca and Hexapoda/Chelicerata, respectively. The HSP70 organization appeared much more complex than previously suggested, and far beyond a simple differentiation according to their expression pattern (HSC70 versus HSP70). This study proposes a new classification of cytosolic HSP70 and an evolutionary model of the distinct forms amongst the Arthropoda phylum. The observed differences between HSP70 groups will probably have to be linked to distinct interactions with co-chaperones or other co-factors.
Collapse
Affiliation(s)
- Stephane Baringou
- Université du Maine, Laboratoire Mer-Molécules-Santé FR-CNRS 3473 IUML, Avenue Olivier Messiaen, 72085 Le Mans, France.
| | - Jacques-Deric Rouault
- Laboratoire Evolution, Génomes et Spéciation, UPR9034, CNRS, 91198 Gif-sur-Yvette, France; Université Paris, Sud 11, 91405, Orsay, France.
| | | | - Yann Hardivillier
- Université du Maine, Laboratoire Mer-Molécules-Santé FR-CNRS 3473 IUML, Avenue Olivier Messiaen, 72085 Le Mans, France.
| | - Luis Hurtado
- Department of Wildlife and Fisheries, Texas A&M University, Old Heep Building 110E, TAMU College Station, TX 77843-2258, USA.
| | - Vincent Leignel
- Université du Maine, Laboratoire Mer-Molécules-Santé FR-CNRS 3473 IUML, Avenue Olivier Messiaen, 72085 Le Mans, France.
| |
Collapse
|
152
|
Gadhave K, Bolshette N, Ahire A, Pardeshi R, Thakur K, Trandafir C, Istrate A, Ahmed S, Lahkar M, Muresanu DF, Balea M. The ubiquitin proteasomal system: a potential target for the management of Alzheimer's disease. J Cell Mol Med 2016; 20:1392-407. [PMID: 27028664 PMCID: PMC4929298 DOI: 10.1111/jcmm.12817] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/17/2016] [Indexed: 01/06/2023] Open
Abstract
The cellular quality control system degrades abnormal or misfolded proteins and consists of three different mechanisms: the ubiquitin proteasomal system (UPS), autophagy and molecular chaperones. Any disturbance in this system causes proteins to accumulate, resulting in neurodegenerative diseases such as amyotrophic lateral sclerosis, Alzheimer's disease (AD), Parkinson's disease, Huntington's disease and prion or polyglutamine diseases. Alzheimer's disease is currently one of the most common age-related neurodegenerative diseases. However, its exact cause and pathogenesis are unknown. Currently approved medications for AD provide symptomatic relief; however, they fail to influence disease progression. Moreover, the components of the cellular quality control system represent an important focus for the development of targeted and potent therapies for managing AD. This review aims to evaluate whether existing evidence supports the hypothesis that UPS impairment causes the early pathogenesis of neurodegenerative disorders. The first part presents basic information about the UPS and its molecular components. The next part explains how the UPS is involved in neurodegenerative disorders. Finally, we emphasize how the UPS influences the management of AD. This review may help in the design of future UPS-related therapies for AD.
Collapse
Affiliation(s)
- Kundlik Gadhave
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Nityanand Bolshette
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Ashutosh Ahire
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Rohit Pardeshi
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Krishan Thakur
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Cristiana Trandafir
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alexandru Istrate
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Sahabuddin Ahmed
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Mangala Lahkar
- Laboratory of Neurobiology, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
- Institutional Level Biotech hub (IBT hub), Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Gauhati Medical College, Guwahati, Assam, India
| | - Dafin F Muresanu
- Faculty of Medicine, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- Department of Clinical Neurosciences, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
- "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Maria Balea
- Department of Clinical Neurosciences, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| |
Collapse
|
153
|
Chouhan AK, Guo C, Hsieh YC, Ye H, Senturk M, Zuo Z, Li Y, Chatterjee S, Botas J, Jackson GR, Bellen HJ, Shulman JM. Uncoupling neuronal death and dysfunction in Drosophila models of neurodegenerative disease. Acta Neuropathol Commun 2016; 4:62. [PMID: 27338814 PMCID: PMC4918017 DOI: 10.1186/s40478-016-0333-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 06/07/2016] [Indexed: 02/04/2023] Open
Abstract
Common neurodegenerative proteinopathies, such as Alzheimer's disease (AD) and Parkinson's disease (PD), are characterized by the misfolding and aggregation of toxic protein species, including the amyloid beta (Aß) peptide, microtubule-associated protein Tau (Tau), and alpha-synuclein (αSyn) protein. These factors also show toxicity in Drosophila; however, potential limitations of prior studies include poor discrimination between effects on the adult versus developing nervous system and neuronal versus glial cell types. In addition, variable expression paradigms and outcomes hinder systematic comparison of toxicity profiles. Using standardized conditions and medium-throughput assays, we express human Tau, Aß or αSyn selectively in neurons of the adult Drosophila retina and monitor age-dependent changes in both structure and function, based on tissue histology and recordings of the electroretinogram (ERG), respectively. We find that each protein causes a unique profile of neurodegenerative pathology, demonstrating distinct and separable impacts on neuronal death and dysfunction. Strikingly, expression of Tau leads to progressive loss of ERG responses whereas retinal architecture and neuronal numbers are largely preserved. By contrast, Aß induces modest, age-dependent neuronal loss without degrading the retinal ERG. αSyn expression, using a codon-optimized transgene, is characterized by marked retinal vacuolar change, progressive photoreceptor cell death, and delayed-onset but modest ERG changes. Lastly, to address potential mechanisms, we perform transmission electron microscopy (TEM) to reveal potential degenerative changes at the ultrastructural level. Surprisingly, Tau and αSyn each cause prominent but distinct synaptotoxic profiles, including disorganization or enlargement of photoreceptor terminals, respectively. Our findings highlight variable and dynamic properties of neurodegeneration triggered by these disease-relevant proteins in vivo, and suggest that Drosophila may be useful for revealing determinants of neuronal dysfunction that precede cell loss, including synaptic changes, in the adult nervous system.
Collapse
|
154
|
Joshi KK, Matlack TL, Rongo C. Dopamine signaling promotes the xenobiotic stress response and protein homeostasis. EMBO J 2016; 35:1885-901. [PMID: 27261197 DOI: 10.15252/embj.201592524] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 05/03/2016] [Indexed: 01/11/2023] Open
Abstract
Multicellular organisms encounter environmental conditions that adversely affect protein homeostasis (proteostasis), including extreme temperatures, toxins, and pathogens. It is unclear how they use sensory signaling to detect adverse conditions and then activate stress response pathways so as to offset potential damage. Here, we show that dopaminergic mechanosensory neurons in C. elegans release the neurohormone dopamine to promote proteostasis in epithelia. Signaling through the DA receptor DOP-1 activates the expression of xenobiotic stress response genes involved in pathogenic resistance and toxin removal, and these genes are required for the removal of unstable proteins in epithelia. Exposure to a bacterial pathogen (Pseudomonas aeruginosa) results in elevated removal of unstable proteins in epithelia, and this enhancement requires DA signaling. In the absence of DA signaling, nematodes show increased sensitivity to pathogenic bacteria and heat-shock stress. Our results suggest that dopaminergic sensory neurons, in addition to slowing down locomotion upon sensing a potential bacterial feeding source, also signal to frontline epithelia to activate the xenobiotic stress response so as to maintain proteostasis and prepare for possible infection.
Collapse
Affiliation(s)
- Kishore K Joshi
- Department of Genetics, The Waksman Institute Rutgers The State University of New Jersey, Piscataway, NJ, USA
| | - Tarmie L Matlack
- Department of Genetics, The Waksman Institute Rutgers The State University of New Jersey, Piscataway, NJ, USA
| | - Christopher Rongo
- Department of Genetics, The Waksman Institute Rutgers The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
155
|
Yang H, Hu HY. Sequestration of cellular interacting partners by protein aggregates: implication in a loss-of-function pathology. FEBS J 2016; 283:3705-3717. [PMID: 27016044 DOI: 10.1111/febs.13722] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/11/2016] [Accepted: 03/24/2016] [Indexed: 01/09/2023]
Abstract
Protein misfolding and aggregation are a hallmark of several neurodegenerative diseases (NDs). However, how protein aggregation leads to cytotoxicity and neurodegeneration is still controversial. Emerging evidence demonstrates that sequestration of cellular-interacting partners by protein aggregates contributes to the pathogenesis of these diseases. Here, we review current research on sequestration of cellular proteins by protein aggregates and its relation to proteinopathies. Based on different interaction modes, we classify these protein sequestrations into four types: protein coaggregation, domain/motif-mediated sequestration, RNA-assisted sequestration, and sequestration of molecular chaperones. Thus, the cellular essential proteins and/or RNA hijacked by protein aggregates may lose their biological functions, consequently resulting in cytotoxicity and neurodegeneration. We have proposed a hijacking model recapitulating the sequestration process and the loss-of-function pathology of ND.
Collapse
Affiliation(s)
- Hui Yang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong-Yu Hu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
156
|
Selective role of autophagy in neuronal function and neurodegenerative diseases. Neurosci Bull 2016; 31:379-81. [PMID: 26254057 DOI: 10.1007/s12264-015-1551-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
157
|
Ruiz R, Pérez-Villegas EM, Bachiller S, Rosa JL, Armengol JA. HERC 1 Ubiquitin Ligase Mutation Affects Neocortical, CA3 Hippocampal and Spinal Cord Projection Neurons: An Ultrastructural Study. Front Neuroanat 2016; 10:42. [PMID: 27147983 PMCID: PMC4834294 DOI: 10.3389/fnana.2016.00042] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/04/2016] [Indexed: 12/14/2022] Open
Abstract
The spontaneous mutation tambaleante is caused by the Gly483Glu substitution in the highly conserved N terminal RCC1-like domain of the HERC1 protein, which leads to the increase of mutated protein levels responsible for cerebellar Purkinje cell death by autophagy. Until now, Purkinje cells have been the only central nervous neurons reported as being targeted by the mutation, and their degeneration elicits an ataxic syndrome in adult mutant mice. However, the ultrastructural analysis performed here demonstrates that signs of autophagy, such as autophagosomes, lysosomes, and altered mitochondria, are present in neocortical pyramidal, CA3 hippocampal pyramidal, and spinal cord motor neurons. The main difference is that the reduction in the number of neurons affected in the tambaleante mutation in the neocortex, the hippocampus, and the spinal cord is not so evident as the dramatic loss of cerebellar Purkinje cells. Interestingly, signs of autophagy are absent in both interneurons and neuroglia cells. Affected neurons have in common that they are projection neurons which receive strong and varied synaptic inputs, and possess the highest degree of neuronal activity. Therefore, because the integrity of the ubiquitin-proteasome system is essential for protein degradation and hence, for normal protein turnover, it could be hypothesized that the deleterious effects of the misrouting of these pathways would depend directly on the neuronal activity.
Collapse
Affiliation(s)
- Rocío Ruiz
- Department of Biochemistry and Molecular Biology, University of SevilleSeville, Spain; Department of Physiology, Anatomy and Cell Biology, University Pablo de OlavideSeville, Spain
| | | | - Sara Bachiller
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide Seville, Spain
| | - José Luis Rosa
- Departament de Ciències Fisiològiques II, IDIBELL, Campus Bellvitge, University of Barcelona Barcelona, Spain
| | - José Angel Armengol
- Department of Physiology, Anatomy and Cell Biology, University Pablo de Olavide Seville, Spain
| |
Collapse
|
158
|
CPAD, Curated Protein Aggregation Database: A Repository of Manually Curated Experimental Data on Protein and Peptide Aggregation. PLoS One 2016; 11:e0152949. [PMID: 27043825 PMCID: PMC4820268 DOI: 10.1371/journal.pone.0152949] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/20/2016] [Indexed: 11/24/2022] Open
Abstract
Accurate distinction between peptide sequences that can form amyloid-fibrils or amorphous β-aggregates, identification of potential aggregation prone regions in proteins, and prediction of change in aggregation rate of a protein upon mutation(s) are critical to research on protein misfolding diseases, such as Alzheimer’s and Parkinson’s, as well as biotechnological production of protein based therapeutics. We have developed a Curated Protein Aggregation Database (CPAD), which has collected results from experimental studies performed by scientific community aimed at understanding protein/peptide aggregation. CPAD contains more than 2300 experimentally observed aggregation rates upon mutations in known amyloidogenic proteins. Each entry includes numerical values for the following parameters: change in rate of aggregation as measured by fluorescence intensity or turbidity, name and source of the protein, Uniprot and Protein Data Bank codes, single point as well as multiple mutations, and literature citation. The data in CPAD has been supplemented with five different types of additional information: (i) Amyloid fibril forming hexa-peptides, (ii) Amorphous β-aggregating hexa-peptides, (iii) Amyloid fibril forming peptides of different lengths, (iv) Amyloid fibril forming hexa-peptides whose crystal structures are available in the Protein Data Bank (PDB) and (v) Experimentally validated aggregation prone regions found in amyloidogenic proteins. Furthermore, CPAD is linked to other related databases and resources, such as Uniprot, Protein Data Bank, PUBMED, GAP, TANGO, WALTZ etc. We have set up a web interface with different search and display options so that users have the ability to get the data in multiple ways. CPAD is freely available at http://www.iitm.ac.in/bioinfo/CPAD/. The potential applications of CPAD have also been discussed.
Collapse
|
159
|
Edens BM, Miller N, Ma YC. Impaired Autophagy and Defective Mitochondrial Function: Converging Paths on the Road to Motor Neuron Degeneration. Front Cell Neurosci 2016; 10:44. [PMID: 26973461 PMCID: PMC4776126 DOI: 10.3389/fncel.2016.00044] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/08/2016] [Indexed: 12/12/2022] Open
Abstract
Selective motor neuron degeneration is a hallmark of amyotrophic lateral sclerosis (ALS). Around 10% of all cases present as familial ALS (FALS), while sporadic ALS (SALS) accounts for the remaining 90%. Diverse genetic mutations leading to FALS have been identified, but the underlying causes of SALS remain largely unknown. Despite the heterogeneous and incompletely understood etiology, different types of ALS exhibit overlapping pathology and common phenotypes, including protein aggregation and mitochondrial deficiencies. Here, we review the current understanding of mechanisms leading to motor neuron degeneration in ALS as they pertain to disrupted cellular clearance pathways, ATP biogenesis, calcium buffering and mitochondrial dynamics. Through focusing on impaired autophagic and mitochondrial functions, we highlight how the convergence of diverse cellular processes and pathways contributes to common pathology in motor neuron degeneration.
Collapse
Affiliation(s)
- Brittany M. Edens
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Lurie Children’s Hospital of ChicagoChicago, IL, USA
| | - Nimrod Miller
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Lurie Children’s Hospital of ChicagoChicago, IL, USA
| | - Yong-Chao Ma
- Departments of Pediatrics, Neurology, and Physiology, Northwestern University Feinberg School of MedicineChicago, IL, USA
- Lurie Children’s Hospital of ChicagoChicago, IL, USA
| |
Collapse
|
160
|
Kumar S, Thangakani AM, Nagarajan R, Singh SK, Velmurugan D, Gromiha MM. Autoimmune Responses to Soluble Aggregates of Amyloidogenic Proteins Involved in Neurodegenerative Diseases: Overlapping Aggregation Prone and Autoimmunogenic regions. Sci Rep 2016; 6:22258. [PMID: 26924748 PMCID: PMC4770294 DOI: 10.1038/srep22258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
Why do patients suffering from neurodegenerative diseases generate autoantibodies that selectively bind soluble aggregates of amyloidogenic proteins? Presently, molecular basis of interactions between the soluble aggregates and human immune system is unknown. By analyzing sequences of experimentally validated T-cell autoimmune epitopes, aggregating peptides, amyloidogenic proteins and randomly generated peptides, here we report overlapping regions that likely drive aggregation as well as generate autoantibodies against the aggregates. Sequence features, that make short peptides susceptible to aggregation, increase their incidence in human T-cell autoimmune epitopes by 4–6 times. Many epitopes are predicted to be significantly aggregation prone (aggregation propensities ≥10%) and the ones containing experimentally validated aggregating regions are enriched in hydrophobicity by 10–20%. Aggregate morphologies also influence Human Leukocyte Antigen (HLA) - types recognized by the aggregating regions containing epitopes. Most (88%) epitopes that contain amyloid fibril forming regions bind HLA-DR, while majority (63%) of those containing amorphous β-aggregating regions bind HLA-DQ. More than two-thirds (70%) of human amyloidogenic proteins contain overlapping regions that are simultaneously aggregation prone and auto-immunogenic. Such regions help clear soluble aggregates by generating selective autoantibodies against them. This can be harnessed for early diagnosis of proteinopathies and for drug/vaccine design against them.
Collapse
Affiliation(s)
- Sandeep Kumar
- Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield MO 63017, USA
| | - A Mary Thangakani
- Center for Advanced Studies in Crystallography and Biophysics and Bioinformatics Infrastructure Facility, University of Madras, Chennai 600025, India
| | - R Nagarajan
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Satish K Singh
- Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., 700 Chesterfield Parkway West, Chesterfield MO 63017, USA
| | - D Velmurugan
- Center for Advanced Studies in Crystallography and Biophysics and Bioinformatics Infrastructure Facility, University of Madras, Chennai 600025, India
| | - M Michael Gromiha
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
161
|
HSF1: Guardian of Proteostasis in Cancer. Trends Cell Biol 2015; 26:17-28. [PMID: 26597576 DOI: 10.1016/j.tcb.2015.10.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/21/2015] [Accepted: 10/22/2015] [Indexed: 12/12/2022]
Abstract
Proteomic instability is causally related to human diseases. In guarding proteome stability, the heat shock factor 1 (HSF1)-mediated proteotoxic stress response plays a pivotal role. Contrasting with its beneficial role of enhancing cell survival, recent findings have revealed a compelling pro-oncogenic role for HSF1. However, the mechanisms underlying the persistent activation and function of HSF1 within malignancy remain poorly understood. Emerging evidence reveals that oncogenic signaling mobilizes HSF1 and that cancer cells rely on HSF1 to avert proteomic instability and repress tumor-suppressive amyloidogenesis. In aggregate, these new developments suggest that cancer cells endure chronic proteotoxic stress and that proteomic instability is intrinsically associated with the malignant state, a characteristic that could be exploited to combat cancer.
Collapse
|
162
|
Autophagy and Neurodegeneration: Insights from a Cultured Cell Model of ALS. Cells 2015; 4:354-86. [PMID: 26287246 PMCID: PMC4588041 DOI: 10.3390/cells4030354] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 07/07/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022] Open
Abstract
Autophagy plays a major role in the elimination of cellular waste components, the renewal of intracellular proteins and the prevention of the build-up of redundant or defective material. It is fundamental for the maintenance of homeostasis and especially important in post-mitotic neuronal cells, which, without competent autophagy, accumulate protein aggregates and degenerate. Many neurodegenerative diseases are associated with defective autophagy; however, whether altered protein turnover or accumulation of misfolded, aggregate-prone proteins is the primary insult in neurodegeneration has long been a matter of debate. Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by selective degeneration of motor neurons. Most of the ALS cases occur in sporadic forms (SALS), while 10%–15% of the cases have a positive familial history (FALS). The accumulation in the cell of misfolded/abnormal proteins is a hallmark of both SALS and FALS, and altered protein degradation due to autophagy dysregulation has been proposed to contribute to ALS pathogenesis. In this review, we focus on the main molecular features of autophagy to provide a framework for discussion of our recent findings about the role in disease pathogenesis of the ALS-linked form of the VAPB gene product, a mutant protein that drives the generation of unusual cytoplasmic inclusions.
Collapse
|