151
|
Harsh S, Ozakman Y, Kitchen SM, Paquin-Proulx D, Nixon DF, Eleftherianos I. Dicer-2 Regulates Resistance and Maintains Homeostasis against Zika Virus Infection in Drosophila. THE JOURNAL OF IMMUNOLOGY 2018; 201:3058-3072. [PMID: 30305326 DOI: 10.4049/jimmunol.1800597] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022]
Abstract
Zika virus (ZIKV) outbreaks pose a massive public health threat in several countries. We have developed an in vivo model to investigate the host-ZIKV interaction in Drosophila We have found that a strain of ZIKV replicates in wild-type flies without reducing their survival ability. We have shown that ZIKV infection triggers RNA interference and that mutating Dicer-2 results in enhanced ZIKV load and increased susceptibility to ZIKV infection. Using a flavivirus-specific Ab, we have found that ZIKV is localized in the gut and fat body cells of the infected wild-type flies and results in their perturbed homeostasis. In addition, Dicer-2 mutants display severely reduced insulin activity, which could contribute toward the increased mortality of these flies. Our work establishes the suitability of Drosophila as the model system to study host-ZIKV dynamics, which is expected to greatly advance our understanding of the molecular and physiological processes that determine the outcome of this disease.
Collapse
Affiliation(s)
- Sneh Harsh
- Department of Biological Sciences, The Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052; and
| | - Yaprak Ozakman
- Department of Biological Sciences, The Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052; and
| | - Shannon M Kitchen
- Department of Microbiology, Immunology, and Tropical Medicine, GW School of Medicine & Health Sciences, The George Washington University, Washington, DC 20052
| | - Dominic Paquin-Proulx
- Department of Microbiology, Immunology, and Tropical Medicine, GW School of Medicine & Health Sciences, The George Washington University, Washington, DC 20052
| | - Douglas F Nixon
- Department of Microbiology, Immunology, and Tropical Medicine, GW School of Medicine & Health Sciences, The George Washington University, Washington, DC 20052
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The Institute for Biomedical Sciences, The George Washington University, Washington, DC 20052; and
| |
Collapse
|
152
|
Wang ZY, Ragsdale CW. Multiple optic gland signaling pathways implicated in octopus maternal behaviors and death. J Exp Biol 2018; 221:jeb185751. [PMID: 30104305 PMCID: PMC6198452 DOI: 10.1242/jeb.185751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/01/2018] [Indexed: 01/02/2023]
Abstract
Post-reproductive life in the female octopus is characterized by an extreme pattern of maternal care: the mother cares for her clutch of eggs without feeding until her death. These maternal behaviors are eradicated if the optic glands, the octopus analog of the vertebrate pituitary gland, are removed from brooding females. Despite the optic gland's importance in regulating maternal behavior, the molecular features underlying optic gland function are unknown. Here, we identify major signaling systems of the Octopus bimaculoides optic gland. Through behavioral analyses and transcriptome sequencing, we report that the optic gland undergoes remarkable molecular changes that coincide with transitions between behavioral stages. These include the dramatic upregulation and downregulation of catecholamine, steroid, insulin and feeding peptide pathways. Transcriptome analyses in other tissues demonstrate that these molecular changes are not generalized markers of senescence, but instead, specific features of the optic glands. Our study expands the classic optic gland-pituitary gland analogy and more specifically, it indicates that, rather than a single 'self-destruct' hormone, the maternal optic glands employ multiple pathways as systemic hormonal signals of behavioral regulation.
Collapse
Affiliation(s)
- Z Yan Wang
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | - Clifton W Ragsdale
- Department of Neurobiology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
153
|
Xu C, Ericsson M, Perrimon N. Understanding cellular signaling and systems biology with precision: A perspective from ultrastructure and organelle studies in the Drosophila midgut. CURRENT OPINION IN SYSTEMS BIOLOGY 2018; 11:24-31. [PMID: 31595264 PMCID: PMC6781628 DOI: 10.1016/j.coisb.2018.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
One of the aims of systems biology is to model and discover properties of cells, tissues and organisms functioning as a system. In recent years, studies in the adult Drosophila gut have provided a wealth of information on the cell types and their functions, and the signaling pathways involved in the complex interactions between proliferating and differentiated cells in the context of homeostasis and pathology. Here, we document and discuss how high-resolution ultrastructure studies of organelle morphology have much to contribute to our understanding of how the gut functions as an integrated system.
Collapse
Affiliation(s)
- Chiwei Xu
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Maria Ericsson
- Department of Cell Biology, Electron Microscopy Facility, Harvard Medical School, Goldenson 323, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
154
|
Singh T, Lee EH, Hartman TR, Ruiz-Whalen DM, O'Reilly AM. Opposing Action of Hedgehog and Insulin Signaling Balances Proliferation and Autophagy to Determine Follicle Stem Cell Lifespan. Dev Cell 2018; 46:720-734.e6. [PMID: 30197240 PMCID: PMC6159899 DOI: 10.1016/j.devcel.2018.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/07/2018] [Accepted: 08/09/2018] [Indexed: 10/28/2022]
Abstract
Egg production declines with age in many species, a process linked with stem cell loss. Diet-dependent signaling has emerged as critical for stem cell maintenance during aging. Follicle stem cells (FSCs) in the Drosophila ovary are exquisitely responsive to diet-induced signals including Hedgehog (Hh) and insulin-IGF signaling (IIS), entering quiescence in the absence of nutrients and initiating proliferation rapidly upon feeding. Although highly proliferative FSCs generally exhibit an extended lifespan, we find that constitutive Hh signaling drives FSC loss and premature sterility despite high proliferative rates. This occurs due to Hh-mediated induction of autophagy in FSCs via a Ptc-dependent, Smo-independent mechanism. Hh-dependent autophagy increases during aging, triggering FSC loss and consequent reproductive arrest. IIS is necessary and sufficient to suppress Hh-induced autophagy, promoting a stable proliferative state. These results suggest that opposing action of diet-responsive IIS and Hh signals determine reproductive lifespan by modulating the proliferation-autophagy balance in FSCs during aging.
Collapse
Affiliation(s)
- Tanu Singh
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA; Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19111, USA
| | - Eric H Lee
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Tiffiney R Hartman
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Dara M Ruiz-Whalen
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Alana M O'Reilly
- Department of Molecular Therapeutics, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| |
Collapse
|
155
|
Dpp regulates autophagy-dependent midgut removal and signals to block ecdysone production. Cell Death Differ 2018; 26:763-778. [PMID: 29959404 PMCID: PMC6460390 DOI: 10.1038/s41418-018-0154-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 02/08/2023] Open
Abstract
Animal development and homeostasis require the programmed removal of cells. Autophagy-dependent cell deletion is a unique form of cell death often involved in bulk degradation of tissues. In Drosophila the steroid hormone ecdysone controls developmental transitions and triggers the autophagy-dependent removal of the obsolete larval midgut. The production of ecdysone is exquisitely coordinated with signals from numerous organ systems to mediate the correct timing of such developmental programs. Here we report an unexpected role for the Drosophila bone morphogenetic protein/transforming growth factor β ligand, Decapentaplegic (Dpp), in the regulation of ecdysone-mediated midgut degradation. We show that blocking Dpp signaling induces premature autophagy, rapid cell death, and midgut degradation, whereas sustained Dpp signaling inhibits autophagy induction. Furthermore, Dpp signaling in the midgut prevents the expression of ecdysone responsive genes and impairs ecdysone production in the prothoracic gland. We propose that Dpp has dual roles: one within the midgut to prevent improper tissue degradation, and one in interorgan communication to coordinate ecdysone biosynthesis and developmental timing.
Collapse
|
156
|
Rossi F, Molnar C, Hashiyama K, Heinen JP, Pampalona J, Llamazares S, Reina J, Hashiyama T, Rai M, Pollarolo G, Fernández-Hernández I, Gonzalez C. An in vivo genetic screen in Drosophila identifies the orthologue of human cancer/testis gene SPO11 among a network of targets to inhibit lethal(3)malignant brain tumour growth. Open Biol 2018; 7:rsob.170156. [PMID: 28855394 PMCID: PMC5577452 DOI: 10.1098/rsob.170156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 07/27/2017] [Indexed: 12/31/2022] Open
Abstract
Using transgenic RNAi technology, we have screened over 4000 genes to identify targets to inhibit malignant growth caused by the loss of function of lethal(3)malignant brain tumour in Drosophila in vivo. We have identified 131 targets, which belong to a wide range of gene ontologies. Most of these target genes are not significantly overexpressed in mbt tumours hence showing that, rather counterintuitively, tumour-linked overexpression is not a good predictor of functional requirement. Moreover, we have found that most of the genes upregulated in mbt tumours remain overexpressed in tumour-suppressed double-mutant conditions, hence revealing that most of the tumour transcriptome signature is not necessarily correlated with malignant growth. One of the identified target genes is meiotic W68 (mei-W68), the Drosophila orthologue of the human cancer/testis gene Sporulation-specific protein 11 (SPO11), the enzyme that catalyses the formation of meiotic double-strand breaks. We show that Drosophila mei-W68/SPO11 drives oncogenesis by causing DNA damage in a somatic tissue, hence providing the first instance in which a SPO11 orthologue is unequivocally shown to have a pro-tumoural role. Altogether, the results from this screen point to the possibility of investigating the function of human cancer relevant genes in a tractable experimental model organism like Drosophila.
Collapse
Affiliation(s)
- Fabrizio Rossi
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Cristina Molnar
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Kazuya Hashiyama
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jan P Heinen
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Judit Pampalona
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Salud Llamazares
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - José Reina
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Tomomi Hashiyama
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Madhulika Rai
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Giulia Pollarolo
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Ismael Fernández-Hernández
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Cayetano Gonzalez
- Cell Division Group, Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain .,Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 08010 Barcelona, Spain
| |
Collapse
|
157
|
Steroid signaling mediates nutritional regulation of juvenile body growth via IGF-binding protein in Drosophila. Proc Natl Acad Sci U S A 2018; 115:5992-5997. [PMID: 29784791 DOI: 10.1073/pnas.1718834115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nutritional condition during the juvenile growth period considerably affects final adult size. The insulin/insulin-like growth factor signaling (IIS)/target of rapamycin (TOR) nutrient-sensing pathway is known to regulate growth and metabolism in response to nutritional conditions. However, there is limited information on how endocrine pathways communicate nutritional information to different metabolic organs to regulate organismal growth. Here, we show that Imaginal morphogenesis protein-Late 2 (Imp-L2), a Drosophila homolog of insulin-like growth factor-binding protein 7 (IGFBP7), plays a key role in the nutritional control of organismal growth. Nutritional restriction during the larval growth period causes undersized adults, which is largely diminished by Imp-L2 mutation. We delineate a pathway in which nutritional restriction increases levels of the steroid hormone ecdysone, which, in turn, triggers ecdysone signaling-dependent Imp-L2 production from the fat body, a fly adipose organ, thereby attenuating peripheral IIS and body growth. Surprisingly, this endocrine pathway operates independent of the fat-body-TOR internal nutrient sensor, long believed to be the control center for nutrition-dependent growth. Our study reveals a previously unrecognized endocrine circuit mediating nutrition-dependent juvenile growth, which could also potentially be related to the insulin resistance frequently observed in puberty.
Collapse
|
158
|
Enya S, Kawakami K, Suzuki Y, Kawaoka S. A novel zebrafish intestinal tumor model reveals a role for cyp7a1-dependent tumor-liver crosstalk in causing adverse effects on the host. Dis Model Mech 2018; 11:dmm.032383. [PMID: 29592890 PMCID: PMC6124559 DOI: 10.1242/dmm.032383] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/12/2018] [Indexed: 12/18/2022] Open
Abstract
The nature of host organs and genes that underlie tumor-induced physiological disruption on the host remains ill-defined. Here, we establish a novel zebrafish intestinal tumor model that is suitable for addressing this issue, and find that hepatic cyp7a1, the rate-limiting factor for synthesizing bile acids [or, in the case of zebrafish, bile alcohol (BA)], is such a host gene. Inducing krasG12D by Gal4 specifically expressed in the posterior intestine resulted in the formation of an intestinal tumor. The local intestinal tumor caused systemic detrimental effects on the host, including liver inflammation, hepatomegaly, growth defects and organismal death. Whole-organism-level gene expression analysis and metabolite measurements revealed that the intestinal tumor reduced total BA levels, possibly via altered expression of hepatic cyp7a1 Genetically overexpressing cyp7a1 in the liver restored BA synthesis and ameliorated tumor-induced liver inflammation, but not other tumor-dependent phenotypes. Thus, we found a previously unknown role of cyp7a1 as the host gene that links the intestinal tumor, hepatic cholesterol-BA metabolism and liver inflammation in tumor-bearing zebrafish larvae. Our model provides an important basis to discover host genes responsible for tumor-induced phenotypes and to uncover mechanisms underlying how tumors adversely affect host organisms.
Collapse
Affiliation(s)
- Sora Enya
- Advanced Telecommunications Research Institute International (ATR), The Thomas N. Sato BioMEC-X Laboratories, Kyoto 619-0288, Japan.,ERATO Sato Live Bio-forecasting Project, Japan Science and Technology Agency (JST), Kyoto 619-0288, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Yutaka Suzuki
- The University of Tokyo, Graduate School of Frontier Science, Kashiwa 277-8651, Japan
| | - Shinpei Kawaoka
- Advanced Telecommunications Research Institute International (ATR), The Thomas N. Sato BioMEC-X Laboratories, Kyoto 619-0288, Japan .,ERATO Sato Live Bio-forecasting Project, Japan Science and Technology Agency (JST), Kyoto 619-0288, Japan
| |
Collapse
|
159
|
Stuelten CH, Parent CA, Montell DJ. Cell motility in cancer invasion and metastasis: insights from simple model organisms. Nat Rev Cancer 2018; 18:296-312. [PMID: 29546880 PMCID: PMC6790333 DOI: 10.1038/nrc.2018.15] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Metastasis remains the greatest challenge in the clinical management of cancer. Cell motility is a fundamental and ancient cellular behaviour that contributes to metastasis and is conserved in simple organisms. In this Review, we evaluate insights relevant to human cancer that are derived from the study of cell motility in non-mammalian model organisms. Dictyostelium discoideum, Caenorhabditis elegans, Drosophila melanogaster and Danio rerio permit direct observation of cells moving in complex native environments and lend themselves to large-scale genetic and pharmacological screening. We highlight insights derived from each of these organisms, including the detailed signalling network that governs chemotaxis towards chemokines; a novel mechanism of basement membrane invasion; the positive role of E-cadherin in collective direction-sensing; the identification and optimization of kinase inhibitors for metastatic thyroid cancer on the basis of work in flies; and the value of zebrafish for live imaging, especially of vascular remodelling and interactions between tumour cells and host tissues. While the motility of tumour cells and certain host cells promotes metastatic spread, the motility of tumour-reactive T cells likely increases their antitumour effects. Therefore, it is important to elucidate the mechanisms underlying all types of cell motility, with the ultimate goal of identifying combination therapies that will increase the motility of beneficial cells and block the spread of harmful cells.
Collapse
Affiliation(s)
- Christina H. Stuelten
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Carole A. Parent
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
- Department of Pharmacology, Michigan Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- ;
| | - Denise J. Montell
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA, USA
- ;
| |
Collapse
|
160
|
Ma X, Lu JY, Dong Y, Li D, Malagon JN, Xu T. PP6 Disruption Synergizes with Oncogenic Ras to Promote JNK-Dependent Tumor Growth and Invasion. Cell Rep 2018; 19:2657-2664. [PMID: 28658615 DOI: 10.1016/j.celrep.2017.05.092] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 05/10/2017] [Accepted: 05/29/2017] [Indexed: 01/21/2023] Open
Abstract
RAS genes are frequently mutated in cancers, yet an effective treatment has not been developed, partly because of an incomplete understanding of signaling within Ras-related tumors. To address this, we performed a genetic screen in Drosophila, aiming to find mutations that cooperate with oncogenic Ras (RasV12) to induce tumor overgrowth and invasion. We identified fiery mountain (fmt), a regulatory subunit of the protein phosphatase 6 (PP6) complex, as a tumor suppressor that synergizes with RasV12 to drive c-Jun N-terminal kinase (JNK)-dependent tumor growth and invasiveness. We show that Fmt negatively regulates JNK upstream of dTAK1. We further demonstrate that disruption of PpV, the catalytic subunit of PP6, mimics fmt loss-of-function-induced tumorigenesis. Finally, Fmt synergizes with PpV to inhibit JNK-dependent tumor progression. Our data here further highlight the power of Drosophila as a model system to unravel molecular mechanisms that may be relevant to human cancer biology.
Collapse
Affiliation(s)
- Xianjue Ma
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06519, USA
| | - Jin-Yu Lu
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06519, USA
| | - Yongli Dong
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06519, USA
| | - Daming Li
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06519, USA
| | - Juan N Malagon
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06519, USA
| | - Tian Xu
- Howard Hughes Medical Institute, Department of Genetics, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06519, USA; State Key Laboratory of Genetic Engineering and National Center for International Research, Fudan-Yale Biomedical Research Center, Institute of Developmental Biology and Molecular Medicine, School of Life Sciences, Fudan University, Shanghai 200433, China.
| |
Collapse
|
161
|
Parvy JP, Hodgson JA, Cordero JB. Drosophila as a Model System to Study Nonautonomous Mechanisms Affecting Tumour Growth and Cell Death. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7152962. [PMID: 29725601 PMCID: PMC5872677 DOI: 10.1155/2018/7152962] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 02/04/2018] [Indexed: 12/26/2022]
Abstract
The study of cancer has represented a central focus in medical research for over a century. The great complexity and constant evolution of the pathology require the use of multiple research model systems and interdisciplinary approaches. This is necessary in order to achieve a comprehensive understanding into the mechanisms driving disease initiation and progression, to aid the development of appropriate therapies. In recent decades, the fruit fly Drosophila melanogaster and its associated powerful genetic tools have become a very attractive model system to study tumour-intrinsic and non-tumour-derived processes that mediate tumour development in vivo. In this review, we will summarize recent work on Drosophila as a model system to study cancer biology. We will focus on the interactions between tumours and their microenvironment, including extrinsic mechanisms affecting tumour growth and how tumours impact systemic host physiology.
Collapse
Affiliation(s)
- Jean-Philippe Parvy
- CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Joseph A. Hodgson
- CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Julia B. Cordero
- CRUK Beatson Institute, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| |
Collapse
|
162
|
Lee KA, Cho KC, Kim B, Jang IH, Nam K, Kwon YE, Kim M, Hyeon DY, Hwang D, Seol JH, Lee WJ. Inflammation-Modulated Metabolic Reprogramming Is Required for DUOX-Dependent Gut Immunity in Drosophila. Cell Host Microbe 2018; 23:338-352.e5. [DOI: 10.1016/j.chom.2018.01.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/07/2017] [Accepted: 01/23/2018] [Indexed: 12/22/2022]
|
163
|
Ohsawa S, Vaughen J, Igaki T. Cell Extrusion: A Stress-Responsive Force for Good or Evil in Epithelial Homeostasis. Dev Cell 2018; 44:284-296. [PMID: 29408235 DOI: 10.1016/j.devcel.2018.01.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 12/31/2022]
Abstract
Epithelial tissues robustly respond to internal and external stressors via dynamic cellular rearrangements. Cell extrusion acts as a key regulator of epithelial homeostasis by removing apoptotic cells, orchestrating morphogenesis, and mediating competitive cellular battles during tumorigenesis. Here, we delineate the diverse functions of cell extrusion during development and disease. We emphasize the expanding role for apoptotic cell extrusion in exerting morphogenetic forces, as well as the strong intersection of cell extrusion with cell competition, a homeostatic mechanism that eliminates aberrant or unfit cells. While cell competition and extrusion can exert potent, tumor-suppressive effects, dysregulation of either critical homeostatic program can fuel cancer progression.
Collapse
Affiliation(s)
- Shizue Ohsawa
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - John Vaughen
- Department of Developmental Biology, Stanford School of Medicine, Beckman Center, 279 Campus Drive B300, Stanford, CA 94305, USA
| | - Tatsushi Igaki
- Laboratory of Genetics, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
164
|
Mowers EE, Sharifi MN, Macleod KF. Functions of autophagy in the tumor microenvironment and cancer metastasis. FEBS J 2018; 285:1751-1766. [PMID: 29356327 DOI: 10.1111/febs.14388] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/07/2018] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Macro-autophagy is an ancient and highly conserved self-degradative process that plays a homeostatic role in normal cells by eliminating organelles, pathogens, and protein aggregates. Autophagy, as it is routinely referred to, also allows cells to maintain metabolic sufficiency and survive under conditions of nutrient stress by recycling the by-products of autophagic degradation, such as fatty acids, amino acids, and nucleotides. Tumor cells are more reliant than normal cells on autophagy for survival in part due to their rapid growth rate, altered metabolism, and nutrient-deprived growth environment. How this dependence of tumor cells on autophagy affects their progression to malignancy and metastatic disease is an area of increasing research focus. Here, we review recent work identifying critical functions for autophagy in tumor cell migration and invasion, tumor stem cell maintenance and therapy resistance, and cross-talk between tumor cells and their microenvironment.
Collapse
Affiliation(s)
- Erin E Mowers
- The Ben May Department for Cancer Research, University of Chicago, IL, USA.,The Committee on Cancer Biology, Chicago, IL, USA.,Inter-disciplinary Scientist Training Program, Chicago, IL, USA
| | - Marina N Sharifi
- The Ben May Department for Cancer Research, University of Chicago, IL, USA.,The Committee on Cancer Biology, Chicago, IL, USA.,Medical Scientist Training Program, Chicago, IL, USA
| | - Kay F Macleod
- The Ben May Department for Cancer Research, University of Chicago, IL, USA.,The Committee on Cancer Biology, Chicago, IL, USA.,The University of Chicago, IL, USA
| |
Collapse
|
165
|
|
166
|
Fischer Z, Das R, Shipman A, Fan JY, Pence L, Bouyain S, Dobens LL. A Drosophila model of insulin resistance associated with the human TRIB3 Q/R polymorphism. Dis Model Mech 2017; 10:1453-1464. [PMID: 29025897 PMCID: PMC5769606 DOI: 10.1242/dmm.030619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/05/2017] [Indexed: 12/12/2022] Open
Abstract
Members of the Tribbles family of proteins are conserved pseudokinases with diverse roles in cell growth and proliferation. Both Drosophila Tribbles (Trbl) and vertebrate Trib3 proteins bind to the kinase Akt (Akt1) to block its phosphorylation activation and reduce downstream insulin-stimulated anabolism. A single nucleotide polymorphism (SNP) variant in human TRIB3, which results in a glutamine (Q) to arginine (R) missense mutation in a conserved motif at position 84, confers stronger Akt binding, resulting in reduced Akt phosphorylation, and is associated with a predisposition to Type 2 diabetes, cardiovascular disease, diabetic nephropathy, chronic kidney disease and leukemogenesis. Here, we used a Drosophila model to understand the importance of the conserved R residue in several Trbl functions. In the fly fat body, misexpression of a site-directed Q mutation at position R141 resulted in weakened binding to Drosophila Akt (dAkt), leading to increased levels of phospho-dAkt, increased cell and tissue size, and increases in the levels of stored glycogen and triglycerides. Consistent with the functional conservation of this arginine in modulating Akt activity, mouse Trib3 R84 misexpressed in the fly fat body blocked dAkt phosphorylation with a strength similar to wild-type Trbl. Limited mutational analysis shows that the R141 site dictates the strength of Akt binding but does not affect other Trbl-dependent developmental processes, suggesting a specificity that could serve as a drug target for metabolic diseases.
Collapse
Affiliation(s)
- Zachary Fischer
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Rahul Das
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Anna Shipman
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Jin-Yuan Fan
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Laramie Pence
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Samuel Bouyain
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Leonard L Dobens
- Division of Molecular Biology and Biochemistry, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| |
Collapse
|
167
|
Herranz H, Cohen SM. Drosophila as a Model to Study the Link between Metabolism and Cancer. J Dev Biol 2017; 5:E15. [PMID: 29615570 PMCID: PMC5831792 DOI: 10.3390/jdb5040015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 12/15/2022] Open
Abstract
Cellular metabolism has recently been recognized as a hallmark of cancer. Investigating the origin and effects of the reprogrammed metabolism of tumor cells, and identifying its genetic mediators, will improve our understanding of how these changes contribute to disease progression and may suggest new approaches to therapy. Drosophila melanogaster is emerging as a valuable model to study multiple aspects of tumor formation and malignant transformation. In this review, we discuss the use of Drosophila as model to study how changes in cellular metabolism, as well as metabolic disease, contribute to cancer.
Collapse
Affiliation(s)
- Héctor Herranz
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 N Copenhagen, Denmark.
| | - Stephen M Cohen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3, 2200 N Copenhagen, Denmark.
| |
Collapse
|
168
|
Manning L, Sheth J, Bridges S, Saadin A, Odinammadu K, Andrew D, Spencer S, Montell D, Starz-Gaiano M. A hormonal cue promotes timely follicle cell migration by modulating transcription profiles. Mech Dev 2017; 148:56-68. [PMID: 28610887 PMCID: PMC5758037 DOI: 10.1016/j.mod.2017.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 04/30/2017] [Accepted: 06/09/2017] [Indexed: 12/12/2022]
Abstract
Cell migration is essential during animal development. In the Drosophila ovary, the steroid hormone ecdysone coordinates nutrient sensing, growth, and the timing of morphogenesis events including border cell migration. To identify downstream effectors of ecdysone signaling, we profiled gene expression in wild-type follicle cells compared to cells expressing a dominant negative Ecdysone receptor or its coactivator Taiman. Of approximately 400 genes that showed differences in expression, we validated 16 candidate genes for expression in border and centripetal cells, and demonstrated that seven responded to ectopic ecdysone activation by changing their transcriptional levels. We found a requirement for seven putative targets in effective cell migration, including two other nuclear hormone receptors, a calcyphosine-encoding gene, and a prolyl hydroxylase. Thus, we identified multiple new genetic regulators modulated at the level of transcription that allow cells to interpret information from the environment and coordinate cell migration in vivo.
Collapse
Affiliation(s)
- Lathiena Manning
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States; UNC Chapel Hill, NC, United States
| | - Jinal Sheth
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Stacey Bridges
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Afsoon Saadin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Kamsi Odinammadu
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States
| | - Deborah Andrew
- Johns Hopkins School of Medicine, Baltimore, MD, United States
| | | | - Denise Montell
- University of Santa Barbara, Santa Barbara, CA, United States.
| | - Michelle Starz-Gaiano
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD, United States.
| |
Collapse
|
169
|
Gangadharan A, Choi SE, Hassan A, Ayoub NM, Durante G, Balwani S, Kim YH, Pecora A, Goy A, Suh KS. Protein calorie malnutrition, nutritional intervention and personalized cancer care. Oncotarget 2017; 8:24009-24030. [PMID: 28177923 PMCID: PMC5410360 DOI: 10.18632/oncotarget.15103] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 01/23/2017] [Indexed: 12/27/2022] Open
Abstract
Cancer patients often experience weight loss caused by protein calorie malnutrition (PCM) during the course of the disease or treatment. PCM is expressed as severe if the patient has two or more of the following characteristics: obvious significant muscle wasting, loss of subcutaneous fat; nutritional intake of <50% of recommended intake for 2 weeks or more; bedridden or otherwise significantly reduced functional capacity; weight loss of >2% in 1 week, 5% in 1 month, or 7.5% in 3 months. Cancer anorexia-cachexia syndrome (CACS) is a multifactorial condition of advanced PCM associated with underlying illness (in this case cancer) and is characterized by loss of muscle with or without loss of fat mass. Cachexia is defined as weight loss of more than 5% of body weight in 12 months or less in the presence of chronic disease. Hence with a chronic illness on board even a small amount of weight loss can open the door to cachexia. These nutritional challenges can lead to severe morbidity and mortality in cancer patients. In the clinic, the application of personalized medicine and the ability to withstand the toxic effects of anti-cancer therapies can be optimized when the patient is in nutritional homeostasis and is free of anorexia and cachexia. Routine assessment of nutritional status and appropriate intervention are essential components of the effort to alleviate effects of malnutrition on quality of life and survival of patients.
Collapse
Affiliation(s)
- Anju Gangadharan
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Sung Eun Choi
- Department of Family, Nutrition, and Exercise Sciences, Queens College, The City University of New York, Flushing, NY, USA
| | - Ahmed Hassan
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Gina Durante
- Department of Clinical Nutrition, Baystate Medical Center, Springfield, MA, USA
| | - Sakshi Balwani
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Young Hee Kim
- Department of Clinical Nutrition, Baystate Medical Center, Springfield, MA, USA
| | - Andrew Pecora
- Clinical Divisions, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - Andre Goy
- Clinical Divisions, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| | - K Stephen Suh
- The Genomics and Biomarkers Program, JT Cancer Center, Hackensack University Medical Center, Hackensack Meridian Health, Hackensack, NJ, USA
| |
Collapse
|
170
|
Gervais L, Bardin AJ. Tissue homeostasis and aging: new insight from the fly intestine. Curr Opin Cell Biol 2017; 48:97-105. [DOI: 10.1016/j.ceb.2017.06.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 05/29/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022]
|
171
|
Krejci A, Tennessen JM. Metabolism in time and space – exploring the frontier of developmental biology. Development 2017; 144:3193-3198. [DOI: 10.1242/dev.150573] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite the fact that metabolic studies played a prominent role in the early history of developmental biology research, the field of developmental metabolism was largely ignored following the advent of modern molecular biology. Metabolism, however, has recently re-emerged as a focal point of biomedical studies and, as a result, developmental biologists are once again exploring the chemical and energetic forces that shape growth, development and maturation. In May 2017, a diverse group of scientists assembled at the EMBO/EMBL Symposium ‘Metabolism in Time and Space’ to discuss how metabolism influences cellular and developmental processes. The speakers not only described how metabolic flux adapts to the energetic needs of a developing organism, but also emphasized that metabolism can directly regulate developmental progression. Overall, and as we review here, this interdisciplinary meeting provided a valuable forum to explore the interface between developmental biology and metabolism.
Collapse
Affiliation(s)
- Alena Krejci
- University of South Bohemia, Faculty of Science, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
- Biology Centre, Institute of Entomology, Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Jason M. Tennessen
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
172
|
Activin signaling mediates muscle-to-adipose communication in a mitochondria dysfunction-associated obesity model. Proc Natl Acad Sci U S A 2017; 114:8596-8601. [PMID: 28739899 DOI: 10.1073/pnas.1708037114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial dysfunction has been associated with obesity and metabolic disorders. However, whether mitochondrial perturbation in a single tissue influences mitochondrial function and metabolic status of another distal tissue remains largely unknown. We analyzed the nonautonomous role of muscular mitochondrial dysfunction in Drosophila Surprisingly, impaired muscle mitochondrial function via complex I perturbation results in simultaneous mitochondrial dysfunction in the fat body (the fly adipose tissue) and subsequent triglyceride accumulation, the major characteristic of obesity. RNA-sequencing (RNA-seq) analysis, in the context of muscle mitochondrial dysfunction, revealed that target genes of the TGF-β signaling pathway were induced in the fat body. Strikingly, expression of the TGF-β family ligand, Activin-β (Actβ), was dramatically increased in the muscles by NF-κB/Relish (Rel) signaling in response to mitochondrial perturbation, and decreasing Actβ expression in mitochondrial-perturbed muscles rescued both the fat body mitochondrial dysfunction and obesity phenotypes. Thus, perturbation of muscle mitochondrial activity regulates mitochondrial function in the fat body nonautonomously via modulation of Activin signaling.
Collapse
|
173
|
Cox JE, Thummel CS, Tennessen JM. Metabolomic Studies in Drosophila. Genetics 2017; 206:1169-1185. [PMID: 28684601 PMCID: PMC5500124 DOI: 10.1534/genetics.117.200014] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 04/25/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolomic analysis provides a powerful new tool for studies of Drosophila physiology. This approach allows investigators to detect thousands of chemical compounds in a single sample, representing the combined contributions of gene expression, enzyme activity, and environmental context. Metabolomics has been used for a wide range of studies in Drosophila, often providing new insights into gene function and metabolic state that could not be obtained using any other approach. In this review, we survey the uses of metabolomic analysis since its entry into the field. We also cover the major methods used for metabolomic studies in Drosophila and highlight new directions for future research.
Collapse
Affiliation(s)
- James E Cox
- Department of Biochemistry and
- The Metabolomics Core Research Facility, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Carl S Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah 84112
| | - Jason M Tennessen
- Department of Biology, Indiana University, Bloomington, Indiana 47405
| |
Collapse
|
174
|
Luo B, Wang M, Hou N, Hu X, Jia G, Qin X, Zuo X, Liu Y, Luo K, Song W, Wang K, Pang M. ATP-Dependent Lon Protease Contributes to Helicobacter pylori-Induced Gastric Carcinogenesis. Neoplasia 2017; 18:242-52. [PMID: 27108387 PMCID: PMC4840290 DOI: 10.1016/j.neo.2016.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/18/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022] Open
Abstract
Helicobacter pylori infection is the strongest risk factor for development of gastric cancer. Host cellular stress responses, including inflammatory and immune responses, have been reported highly linked to H. pylori-induced carcinogenesis. However, whether mitochondrial regulation and metabolic reprogramming, which are potently associated with various cancers, play a role in H. pylori-induced gastric carcinogenesis is largely unknown. Here we revealed that Lon protease (Lonp1), which is a key inductive of mitochondrial unfolded protein response (UPR(mt)) and is required to maintain the mitochondrial quality, was greatly induced in H. pylori infected gastric epithelial cells. Importantly, we uncovered that knockdown of Lonp1 expression significantly diminished the metabolic switch to glycolysis and gastric cell proliferation associated with low multiplicity of H. pylori infection. In addition, Lonp1 overexpression in gastric epithelial cells also promoted glycolytic switch and cell overgrowth, suggesting H. pylori effect is Lonp1 dependent. We further demonstrated that H. pylori induced Lonp1 expression and cell overgrowth, at least partially, via HIF-1α regulation. Collectively, our results concluded the relevance of Lonp1 for cell proliferation and identified Lonp1 as a key regulator of metabolic reprogramming in H. pylori-induced gastric carcinogenesis.
Collapse
Affiliation(s)
- Bin Luo
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| | - Minggang Wang
- Department of Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, People's Republic of China
| | - Nengyi Hou
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| | - Xiao Hu
- Department of Gastroenterology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| | - Guiqing Jia
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| | - Xianpeng Qin
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| | - Xiaofei Zuo
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| | - Yang Liu
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| | - Kun Luo
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China
| | - Wei Song
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kang Wang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China.
| | - Minghui Pang
- Department of Gastrointestinal Surgery, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, People's Republic of China.
| |
Collapse
|
175
|
Liu Q, Jin LH. Organ-to-Organ Communication: A Drosophila Gastrointestinal Tract Perspective. Front Cell Dev Biol 2017; 5:29. [PMID: 28421183 PMCID: PMC5376570 DOI: 10.3389/fcell.2017.00029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/15/2017] [Indexed: 01/05/2023] Open
Abstract
The long-term maintenance of an organism's homeostasis and health relies on the accurate regulation of organ-organ communication. Recently, there has been growing interest in using the Drosophila gastrointestinal tract to elucidate the regulatory programs that underlie the complex interactions between organs. Data obtained in this field have dramatically improved our understanding of how organ-organ communication contributes to the regulation of various aspects of the intestine, including its metabolic and physiological status. However, although research uncovering regulatory programs associated with interorgan communication has provided key insights, the underlying mechanisms have not been extensively explored. In this review, we highlight recent findings describing gut-neighbor and neighbor-neighbor communication models in adults and larvae, respectively, with a special focus on how a range of critical strategies concerning continuous interorgan communication and adjustment can be used to manipulate different aspects of biological processes. Given the high degree of similarity between the Drosophila and mammalian intestinal epithelia, it can be anticipated that further analyses of the Drosophila gastrointestinal tract will facilitate the discovery of similar mechanisms underlying organ-organ communication in other mammalian organs, such as the human intestine.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Genetics, College of Life Sciences, Northeast Forestry UniversityHarbin, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry UniversityHarbin, China
| |
Collapse
|
176
|
Song W, Cheng D, Hong S, Sappe B, Hu Y, Wei N, Zhu C, O'Connor MB, Pissios P, Perrimon N. Midgut-Derived Activin Regulates Glucagon-like Action in the Fat Body and Glycemic Control. Cell Metab 2017; 25:386-399. [PMID: 28178568 PMCID: PMC5373560 DOI: 10.1016/j.cmet.2017.01.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 10/03/2016] [Accepted: 01/04/2017] [Indexed: 01/08/2023]
Abstract
While high-caloric diet impairs insulin response to cause hyperglycemia, whether and how counter-regulatory hormones are modulated by high-caloric diet is largely unknown. We find that enhanced response of Drosophila adipokinetic hormone (AKH, the glucagon homolog) in the fat body is essential for hyperglycemia associated with a chronic high-sugar diet. We show that the activin type I receptor Baboon (Babo) autonomously increases AKH signaling without affecting insulin signaling in the fat body via, at least, increase of Akh receptor (AkhR) expression. Further, we demonstrate that Activin-β (Actβ), an activin ligand predominantly produced in the enteroendocrine cells (EEs) of the midgut, is upregulated by chronic high-sugar diet and signals through Babo to promote AKH action in the fat body, leading to hyperglycemia. Importantly, activin signaling in mouse primary hepatocytes also increases glucagon response and glucagon-induced glucose production, indicating a conserved role for activin in enhancing AKH/glucagon signaling and glycemic control.
Collapse
Affiliation(s)
- Wei Song
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| | - Daojun Cheng
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Shangyu Hong
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Benoit Sappe
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Yanhui Hu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Neil Wei
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Changqi Zhu
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pavlos Pissios
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|
177
|
Microenvironmental autophagy promotes tumour growth. Nature 2017; 541:417-420. [PMID: 28077876 DOI: 10.1038/nature20815] [Citation(s) in RCA: 352] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 11/21/2016] [Indexed: 12/11/2022]
Abstract
As malignant tumours develop, they interact intimately with their microenvironment and can activate autophagy, a catabolic process which provides nutrients during starvation. How tumours regulate autophagy in vivo and whether autophagy affects tumour growth is controversial. Here we demonstrate, using a well characterized Drosophila melanogaster malignant tumour model, that non-cell-autonomous autophagy is induced both in the tumour microenvironment and systemically in distant tissues. Tumour growth can be pharmacologically restrained using autophagy inhibitors, and early-stage tumour growth and invasion are genetically dependent on autophagy within the local tumour microenvironment. Induction of autophagy is mediated by Drosophila tumour necrosis factor and interleukin-6-like signalling from metabolically stressed tumour cells, whereas tumour growth depends on active amino acid transport. We show that dormant growth-impaired tumours from autophagy-deficient animals reactivate tumorous growth when transplanted into autophagy-proficient hosts. We conclude that transformed cells engage surrounding normal cells as active and essential microenvironmental contributors to early tumour growth through nutrient-generating autophagy.
Collapse
|
178
|
Laws KM, Drummond-Barbosa D. Control of Germline Stem Cell Lineages by Diet and Physiology. Results Probl Cell Differ 2017; 59:67-99. [PMID: 28247046 DOI: 10.1007/978-3-319-44820-6_3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tight coupling of reproduction to environmental factors and physiological status is key to long-term species survival. In particular, highly conserved pathways modulate germline stem cell lineages according to nutrient availability. This chapter focuses on recent in vivo studies in genetic model organisms that shed light on how diet-dependent signals control the proliferation, maintenance, and survival of adult germline stem cells and their progeny. These signaling pathways can operate intrinsically in the germ line, modulate the niche, or act through intermediate organs to influence stem cells and their differentiating progeny. In addition to illustrating the extent of dietary regulation of reproduction, findings from these studies have implications for fertility during aging or disease states.
Collapse
Affiliation(s)
- Kaitlin M Laws
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Daniela Drummond-Barbosa
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA. .,Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
179
|
Alfa RW, Kim SK. Using Drosophila to discover mechanisms underlying type 2 diabetes. Dis Model Mech 2016; 9:365-76. [PMID: 27053133 PMCID: PMC4852505 DOI: 10.1242/dmm.023887] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mechanisms of glucose homeostasis are remarkably well conserved between the fruit flyDrosophila melanogasterand mammals. From the initial characterization of insulin signaling in the fly came the identification of downstream metabolic pathways for nutrient storage and utilization. Defects in these pathways lead to phenotypes that are analogous to diabetic states in mammals. These discoveries have stimulated interest in leveraging the fly to better understand the genetics of type 2 diabetes mellitus in humans. Type 2 diabetes results from insulin insufficiency in the context of ongoing insulin resistance. Although genetic susceptibility is thought to govern the propensity of individuals to develop type 2 diabetes mellitus under appropriate environmental conditions, many of the human genes associated with the disease in genome-wide association studies have not been functionally studied. Recent advances in the phenotyping of metabolic defects have positionedDrosophilaas an excellent model for the functional characterization of large numbers of genes associated with type 2 diabetes mellitus. Here, we examine results from studies modeling metabolic disease in the fruit fly and compare findings to proposed mechanisms for diabetic phenotypes in mammals. We provide a systematic framework for assessing the contribution of gene candidates to insulin-secretion or insulin-resistance pathways relevant to diabetes pathogenesis.
Collapse
Affiliation(s)
- Ronald W Alfa
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA Neuroscience Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA Department of Medicine (Oncology), Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
180
|
Wong ACN, Vanhove AS, Watnick PI. The interplay between intestinal bacteria and host metabolism in health and disease: lessons from Drosophila melanogaster. Dis Model Mech 2016; 9:271-81. [PMID: 26935105 PMCID: PMC4833331 DOI: 10.1242/dmm.023408] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All higher organisms negotiate a truce with their commensal microbes and battle pathogenic microbes on a daily basis. Much attention has been given to the role of the innate immune system in controlling intestinal microbes and to the strategies used by intestinal microbes to overcome the host immune response. However, it is becoming increasingly clear that the metabolisms of intestinal microbes and their hosts are linked and that this interaction is equally important for host health and well-being. For instance, an individual's array of commensal microbes can influence their predisposition to chronic metabolic diseases such as diabetes and obesity. A better understanding of host-microbe metabolic interactions is important in defining the molecular bases of these disorders and could potentially lead to new therapeutic avenues. Key advances in this area have been made using Drosophila melanogaster. Here, we review studies that have explored the impact of both commensal and pathogenic intestinal microbes on Drosophila carbohydrate and lipid metabolism. These studies have helped to elucidate the metabolites produced by intestinal microbes, the intestinal receptors that sense these metabolites, and the signaling pathways through which these metabolites manipulate host metabolism. Furthermore, they suggest that targeting microbial metabolism could represent an effective therapeutic strategy for human metabolic diseases and intestinal infection.
Collapse
Affiliation(s)
- Adam C N Wong
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Audrey S Vanhove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Paula I Watnick
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
181
|
Wakabayashi S, Sawamura N, Voelzmann A, Broemer M, Asahi T, Hoch M. Ohgata, the Single Drosophila Ortholog of Human Cereblon, Regulates Insulin Signaling-dependent Organismic Growth. J Biol Chem 2016; 291:25120-25132. [PMID: 27702999 PMCID: PMC5122779 DOI: 10.1074/jbc.m116.757823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Indexed: 11/06/2022] Open
Abstract
Cereblon (CRBN) is a substrate receptor of the E3 ubiquitin ligase complex that is highly conserved in animals and plants. CRBN proteins have been implicated in various biological processes such as development, metabolism, learning, and memory formation, and their impairment has been linked to autosomal recessive non-syndromic intellectual disability and cancer. Furthermore, human CRBN was identified as the primary target of thalidomide teratogenicity. Data on functional analysis of CRBN family members in vivo, however, are still scarce. Here we identify Ohgata (OHGT), the Drosophila ortholog of CRBN, as a regulator of insulin signaling-mediated growth. Using ohgt mutants that we generated by targeted mutagenesis, we show that its loss results in increased body weight and organ size without changes of the body proportions. We demonstrate that ohgt knockdown in the fat body, an organ analogous to mammalian liver and adipose tissue, phenocopies the growth phenotypes. We further show that overgrowth is due to an elevation of insulin signaling in ohgt mutants and to the down-regulation of inhibitory cofactors of circulating Drosophila insulin-like peptides (DILPs), named acid-labile subunit and imaginal morphogenesis protein-late 2. The two inhibitory proteins were previously shown to be components of a heterotrimeric complex with growth-promoting DILP2 and DILP5. Our study reveals OHGT as a novel regulator of insulin-dependent organismic growth in Drosophila.
Collapse
Affiliation(s)
- Satoru Wakabayashi
- From the Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan
| | - Naoya Sawamura
- From the Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan,
- the Research Organization for Nano-life Innovation, Waseda University, Shinjuku, Tokyo 162-0041, Japan
| | - André Voelzmann
- the Faculty of Biology, Medicine and Health, The University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Meike Broemer
- the German Center for Neurodegenerative Diseases (DZNE), c/o Life and Medical Sciences (LIMES) Institute, Carl-Troll-Strasse 31, 53115 Bonn, Germany, and
| | - Toru Asahi
- From the Faculty of Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu, Shinjuku, Tokyo 162-8480, Japan,
- the Research Organization for Nano-life Innovation, Waseda University, Shinjuku, Tokyo 162-0041, Japan
| | - Michael Hoch
- Program Unit Development, Genetics and Molecular Physiology, Laboratory for Molecular Developmental Biology, LIMES Institute, University of Bonn, Carl-Troll-Strasse 31, 53115 Bonn, Germany
| |
Collapse
|
182
|
Abstract
Studies in mammals and Drosophila have demonstrated the existence and significance of secreted factors involved in communication between distal organs. In this review, primarily focusing on Drosophila, we examine the known interorgan communication factors and their functions, physiological inducers, and integration in regulating physiology. Moreover, we describe how organ-sensing screens in Drosophila can systematically identify novel conserved interorgan communication factors. Finally, we discuss how interorgan communication enabled and evolved as a result of specialization of organs. Together, we anticipate that future studies will establish a model for metazoan interorgan communication network (ICN) and how it is deregulated in disease.
Collapse
Affiliation(s)
- Ilia A Droujinine
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115; ,
- Howard Hughes Medical Institute, Boston, Massachusetts 02115
| |
Collapse
|
183
|
Kreipke RE, Kwon YV, Shcherbata HR, Ruohola-Baker H. Drosophila melanogaster as a Model of Muscle Degeneration Disorders. Curr Top Dev Biol 2016; 121:83-109. [PMID: 28057309 DOI: 10.1016/bs.ctdb.2016.07.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Drosophila melanogaster provides a powerful platform with which researchers can dissect complex genetic questions and biochemical pathways relevant to a vast array of human diseases and disorders. Of particular interest, much work has been done with flies to elucidate the molecular mechanisms underlying muscle degeneration diseases. The fly is particularly useful for modeling muscle degeneration disorders because there are no identified satellite muscle cells to repair adult muscle following injury. This allows for the identification of endogenous processes of muscle degeneration as discrete events, distinguishable from phenotypes due to the lack of stem cell-based regeneration. In this review, we will discuss the ways in which the fruit fly provides a powerful platform with which to study human muscle degeneration disorders.
Collapse
Affiliation(s)
- R E Kreipke
- University of Washington, School of Medicine, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, United States
| | - Y V Kwon
- University of Washington, School of Medicine, Seattle, WA, United States
| | - H R Shcherbata
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - H Ruohola-Baker
- University of Washington, School of Medicine, Seattle, WA, United States; Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, United States.
| |
Collapse
|
184
|
Abstract
Cancer is a complex disease that affects multiple organs. Whole-body animal models provide important insights into oncology that can lead to clinical impact. Here, we review novel concepts that Drosophila studies have established for cancer biology, drug discovery, and patient therapy. Genetic studies using Drosophila have explored the roles of oncogenes and tumor-suppressor genes that when dysregulated promote cancer formation, making Drosophila a useful model to study multiple aspects of transformation. Not limited to mechanism analyses, Drosophila has recently been showing its value in facilitating drug development. Flies offer rapid, efficient platforms by which novel classes of drugs can be identified as candidate anticancer leads. Further, we discuss the use of Drosophila as a platform to develop therapies for individual patients by modeling the tumor's genetic complexity. Drosophila provides both a classical and a novel tool to identify new therapeutics, complementing other more traditional cancer tools.
Collapse
Affiliation(s)
- M Sonoshita
- Icahn School of Medicine at Mount Sinai, New York, NY, United States; Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - R L Cagan
- Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
185
|
Abstract
Metabolic dysfunction contributes to the clinical deterioration observed in advanced cancer patients and is characterized by weight loss, skeletal muscle wasting, and atrophy of the adipose tissue. This systemic syndrome, termed cancer-associated cachexia (CAC), is a major cause of morbidity and mortality. While once attributed solely to decreased food intake, the present description of cancer cachexia is a disorder of multiorgan energy imbalance. Here we review the molecules and pathways responsible for metabolic dysfunction in CAC and the ideas that led to the current understanding.
Collapse
Affiliation(s)
- Michele Petruzzelli
- Department of Oncology, The Medical Research Council Cancer Unit, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, United Kingdon
| | - Erwin F Wagner
- Genes, Development, and Disease Group, Cancer Cell Biology Programme, Centro Nacional de Investigaciones Oncológicas, Madrid 28029, Spain
| |
Collapse
|
186
|
Abstract
PURPOSE OF REVIEW Although cancer cachexia is a very significant condition that is present in up to 80% of cancer cases, the cause of the condition has remained a puzzle. Cancer cachexia is a condition which is mainly characterised by muscle wasting, mobilization of fat reserves, and overall metabolic disturbance. This review aims to highlight some of the recent findings in cancer cachexia research. RECENT RESEARCH It has been recently demonstrated that the expression of a single receptor, fibroblast growth factor-inducible 14, on a tumour can initiate cachexia and that this can be completely ablated by treatment with an antibody against this receptor. Also recently described was the role of parathyroid hormone receptor-binding proteins in causing cachexia through a mechanism where white adipose tissue is replaced with brown adipose tissue. In parallel, work done in drosophila suggests that the impaired insulin signalling is a direct cause of cancer cachexia through the release of an insulin growth factor binding protein that inhibits insulin and insulin-like growth factor 1 signalling. SUMMARY Successful therapies are urgently needed to combat cancer cachexia in the clinic. Recent research is making progress toward discovering the underlying molecular causes of the condition, which could lead to new therapeutic approaches and in the future contribute to more positive clinical outcomes for cancer sufferers.
Collapse
Affiliation(s)
- Amelia J Johnston
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | | |
Collapse
|
187
|
Zimmers TA, Fishel ML, Bonetto A. STAT3 in the systemic inflammation of cancer cachexia. Semin Cell Dev Biol 2016; 54:28-41. [PMID: 26860754 PMCID: PMC4867234 DOI: 10.1016/j.semcdb.2016.02.009] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 02/04/2016] [Indexed: 02/07/2023]
Abstract
Weight loss is diagnostic of cachexia, a debilitating syndrome contributing mightily to morbidity and mortality in cancer. Most research has probed mechanisms leading to muscle atrophy and adipose wasting in cachexia; however cachexia is a truly systemic phenomenon. Presence of the tumor elicits an inflammatory response and profound metabolic derangements involving not only muscle and fat, but also the hypothalamus, liver, heart, blood, spleen and likely other organs. This global response is orchestrated in part through circulating cytokines that rise in conditions of cachexia. Exogenous Interleukin-6 (IL6) and related cytokines can induce most cachexia symptomatology, including muscle and fat wasting, the acute phase response and anemia, while IL-6 inhibition reduces muscle loss in cancer. Although mechanistic studies are ongoing, certain of these cachexia phenotypes have been causally linked to the cytokine-activated transcription factor, STAT3, including skeletal muscle wasting, cardiac dysfunction and hypothalamic inflammation. Correlative studies implicate STAT3 in fat wasting and the acute phase response in cancer cachexia. Parallel data in non-cancer models and disease states suggest both pathological and protective functions for STAT3 in other organs during cachexia. STAT3 also contributes to cancer cachexia through enhancing tumorigenesis, metastasis and immune suppression, particularly in tumors associated with high prevalence of cachexia. This review examines the evidence linking STAT3 to multi-organ manifestations of cachexia and the potential and perils for targeting STAT3 to reduce cachexia and prolong survival in cancer patients.
Collapse
Affiliation(s)
- Teresa A Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IUPUI Center for Cachexia Research Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | - Melissa L Fishel
- IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Pediatrics, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, United States; Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| | - Andrea Bonetto
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IU Simon Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, United States; IUPUI Center for Cachexia Research Innovation and Therapy, Indiana University School of Medicine, Indianapolis, IN 46202, United States.
| |
Collapse
|
188
|
Huang XY, Huang ZL, Yang JH, Xu YH, Sun JS, Zheng Q, Wei C, Song W, Yuan Z. Pancreatic cancer cell-derived IGFBP-3 contributes to muscle wasting. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2016; 35:46. [PMID: 26975989 PMCID: PMC4791758 DOI: 10.1186/s13046-016-0317-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/29/2016] [Indexed: 01/27/2023]
Abstract
Background Progressive loss of skeletal muscle, termed muscle wasting, is a hallmark of cancer cachexia and contributes to weakness, reduced quality of life, as well as poor response to therapy. Previous studies have indicated that systemic host inflammatory response regarding tumor development results in muscle wasting. However, how tumor directly regulates muscle wasting via tumor-derived secreted proteins is still largely unknown. Methods In this study, we performed bioinformatics analysis in two datasets of pancreatic ductal adenocarcinoma, which causes cancer cachexia and muscle wasting with the highest prevalence, and uncovered that IGFBP3, which encodes IGF-binding protein-3 (IGFBP-3), is dramatically up-regulated in pancreatic tumor samples. We also verified the wasting effect of IGFBP-3 on C2C12 muscle cells with biochemical and genetic assays. Results IGFBP-3 potently leads to impaired myogenesis and enhanced muscle protein degradation, the major features of muscle wasting, via IGF signaling inhibition. Moreover, conditioned medium from Capan-1 pancreatic cancer cells, which contains abundant IGFBP-3, significantly induces muscle cell wasting. This wasting effect is potently alleviated by IGFBP3 knockdown in Capan-1 cells or IGFBP-3 antibody neutralization. Strikingly, compared to muscle cells, IGF signaling and proliferation rate of Capan-1 cells were rarely affected by IGFBP-3 treatment. Conclusions Our results demonstrated that pancreatic cancer cells induce muscle wasting via IGFBP-3 production. Electronic supplementary material The online version of this article (doi:10.1186/s13046-016-0317-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiu-yan Huang
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| | - Zi-Li Huang
- Department of Radiology, Xuhui Central Hospital, Shanghai, 200031, PR China
| | - Ju-hong Yang
- Collaborative Innovation Center of Tianjin for Medical Epigenetics, Key Laboratory of Hormone and Development (Ministry of Health), Metabolic Disease Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300070, China
| | - Yong-hua Xu
- Department of Radiology, Xuhui Central Hospital, Shanghai, 200031, PR China
| | - Jiu-Song Sun
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, 450 Brookline Ave., Boston, MA, 02215, USA.,Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston, MA, 02115, USA
| | - Qi Zheng
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China
| | - Chunyao Wei
- Howard Hughes Medical Institute; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Wei Song
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Zhou Yuan
- Department of General Surgery, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, 200233, P.R. China.
| |
Collapse
|
189
|
Porporato PE. Understanding cachexia as a cancer metabolism syndrome. Oncogenesis 2016; 5:e200. [PMID: 26900952 PMCID: PMC5154342 DOI: 10.1038/oncsis.2016.3] [Citation(s) in RCA: 382] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 12/05/2015] [Accepted: 12/13/2015] [Indexed: 02/07/2023] Open
Abstract
Metabolic reprogramming occurs in tumors to foster cancer cell proliferation, survival and metastasis, but as well at a systemic level affecting the whole organism, eventually leading to cancer cachexia. Indeed, as cancer cells rely on external sources of nitrogen and carbon skeleton to grow, systemic metabolic deregulation promoting tissue wasting and metabolites mobilization ultimately supports tumor growth. Cachectic patients experience a wide range of symptoms affecting several organ functions such as muscle, liver, brain, immune system and heart, collectively decreasing patients' quality of life and worsening their prognosis. Moreover, cachexia is estimated to be the direct cause of at least 20% of cancer deaths. The main aspect of cachexia syndrome is the unstoppable skeletal muscle and fat storage wasting, even with an adequate caloric intake, resulting in nutrient mobilization – both directly as lipid and amino acids and indirectly as glucose derived from the exploitation of liver gluconeogenesis – that reaches the tumor through the bloodstream. From a metabolic standpoint, cachectic host develops a wide range of dysfunctions, from increased insulin and IGF-1 resistance to induction of mitochondrial uncoupling proteins and fat tissue browning resulting in an increased energy expenditure and heat generation, even at rest. For a long time, cachexia has been merely considered an epiphenomenon of end-stage tumors. However, in specific tumor types, such as pancreatic cancers, it is now clear that patients present markers of tissue wasting at a stage in which tumor is not yet clinically detectable, and that host amino acid supply is required for tumor growth. Indeed, tumor cells actively promote tissue wasting by secreting specific factors such as parathyroid hormone-related protein and micro RNAs. Understanding the molecular and metabolic mediators of cachexia will not only advance therapeutic approaches against cancer, but also improve patients' quality of life.
Collapse
Affiliation(s)
- P E Porporato
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCL), Brussels, Belgium
| |
Collapse
|
190
|
Nässel DR, Vanden Broeck J. Insulin/IGF signaling in Drosophila and other insects: factors that regulate production, release and post-release action of the insulin-like peptides. Cell Mol Life Sci 2016; 73:271-90. [PMID: 26472340 PMCID: PMC11108470 DOI: 10.1007/s00018-015-2063-3] [Citation(s) in RCA: 226] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/01/2015] [Accepted: 10/05/2015] [Indexed: 01/02/2023]
Abstract
Insulin, insulin-like growth factors (IGFs) and insulin-like peptides (ILPs) are important regulators of metabolism, growth, reproduction and lifespan, and mechanisms of insulin/IGF signaling (IIS) have been well conserved over evolution. In insects, between one and 38 ILPs have been identified in each species. Relatively few insect species have been investigated in depth with respect to ILP functions, and therefore we focus mainly on the well-studied fruitfly Drosophila melanogaster. In Drosophila eight ILPs (DILP1-8), but only two receptors (dInR and Lgr3) are known. DILP2, 3 and 5 are produced by a set of neurosecretory cells (IPCs) in the brain and their biosynthesis and release are controlled by a number of mechanisms differing between larvae and adults. Adult IPCs display cell-autonomous sensing of circulating glucose, coupled to evolutionarily conserved mechanisms for DILP release. The glucose-mediated DILP secretion is modulated by neurotransmitters and neuropeptides, as well as by factors released from the intestine and adipocytes. Larval IPCs, however, are indirectly regulated by glucose-sensing endocrine cells producing adipokinetic hormone, or by circulating factors from the intestine and fat body. Furthermore, IIS is situated within a complex physiological regulatory network that also encompasses the lipophilic hormones, 20-hydroxyecdysone and juvenile hormone. After release from IPCs, the ILP action can be modulated by circulating proteins that act either as protective carriers (binding proteins), or competitive inhibitors. Some of these proteins appear to have additional functions that are independent of ILPs. Taken together, the signaling with multiple ILPs is under complex control, ensuring tightly regulated IIS in the organism.
Collapse
Affiliation(s)
- Dick R Nässel
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
| | - Jozef Vanden Broeck
- Molecular Developmental Physiology and Signal Transduction, Department of Animal Physiology and Neurobiology, Zoological Institute, K.U. Leuven, Louvain, Belgium
| |
Collapse
|
191
|
|
192
|
Accumulation of differentiating intestinal stem cell progenies drives tumorigenesis. Nat Commun 2015; 6:10219. [PMID: 26690827 PMCID: PMC4703904 DOI: 10.1038/ncomms10219] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/13/2015] [Indexed: 12/31/2022] Open
Abstract
Stem cell self-renewal and differentiation are coordinated to maintain tissue homeostasis and prevent cancer. Mutations causing stem cell proliferation are traditionally the focus of cancer studies. However, the contribution of the differentiating stem cell progenies in tumorigenesis is poorly characterized. Here we report that loss of the SOX transcription factor, Sox21a, blocks the differentiation programme of enteroblast (EB), the intestinal stem cell progeny in the adult Drosophila midgut. This results in EB accumulation and formation of tumours. Sox21a tumour initiation and growth involve stem cell proliferation induced by the unpaired 2 mitogen released from accumulating EBs generating a feed-forward loop. EBs found in the tumours are heterogeneous and grow towards the intestinal lumen. Sox21a tumours modulate their environment by secreting matrix metalloproteinase and reactive oxygen species. Enterocytes surrounding the tumours are eliminated through delamination allowing tumour progression, a process requiring JNK activation. Our data highlight the tumorigenic properties of transit differentiating cells.
Collapse
|
193
|
Okamoto N, Yamanaka N. Nutrition-dependent control of insect development by insulin-like peptides. CURRENT OPINION IN INSECT SCIENCE 2015; 11:21-30. [PMID: 26664828 PMCID: PMC4671074 DOI: 10.1016/j.cois.2015.08.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In metazoans, members of the insulin-like peptide (ILP) family play a role in multiple physiological functions in response to the nutritional status. ILPs have been identified and characterized in a wide variety of insect species. Insect ILPs that are mainly produced by several pairs of medial neurosecretory cells in the brain circulate in the hemolymph and act systemically on target tissues. Physiological and biochemical studies in Lepidoptera and genetic studies in the fruit fly have greatly expanded our knowledge of the physiological functions of ILPs. Here, we outline the recent progress of the structural classification of insect ILPs and overview recent studies that have elucidated the physiological functions of insect ILPs involved in nutrient-dependent growth during development.
Collapse
Affiliation(s)
- Naoki Okamoto
- Department of Entomology, Institute for Integrative Genome Biology, Center for Disease Vector Research, University of California, Riverside, Riverside, CA 92521, USA
| | - Naoki Yamanaka
- Department of Entomology, Institute for Integrative Genome Biology, Center for Disease Vector Research, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
194
|
Abstract
Many organisms have developed a robust ability to adapt and survive in the face of environmental perturbations that threaten the integrity of their genome, proteome, or metabolome. Studies in multiple model organisms have shown that, in general, when exposed to stress, cells activate a complex prosurvival signaling network that includes immune and DNA damage response genes, chaperones, antioxidant enzymes, structural proteins, metabolic enzymes, and noncoding RNAs. The manner of activation runs the gamut from transcriptional induction of genes to increased stability of transcripts to posttranslational modification of important biosynthetic proteins within the stressed tissue. Superimposed on these largely autonomous effects are nonautonomous responses in which the stressed tissue secretes peptides and other factors that stimulate tissues in different organs to embark on processes that ultimately help the organism as a whole cope with stress. This review focuses on the mechanisms by which tissues in one organ adapt to environmental challenges by regulating stress responses in tissues of different organs.
Collapse
Affiliation(s)
- Edward Owusu-Ansah
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY 10032;
| | | |
Collapse
|
195
|
Abstract
This protocol describes a method to allograft Drosophila larval tissue into adult fly hosts that can be used to assay the tumorigenic potential of mutant tissues. The tissue of interest is dissected, loaded into a fine glass needle and implanted into a host. Upon implantation, nontransformed tissues do not overgrow beyond their normal size, but malignant tumors grow without limit, are invasive and kill the host. By using this method, Drosophila malignant tumors can be transplanted repeatedly, for years, and therefore they can be aged beyond the short life span of flies. Because several hosts can be implanted using different pieces from a single tumor, the method also allows the tumor mass to be increased to facilitate further studies that may require large amounts of tissue (i.e., genomics, proteomics and so on). This method also provides an operational definition of hyperplastic, benign and malignant growth. The injection procedure itself requires only ∼1 d. Tumor development can then be monitored until the death of the implanted hosts.
Collapse
|
196
|
Boulan L, Milán M, Léopold P. The Systemic Control of Growth. Cold Spring Harb Perspect Biol 2015; 7:cshperspect.a019117. [PMID: 26261282 DOI: 10.1101/cshperspect.a019117] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Growth is a complex process that is intimately linked to the developmental program to form adults with proper size and proportions. Genetics is an important determinant of growth, as exemplified by the role of local diffusible molecules setting up organ proportions. In addition, organisms use adaptive responses allowing modulating the size of individuals according to environmental cues, for example, nutrition. Here, we describe some of the physiological principles participating in the determination of final individual size.
Collapse
Affiliation(s)
- Laura Boulan
- University of Nice-Sophia Antipolis, 06108 Nice, France CNRS, University of Nice-Sophia Antipolis, 06108 Nice, France INSERM, University of Nice-Sophia Antipolis, 06108 Nice, France
| | - Marco Milán
- 5ICREA, Parc Cientific de Barcelona, 08028 Barcelona, Spain
| | - Pierre Léopold
- University of Nice-Sophia Antipolis, 06108 Nice, France CNRS, University of Nice-Sophia Antipolis, 06108 Nice, France INSERM, University of Nice-Sophia Antipolis, 06108 Nice, France
| |
Collapse
|
197
|
Figueroa-Clarevega A, Bilder D. Malignant Drosophila tumors interrupt insulin signaling to induce cachexia-like wasting. Dev Cell 2015; 33:47-55. [PMID: 25850672 DOI: 10.1016/j.devcel.2015.03.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 12/24/2014] [Accepted: 02/27/2015] [Indexed: 02/07/2023]
Abstract
Tumors kill patients not only through well-characterized perturbations to their local environment but also through poorly understood pathophysiological interactions with distant tissues. Here, we use a Drosophila tumor model to investigate the elusive mechanisms underlying such long-range interactions. Transplantation of tumors into adults induces robust wasting of adipose, muscle, and gonadal tissues that are distant from the tumor, phenotypes that resemble the cancer cachexia seen in human patients. Notably, malignant, but not benign, tumors induce peripheral wasting. We identify the insulin growth factor binding protein (IGFBP) homolog ImpL2, an antagonist of insulin signaling, as a secreted factor mediating wasting. ImpL2 is sufficient to drive tissue loss, and insulin activity is reduced in peripheral tissues of tumor-bearing hosts. Importantly, knocking down ImpL2, specifically in the tumor, ameliorates wasting phenotypes. We propose that the tumor-secreted IGFBP creates insulin resistance in distant tissues, thus driving a systemic wasting response.
Collapse
Affiliation(s)
| | - David Bilder
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
198
|
|