151
|
Abstract
Telomeres protect the natural ends of chromosomes from being repaired as deleterious DNA breaks. In fission yeast, absence of Taz1 (homologue of human TRF1 and TRF2) renders telomeres vulnerable to DNA repair. During the G1 phase, when non-homologous end joining (NHEJ) is upregulated, taz1Δ cells undergo telomere fusions with consequent loss of viability. Here, we show that disruption of the fission yeast MRN (Rad23(MRE11)-Rad50-Nbs1) complex prevents NHEJ at telomeres and, as a result, rescues taz1Δ lethality in G1. Neither Tel1(ATM) activation nor 5'-end resection was required for telomere fusion. Nuclease activity of Rad32(MRE11) was also dispensable for NHEJ. Mutants unable to coordinate metal ions required for nuclease activity were proficient in NHEJ repair. In contrast, Rad32(MRE11) mutations that affect binding and/or positioning of DNA ends leaving the nuclease function largely unaffected also impaired NHEJ at telomeres and restored the viability of taz1Δ in G1. Consistently, MRN structural integrity but not nuclease function is also required for NHEJ of independent DNA ends in a novel split-molecule plasmid assay. Thus, MRN acts to tether unlinked DNA ends, allowing for efficient NHEJ.
Collapse
|
152
|
Cheung HC, San Lucas FA, Hicks S, Chang K, Bertuch AA, Ribes-Zamora A. An S/T-Q cluster domain census unveils new putative targets under Tel1/Mec1 control. BMC Genomics 2012. [PMID: 23176708 PMCID: PMC3564818 DOI: 10.1186/1471-2164-13-664] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background The cellular response to DNA damage is immediate and highly coordinated in order to maintain genome integrity and proper cell division. During the DNA damage response (DDR), the sensor kinases Tel1 and Mec1 in Saccharomyces cerevisiae and ATM and ATR in human, phosphorylate multiple mediators which activate effector proteins to initiate cell cycle checkpoints and DNA repair. A subset of kinase substrates are recognized by the S/T-Q cluster domain (SCD), which contains motifs of serine (S) or threonine (T) followed by a glutamine (Q). However, the full repertoire of proteins and pathways controlled by Tel1 and Mec1 is unknown. Results To identify all putative SCD-containing proteins, we analyzed the distribution of S/T-Q motifs within verified Tel1/Mec1 targets and arrived at a unifying SCD definition of at least 3 S/T-Q within a stretch of 50 residues. This new SCD definition was used in a custom bioinformatics pipeline to generate a census of SCD-containing proteins in both yeast and human. In yeast, 436 proteins were identified, a significantly larger number of hits than were expected by chance. These SCD-containing proteins did not distribute equally across GO-ontology terms, but were significantly enriched for those involved in processes related to the DDR. We also found a significant enrichment of proteins involved in telophase and cytokinesis, protein transport and endocytosis suggesting possible novel Tel1/Mec1 targets in these pathways. In the human proteome, a wide range of similar proteins were identified, including homologs of some SCD-containing proteins found in yeast. This list also included high concentrations of proteins in the Mediator, spindle pole body/centrosome and actin cytoskeleton complexes. Conclusions Using a bioinformatic approach, we have generated a census of SCD-containing proteins that are involved not only in known DDR pathways but several other pathways under Tel1/Mec1 control suggesting new putative targets for these kinases.
Collapse
Affiliation(s)
- Hannah C Cheung
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | | | | | | | | | | |
Collapse
|
153
|
Najdekrova L, Siroky J. NBS1 plays a synergistic role with telomerase in the maintenance of telomeres in Arabidopsis thaliana. BMC PLANT BIOLOGY 2012; 12:167. [PMID: 22985462 PMCID: PMC3490983 DOI: 10.1186/1471-2229-12-167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/10/2012] [Indexed: 05/29/2023]
Abstract
BACKGROUND Telomeres, as elaborate nucleo-protein complexes, ensure chromosomal stability. When impaired, the ends of linear chromosomes can be recognised by cellular repair mechanisms as double-strand DNA breaks and can be healed by non-homologous-end-joining activities to produce dicentric chromosomes. During cell divisions, particularly during anaphase, dicentrics can break, thus producing naked chromosome tips susceptible to additional unwanted chromosome fusion. Many telomere-building protein complexes are associated with telomeres to ensure their proper capping function. It has been found however, that a number of repair complexes also contribute to telomere stability. RESULTS We used Arabidopsis thaliana to study the possible functions of the DNA repair subunit, NBS1, in telomere homeostasis using knockout nbs1 mutants. The results showed that although NBS1-deficient plants were viable, lacked any sign of developmental aberration and produced fertile seeds through many generations upon self-fertilisation, plants also missing the functional telomerase (double mutants), rapidly, within three generations, displayed severe developmental defects. Cytogenetic inspection of cycling somatic cells revealed a very early onset of massive genome instability. Molecular methods used for examining the length of telomeres in double homozygous mutants detected much faster telomere shortening than in plants deficient in telomerase gene alone. CONCLUSIONS Our findings suggest that NBS1 acts in concert with telomerase and plays a profound role in plant telomere renewal.
Collapse
Affiliation(s)
- Lucie Najdekrova
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, 61265, Czech Republic
| | - Jiri Siroky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, 61265, Czech Republic
| |
Collapse
|
154
|
Daemen A, Wolf DM, Korkola JE, Griffith OL, Frankum JR, Brough R, Jakkula LR, Wang NJ, Natrajan R, Reis-Filho JS, Lord CJ, Ashworth A, Spellman PT, Gray JW, van’t Veer LJ. Cross-platform pathway-based analysis identifies markers of response to the PARP inhibitor olaparib. Breast Cancer Res Treat 2012; 135:505-17. [PMID: 22875744 PMCID: PMC3429780 DOI: 10.1007/s10549-012-2188-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 07/25/2012] [Indexed: 12/15/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) is an enzyme involved in DNA repair. PARP inhibitors can act as chemosensitizers, or operate on the principle of synthetic lethality when used as single agent. Clinical trials have shown drugs in this class to be promising for BRCA mutation carriers. We postulated that inability to demonstrate response in non-BRCA carriers in which BRCA is inactivated by other mechanisms or with deficiency in homologous recombination for DNA repair is due to lack of molecular markers that define a responding subpopulation. We identified candidate markers for this purpose for olaparib (AstraZeneca) by measuring inhibitory effects of nine concentrations of olaparib in 22 breast cancer cell lines and identifying features in transcriptional and genome copy number profiles that were significantly correlated with response. We emphasized in this discovery process genes involved in DNA repair. We found that the cell lines that were sensitive to olaparib had a significant lower copy number of BRCA1 compared to the resistant cell lines (p value 0.012). In addition, we discovered seven genes from DNA repair pathways whose transcriptional levels were associated with response. These included five genes (BRCA1, MRE11A, NBS1, TDG, and XPA) whose transcript levels were associated with resistance and two genes (CHEK2 and MK2) whose transcript levels were associated with sensitivity. We developed an algorithm to predict response using the seven-gene transcription levels and applied it to 1,846 invasive breast cancer samples from 8 U133A/plus 2 (Affymetrix) data sets and found that 8-21 % of patients would be predicted to be responsive to olaparib. A similar response frequency was predicted in 536 samples analyzed on an Agilent platform. Importantly, tumors predicted to respond were enriched in basal subtype tumors. Our studies support clinical evaluation of the utility of our seven-gene signature as a predictor of response to olaparib.
Collapse
Affiliation(s)
- Anneleen Daemen
- Laboratory Medicine, University of California San Francisco, 2340 Sutter Street Box 0808, San Francisco, CA 94115 USA
- Cancer & DNA Damage Responses, Lawrence Berkeley National Laboratories, One Cyclotron Road, Berkeley, CA 94720 USA
| | - Denise M. Wolf
- Laboratory Medicine, University of California San Francisco, 2340 Sutter Street Box 0808, San Francisco, CA 94115 USA
| | - James E. Korkola
- Cancer & DNA Damage Responses, Lawrence Berkeley National Laboratories, One Cyclotron Road, Berkeley, CA 94720 USA
| | - Obi L. Griffith
- Cancer & DNA Damage Responses, Lawrence Berkeley National Laboratories, One Cyclotron Road, Berkeley, CA 94720 USA
| | - Jessica R. Frankum
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB UK
| | - Rachel Brough
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB UK
| | - Lakshmi R. Jakkula
- Cancer & DNA Damage Responses, Lawrence Berkeley National Laboratories, One Cyclotron Road, Berkeley, CA 94720 USA
| | - Nicholas J. Wang
- Cancer & DNA Damage Responses, Lawrence Berkeley National Laboratories, One Cyclotron Road, Berkeley, CA 94720 USA
| | - Rachael Natrajan
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB UK
| | - Jorge S. Reis-Filho
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB UK
| | - Christopher J. Lord
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB UK
| | - Alan Ashworth
- The Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB UK
| | - Paul T. Spellman
- Cancer & DNA Damage Responses, Lawrence Berkeley National Laboratories, One Cyclotron Road, Berkeley, CA 94720 USA
| | - Joe W. Gray
- Department of Biomedical Engineering, Oregon Health and Science University, 3303 SW Bond Avenue, Room #13000, Portland, OR 97239 USA
| | - Laura J. van’t Veer
- Laboratory Medicine, University of California San Francisco, 2340 Sutter Street Box 0808, San Francisco, CA 94115 USA
| |
Collapse
|
155
|
Agyeman A, Mazumdar T, Houghton JA. Regulation of DNA damage following termination of Hedgehog (HH) survival signaling at the level of the GLI genes in human colon cancer. Oncotarget 2012; 3:854-68. [PMID: 23097684 PMCID: PMC3478462 DOI: 10.18632/oncotarget.586] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/18/2012] [Indexed: 01/23/2023] Open
Abstract
Transcriptional regulation of the Hedgehog (HH) signaling response is mediated by GLI genes (GLI1, GLI2) downstream of SMO, that are also activated by oncogenic signaling pathways. We have demonstrated the importance of targeting GLI downstream of SMO in the induction of cell death in human colon carcinoma cells. In HT29 cells inhibition of GLI1/GLI2 by the small molecule inhibitor GANT61 induced DNA double strand breaks (DSBs) and activation of ATM, MDC1 and NBS1; γH2AX and MDC1, NBS1 and MDC1 co-localized in nuclear foci. Early activation of ATM was decreased by 24 hr, when p-NBS1Ser343, activated by ATM, was significantly reduced in cell extracts. Bound γH2AX was detected in isolated chromatin fractions or nuclei during DNA damage but not during DNA repair. MDC1 was tightly bound to chromatin at 32 hr as cells accumulated in early S-phase prior to becoming subG1, and during DNA repair. Limited binding of NBS1 was detected at all times during DNA damage but was strongly bound during DNA repair. Transient overexpression of NBS1 protected HT29 cells from GANT61-induced cell death, while knockdown of H2AX by H2AXshRNA delayed DNA damage signaling. Data demonstrate following GLI1/GLI2 inhibition: 1) induction of DNA damage in cells that are also resistant to SMO inhibitors, 2) dynamic interactions between γH2AX, MDC1 and NBS1 in single cell nuclei and in isolated chromatin fractions, 3) expression and chromatin binding properties of key mediator proteins that mark DNA damage or DNA repair, and 4) the importance of NBS1 in the DNA damage response mechanism.
Collapse
Affiliation(s)
- Akwasi Agyeman
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | | |
Collapse
|
156
|
Thompson LH. Recognition, signaling, and repair of DNA double-strand breaks produced by ionizing radiation in mammalian cells: the molecular choreography. Mutat Res 2012; 751:158-246. [PMID: 22743550 DOI: 10.1016/j.mrrev.2012.06.002] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 06/09/2012] [Accepted: 06/16/2012] [Indexed: 12/15/2022]
Abstract
The faithful maintenance of chromosome continuity in human cells during DNA replication and repair is critical for preventing the conversion of normal diploid cells to an oncogenic state. The evolution of higher eukaryotic cells endowed them with a large genetic investment in the molecular machinery that ensures chromosome stability. In mammalian and other vertebrate cells, the elimination of double-strand breaks with minimal nucleotide sequence change involves the spatiotemporal orchestration of a seemingly endless number of proteins ranging in their action from the nucleotide level to nucleosome organization and chromosome architecture. DNA DSBs trigger a myriad of post-translational modifications that alter catalytic activities and the specificity of protein interactions: phosphorylation, acetylation, methylation, ubiquitylation, and SUMOylation, followed by the reversal of these changes as repair is completed. "Superfluous" protein recruitment to damage sites, functional redundancy, and alternative pathways ensure that DSB repair is extremely efficient, both quantitatively and qualitatively. This review strives to integrate the information about the molecular mechanisms of DSB repair that has emerged over the last two decades with a focus on DSBs produced by the prototype agent ionizing radiation (IR). The exponential growth of molecular studies, heavily driven by RNA knockdown technology, now reveals an outline of how many key protein players in genome stability and cancer biology perform their interwoven tasks, e.g. ATM, ATR, DNA-PK, Chk1, Chk2, PARP1/2/3, 53BP1, BRCA1, BRCA2, BLM, RAD51, and the MRE11-RAD50-NBS1 complex. Thus, the nature of the intricate coordination of repair processes with cell cycle progression is becoming apparent. This review also links molecular abnormalities to cellular pathology as much a possible and provides a framework of temporal relationships.
Collapse
Affiliation(s)
- Larry H Thompson
- Biology & Biotechnology Division, L452, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551-0808, United States.
| |
Collapse
|
157
|
Klaiman D, Steinfels-Kohn E, Krutkina E, Davidov E, Kaufmann G. The wobble nucleotide-excising anticodon nuclease RloC is governed by the zinc-hook and DNA-dependent ATPase of its Rad50-like region. Nucleic Acids Res 2012; 40:8568-78. [PMID: 22730290 PMCID: PMC3458546 DOI: 10.1093/nar/gks593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The conserved bacterial anticodon nuclease (ACNase) RloC and its phage-excluding homolog PrrC comprise respective ABC-adenosine triphosphatase (ATPase) and ACNase N- and C-domains but differ in three key attributes. First, prrC is always linked to an ACNase silencing, DNA restriction–modification (R–M) locus while rloC rarely features such linkage. Second, RloC excises its substrate’s wobble nucleotide, a lesion expected to impede damage reversal by phage transfer RNA (tRNA) repair enzymes that counteract the nick inflicted by PrrC. Third, a distinct coiled-coil/zinc-hook (CC/ZH) insert likens RloC’s N-region to the universal DNA damage checkpoint/repair protein Rad50. Previous work revealed that ZH mutations activate RloC’s ACNase. Data shown here suggest that RloC has an internal ACNase silencing/activating switch comprising its ZH and DNA-break-responsive ATPase. The existence of this control may explain the lateral transfer of rloC without an external silencer and supports the proposed role of RloC as an antiviral contingency acting when DNA restriction is alleviated under genotoxic stress. We also discuss RloC’s possible evolution from a PrrC-like ancestor.
Collapse
Affiliation(s)
- Daniel Klaiman
- Department of Biochemistry, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
158
|
Schiller CB, Lammens K, Guerini I, Coordes B, Feldmann H, Schlauderer F, Möckel C, Schele A, Strässer K, Jackson SP, Hopfner KP. Structure of Mre11-Nbs1 complex yields insights into ataxia-telangiectasia-like disease mutations and DNA damage signaling. Nat Struct Mol Biol 2012; 19:693-700. [PMID: 22705791 PMCID: PMC3392456 DOI: 10.1038/nsmb.2323] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 05/14/2012] [Indexed: 02/07/2023]
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex tethers, processes and signals DNA double-strand breaks, promoting genomic stability. To understand the functional architecture of MRN, we determined the crystal structures of the Schizosaccharomyces pombe Mre11 dimeric catalytic domain alone and in complex with a fragment of Nbs1. Two Nbs1 subunits stretch around the outside of the nuclease domains of Mre11, with one subunit additionally bridging and locking the Mre11 dimer via a highly conserved asymmetrical binding motif. Our results show that Mre11 forms a flexible dimer and suggest that Nbs1 not only is a checkpoint adaptor but also functionally influences Mre11-Rad50. Clinical mutations in Mre11 are located along the Nbs1-interaction sites and weaken the Mre11-Nbs1 interaction. However, they differentially affect DNA repair and telomere maintenance in Saccharomyces cerevisiae, potentially providing insight into their different human disease pathologies.
Collapse
|
159
|
Coordinate regulation of DNA damage and type I interferon responses imposes an antiviral state that attenuates mouse gammaherpesvirus type 68 replication in primary macrophages. J Virol 2012; 86:6899-912. [PMID: 22496235 DOI: 10.1128/jvi.07119-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
DNA damage response (DDR) is a sophisticated cellular network that detects and repairs DNA breaks. Viruses are known to activate the DDR and usurp certain DDR components to facilitate replication. Intriguingly, viruses also inhibit several DDR proteins, suggesting that this cellular network has both proviral and antiviral features, with the nature of the latter still poorly understood. In this study we show that irradiation of primary murine macrophages was associated with enhanced expression of several antiviral interferon (IFN)-stimulated genes (ISGs). ISG induction in irradiated macrophages was dependent on type I IFN signaling, a functional DNA damage sensor complex, and ataxia-telangiectasia mutated kinase. Furthermore, IFN regulatory factor 1 was also required for the optimal expression of antiviral ISGs in irradiated macrophages. Importantly, DDR-mediated activation of type I IFN signaling contributed to increased resistance to mouse gammaherpesvirus 68 replication, suggesting that the coordinate regulation of DDR and type I IFN signaling may have evolved as a component of the innate immune response to virus infections.
Collapse
|
160
|
Crespan E, Czabany T, Maga G, Hübscher U. Microhomology-mediated DNA strand annealing and elongation by human DNA polymerases λ and β on normal and repetitive DNA sequences. Nucleic Acids Res 2012; 40:5577-90. [PMID: 22373917 PMCID: PMC3384310 DOI: 10.1093/nar/gks186] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
'Classical' non-homologous end joining (NHEJ), dependent on the Ku70/80 and the DNA ligase IV/XRCC4 complexes, is essential for the repair of DNA double-strand breaks. Eukaryotic cells possess also an alternative microhomology-mediated end-joining (MMEJ) mechanism, which is independent from Ku and DNA ligase 4/XRCC4. The components of the MMEJ machinery are still largely unknown. Family X DNA polymerases (pols) are involved in the classical NHEJ pathway. We have compared in this work, the ability of human family X DNA pols β, λ and μ, to promote the MMEJ of different model templates with terminal microhomology regions. Our results reveal that DNA pol λ and DNA ligase I are sufficient to promote efficient MMEJ repair of broken DNA ends in vitro, and this in the absence of auxiliary factors. However, DNA pol β, not λ, was more efficient in promoting MMEJ of DNA ends containing the (CAG)n triplet repeat sequence of the human Huntingtin gene, leading to triplet expansion. The checkpoint complex Rad9/Hus1/Rad1 promoted end joining by DNA pol λ on non-repetitive sequences, while it limited triplet expansion by DNA pol β. We propose a possible novel role of DNA pol β in MMEJ, promoting (CAG)n triplet repeats instability.
Collapse
Affiliation(s)
- Emmanuele Crespan
- Institute of Molecular Genetics IGM-CNR, via Abbiategrasso 207, 27100 Pavia, Italy
| | | | | | | |
Collapse
|
161
|
Jowsey PA, Williams FM, Blain PG. DNA damage responses in cells exposed to sulphur mustard. Toxicol Lett 2012; 209:1-10. [DOI: 10.1016/j.toxlet.2011.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/26/2011] [Accepted: 11/09/2011] [Indexed: 12/25/2022]
|
162
|
Tsutakawa SE, Tainer JA. Double strand binding-single strand incision mechanism for human flap endonuclease: implications for the superfamily. Mech Ageing Dev 2012; 133:195-202. [PMID: 22244820 DOI: 10.1016/j.mad.2011.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 10/31/2011] [Accepted: 11/29/2011] [Indexed: 11/17/2022]
Abstract
Detailed structural, mutational, and biochemical analyses of human FEN1/DNA complexes have revealed the mechanism for recognition of 5' flaps formed during lagging strand replication and DNA repair. FEN1 processes 5' flaps through a previously unknown, but structurally elegant double-stranded (ds) recognition/single stranded (ss) incision mechanism that both selects for 5' flaps and selects against ss DNA or RNA, intact dsDNA, and 3' flaps. Two major DNA binding interfaces, including a K(+) bridge between the DNA and the H2TH motif, are spaced one helical turn apart and together select for substrates with dsDNA. A conserved helical gateway and a helical cap protects the two-metal active site and selects for ss flaps with free termini. Structures of substrate and product reveal an unusual step between binding substrate and incision that involves a double base unpairing with incision occurring in the resulting unpaired DNA or RNA. Ordering of the active site requires a disorder-to-order transition induced by binding of an unpaired 3' flap, which ensures that the product is ligatable. Comparison with FEN superfamily members, including XPG, EXO1, and GEN1, identifies superfamily motifs such as the helical gateway that select for ss-dsDNA junctions and provides key biological insights into nuclease specificity and regulation.
Collapse
Affiliation(s)
- Susan E Tsutakawa
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
163
|
Buis J, Stoneham T, Spehalski E, Ferguson DO. Mre11 regulates CtIP-dependent double-strand break repair by interaction with CDK2. Nat Struct Mol Biol 2012; 19:246-52. [PMID: 22231403 PMCID: PMC3272152 DOI: 10.1038/nsmb.2212] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 11/08/2011] [Indexed: 02/02/2023]
Abstract
Homologous recombination facilitates accurate repair of DNA double-strand breaks (DSBs) during the S and G2 phases of the cell cycle by using intact sister chromatids as sequence templates. Homologous recombination capacity is maximized in S and G2 by cyclin-dependent kinase (CDK) phosphorylation of CtIP, which subsequently interacts with BRCA1 and the Mre11-Rad50-NBS1 (MRN) complex. Here we show that, in human and mouse, Mre11 controls these events through a direct interaction with CDK2 that is required for CtIP phosphorylation and BRCA1 interaction in normally dividing cells. CDK2 binds the C terminus of Mre11, which is absent in an inherited allele causing ataxia telangiectasia-like disorder. This newly uncovered role for Mre11 does not require ATM activation or nuclease activities. Therefore, functions of MRN are not restricted to DNA damage responses but include regulating homologous recombination capacity during the normal mammalian cell cycle.
Collapse
Affiliation(s)
- Jeffrey Buis
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Trina Stoneham
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Elizabeth Spehalski
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - David O. Ferguson
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
164
|
Gunn A, Bennardo N, Cheng A, Stark JM. Correct end use during end joining of multiple chromosomal double strand breaks is influenced by repair protein RAD50, DNA-dependent protein kinase DNA-PKcs, and transcription context. J Biol Chem 2011; 286:42470-42482. [PMID: 22027841 PMCID: PMC3234933 DOI: 10.1074/jbc.m111.309252] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 10/19/2011] [Indexed: 12/27/2022] Open
Abstract
During repair of multiple chromosomal double strand breaks (DSBs), matching the correct DSB ends is essential to limit rearrangements. To investigate the maintenance of correct end use, we examined repair of two tandem noncohesive DSBs generated by endonuclease I-SceI and the 3' nonprocessive exonuclease Trex2, which can be expressed as an I-SceI-Trex2 fusion. We examined end joining (EJ) repair that maintains correct ends (proximal-EJ) versus using incorrect ends (distal-EJ), which provides a relative measure of incorrect end use (distal end use). Previous studies showed that ATM is important to limit distal end use. Here we show that DNA-PKcs kinase activity and RAD50 are also important to limit distal end use, but that H2AX is dispensable. In contrast, we find that ATM, DNA-PKcs, and RAD50 have distinct effects on repair events requiring end processing. Furthermore, we developed reporters to examine the effects of the transcription context on DSB repair, using an inducible promoter. We find that a DSB downstream from an active promoter shows a higher frequency of distal end use, and a greater reliance on ATM for limiting incorrect end use. Conversely, DSB transcription context does not affect end processing during EJ, the frequency of homology-directed repair, or the role of RAD50 and DNA-PKcs in limiting distal end use. We suggest that RAD50, DNA-PKcs kinase activity, and transcription context are each important to limit incorrect end use during EJ repair of multiple DSBs, but that these factors and conditions have distinct roles during repair events requiring end processing.
Collapse
Affiliation(s)
- Amanda Gunn
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Nicole Bennardo
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Anita Cheng
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010
| | - Jeremy M Stark
- Department of Cancer Biology, Beckman Research Institute of the City of Hope, Duarte, California 91010; Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California 91010.
| |
Collapse
|
165
|
Majka J, Alford B, Ausio J, Finn RM, McMurray CT. ATP hydrolysis by RAD50 protein switches MRE11 enzyme from endonuclease to exonuclease. J Biol Chem 2011; 287:2328-41. [PMID: 22102415 DOI: 10.1074/jbc.m111.307041] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MRE11-RAD50 is a key early response protein for processing DNA ends of broken chromosomes for repair, yet how RAD50 nucleotide dynamics regulate MRE11 nuclease activity is poorly understood. We report here that ATP binding and ATP hydrolysis cause a striking butterfly-like opening and closing of the RAD50 subunits, and each structural state has a dramatic functional effect on MRE11. RAD50-MRE11 has an extended conformation in solution when MRE11 is an active nuclease. However, ATP binding to RAD50 induces a closed conformation, and in this state MRE11 is an endonuclease. ATP hydrolysis opens the RAD50-MRE11 complex, and MRE11 maintains exonuclease activity. Thus, ATP hydrolysis is a molecular switch that converts MRE11 from an endonuclease to an exonuclease. We propose a testable model in which the open-closed transitions are used by RAD50-MRE11 to discriminate among DNA ends and drive the choice of recombination pathways.
Collapse
Affiliation(s)
- Jerzy Majka
- Lawrence Berkeley National Laboratory, Life Sciences Division, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
166
|
McKinnon PJ. ATM and the molecular pathogenesis of ataxia telangiectasia. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2011; 7:303-21. [PMID: 22035194 DOI: 10.1146/annurev-pathol-011811-132509] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ataxia telangiectasia (A-T) results from inactivation of the ATM protein kinase. DNA-damage signaling is a prime function of this kinase, although other roles have been ascribed to ATM. Identifying the primary ATM function(s) for tissue homeostasis is key to understanding how these functions contribute to the prevention of A-T-related pathology. In this regard, because A-T is primarily a neurodegenerative disease, it is essential to understand how ATM loss results in degenerative effects on the nervous system. In addition to delineating the biochemistry and cell biology of ATM, important insights into the molecular basis for neurodegeneration in A-T come from a spectrum of phenotypically related neurodegenerative diseases that directly result from DNA-repair deficiency. Together with A-T, these syndromes indicate that neurodegeneration can be caused by the failure to appropriately respond to DNA damage. This review focuses on defective DNA-damage signaling as the underlying cause of A-T.
Collapse
Affiliation(s)
- Peter J McKinnon
- Department of Genetics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.
| |
Collapse
|
167
|
van Wijk SJL, Müller S, Dikic I. Shared and unique properties of ubiquitin and SUMO interaction networks in DNA repair. Genes Dev 2011; 25:1763-9. [PMID: 21896653 DOI: 10.1101/gad.17593511] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this issue of Genes & Development, Yang and colleagues (pp. 1847-1858) identify new components of a small ubiquitin-like modifier (SUMO)-like interaction network that orchestrates and fine-tunes the Fanconi anemia (FA) pathway and replication-coupled repair. This new pathway emphasizes the intricate interplay of ubiquitin (Ub) and SUMO networks in the DNA damage response.
Collapse
Affiliation(s)
- Sjoerd J L van Wijk
- Institute of Biochemistry II, Goethe University School of Medicine, 60590 Frankfurt am Main, Germany
| | | | | |
Collapse
|
168
|
Wyman C, Lebbink J, Kanaar R. Mre11-Rad50 complex crystals suggest molecular calisthenics. DNA Repair (Amst) 2011; 10:1066-70. [PMID: 21893433 PMCID: PMC3185151 DOI: 10.1016/j.dnarep.2011.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
Abstract
Recently published crystal structures of different Mre11 and Rad50 complexes show the arrangement of these proteins and imply dramatic ligand-induced rearrangements with important functional consequences.
Collapse
Affiliation(s)
- Claire Wyman
- Department of Radiation Oncology, Department of Genetics and Cancer, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | | | | |
Collapse
|
169
|
Möckel C, Lammens K, Schele A, Hopfner KP. ATP driven structural changes of the bacterial Mre11:Rad50 catalytic head complex. Nucleic Acids Res 2011; 40:914-27. [PMID: 21937514 PMCID: PMC3258140 DOI: 10.1093/nar/gkr749] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
DNA double-strand breaks (DSBs) threaten genome stability in all kingdoms of life and are linked to cancerogenic chromosome aberrations in humans. The Mre11:Rad50 (MR) complex is an evolutionarily conserved complex of two Rad50 ATPases and a dimer of the Mre11 nuclease that senses and processes DSBs and tethers DNA for repair. ATP binding and hydrolysis by Rad50 is functionally coupled to DNA-binding and tethering, but also regulates Mre11's nuclease in processing DNA ends. To understand how ATP controls the interaction between Mre11 and Rad50, we determined the crystal structure of Thermotoga maritima (Tm) MR trapped in an ATP/ADP state. ATP binding to Rad50 induces a large structural change from an open form with accessible Mre11 nuclease sites into a closed form. Remarkably, the NBD dimer binds in the Mre11 DNA-binding cleft blocking Mre11's dsDNA-binding sites. An accompanying large swivel of the Rad50 coiled coil domains appears to prepare the coiled coils for DNA tethering. DNA-binding studies show that within the complex, Rad50 likely forms a dsDNA-binding site in response to ATP, while the Mre11 nuclease module retains a ssDNA-binding site. Our results suggest a possible mechanism for ATP-dependent DNA tethering and DSB processing by MR.
Collapse
Affiliation(s)
- Carolin Möckel
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-University Munich, Feodor-Lynen-Strasse 25, 81377, Munich, Germany
| | | | | | | |
Collapse
|
170
|
Abstract
DNA double-strand breaks (DSBs) are cytotoxic lesions that can result in mutagenic events or cell death if left unrepaired or repaired inappropriately. Cells use two major pathways for DSB repair: nonhomologous end joining (NHEJ) and homologous recombination (HR). The choice between these pathways depends on the phase of the cell cycle and the nature of the DSB ends. A critical determinant of repair pathway choice is the initiation of 5'-3' resection of DNA ends, which commits cells to homology-dependent repair, and prevents repair by classical NHEJ. Here, we review the components of the end resection machinery, the role of end structure, and the cell-cycle phase on resection and the interplay of end processing with NHEJ.
Collapse
Affiliation(s)
- Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Medical Center, New York, New York 10032, USA.
| | | |
Collapse
|
171
|
Gatei M, Jakob B, Chen P, Kijas AW, Becherel OJ, Gueven N, Birrell G, Lee JH, Paull TT, Lerenthal Y, Fazry S, Taucher-Scholz G, Kalb R, Schindler D, Waltes R, Dörk T, Lavin MF. ATM protein-dependent phosphorylation of Rad50 protein regulates DNA repair and cell cycle control. J Biol Chem 2011; 286:31542-56. [PMID: 21757780 PMCID: PMC3173097 DOI: 10.1074/jbc.m111.258152] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Revised: 07/12/2011] [Indexed: 02/01/2023] Open
Abstract
The Mre11/Rad50/NBN complex plays a central role in coordinating the cellular response to DNA double-strand breaks. The importance of Rad50 in that response is evident from the recent description of a patient with Rad50 deficiency characterized by chromosomal instability and defective ATM-dependent signaling. We report here that ATM (defective in ataxia-telangiectasia) phosphorylates Rad50 at a single site (Ser-635) that plays an important adaptor role in signaling for cell cycle control and DNA repair. Although a Rad50 phosphosite-specific mutant (S635G) supported normal activation of ATM in Rad50-deficient cells, it was defective in correcting DNA damage-induced signaling through the ATM-dependent substrate SMC1. This mutant also failed to correct radiosensitivity, DNA double-strand break repair, and an S-phase checkpoint defect in Rad50-deficient cells. This was not due to disruption of the Mre11/Rad50/NBN complex revealing for the first time that phosphorylation of Rad50 plays a key regulatory role as an adaptor for specific ATM-dependent downstream signaling through SMC1 for DNA repair and cell cycle checkpoint control in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Magtouf Gatei
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | - Burkhard Jakob
- Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt, Germany
| | - Philip Chen
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | - Amanda W. Kijas
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | - Olivier J. Becherel
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
- the University of Queensland, School of Chemistry and Molecular Biosciences, Brisbane, Queensland 4072, Australia
| | - Nuri Gueven
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | - Geoff Birrell
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | - Ji-Hoon Lee
- The Howard Hughes Medical Institute and the Department of Molecular Genetics and Microbiology, University of Texas, Austin, Texas 78712
| | - Tanya T. Paull
- The Howard Hughes Medical Institute and the Department of Molecular Genetics and Microbiology, University of Texas, Austin, Texas 78712
| | - Yaniv Lerenthal
- the Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shazrul Fazry
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
| | - Gisela Taucher-Scholz
- Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt, Germany
| | - Reinhard Kalb
- the Department of Human Genetics, University of Würzburg, Würzburg 97074, Germany
| | - Detlev Schindler
- the Department of Human Genetics, University of Würzburg, Würzburg 97074, Germany
| | | | - Thilo Dörk
- Gynecology, Hannover Medical School, D-30625 Hannover, Germany, and
| | - Martin F. Lavin
- From the Radiation Biology and Oncology Laboratory, Queensland Institute of Medical Research, Brisbane, Queensland 4029, Australia
- the University of Queensland Centre for Clinical Research, Brisbane, Queensland 4029, Australia
| |
Collapse
|
172
|
The Rad50 coiled-coil domain is indispensable for Mre11 complex functions. Nat Struct Mol Biol 2011; 18:1124-31. [PMID: 21892167 PMCID: PMC3190017 DOI: 10.1038/nsmb.2116] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/27/2011] [Indexed: 01/09/2023]
Abstract
The Mre11 complex (Mre11, Rad50 and Xrs2 in Saccharomyces cerevisiae) influences diverse functions in the DNA damage response. The complex comprises the globular DNA-binding domain and the Rad50 hook domain, which are linked by a long and extended Rad50 coiled-coil domain. In this study, we constructed rad50 alleles encoding truncations of the coiled-coil domain to determine which Mre11 complex functions required the full length of the coils. These mutations abolished telomere maintenance and meiotic double-strand break (DSB) formation, and severely impaired homologous recombination, indicating a requirement for long-range action. Nonhomologous end joining, which is probably mediated by the globular domain of the Mre11 complex, was also severely impaired by alteration of the coiled-coil and hook domains, providing the first evidence of their influence on this process. These data show that functions of Mre11 complex are integrated by the coiled coils of Rad50.
Collapse
|
173
|
Dmitrieva NI, Malide D, Burg MB. Mre11 is expressed in mammalian mitochondria where it binds to mitochondrial DNA. Am J Physiol Regul Integr Comp Physiol 2011; 301:R632-40. [PMID: 21677273 DOI: 10.1152/ajpregu.00853.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mre11 is a critical participant in upkeep of nuclear DNA, its repair, replication, meiosis, and maintenance of telomeres. The upkeep of mitochondrial DNA (mtDNA) is less well characterized, and whether Mre11 participates has been unknown. We previously found that high NaCl causes some of the Mre11 to leave the nucleus, but we did not then attempt to localize it within the cytoplasm. In the present studies, we find Mre11 in mitochondria isolated from primary renal cells and show that the amount of Mre11 in mitochondria increases with elevation of extracellular NaCl. We confirm the presence of Mre11 in the mitochondria of cells by confocal microscopy and show that some of the Mre11 colocalizes with mtDNA. Furthermore, crosslinking of Mre11 to DNA followed by Mre11 immunoprecipitation directly demonstrates that some Mre11 binds to mtDNA. Abundant Mre11 is also present in tissue sections from normal mouse kidneys, colocalized with mitochondria of proximal tubule and thick ascending limb cells. To explore whether distribution of Mre11 changes with cell differentiation, we used an experimental model of tubule formation by culturing primary kidney cells in Matrigel matrix. In nondifferentiated cells, Mre11 is mostly in the nucleus, but it becomes mostly cytoplasmic upon cell differentiation. We conclude that Mre11 is present in mitochondria where it binds to mtDNA and that the amount in mitochondria varies depending on cellular stress and differentiation. Our results suggest a role for Mre11 in the maintenance of genome integrity in mitochondria in addition to its previously known role in maintenance of nuclear DNA.
Collapse
Affiliation(s)
- Natalia I Dmitrieva
- Laboratory of Kidney and Electrolyte Metabolism,National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | |
Collapse
|
174
|
Yin M, Liao Z, Huang YJ, Liu Z, Yuan X, Gomez D, Wang LE, Wei Q. Polymorphisms of homologous recombination genes and clinical outcomes of non-small cell lung cancer patients treated with definitive radiotherapy. PLoS One 2011; 6:e20055. [PMID: 21647442 PMCID: PMC3102071 DOI: 10.1371/journal.pone.0020055] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/12/2011] [Indexed: 12/22/2022] Open
Abstract
The repair of DNA double-strand breaks (DSBs) is the major mechanism to maintain genomic stability in response to irradiation. We hypothesized that genetic polymorphisms in DSB repair genes may affect clinical outcomes among non-small cell lung cancer (NSCLC) patients treated with definitive radio(chemo)therapy. We genotyped six potentially functional single nucleotide polymorphisms (SNPs) (i.e., RAD51 −135G>C/rs1801320 and −172G>T/rs1801321, XRCC2 4234G>C/rs3218384 and R188H/rs3218536 G>A, XRCC3 T241M/rs861539 and NBN E185Q/rs1805794) and estimated their associations with overall survival (OS) and radiation pneumonitis (RP) in 228 NSCLC patients. We found a predictive role of RAD51 −135G>C SNP in RP development (adjusted hazard ratio [HR] = 0.52, 95% confidence interval [CI], 0.31–0.86, P = 0.010 for CG/CC vs. GG). We also found that RAD51 −135G>C and XRCC2 R188H SNPs were independent prognostic factors for overall survival (adjusted HR = 1.70, 95% CI, 1.14–2.62, P = 0.009 for CG/CC vs. GG; and adjusted HR = 1.70; 95% CI, 1.02–2.85, P = 0.043 for AG vs. GG, respectively) and that the SNP-survival association was most pronounced in the presence of RP. Our study suggests that HR genetic polymorphisms, particularly RAD51 −135G>C, may influence overall survival and radiation pneumonitis in NSCLC patients treated with definitive radio(chemo)therapy. Large studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Ming Yin
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Zhongxing Liao
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (QW); (ZL)
| | - Yu-Jing Huang
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Zhensheng Liu
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Xianglin Yuan
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daniel Gomez
- Department of Radiation Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Li-E Wang
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Qingyi Wei
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (QW); (ZL)
| |
Collapse
|
175
|
Fuss JO, Tainer JA. XPB and XPD helicases in TFIIH orchestrate DNA duplex opening and damage verification to coordinate repair with transcription and cell cycle via CAK kinase. DNA Repair (Amst) 2011; 10:697-713. [PMID: 21571596 DOI: 10.1016/j.dnarep.2011.04.028] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Helicases must unwind DNA at the right place and time to maintain genomic integrity or gene expression. Biologically critical XPB and XPD helicases are key members of the human TFIIH complex; they anchor CAK kinase (cyclinH, MAT1, CDK7) to TFIIH and open DNA for transcription and for repair of duplex distorting damage by nucleotide excision repair (NER). NER is initiated by arrested RNA polymerase or damage recognition by XPC-RAD23B with or without DDB1/DDB2. XP helicases, named for their role in the extreme sun-mediated skin cancer predisposition xeroderma pigmentosum (XP), are then recruited to asymmetrically unwind dsDNA flanking the damage. XPB and XPD genetic defects can also cause premature aging with profound neurological defects without increased cancers: Cockayne syndrome (CS) and trichothiodystrophy (TTD). XP helicase patient phenotypes cannot be predicted from the mutation position along the linear gene sequence and adjacent mutations can cause different diseases. Here we consider the structural biology of DNA damage recognition by XPC-RAD23B, DDB1/DDB2, RNAPII, and ATL, and of helix unwinding by the XPB and XPD helicases plus the bacterial repair helicases UvrB and UvrD in complex with DNA. We then propose unified models for TFIIH assembly and roles in NER. Collective crystal structures with NMR and electron microscopy results reveal functional motifs, domains, and architectural elements that contribute to biological activities: damaged DNA binding, translocation, unwinding, and ATP driven changes plus TFIIH assembly and signaling. Coupled with mapping of patient mutations, these combined structural analyses provide a framework for integrating and unifying the rich biochemical and cellular information that has accumulated over forty years of study. This integration resolves puzzles regarding XP helicase functions and suggests that XP helicase positions and activities within TFIIH detect and verify damage, select the damaged strand for incision, and coordinate repair with transcription and cell cycle through CAK signaling.
Collapse
Affiliation(s)
- Jill O Fuss
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | |
Collapse
|
176
|
Abstract
Ataxia-telangiectasia (A-T) is a rare, neurodegenerative, inherited disease arising from mutations in the kinase A-T mutated (ATM), which promotes cell cycle checkpoints and DNA double-strand break repair. Puzzlingly, these ATM activities fail to fully explain A-T neuropathologies, which instead have links to stress induced by reactive oxygen species (ROS). However, a landmark discovery reveals an unexpected intersection of ROS and kinase signaling: ATM can be directly activated by oxidation to form a disulfide-linked dimer in a mechanism distinct from DNA damage activation. When combined with notable structural-based insights into the ATM homolog DNA-PK (DNA-protein kinase) and mTOR (mammalian target of rapamycin), these results suggest conformation and assembly mechanisms to signal oxidative stress through an ATM nodal point. These findings fundamentally affect our understanding of ROS and ATM signaling and of the A-T phenotype, with implications for altering signaling in cancer cells to increase sensitivities to current therapeutic interventions.
Collapse
Affiliation(s)
- J Jefferson P Perry
- Skaggs Institute for Chemical Biology, Department of Molecular Biology, La Jolla, CA 92037, USA
| | | |
Collapse
|
177
|
Williams GJ, Williams RS, Williams JS, Moncalian G, Arvai AS, Limbo O, Guenther G, SilDas S, Hammel M, Russell P, Tainer JA. ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair. Nat Struct Mol Biol 2011; 18:423-31. [PMID: 21441914 PMCID: PMC3118400 DOI: 10.1038/nsmb.2038] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/15/2011] [Indexed: 01/05/2023]
Abstract
The Rad50 ABC-ATPase complex with Mre11 nuclease is essential for dsDNA break repair, telomere maintenance and ataxia telangiectasia-mutated kinase checkpoint signaling. How Rad50 affects Mre11 functions and how ABC-ATPases communicate nucleotide binding and ligand states across long distances and among protein partners are questions that have remained obscure. Here, structures of Mre11-Rad50 complexes define the Mre11 2-helix Rad50 binding domain (RBD) that forms a four-helix interface with Rad50 coiled coils adjoining the ATPase core. Newly identified effector and basic-switch helix motifs extend the ABC-ATPase signature motif to link ATP-driven Rad50 movements to coiled coils binding Mre11, implying an ~30-Å pull on the linker to the nuclease domain. Both RBD and basic-switch mutations cause clastogen sensitivity. Our new results characterize flexible ATP-dependent Mre11 regulation, defects in cancer-linked RBD mutations, conserved superfamily basic switches and motifs effecting ATP-driven conformational change, and they provide a unified comprehension of ABC-ATPase activities.
Collapse
Affiliation(s)
- Gareth J Williams
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|