151
|
Rabelo-Santos SH, Termini L, Boccardo E, Derchain S, Longatto-Filho A, Andreoli MA, Costa MC, Lima Nunes RA, Lucci Ângelo-Andrade LA, Villa LL, Zeferino LC. Strong SOD2 expression and HPV-16/18 positivity are independent events in cervical cancer. Oncotarget 2018; 9:21630-21640. [PMID: 29774090 PMCID: PMC5955150 DOI: 10.18632/oncotarget.24850] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 03/11/2018] [Indexed: 12/16/2022] Open
Abstract
It is well known that persistent infection with high-risk HPV (hr-HPV), mostly HPV-16 and 18, is the main cause of cervical cancer development. Manganese superoxide dismutase (MnSOD or SOD2) are highly expressed in different neoplasia. The present study investigated SOD2 protein expression and the presence of hr-HPV types in 297 cervical samples including non-neoplastic tissue, cervical intraepithelial neoplasia grade 3 (CIN3), squamous cell carcinoma (SCC) and adenocarcinoma (ADC). Strong SOD2 expression was significantly higher in ADC (82%) than CIN3 (52%) or SCC (64%). There was no association between SOD2 expression and HPV 16 and/or 18 detection for every lesion analyzed. Binary Logist Regression revealed that strong SOD2 expression (OR: 27.50, 6.16-122.81) and HPV 16 and/or HPV 18 (OR: 12.67, 4.04-39.74) were independently more associated with CIN3 than non-neoplastic cervix. Strong SOD2 expression (OR: 3.30, 1.23-8.86) and HPV 16 and/or HPV 18 (OR: 3.51, 1.03-11.87) were independently more associated with ADC than SCC. Similar findings for SOD2 expression were observed by the Cochran Mantel-Haenszel test, controlling for HPV-16 and/or HPV 18. In conclusion, the expression of SOD2 was increased in CIN3 and SCC, and more increased in cervical ADC than in SCC. Strong SOD2 expression was statistically independent of the presence of HPV 16 and/or 18. These findings suggest that the mitochondrial antioxidant system and HPV infection could follow independent pathways in the carcinogenesis of cervical epithelium and in the differentiation to SCC or ADC of the cervix.
Collapse
Affiliation(s)
| | - Lara Termini
- Innovation in Cancer Laboratory, Center of Translational Research in Oncology, Cancer Institute of São Paulo (ICESP - Instituto do Câncer do Estado de São Paulo), Faculty of Medicine of University of São Paulo (FMUSP - Faculdade de Medicina da Universidade de São Paulo), São Paulo, São Paulo, Brazil
| | - Enrique Boccardo
- Laboratory of Oncovirology, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP - Universidade de São Paulo), São Paulo, São Paulo, Brazil
| | - Sophie Derchain
- Department of Obstetrics and Gynecololy, State University of Campinas (UNICAMP - Universidade Estadual de Campinas), Campinas, São Paulo, Brazil
| | - Adhemar Longatto-Filho
- Laboratory of Medical Research, Faculty of Medicine of University of São Paulo (Faculdade de Medicina da Universidade de São Paulo-FMUSP), São Paulo, São Paulo, Brazil.,Institute of Life Sciences and Health, Faculty of Health Sciences, (ICVS), University of Minho, Braga, Portugal
| | | | - Maria Cecília Costa
- Innovation in Cancer Laboratory, Center of Translational Research in Oncology, Cancer Institute of São Paulo (ICESP - Instituto do Câncer do Estado de São Paulo), Faculty of Medicine of University of São Paulo (FMUSP - Faculdade de Medicina da Universidade de São Paulo), São Paulo, São Paulo, Brazil
| | - Rafaella Almeida Lima Nunes
- Innovation in Cancer Laboratory, Center of Translational Research in Oncology, Cancer Institute of São Paulo (ICESP - Instituto do Câncer do Estado de São Paulo), Faculty of Medicine of University of São Paulo (FMUSP - Faculdade de Medicina da Universidade de São Paulo), São Paulo, São Paulo, Brazil
| | | | - Luisa Lina Villa
- Innovation in Cancer Laboratory, Center of Translational Research in Oncology, Cancer Institute of São Paulo (ICESP - Instituto do Câncer do Estado de São Paulo), Faculty of Medicine of University of São Paulo (FMUSP - Faculdade de Medicina da Universidade de São Paulo), São Paulo, São Paulo, Brazil.,Department of Radiology and Oncology, Faculty of Medicine of University of São Paulo (FMUSP - Faculdade de Medicina da Universidade de São Paulo-USP), São Paulo, São Paulo, Brazil
| | - Luiz Carlos Zeferino
- Department of Obstetrics and Gynecololy, State University of Campinas (UNICAMP - Universidade Estadual de Campinas), Campinas, São Paulo, Brazil
| |
Collapse
|
152
|
Mortezaee K. Human hepatocellular carcinoma: Protection by melatonin. J Cell Physiol 2018; 233:6486-6508. [DOI: 10.1002/jcp.26586] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/08/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine Kurdistan University of Medical Sciences Sanandaj Iran
| |
Collapse
|
153
|
Moldogazieva NT, Mokhosoev IM, Feldman NB, Lutsenko SV. ROS and RNS signalling: adaptive redox switches through oxidative/nitrosative protein modifications. Free Radic Res 2018; 52:507-543. [PMID: 29589770 DOI: 10.1080/10715762.2018.1457217] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the last decade, a dual character of cell response to oxidative stress, eustress versus distress, has become increasingly recognized. A growing body of evidence indicates that under physiological conditions, low concentrations of reactive oxygen and nitrogen species (RONS) maintained by the activity of endogenous antioxidant system (AOS) allow reversible oxidative/nitrosative modifications of key redox-sensitive residues in regulatory proteins. The reversibility of redox modifications such as Cys S-sulphenylation/S-glutathionylation/S-nitrosylation/S-persulphidation and disulphide bond formation, or Tyr nitration, which occur through electrophilic attack of RONS to nucleophilic groups in amino acid residues provides redox switches in the activities of signalling proteins. Key requirement for the involvement of the redox modifications in RONS signalling including ROS-MAPK, ROS-PI3K/Akt, and RNS-TNF-α/NF-kB signalling is their specificity provided by a residue microenvironment and reaction kinetics. Glutathione, glutathione peroxidases, peroxiredoxins, thioredoxin, glutathione reductases, and glutaredoxins modulate RONS level and cell signalling, while some of the modulators (glutathione, glutathione peroxidases and peroxiredoxins) are themselves targets for redox modifications. Additionally, gene expression, activities of transcription factors, and epigenetic pathways are also under redox regulation. The present review focuses on RONS sources (NADPH-oxidases, mitochondrial electron-transportation chain (ETC), nitric oxide synthase (NOS), etc.), and their cross-talks, which influence reversible redox modifications of proteins as physiological phenomenon attained by living cells during the evolution to control cell signalling in the oxygen-enriched environment. We discussed recent advances in investigation of mechanisms of protein redox modifications and adaptive redox switches such as MAPK/PI3K/PTEN, Nrf2/Keap1, and NF-κB/IκB, powerful regulators of numerous physiological processes, also implicated in various diseases.
Collapse
Affiliation(s)
- N T Moldogazieva
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - I M Mokhosoev
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - N B Feldman
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| | - S V Lutsenko
- a Department of Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Moscow , Russia
| |
Collapse
|
154
|
Boroumand F, Mahmoudinasab H, Saadat M. Association of the SOD2 (rs2758339 and rs5746136) polymorphisms with the risk of heroin dependency and the SOD2 expression levels. Gene 2018; 649:27-31. [DOI: 10.1016/j.gene.2018.01.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/07/2018] [Accepted: 01/22/2018] [Indexed: 12/17/2022]
|
155
|
Lewandowski Ł, Kepinska M, Milnerowicz H. Inhibition of copper-zinc superoxide dismutase activity by selected environmental xenobiotics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:105-113. [PMID: 29310006 DOI: 10.1016/j.etap.2017.12.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
The function of Cu,Zn-SOD is to dismutate superoxide into hydrogen peroxide and oxygen. This task is fulfilled due to structural nuances of the enzyme. Many environmental xenobiotics have been proved to inhibit Cu,Zn-SOD. Those compounds could be found not only in industrial sewage, cigarettes and various chemical agents - some of them are used as drugs, drug production substrates or are the product of drug biotransformation. Cu,Zn-SOD exposition to these compounds leads to inhibition due to: copper ion chelation, unfolding the structure of the enzyme, affecting residues vital for activity maintenance. This review covers a selection of Cu,Zn-SOD inhibitors, referring to in vivo and in vitro study.
Collapse
Affiliation(s)
- Łukasz Lewandowski
- Department of Biomedical and Environmental Analyses, Wroclaw Medical University, Faculty of Pharmacy Borowska 211, 50-556 Wrocław, Poland
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Wroclaw Medical University, Faculty of Pharmacy Borowska 211, 50-556 Wrocław, Poland.
| | - Halina Milnerowicz
- Department of Biomedical and Environmental Analyses, Wroclaw Medical University, Faculty of Pharmacy Borowska 211, 50-556 Wrocław, Poland
| |
Collapse
|
156
|
Functional genomics study of acute heat stress response in the small yellow follicles of layer-type chickens. Sci Rep 2018; 8:1320. [PMID: 29358656 PMCID: PMC5778056 DOI: 10.1038/s41598-017-18335-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 12/11/2017] [Indexed: 01/16/2023] Open
Abstract
This study investigated global gene and protein expression in the small yellow follicle (SYF; 6-8 mm in diameter) tissues of chickens in response to acute heat stress. Twelve 30-week-old layer-type hens were divided into four groups: control hens were maintained at 25 °C while treatment hens were subjected to acute heat stress at 36 °C for 4 h without recovery, with 2-h recovery, and with 6-h recovery. SYFs were collected at each time point for mRNA and protein analyses. A total of 176 genes and 93 distinct proteins with differential expressions were identified, mainly associated with the molecular functions of catalytic activity and binding. The upregulated expression of heat shock proteins and peroxiredoxin family after acute heat stress is suggestive of responsive machineries to protect cells from apoptosis and oxidative insults. In conclusion, both the transcripts and proteins associated with apoptosis, stress response, and antioxidative defense were upregulated in the SYFs of layer-type hens to alleviate the detrimental effects by acute heat stress. However, the genomic regulations of specific cell type in response to acute heat stress of SYFs require further investigation.
Collapse
|
157
|
Privat M, Rudewicz J, Sonnier N, Tamisier C, Ponelle-Chachuat F, Bignon YJ. Antioxydation And Cell Migration Genes Are Identified as Potential Therapeutic Targets in Basal-Like and BRCA1 Mutated Breast Cancer Cell Lines. Int J Med Sci 2018; 15:46-58. [PMID: 29333087 PMCID: PMC5765739 DOI: 10.7150/ijms.20508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/11/2017] [Indexed: 12/26/2022] Open
Abstract
Basal-like breast cancers are among the most aggressive cancers and effective targeted therapies are still missing. In order to identify new therapeutic targets, we performed Methyl-Seq and RNA-Seq of 10 breast cancer cell lines with different phenotypes. We confirmed that breast cancer subtypes cluster the RNA-Seq data but not the Methyl-Seq data. Basal-like tumor hypermethylated phenotype was not confirmed in our study but RNA-Seq analysis allowed to identify 77 genes significantly overexpressed in basal-like breast cancer cell lines. Among them, 48 were overexpressed in triple negative breast cancers of TCGA data. Some molecular functions were overrepresented in this candidate gene list. Genes involved in antioxydation, such as SOD1, MGST3 and PRDX or cadherin-binding genes, such as PFN1, ITGB1 and ANXA1, could thus be considered as basal like breast cancer biomarkers. We then sought if these genes were linked to BRCA1, since this gene is often inactivated in basal-like breast cancers. Nine genes were identified overexpressed in both basal-like breast cancer cells and BRCA1 mutated cells. Amongst them, at least 3 genes code for proteins implicated in epithelial cell migration and epithelial to mesenchymal transition (VIM, ITGB1 and RhoA). Our study provided several potential therapeutic targets for triple negative and BRCA1 mutated breast cancers. It seems that migration and mesenchymal properties acquisition of basal-like breast cancer cells is a key functional pathway in these tumors with a high metastatic potential.
Collapse
Affiliation(s)
- Maud Privat
- Université Clermont Auvergne, Centre Jean Perrin, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, F-63000 Clermont Ferrand, France
| | - Justine Rudewicz
- Département d'Oncogénétique, Centre Jean Perrin, F-63000 Clermont Ferrand, France
| | - Nicolas Sonnier
- Université Clermont Auvergne, Centre Jean Perrin, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, F-63000 Clermont Ferrand, France
- Biological Resources Center BB-0033-00075, Centre Jean Perrin, F-63000 Clermont Ferrand, France
| | - Christelle Tamisier
- Département d'Oncogénétique, Centre Jean Perrin, F-63000 Clermont Ferrand, France
| | - Flora Ponelle-Chachuat
- Université Clermont Auvergne, Centre Jean Perrin, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, F-63000 Clermont Ferrand, France
| | - Yves-Jean Bignon
- Université Clermont Auvergne, Centre Jean Perrin, INSERM, U1240 Imagerie Moléculaire et Stratégies Théranostiques, F-63000 Clermont Ferrand, France
- Département d'Oncogénétique, Centre Jean Perrin, F-63000 Clermont Ferrand, France
- Biological Resources Center BB-0033-00075, Centre Jean Perrin, F-63000 Clermont Ferrand, France
| |
Collapse
|
158
|
Wang R, Yin C, Li XX, Yang XZ, Yang Y, Zhang MY, Wang HY, Zheng XFS. Reduced SOD2 expression is associated with mortality of hepatocellular carcinoma patients in a mutant p53-dependent manner. Aging (Albany NY) 2017; 8:1184-200. [PMID: 27221200 PMCID: PMC4931826 DOI: 10.18632/aging.100967] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/10/2016] [Indexed: 02/07/2023]
Abstract
The development and progression of hepatocellular carcinoma (HCC) is accompanied with persistent oxidative stress, but the molecular basis is not well defined. Superoxide dismutase 2 (SOD2) is an important mitochondrial antioxidant and a key aging factor. Here we investigated the expression and clinical significance of SOD2 in a large cohort of HBV-positive HCC tumors. Both SOD2 mRNA and protein are reduced in human primary HCCs compared with matching liver tissues. Consistently, the SOD2 DNA copy numbers are decreased in HCCs, providing a genetic basis for the decrease in SOD2 mRNA expression. Reduced SOD2 expression in HCCs is correlated with older age, larger tumor size, multiple tumor nodules and tumor emboli, and cancer recurrence. Moreover, low SOD2 expression is strongly associated with poor overall survival (OS) and recurrence-free survival (RFS). Univariate and multivariate Cox regression analyses indicates that SOD2 is an independent prognostic predictor for OS and RFS. Intriguingly, reduced SOD2 mRNA is strongly associated with poor survival in a separate cohort of HCC patients carrying mutant p53. Altogether, our results provide clinical evidence for the importance of SOD2 in tumor progression and mortality, and the close relationship of SOD2 and p53 in HCC.
Collapse
Affiliation(s)
- Ren Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China
| | - Chen Yin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xiao-Xing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China
| | - Xian-Zi Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China
| | - Yang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China.,Rutgers Cancer Institute of New Jersey, and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| | - X F Steven Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, PR China.,Rutgers Cancer Institute of New Jersey, and Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
159
|
Insights into the Dichotomous Regulation of SOD2 in Cancer. Antioxidants (Basel) 2017; 6:antiox6040086. [PMID: 29099803 PMCID: PMC5745496 DOI: 10.3390/antiox6040086] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 12/14/2022] Open
Abstract
While loss of antioxidant expression and the resultant oxidant-dependent damage to cellular macromolecules is key to tumorigenesis, it has become evident that effective oxidant scavenging is conversely necessary for successful metastatic spread. This dichotomous role of antioxidant enzymes in cancer highlights their context-dependent regulation during different stages of tumor development. A prominent example of an antioxidant enzyme with such a dichotomous role and regulation is the mitochondria-localized manganese superoxide dismutase SOD2 (MnSOD). SOD2 has both tumor suppressive and promoting functions, which are primarily related to its role as a mitochondrial superoxide scavenger and H₂O₂ regulator. However, unlike true tumor suppressor- or onco-genes, the SOD2 gene is not frequently lost, or rarely mutated or amplified in cancer. This allows SOD2 to be either repressed or activated contingent on context-dependent stimuli, leading to its dichotomous function in cancer. Here, we describe some of the mechanisms that underlie SOD2 regulation in tumor cells. While much is known about the transcriptional regulation of the SOD2 gene, including downregulation by epigenetics and activation by stress response transcription factors, further research is required to understand the post-translational modifications that regulate SOD2 activity in cancer cells. Moreover, future work examining the spatio-temporal nature of SOD2 regulation in the context of changing tumor microenvironments is necessary to allows us to better design oxidant- or antioxidant-based therapeutic strategies that target the adaptable antioxidant repertoire of tumor cells.
Collapse
|
160
|
Ryu B, Kim CY, Oh H, Kim U, Kim J, Jung CR, Lee BH, Lee S, Chang SN, Lee JM, Chung HM, Park JH. Development of an alternative zebrafish model for drug-induced intestinal toxicity. J Appl Toxicol 2017; 38:259-273. [PMID: 29027214 DOI: 10.1002/jat.3520] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Bokyeong Ryu
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - C-Yoon Kim
- Department of Medicine, School of Medicine; Konkuk University; Seoul 05029 Republic of Korea
| | - Hanseul Oh
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Ukjin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Jin Kim
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Cho-Rok Jung
- Gene Therapy Research Unit; Korea Research Institute of Bioscience and Biotechnology; Daejeon 34141 Republic of Korea
| | - Byoung-Hee Lee
- National Institute of Biological Resources; Incheon 22689 Republic of Korea
| | - Seungki Lee
- National Institute of Biological Resources; Incheon 22689 Republic of Korea
| | - Seo-Na Chang
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Ji Min Lee
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| | - Hyung-Min Chung
- Department of Medicine, School of Medicine; Konkuk University; Seoul 05029 Republic of Korea
| | - Jae-Hak Park
- Department of Laboratory Animal Medicine, College of Veterinary Medicine; Seoul National University; Seoul 08826 Republic of Korea
| |
Collapse
|
161
|
Cholia RP, Kumari S, Kumar S, Kaur M, Kaur M, Kumar R, Dhiman M, Mantha AK. An in vitro study ascertaining the role of H 2O 2 and glucose oxidase in modulation of antioxidant potential and cancer cell survival mechanisms in glioblastoma U-87 MG cells. Metab Brain Dis 2017; 32:1705-1716. [PMID: 28676971 DOI: 10.1007/s11011-017-0057-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/16/2017] [Indexed: 12/15/2022]
Abstract
Glial cells protect themselves from the elevated reactive oxygen species (ROS) via developing unusual mechanisms to maintain the genomic stability, and reprogramming of the cellular antioxidant system to cope with the adverse effects. In the present study non-cytotoxic dose of oxidants, H2O2 (100 μM) and GO (10 μU/ml) was used to induce moderate oxidative stress via generating ROS in human glioblastoma cell line U-87 MG cells, which showed a marked increase in the antioxidant capacity as studied by measuring the modulation in expression levels and activities of superoxide dismutase (SOD1 and SOD2) and catalase (CAT) enzymes, and the GSH content. However, pretreatment (3 h) of Curcumin and Quercetin (10 μM) followed by the treatment of oxidants enhanced the cell survival, and the levels/activities of the antioxidants studied. Oxidative stress also resulted in an increase in the nitrite levels in the culture supernatants, and further analysis by immunocytochemistry showed an increase in iNOS expression. In addition, phytochemical pretreatment decreased the nitrite level in the culture supernatants of oxidatively stressed U-87 MG cells. Elevated ROS also increased the expression of COX-2 and APE1 enzymes and pretreatment of Curcumin and Quercetin decreased COX-2 expression and increased APE1 expression in the oxidatively stressed U-87 MG cells. The immunocytochemistry also indicates for APE1 enhanced stress-dependent subcellular localization to the nuclear compartment, which advocates for enhanced DNA repair and redox functions of APE1 towards survival of U-87 MG cells. It can be concluded that intracellular oxidants activate the key enzymes involved in antioxidant mechanisms, NO-dependent survival mechanisms, and also in the DNA repair pathways for glial cell survival in oxidative-stress micro-environment.
Collapse
Affiliation(s)
- Ravi P Cholia
- Center for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, 151 001, India
| | - Sanju Kumari
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Saurabh Kumar
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Manpreet Kaur
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Manbir Kaur
- Center for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Raj Kumar
- Center for Pharmaceutical Sciences and Natural Products, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Monisha Dhiman
- Center for Biochemistry and Microbial Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, India
| | - Anil K Mantha
- Center for Animal Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, Punjab, 151 001, India.
| |
Collapse
|
162
|
Little AC, Sulovari A, Danyal K, Heppner DE, Seward DJ, van der Vliet A. Paradoxical roles of dual oxidases in cancer biology. Free Radic Biol Med 2017; 110:117-132. [PMID: 28578013 PMCID: PMC5535817 DOI: 10.1016/j.freeradbiomed.2017.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 02/06/2023]
Abstract
Dysregulated oxidative metabolism is a well-recognized aspect of cancer biology, and many therapeutic strategies are based on targeting cancers by altering cellular redox pathways. The NADPH oxidases (NOXes) present an important enzymatic source of biological oxidants, and the expression and activation of several NOX isoforms are frequently dysregulated in many cancers. Cell-based studies have demonstrated a role for several NOX isozymes in controlling cell proliferation and/or cell migration, further supporting a potential contributing role for NOX in promoting cancer. While various NOX isoforms are often upregulated in cancers, paradoxical recent findings indicate that dual oxidases (DUOXes), normally prominently expressed in epithelial lineages, are frequently suppressed in epithelial-derived cancers by epigenetic mechanisms, although the functional relevance of such DUOX silencing has remained unclear. This review will briefly summarize our current understanding regarding the importance of reactive oxygen species (ROS) and NOXes in cancer biology, and focus on recent observations indicating the unique and seemingly opposing roles of DUOX enzymes in cancer biology. We will discuss current knowledge regarding the functional properties of DUOX, and recent studies highlighting mechanistic consequences of DUOX1 loss in lung cancer, and its consequences for tumor invasiveness and current anticancer therapy. Finally, we will also discuss potentially unique roles for the DUOX maturation factors. Overall, a better understanding of mechanisms that regulate DUOX and the functional consequences of DUOX silencing in cancer may offer valuable new diagnostic insights and novel therapeutic opportunities.
Collapse
Affiliation(s)
- Andrew C Little
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States
| | - Arvis Sulovari
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States; Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Karamatullah Danyal
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David E Heppner
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - David J Seward
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT 05405, United States; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405, United States.
| |
Collapse
|
163
|
Wilkes JG, Alexander MS, Cullen JJ. Superoxide Dismutases in Pancreatic Cancer. Antioxidants (Basel) 2017; 6:antiox6030066. [PMID: 28825637 PMCID: PMC5618094 DOI: 10.3390/antiox6030066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/10/2017] [Accepted: 08/15/2017] [Indexed: 01/17/2023] Open
Abstract
The incidence of pancreatic cancer is increasing as the population ages but treatment advancements continue to lag far behind. The majority of pancreatic cancer patients have a K-ras oncogene mutation causing a shift in the redox state of the cell, favoring malignant proliferation. This mutation is believed to lead to nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation and superoxide overproduction, generating tumorigenic behavior. Superoxide dismutases (SODs) have been studied for their ability to manage the oxidative state of the cell by dismuting superoxide and inhibiting signals for pancreatic cancer growth. In particular, manganese superoxide dismutase has clearly shown importance in cell cycle regulation and has been found to be abnormally low in pancreatic cancer cells as well as the surrounding stromal tissue. Likewise, extracellular superoxide dismutase expression seems to favor suppression of pancreatic cancer growth. With an increased understanding of the redox behavior of pancreatic cancer and key regulators, new treatments are being developed with specific targets in mind. This review summarizes what is known about superoxide dismutases in pancreatic cancer and the most current treatment strategies to be advanced from this knowledge.
Collapse
Affiliation(s)
- Justin G. Wilkes
- Departments of Surgery and Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52245, USA; (J.G.W.); (M.S.A.)
| | - Matthew S. Alexander
- Departments of Surgery and Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52245, USA; (J.G.W.); (M.S.A.)
| | - Joseph J. Cullen
- Departments of Surgery and Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52245, USA; (J.G.W.); (M.S.A.)
- Veterans Affairs Medical Center, Iowa City, IA 52245, USA
- Correspondence: ; Tel.: +1-319-353-8297; Fax: +1-319-356-8378
| |
Collapse
|
164
|
Mindaye ST, Ilyushina NA, Fantoni G, Alterman MA, Donnelly RP, Eichelberger MC. Impact of Influenza A Virus Infection on the Proteomes of Human Bronchoepithelial Cells from Different Donors. J Proteome Res 2017; 16:3287-3297. [DOI: 10.1021/acs.jproteome.7b00286] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Samuel T. Mindaye
- Division
of Viral Products, OVRR, CBER, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Natalia A. Ilyushina
- Division
of Biotechnology Research and Review II, CDER, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Giovanna Fantoni
- Division
of Viral Products, OVRR, CBER, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Michail A. Alterman
- Division
of Cellular and Gene Therapies, OTAT, CBER, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Raymond P. Donnelly
- Division
of Biotechnology Research and Review II, CDER, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Maryna C. Eichelberger
- Division
of Viral Products, OVRR, CBER, Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
165
|
Cocchiola R, Romaniello D, Grillo C, Altieri F, Liberti M, Magliocca FM, Chichiarelli S, Marrocco I, Borgoni G, Perugia G, Eufemi M. Analysis of STAT3 post-translational modifications (PTMs) in human prostate cancer with different Gleason Score. Oncotarget 2017; 8:42560-42570. [PMID: 28489571 PMCID: PMC5522088 DOI: 10.18632/oncotarget.17245] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 04/05/2017] [Indexed: 01/09/2023] Open
Abstract
Prostate Cancer (PCa) is a complex and heterogeneous disease. The androgen receptor (AR) and the signal transducer and activator of transcription 3 (STAT3) could be effective targets for PCa therapy. STAT3, a cytoplasmatic latent transcription factor, is a hub protein for several oncogenic signalling pathways and up-regulates the expression of numerous genes involved in tumor cell proliferation, angiogenesis, metastasis and cell survival. STAT3 activity can be modulated by several Post-Translational Modifications (PTMs) which reflect particular cell conditions and may be implicated in PCa development and progression. The aim of this work was to analyze STAT3 PTMs at different tumor stages and their relationship with STAT3 cellular functions. For this purpose, sixty-five prostatectomy, Formalin-fixed paraffin-embedded (FFPE) specimens, classified with different Gleason Scores, were subjected to immunoblotting, immunofluorescence staining and RT-PCR analysis. All experiments were carried out in matched non-neoplastic and neoplastic tissues. Data obtained showed different STAT3 PTMs profiles among the analyzed tumor grades which correlate with differences in the amount and distribution of specific STAT3 interactors as well as the expression of STAT3 target genes. These results highlight the importance of PTMs as an additional biomarker for the exactly evaluation of the PCa stage and the optimal treatment of this disease.
Collapse
Affiliation(s)
- Rossana Cocchiola
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, Rome, Italy
- Fondazione Enrico ed Enrica Sovena, Rome, Italy
| | - Donatella Romaniello
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, Rome, Italy
| | - Caterina Grillo
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, Rome, Italy
| | - Fabio Altieri
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, Rome, Italy
| | - Marcello Liberti
- Department of Gynecological-Obstretic Science and Urologic Sciences, Sapienza University of Rome, Rome, Italy
| | - Fabio Massimo Magliocca
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, Rome, Italy
| | - Silvia Chichiarelli
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, Rome, Italy
| | - Ilaria Marrocco
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, Rome, Italy
| | - Giuseppe Borgoni
- Department of Gynecological-Obstretic Science and Urologic Sciences, Sapienza University of Rome, Rome, Italy
| | - Giacomo Perugia
- Department of Gynecological-Obstretic Science and Urologic Sciences, Sapienza University of Rome, Rome, Italy
| | - Margherita Eufemi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
- Istituto Pasteur, Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, Rome, Italy
| |
Collapse
|
166
|
Siska PJ, Beckermann KE, Mason FM, Andrejeva G, Greenplate AR, Sendor AB, Chiang YCJ, Corona AL, Gemta LF, Vincent BG, Wang RC, Kim B, Hong J, Chen CL, Bullock TN, Irish JM, Rathmell WK, Rathmell JC. Mitochondrial dysregulation and glycolytic insufficiency functionally impair CD8 T cells infiltrating human renal cell carcinoma. JCI Insight 2017; 2:93411. [PMID: 28614802 PMCID: PMC5470888 DOI: 10.1172/jci.insight.93411] [Citation(s) in RCA: 266] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/05/2017] [Indexed: 12/23/2022] Open
Abstract
Cancer cells can inhibit effector T cells (Teff) through both immunomodulatory receptors and the impact of cancer metabolism on the tumor microenvironment. Indeed, Teff require high rates of glucose metabolism, and consumption of essential nutrients or generation of waste products by tumor cells may impede essential T cell metabolic pathways. Clear cell renal cell carcinoma (ccRCC) is characterized by loss of the tumor suppressor von Hippel-Lindau (VHL) and altered cancer cell metabolism. Here, we assessed how ccRCC influences the metabolism and activation of primary patient ccRCC tumor infiltrating lymphocytes (TIL). CD8 TIL were abundant in ccRCC, but they were phenotypically distinct and both functionally and metabolically impaired. ccRCC CD8 TIL were unable to efficiently uptake glucose or perform glycolysis and had small, fragmented mitochondria that were hyperpolarized and generated large amounts of ROS. Elevated ROS was associated with downregulated mitochondrial SOD2. CD8 T cells with hyperpolarized mitochondria were also visible in the blood of ccRCC patients. Importantly, provision of pyruvate to bypass glycolytic defects or scavengers to neutralize mitochondrial ROS could partially restore TIL activation. Thus, strategies to improve metabolic function of ccRCC CD8 TIL may promote the immune response to ccRCC.
Collapse
Affiliation(s)
- Peter J. Siska
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Internal Medicine III, University Hospital Regensburg, Regensburg, Germany.,Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Kathryn E. Beckermann
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Frank M. Mason
- Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Gabriela Andrejeva
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Allison R. Greenplate
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA
| | - Adam B. Sendor
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Yun-Chen J. Chiang
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Armando L. Corona
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lelisa F. Gemta
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Benjamin G. Vincent
- Lineberger Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Richard C. Wang
- Department of Dermatology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Bumki Kim
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | - Jiyong Hong
- Department of Chemistry, Duke University, Durham, North Carolina, USA
| | | | - Timothy N. Bullock
- Department of Pathology, University of Virginia, Charlottesville, Virginia, USA
| | - Jonathan M. Irish
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - W. Kimryn Rathmell
- Department of Medicine, Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Vanderbilt Center for Immunobiology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Cancer Biology, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
167
|
Wang W, Jin Y, Zeng N, Ruan Q, Qian F. SOD2 Facilitates the Antiviral Innate Immune Response by Scavenging Reactive Oxygen Species. Viral Immunol 2017; 30:582-589. [PMID: 28574756 DOI: 10.1089/vim.2017.0043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Superoxide dismutase 2 (SOD2) is essential in radical scavenging, which balances the intracellular level of reactive oxygen species (ROS). The dysfunction of SOD2 is associated with increasing incidence of various human diseases, including cancer, neuron diseases, and myocardial defects. However, the connections between SOD2-mediated oxidative homeostasis and innate immune response remain unclear. In this study, we report that SOD2 is a crucial regulator of antiviral signaling. Depletion of SOD2 impairs RNA virus-induced type I interferon (IFN) and proinflammatory cytokine production, resulting in enhanced viral replication. Type I IFN production is highly sensitive to cellular level of ROS. SOD2 deficiency-mediated ROS accumulation potently inhibits RIG-I-like receptor (RLR)-induced innate immune responses through the regulation of nuclear factor-kappa B (NF-κB) and interferon regulatory factor-3 activation. These findings uncover a novel role for SOD2 in regulating RLR-mediated antiviral innate immune signaling.
Collapse
Affiliation(s)
- Wan Wang
- 1 Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University , Shanghai, China
| | - Yufei Jin
- 1 Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University , Shanghai, China
| | - Ningxiang Zeng
- 1 Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University , Shanghai, China
| | - Qingwei Ruan
- 2 Shanghai Institute of Geriatrics and Gerontology, Shanghai Key Laboratory of Clinical Geriatrics, Huadong Hospital, Research Center of Aging and Medicine, Shanghai Medical College, Fudan University , Shanghai, China
| | - Feng Qian
- 1 Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University , Shanghai, China
| |
Collapse
|
168
|
Saki M, Prakash A. DNA damage related crosstalk between the nucleus and mitochondria. Free Radic Biol Med 2017; 107:216-227. [PMID: 27915046 PMCID: PMC5449269 DOI: 10.1016/j.freeradbiomed.2016.11.050] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/25/2016] [Accepted: 11/29/2016] [Indexed: 12/18/2022]
Abstract
The electron transport chain is the primary pathway by which a cell generates energy in the form of ATP. Byproducts of this process produce reactive oxygen species that can cause damage to mitochondrial DNA. If not properly repaired, the accumulation of DNA damage can lead to mitochondrial dysfunction linked to several human disorders including neurodegenerative diseases and cancer. Mitochondria are able to combat oxidative DNA damage via repair mechanisms that are analogous to those found in the nucleus. Of the repair pathways currently reported in the mitochondria, the base excision repair pathway is the most comprehensively described. Proteins that are involved with the maintenance of mtDNA are encoded by nuclear genes and translocate to the mitochondria making signaling between the nucleus and mitochondria imperative. In this review, we discuss the current understanding of mitochondrial DNA repair mechanisms and also highlight the sensors and signaling pathways that mediate crosstalk between the nucleus and mitochondria in the event of mitochondrial stress.
Collapse
Affiliation(s)
- Mohammad Saki
- Mitchell Cancer Institute, The University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, United States
| | - Aishwarya Prakash
- Mitchell Cancer Institute, The University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, United States.
| |
Collapse
|
169
|
Cardiovascular Mitochondrial Dysfunction Induced by Cocaine: Biomarkers and Possible Beneficial Effects of Modulators of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3034245. [PMID: 28593024 PMCID: PMC5448156 DOI: 10.1155/2017/3034245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/08/2017] [Accepted: 03/26/2017] [Indexed: 12/12/2022]
Abstract
Cocaine abuse has long been known to cause morbidity and mortality due to its cardiovascular toxic effects. The pathogenesis of the cardiovascular toxicity of cocaine use has been largely reviewed, and the most recent data indicate a fundamental role of oxidative stress in cocaine-induced cardiovascular toxicity, indicating that mitochondrial dysfunction is involved in the mechanisms of oxidative stress. The comprehension of the mechanisms involving mitochondrial dysfunction could help in selecting the most appropriate mitochondria injury biological marker, such as superoxide dismutase-2 activity and glutathionylated hemoglobin. The potential use of modulators of oxidative stress (mitoubiquinone, the short-chain quinone idebenone, and allopurinol) in the treatment of cocaine cardiotoxic effects is also suggested to promote further investigations on these potential mitochondria-targeted antioxidant strategies.
Collapse
|
170
|
Saify K, Saadat M. Influence of a 50bp Ins/Del polymorphism at promoter of the superoxide dismutase-1 on gene expression and risk of heroin dependency. Environ Health Prev Med 2017; 22:4. [PMID: 29165112 PMCID: PMC5661911 DOI: 10.1186/s12199-017-0617-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 03/04/2017] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Superoxide dismutase-1 (SOD1, OMIM: 147450) is one of the major antioxidant enzymes, which plays a vital role in clearance of reactive oxygen species. A genetic polymorphism of 50 bp insertion/deletion (Ins/Del) in the promoter region of the SOD1 was reported. The aims of the present study are to evaluate the influence of this polymorphism on the SOD1 mRNA levels in human peripheral blood cells and its association with risk of heroin dependency. METHODS The present study consisted of 47 healthy students of Shiraz University (south-west Iran) for investigating the association between the Ins/Del polymorphism on expression level of SOD1, also a total of 442 heroin dependent and 799 healthy controls were included in a case-control study investigating the association between the study polymorphism and risk of dependency to heroin. The quantitative SOD1 mRNA expression levels were investigated using quantitative real-time PCR. RESULTS Statistical analysis revealed a significant difference between the study genotypes (t = 5.17; df = 45; P < 0.001). The Del allele of the study polymorphism decreased approximately 33% of the SOD1 mRNA levels of the gene in the heterozygote individuals. Statistical analysis indicating that in both genders, neither the Ins/Del nor the Del/Del genotypes was associated with the risk of heroin addiction. CONCLUSIONS The present study indicating that although the Ins/Del polymorphism of SOD1 is associated with the SOD1 expression levels, this polymorphism is not associated with the risk of dependency to heroin.
Collapse
Affiliation(s)
- Khyber Saify
- Department of Biology, College of Sciences, Shiraz University, Shiraz, 71467-13565, Iran
| | - Mostafa Saadat
- Department of Biology, College of Sciences, Shiraz University, Shiraz, 71467-13565, Iran.
| |
Collapse
|
171
|
Chung WH. Unraveling new functions of superoxide dismutase using yeast model system: Beyond its conventional role in superoxide radical scavenging. J Microbiol 2017; 55:409-416. [PMID: 28281199 DOI: 10.1007/s12275-017-6647-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 01/16/2023]
Abstract
To deal with chemically reactive oxygen molecules constantly threatening aerobic life, cells are readily equipped with elaborate biological antioxidant systems. Superoxide dismutase is a metalloenzyme catalytically eliminating superoxide radical as a first-line defense mechanism against oxidative stress. Multiple different SOD isoforms have been developed throughout evolution to play distinct roles in separate subcellular compartments. SOD is not essential for viability of most aerobic organisms and intriguingly found even in strictly anaerobic bacteria. Sod1 has recently been known to play important roles as a nuclear transcription factor, an RNA binding protein, a synthetic lethal interactor, and a signal modulator in glucose metabolism, most of which are independent of its canonical function as an antioxidant enzyme. In this review, recent advances in understanding the unconventional role of Sod1 are highlighted and discussed with an emphasis on its genetic crosstalk with DNA damage repair/checkpoint pathways. The budding yeast Saccharomyces cerevisiae has been successfully used as an efficient tool and a model organism to investigate a number of novel functions of Sod1.
Collapse
Affiliation(s)
- Woo-Hyun Chung
- College of Pharmacy, Duksung Women's University, Seoul, 01369, Republic of Korea. .,Innovative Drug Center, Duksung Women's University, Seoul, 01369, Republic of Korea.
| |
Collapse
|
172
|
Oszajca M, Brindell M, Orzeł Ł, Dąbrowski JM, Śpiewak K, Łabuz P, Pacia M, Stochel-Gaudyn A, Macyk W, van Eldik R, Stochel G. Mechanistic studies on versatile metal-assisted hydrogen peroxide activation processes for biomedical and environmental incentives. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.05.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
173
|
Linder MC. Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics 2016; 8:887-905. [PMID: 27426697 DOI: 10.1039/c6mt00103c] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We know that blood plasma contains many proteins and also other components that bind copper. The largest contributor to copper in the plasma is ceruloplasmin, which accounts for 40-70 percent. Apart from ceruloplasmin and albumin, most of these components have not been studied extensively, and even for ceruloplasmin and albumin, much remains to be discovered. New components with new functions, and new functions of known components are emerging, some warranting reconsideration of earlier findings. The author's laboratory has been actively involved in research on this topic. This review summarizes and updates our knowledge of the nature and functions of ceruloplasmin and the other known and emerging copper-containing molecules (principally proteins) in this fluid, to better understand how they contribute to copper homeostasis and consider their potential significance to health and disease.
Collapse
Affiliation(s)
- M C Linder
- California State University, Fullerton, CA, USA.
| |
Collapse
|
174
|
Longevity-modulating effects of symbiosis: insights from Drosophila–Wolbachia interaction. Biogerontology 2016; 17:785-803. [DOI: 10.1007/s10522-016-9653-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 05/18/2016] [Indexed: 01/30/2023]
|
175
|
Liu RR, Lv YS, Tang YX, Wang YF, Chen XL, Zheng XX, Xie SZ, Cai Y, Yu J, Zhang XN. Eukaryotic translation initiation factor 5A2 regulates the migration and invasion of hepatocellular carcinoma cells via pathways involving reactive oxygen species. Oncotarget 2016; 7:24348-60. [PMID: 27028999 PMCID: PMC5029706 DOI: 10.18632/oncotarget.8324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/28/2016] [Indexed: 12/19/2022] Open
Abstract
Eukaryotic translation initiation factor 5A2 (eIF5A2) has been identified as a critical gene in tumor metastasis. Research has suggested that reactive oxygen species (ROS) serve as signaling molecules in cancer cell proliferation and migration. However, the mechanisms linking eIF5A2 and ROS are not fully understood. Here, we investigated the effects of ROS on the eIF5A2-induced epithelial-mesenchymal transition (EMT) and migration in six hepatocellular carcinoma (HCC) cell lines. Western hybridization, siRNA transfection, transwell migration assays, wound-healing assays, and immunofluorescence analysis were used. The protein levels of eIF5A2 in tumor and adjacent tissue samples from 90 HCC patients with detailed clinical, pathological, and clinical follow-up data were evaluated. Overexpression of eIF5A2 was found in cancerous tissues compared with adjacent tissues. We found that eIF5A2 overexpression in HCC was associated with reduced overall survival. Knockdown of eIF5A2 and intracellular reduction of ROS significantly suppressed the invasion and metastasis of HCC cells. Interestingly, N1-guanyl-1, 7-diaminoheptane (GC7) suppressed the intracellular ROS levels. After blocking the EMT, administration of GC7 or N-acetyl-L-cysteine did not reduce cell migration further. Based on the experimental data, we concluded that inhibition of eIF5A2 alters progression of the EMT to decrease the invasion and metastasis of HCC cells via ROS-related pathways.
Collapse
Affiliation(s)
- Rong-Rong Liu
- Department of Cell Biology and Medical Genetics, Research Center for Molecular Medicine, National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ya-Su Lv
- Department of Cell Biology and Medical Genetics, Research Center for Molecular Medicine, National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yue-Xiao Tang
- Department of Cell Biology and Medical Genetics, Research Center for Molecular Medicine, National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yan-Fang Wang
- Department of Cell Biology and Medical Genetics, Research Center for Molecular Medicine, National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Xiao-Ling Chen
- Department of Biological Chemistry, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiao-Xiao Zheng
- Department of Cell Biology and Medical Genetics, Research Center for Molecular Medicine, National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Shang-Zhi Xie
- Department of Cell Biology and Medical Genetics, Research Center for Molecular Medicine, National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ying Cai
- Department of Cell Biology and Medical Genetics, Research Center for Molecular Medicine, National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jun Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Multi-Organ Transplantation of Ministry of Public Health, Hangzhou, 310003, China
| | - Xian-Ning Zhang
- Department of Cell Biology and Medical Genetics, Research Center for Molecular Medicine, National Education Base for Basic Medical Sciences, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
176
|
Ding Y, Wang H, Niu J, Luo M, Gou Y, Miao L, Zou Z, Cheng Y. Induction of ROS Overload by Alantolactone Prompts Oxidative DNA Damage and Apoptosis in Colorectal Cancer Cells. Int J Mol Sci 2016; 17:558. [PMID: 27089328 PMCID: PMC4849014 DOI: 10.3390/ijms17040558] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/17/2016] [Accepted: 04/08/2016] [Indexed: 02/08/2023] Open
Abstract
Cancer cells typically display higher than normal levels of reactive oxygen species (ROS), which may promote cancer development and progression but may also render the cancer cells more vulnerable to further ROS insult. Indeed, many of the current anticancer therapeutics kill cancer cells via induction of oxidative stress, though they target both cancer and normal cells. Recently, alantolactone (ATL), a natural sesquiterpene lactone, has been shown to induce apoptosis by increasing ROS levels specifically in cancer cells; however, the molecular mechanisms linking ROS overproduction to apoptosis remain unclear. Here we show that the ATL-induced ROS overload in human SW480 and SW1116 colorectal cancer cells was followed by a prominent accumulation of cellular oxidized guanine (8-oxoG) and immediate increase in the number of DNA strand breaks, indicating that increased ROS resulted in extensive oxidative DNA damage. Consequently, the G1/S-CDK suppresser CDKN1B (p21) and pro-apoptotic proteins Bax and activated caspase-3 were upregulated, while anti-apoptotic Bcl-2 was downregulated, which were followed by cell cycle arrest at G1 and marked apoptosis in ATL-treated cancer but not non-cancer cells. These results suggest that the ATL-induced ROS overload triggers cell death through induction of massive oxidative DNA damage and subsequent activation of the intrinsic apoptosis pathway.
Collapse
Affiliation(s)
- Yushuang Ding
- Department of Radiotherapy, the Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Hongge Wang
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Jiajing Niu
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Manyu Luo
- Department of Nephrology, the Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Yangmei Gou
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Lining Miao
- Department of Nephrology, the Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| | - Zhihua Zou
- School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Ying Cheng
- Department of Radiotherapy, the Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
- Department of Thoracic Oncology, Jilin Provincial Cancer Hospital, 1018 Huguang Street, Changchun 130012, China.
| |
Collapse
|