151
|
Kim K, Park H, Lim KM. Phototoxicity: Its Mechanism and Animal Alternative Test Methods. Toxicol Res 2015; 31:321. [PMID: 26191378 PMCID: PMC4505355 DOI: 10.5487/tr.2015.31.2.097] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 06/10/2015] [Accepted: 06/18/2015] [Indexed: 11/20/2022] Open
Abstract
The skin exposure to solar irradiation and photoreactive xenobiotics may produce abnormal skin reaction, phototoxicity. Phototoxicity is an acute light-induced response, which occurs when photoreacive chemicals are activated by solar lights and transformed into products cytotoxic against the skin cells. Multifarious symptoms of phototoxicity are identified, skin irritation, erythema, pruritis, and edema that are similar to those of the exaggerated sunburn. Diverse organic chemicals, especially drugs, are known to induce phototoxicity, which is probably from the common possession of UV-absorbing benzene or heterocyclic rings in their molecular structures. Both UVB (290~320 nm) and UVA (320~400 nm) are responsible for the manifestation of phototoxicity. Absorption of photons and absorbed energy (hv) by photoactive chemicals results in molecular changes or generates reactive oxygen species and depending on the way how endogenous molecules are affected by phototoxicants, mechanisms of phototoxcity is categorized into two modes of action: Direct when unstable species from excited state directly react with the endogenous molecules, and indirect when endogeneous molecules react with secondary photoproducts. In order to identify phototoxic potential of a chemical, various test methods have been introduced. Focus is given to animal alternative test methods, i.e., in vitro, and in chemico assays as well as in vivo. 3T3 neutral red uptake assay, erythrocyte photohemolysis test, and phototoxicity test using human 3-dimensional (3D) epidermis model are examples of in vitro assays. In chemico methods evaluate the generation of reactive oxygen species or DNA strand break activity employing plasmid for chemicals, or drugs with phototoxic potential.
Collapse
Affiliation(s)
- Kyuri Kim
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hyeonji Park
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Kyung-Min Lim
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
152
|
Affiliation(s)
- Richard A. Bojar
- SSTBA Ltd., Thirsk, North Yorkshire, United Kingdom
- Innovenn Ltd., York, North Yorkshire, United Kingdom
| |
Collapse
|
153
|
Jacquoilleot S, Sheffield D, Olayanju A, Sison-Young R, Kitteringham NR, Naisbitt DJ, Aleksic M. Glutathione metabolism in the HaCaT cell line as a model for the detoxification of the model sensitisers 2,4-dinitrohalobenzenes in human skin. Toxicol Lett 2015; 237:11-20. [PMID: 26022718 DOI: 10.1016/j.toxlet.2015.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/31/2022]
Abstract
Glutathione (GSH) is the most prominent antioxidant in cells and the co-factor of an important set of enzymes involved in the skin metabolic clearance system, glutathione S-transferases (GST). Here, we describe an LC-MS (liquid chromatography-mass spectroscopy) method to measure GSH and its disulfide form (GSSG) in HaCaT cells and a 3D Reconstructed Human Epidermis (RHE) model. In our assay, the basal level of GSH in both systems was in the low nmol/mg soluble protein range, while the level of GSSG was systematically below our limit of quantification (0.1 μM). We found that 2,4-dinitrohalobenzenes deplete the GSH present in HaCaT cells within the first hour of exposure, in a dose dependent manner. The level of GSH in HaCaT cells treated with a single non-toxic dose of 10 μM of dinitrohalobenzene was also shown to increase after two hours. While cells treated with 1-chloro-2,4-dinitrobenzene (DNCB) and 1-fluoro-2,4-dinitrobenzene (DNFB) repleted GSH to levels similar to untreated control cells within 24h, 1-bromo-2,4-dinitrobenzene (DNBB) seemed to prevent such a repletion and appeared to be the most toxic compound in all assays. A mathematical modelling of experimental results was performed to further rationalise the differences observed between test chemicals. For this purpose the biological phenomena observed were simplified into two sequential events: the initial depletion of the GSH stock after chemical treatment followed by the repletion of the GSH once the chemical was cleared. Activation of the nuclear factor E2-related factor 2 (Nrf2) pathway was observed with all compounds within two hours, and at concentrations less than 10 μM. These data show that GSH depletion and repletion occur rapidly in skin cells and emphasize the importance of conducting kinetic studies when performing in vitro experiments exploring skin sensitization.
Collapse
Affiliation(s)
- Sandrine Jacquoilleot
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK.
| | - David Sheffield
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Adedamola Olayanju
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Building, Ashton Street, The University of Liverpool, Liverpool L69 3GE, UK
| | - Rowena Sison-Young
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Building, Ashton Street, The University of Liverpool, Liverpool L69 3GE, UK
| | - Neil R Kitteringham
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Building, Ashton Street, The University of Liverpool, Liverpool L69 3GE, UK
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, Sherrington Building, Ashton Street, The University of Liverpool, Liverpool L69 3GE, UK
| | - Maja Aleksic
- Unilever, Safety and Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| |
Collapse
|
154
|
Abstract
The study of a drug's dermal penetration profile provides important pharmaceutical data for the rational development of topical and transdermal delivery systems because the skin is a broadly used delivery route for local and systemic drugs and a potential route for gene therapy and vaccines. Monitoring drug penetration across the skin and quantifying its levels in different skin layers have been constant challenges due to the detection limitations of the available techniques, as well as the inherent interference in this tissue. This review explores and discusses several bionalytical methods that are indispensable tools to study drugs across the skin. In addressing the main topic, we structure the review highlighting the skin as an important route of drug administration and its structure, skin membrane models most used and its properties, in vitro and in vivo assays most used in the study of drug delivery to the skin, the techniques for processing the skin for subsequent analysis by bioanalytical methods that have a theoretical and practical approach showing its applicability, limitations and also including examples of its use. This review has a comprehensive approach in order to help researchers design their experiments and update the applicability and advances in this area of expertise.
Collapse
|
155
|
In vitro skin models as a tool in optimization of drug formulation. Eur J Pharm Sci 2015; 75:10-24. [PMID: 25746955 DOI: 10.1016/j.ejps.2015.02.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 11/21/2022]
Abstract
(Trans)dermal drug therapy is gaining increasing importance in the modern drug development. To fully utilize the potential of this route, it is important to optimize the delivery of active ingredient/drug into/through the skin. The optimal carrier/vehicle can enhance the desired outcome of the therapy therefore the optimization of skin formulations is often included in the early stages of the product development. A rational approach in designing and optimizing skin formulations requires well-defined skin models, able to identify and evaluate the intrinsic properties of the formulation. Most of the current optimization relies on the use of suitable ex vivo animal/human models. However, increasing restrictions in use and handling of animals and human skin stimulated the search for suitable artificial skin models. This review attempts to provide an unbiased overview of the most commonly used models, with emphasis on their limitations and advantages. The choice of the most applicable in vitro model for the particular purpose should be based on the interplay between the availability, easiness of the use, cost and the respective limitations.
Collapse
|
156
|
De Wever B, Kurdykowski S, Descargues P. Human Skin Models for Research Applications in Pharmacology and Toxicology: Introducing NativeSkin®, the “Missing Link” Bridging Cell Culture and/or Reconstructed Skin Models and Human Clinical Testing. ACTA ACUST UNITED AC 2015. [DOI: 10.1089/aivt.2014.0010] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
157
|
Phospholipid Vesicle-Based Permeation Assay and EpiSkin® in Assessment of Drug Therapies Destined for Skin Administration. J Pharm Sci 2015; 104:1119-27. [DOI: 10.1002/jps.24315] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/23/2014] [Accepted: 12/02/2014] [Indexed: 01/01/2023]
|
158
|
Danso MO, van Drongelen V, Mulder A, Gooris G, van Smeden J, El Ghalbzouri A, Bouwstra JA. Exploring the potentials of nurture: 2nd and 3rd generation explant human skin equivalents. J Dermatol Sci 2015; 77:102-9. [DOI: 10.1016/j.jdermsci.2014.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/21/2014] [Accepted: 12/17/2014] [Indexed: 01/03/2023]
|
159
|
Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. ACTA ACUST UNITED AC 2015; 20:107-26. [PMID: 25586998 DOI: 10.1177/2211068214561025] [Citation(s) in RCA: 1415] [Impact Index Per Article: 141.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Transepithelial/transendothelial electrical resistance (TEER) is a widely accepted quantitative technique to measure the integrity of tight junction dynamics in cell culture models of endothelial and epithelial monolayers. TEER values are strong indicators of the integrity of the cellular barriers before they are evaluated for transport of drugs or chemicals. TEER measurements can be performed in real time without cell damage and generally are based on measuring ohmic resistance or measuring impedance across a wide spectrum of frequencies. The measurements for various cell types have been reported with commercially available measurement systems and also with custom-built microfluidic implementations. Some of the barrier models that have been widely characterized using TEER include the blood-brain barrier (BBB), gastrointestinal (GI) tract, and pulmonary models. Variations in these values can arise due to factors such as temperature, medium formulation, and passage number of cells. The aim of this article is to review the different TEER measurement techniques and analyze their strengths and weaknesses, determine the significance of TEER in drug toxicity studies, examine the various in vitro models and microfluidic organs-on-chips implementations using TEER measurements in some widely studied barrier models (BBB, GI tract, and pulmonary), and discuss the various factors that can affect TEER measurements.
Collapse
Affiliation(s)
- Balaji Srinivasan
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | - Aditya Reddy Kolli
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA
| | | | | | | | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, FL, USA Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
160
|
Harde H, Agrawal AK, Katariya M, Kale D, Jain S. Development of a topical adapalene-solid lipid nanoparticle loaded gel with enhanced efficacy and improved skin tolerability. RSC Adv 2015. [DOI: 10.1039/c5ra06047h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present investigation substantiates the efficacy of adapalene loaded solid lipid nanoparticles (Ada-SLNs) in ameliorating the skin irritation potential of adapalene owing to its altered skin distribution.
Collapse
Affiliation(s)
- Harshad Harde
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali-160062
- India
| | - Ashish Kumar Agrawal
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali-160062
- India
| | - Mahesh Katariya
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali-160062
- India
| | - Dnyaneshwar Kale
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali-160062
- India
| | - Sanyog Jain
- Centre for Pharmaceutical Nanotechnology
- Department of Pharmaceutics
- National Institute of Pharmaceutical Education and Research (NIPER)
- Mohali-160062
- India
| |
Collapse
|
161
|
Oesch F, Fabian E, Guth K, Landsiedel R. Xenobiotic-metabolizing enzymes in the skin of rat, mouse, pig, guinea pig, man, and in human skin models. Arch Toxicol 2014; 88:2135-90. [PMID: 25370008 PMCID: PMC4247477 DOI: 10.1007/s00204-014-1382-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/02/2014] [Indexed: 02/01/2023]
Abstract
The exposure of the skin to medical drugs, skin care products, cosmetics, and other chemicals renders information on xenobiotic-metabolizing enzymes (XME) in the skin highly interesting. Since the use of freshly excised human skin for experimental investigations meets with ethical and practical limitations, information on XME in models comes in the focus including non-human mammalian species and in vitro skin models. This review attempts to summarize the information available in the open scientific literature on XME in the skin of human, rat, mouse, guinea pig, and pig as well as human primary skin cells, human cell lines, and reconstructed human skin models. The most salient outcome is that much more research on cutaneous XME is needed for solid metabolism-dependent efficacy and safety predictions, and the cutaneous metabolism comparisons have to be viewed with caution. Keeping this fully in mind at least with respect to some cutaneous XME, some models may tentatively be considered to approximate reasonable closeness to human skin. For dermal absorption and for skin irritation among many contributing XME, esterase activity is of special importance, which in pig skin, some human cell lines, and reconstructed skin models appears reasonably close to human skin. With respect to genotoxicity and sensitization, activating XME are not yet judgeable, but reactive metabolite-reducing XME in primary human keratinocytes and several reconstructed human skin models appear reasonably close to human skin. For a more detailed delineation and discussion of the severe limitations see the “Overview and Conclusions” section in the end of this review.
Collapse
Affiliation(s)
- F Oesch
- Oesch-Tox Toxicological Consulting and Expert Opinions GmbH&Co.KG, Rheinblick 21, 55263, Wackernheim, Germany
| | | | | | | |
Collapse
|
162
|
Rheological behaviour of reconstructed skin. J Mech Behav Biomed Mater 2014; 37:251-63. [DOI: 10.1016/j.jmbbm.2014.05.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/16/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
|
163
|
Guiraud B, Hernandez-Pigeon H, Ceruti I, Mas S, Palvadeau Y, Saint-Martory C, Castex-Rizzi N, Duplan H, Bessou-Touya S. Characterization of a human epidermis model reconstructed from hair follicle keratinocytes and comparison with two commercially models and native skin. Int J Cosmet Sci 2014; 36:485-93. [DOI: 10.1111/ics.12150] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/28/2014] [Indexed: 12/30/2022]
Affiliation(s)
- B. Guiraud
- Département de Pharmacologie In Vitro; Pierre Fabre Dermo-Cosmétique; 3 Avenue Hubert Curien BP13562 Toulouse CEDEX 31035 France
| | - H. Hernandez-Pigeon
- Département de Pharmacologie In Vitro; Pierre Fabre Dermo-Cosmétique; 3 Avenue Hubert Curien BP13562 Toulouse CEDEX 31035 France
| | - I. Ceruti
- Département de Pharmacologie In Vitro; Pierre Fabre Dermo-Cosmétique; 3 Avenue Hubert Curien BP13562 Toulouse CEDEX 31035 France
| | - S. Mas
- Département de Pharmacologie In Vitro; Pierre Fabre Dermo-Cosmétique; 3 Avenue Hubert Curien BP13562 Toulouse CEDEX 31035 France
| | - Y. Palvadeau
- Département de Pharmacologie In Vitro; Pierre Fabre Dermo-Cosmétique; 3 Avenue Hubert Curien BP13562 Toulouse CEDEX 31035 France
| | - C. Saint-Martory
- Pole Recherche, Exploration, Développement Clinique; Pierre Fabre Dermo-Cosmétique; 2, Rue Viguerie 31025 Toulouse Cedex France
| | - N. Castex-Rizzi
- Département de Pharmacologie In Vitro; Pierre Fabre Dermo-Cosmétique; 3 Avenue Hubert Curien BP13562 Toulouse CEDEX 31035 France
| | - H. Duplan
- Département de Pharmacologie In Vitro; Pierre Fabre Dermo-Cosmétique; 3 Avenue Hubert Curien BP13562 Toulouse CEDEX 31035 France
| | - S. Bessou-Touya
- Département de Pharmacologie In Vitro; Pierre Fabre Dermo-Cosmétique; 3 Avenue Hubert Curien BP13562 Toulouse CEDEX 31035 France
| |
Collapse
|
164
|
Wiegand C, Hewitt NJ, Merk HF, Reisinger K. Dermal Xenobiotic Metabolism: A Comparison between Native Human Skin, Four in vitro Skin Test Systems and a Liver System. Skin Pharmacol Physiol 2014; 27:263-75. [DOI: 10.1159/000358272] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 12/30/2013] [Indexed: 11/19/2022]
|
165
|
Reus AA, Reisinger K, Downs TR, Carr GJ, Zeller A, Corvi R, Krul CAM, Pfuhler S. Comet assay in reconstructed 3D human epidermal skin models--investigation of intra- and inter-laboratory reproducibility with coded chemicals. Mutagenesis 2014; 28:709-20. [PMID: 24150594 PMCID: PMC4023299 DOI: 10.1093/mutage/get051] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Reconstructed 3D human epidermal skin models are being used increasingly for safety testing of chemicals. Based on EpiDerm™ tissues, an assay was developed in which the tissues were topically exposed to test chemicals for 3h followed by cell isolation and assessment of DNA damage using the comet assay. Inter-laboratory reproducibility of the 3D skin comet assay was initially demonstrated using two model genotoxic carcinogens, methyl methane sulfonate (MMS) and 4-nitroquinoline-n-oxide, and the results showed good concordance among three different laboratories and with in vivo data. In Phase 2 of the project, intra- and inter-laboratory reproducibility was investigated with five coded compounds with different genotoxicity liability tested at three different laboratories. For the genotoxic carcinogens MMS and N-ethyl-N-nitrosourea, all laboratories reported a dose-related and statistically significant increase (P < 0.05) in DNA damage in every experiment. For the genotoxic carcinogen, 2,4-diaminotoluene, the overall result from all laboratories showed a smaller, but significant genotoxic response (P < 0.05). For cyclohexanone (CHN) (non-genotoxic in vitro and in vivo, and non-carcinogenic), an increase compared to the solvent control acetone was observed only in one laboratory. However, the response was not dose related and CHN was judged negative overall, as was p-nitrophenol (p-NP) (genotoxic in vitro but not in vivo and non-carcinogenic), which was the only compound showing clear cytotoxic effects. For p-NP, significant DNA damage generally occurred only at doses that were substantially cytotoxic (>30% cell loss), and the overall response was comparable in all laboratories despite some differences in doses tested. The results of the collaborative study for the coded compounds were generally reproducible among the laboratories involved and intra-laboratory reproducibility was also good. These data indicate that the comet assay in EpiDerm™ skin models is a promising model for the safety assessment of compounds with a dermal route of exposure.
Collapse
Affiliation(s)
- Astrid A Reus
- TNO Triskelion, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Tfayli A, Bonnier F, Farhane Z, Libong D, Byrne HJ, Baillet-Guffroy A. Comparison of structure and organization of cutaneous lipids in a reconstructed skin model and human skin: spectroscopic imaging and chromatographic profiling. Exp Dermatol 2014; 23:441-3. [DOI: 10.1111/exd.12423] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2014] [Indexed: 11/29/2022]
Affiliation(s)
- Ali Tfayli
- Group of Analytical Chemistry of Paris-Sud (GCAPS); Faculty of Pharmacy; University Paris-Sud; Chatenay-Malabry France
| | - Franck Bonnier
- Focas Research Institute; Dublin Institute of Technology; Dublin 8 Ireland
| | - Zeineb Farhane
- Group of Analytical Chemistry of Paris-Sud (GCAPS); Faculty of Pharmacy; University Paris-Sud; Chatenay-Malabry France
| | - Danielle Libong
- Group of Analytical Chemistry of Paris-Sud (GCAPS); Faculty of Pharmacy; University Paris-Sud; Chatenay-Malabry France
| | - Hugh J. Byrne
- Focas Research Institute; Dublin Institute of Technology; Dublin 8 Ireland
| | - Arlette Baillet-Guffroy
- Group of Analytical Chemistry of Paris-Sud (GCAPS); Faculty of Pharmacy; University Paris-Sud; Chatenay-Malabry France
| |
Collapse
|
167
|
Astashkina A, Grainger DW. Critical analysis of 3-D organoid in vitro cell culture models for high-throughput drug candidate toxicity assessments. Adv Drug Deliv Rev 2014; 69-70:1-18. [PMID: 24613390 DOI: 10.1016/j.addr.2014.02.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/14/2014] [Accepted: 02/18/2014] [Indexed: 12/18/2022]
Abstract
Drug failure due to toxicity indicators remains among the primary reasons for staggering drug attrition rates during clinical studies and post-marketing surveillance. Broader validation and use of next-generation 3-D improved cell culture models are expected to improve predictive power and effectiveness of drug toxicological predictions. However, after decades of promising research significant gaps remain in our collective ability to extract quality human toxicity information from in vitro data using 3-D cell and tissue models. Issues, challenges and future directions for the field to improve drug assay predictive power and reliability of 3-D models are reviewed.
Collapse
|
168
|
Mathes SH, Ruffner H, Graf-Hausner U. The use of skin models in drug development. Adv Drug Deliv Rev 2014; 69-70:81-102. [PMID: 24378581 DOI: 10.1016/j.addr.2013.12.006] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/10/2013] [Accepted: 12/17/2013] [Indexed: 12/12/2022]
Abstract
Three dimensional (3D) tissue models of the human skin are probably the most developed and understood in vitro engineered constructs. The motivation to accomplish organotypic structures was driven by the clinics to enable transplantation of in vitro grown tissue substitutes and by the cosmetics industry as alternative test substrates in order to replace animal models. Today a huge variety of 3D human skin models exist, covering a multitude of scientific and/or technical demands. This review summarizes and discusses different approaches of skin model development and sets them into the context of drug development. Although human skin models have become indispensable for the cosmetics industry, they have not yet started their triumphal procession in pharmaceutical research and development. For drug development these tissue models may be of particular interest for a) systemically acting drugs applied on the skin, and b) drugs acting at the site of application in the case of skin diseases or disorders. Although quite a broad spectrum of models covering different aspects of the skin as a biologically acting surface exists, these are most often single stand-alone approaches. In order to enable the comprehensive application into drug development processes, the approaches have to be synchronized to allow a cross-over comparison. Besides the development of biological relevant models, other issues are not less important in the context of drug development: standardized production procedures, process automation, establishment of significant analytical methods, and data correlation. For the successful routine use of engineered human skin models in drug development, major requirements were defined. If these requirements can be accomplished in the next few years, human organotypic skin models will become indispensable for drug development, too.
Collapse
Affiliation(s)
- Stephanie H Mathes
- Institute of Chemistry and Biological Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820 Waedenswil, Switzerland
| | - Heinz Ruffner
- Developmental and Molecular Pathways (DMP), Novartis Institutes for BioMedical Research (NIBR), Fabrikstrasse 22, 4056 Basel, Switzerland
| | - Ursula Graf-Hausner
- Institute of Chemistry and Biological Chemistry, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820 Waedenswil, Switzerland.
| |
Collapse
|
169
|
|
170
|
Chung E, Choi H, Lim JE, Son Y. Development of skin inflammation test model by co-culture of reconstituted 3D skin and RAW264.7 cells. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-013-1113-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
171
|
Lee V, Singh G, Trasatti JP, Bjornsson C, Xu X, Tran TN, Yoo SS, Dai G, Karande P. Design and fabrication of human skin by three-dimensional bioprinting. Tissue Eng Part C Methods 2013; 20:473-84. [PMID: 24188635 DOI: 10.1089/ten.tec.2013.0335] [Citation(s) in RCA: 437] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Three-dimensional (3D) bioprinting, a flexible automated on-demand platform for the free-form fabrication of complex living architectures, is a novel approach for the design and engineering of human organs and tissues. Here, we demonstrate the potential of 3D bioprinting for tissue engineering using human skin as a prototypical example. Keratinocytes and fibroblasts were used as constituent cells to represent the epidermis and dermis, and collagen was used to represent the dermal matrix of the skin. Preliminary studies were conducted to optimize printing parameters for maximum cell viability as well as for the optimization of cell densities in the epidermis and dermis to mimic physiologically relevant attributes of human skin. Printed 3D constructs were cultured in submerged media conditions followed by exposure of the epidermal layer to the air-liquid interface to promote maturation and stratification. Histology and immunofluorescence characterization demonstrated that 3D printed skin tissue was morphologically and biologically representative of in vivo human skin tissue. In comparison with traditional methods for skin engineering, 3D bioprinting offers several advantages in terms of shape- and form retention, flexibility, reproducibility, and high culture throughput. It has a broad range of applications in transdermal and topical formulation discovery, dermal toxicity studies, and in designing autologous grafts for wound healing. The proof-of-concept studies presented here can be further extended for enhancing the complexity of the skin model via the incorporation of secondary and adnexal structures or the inclusion of diseased cells to serve as a model for studying the pathophysiology of skin diseases.
Collapse
Affiliation(s)
- Vivian Lee
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York
| | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Lemper M, De Paepe K, Rogiers V. Practical problems encountered during the cultivation of an open-source reconstructed human epidermis model on a polycarbonate membrane and protein quantification. Skin Pharmacol Physiol 2013; 27:106-12. [PMID: 24335349 DOI: 10.1159/000351814] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 05/07/2013] [Indexed: 11/19/2022]
Abstract
During recent years, the importance of in vitro technology in skin research has increased significantly. A variety of skin culture models have been developed and commercialized. In this respect, the availability of reconstructed human epidermis (RHE) equivalents represents a significant improvement compared to the use of monolayer cultures. However, when an in-house RHE model is being developed, researchers might encounter some difficulties during cultivation. The scope of this paper is to report our experiences and practical problems with the development of a three-dimensional RHE model cultured on a polycarbonate membrane. Some important issues including cell density, the use of lysing enzymes, culture media, cell storage and viability, cell confluency and protein extraction are reported and optional solutions are given.
Collapse
Affiliation(s)
- M Lemper
- Department of Toxicology, Dermato-Cosmetology and Pharmacognosy, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | |
Collapse
|
173
|
Development of a new in vitro skin sensitization assay (Epidermal Sensitization Assay; EpiSensA) using reconstructed human epidermis. Toxicol In Vitro 2013; 27:2213-24. [PMID: 23999411 DOI: 10.1016/j.tiv.2013.08.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Revised: 06/18/2013] [Accepted: 08/22/2013] [Indexed: 11/21/2022]
Abstract
Recent changes in regulatory requirements and social views on animal testing have accelerated the development of reliable alternative tests for predicting skin sensitizing potential of chemicals. In this study, we aimed to develop a new in vitro skin sensitization assay using reconstructed human epidermis, RhE model, which is expected to have broader applicability domain rather than existing in vitro assays. Microarray analysis revealed that the expression of five genes (ATF3, DNAJB4, GCLM, HSPA6 and HSPH1) related to cellular stress response were significantly up-regulated in RhE model after 6h treatment with representative skin sensitizers, 1-fluoro-2,4-dinitrobenzene and oxazolone, but not a non-sensitizer, benzalkonium chloride. The predictive performance of five genes was examined with eight skin sensitizers (e.g., cinnamic aldehyde), four non-sensitizers (e.g., sodium lauryl sulfate) and four pre-/pro-haptens (e.g., p-phenylenediamine, isoeugenol). When the positive criteria were set to obtain the highest accuracy with the animal testing (LLNA), ATF3, DNAJB4 and GCLM exhibited a high predictive accuracy (100%, 93.8% and 87.5%, respectively). All tested pre-/pro-haptens were correctly predicted by both ATF3 and DNAJB4. These results suggested that the RhE-based assay, termed epidermal sensitization assay (EpiSensA), could be an useful skin sensitization assay with a broad applicability domain including pre-/pro-haptens.
Collapse
|
174
|
Müller G, Langer J, Siebert J, Kramer A. Residual antimicrobial effect of chlorhexidine digluconate and octenidine dihydrochloride on reconstructed human epidermis. Skin Pharmacol Physiol 2013; 27:1-8. [PMID: 23887383 DOI: 10.1159/000350172] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/15/2013] [Indexed: 12/21/2022]
Abstract
The objective of the present investigation was to examine the residual antimicrobial activity after a topical exposure of reconstructed human epidermis (RHE) to equimolar solutions of either chlorhexidine digluconate (CHG, 0.144% w/v) or octenidine dihydrochloride (OCT, 0.1% w/v) for 15 min. RHE-associated antiseptic agents were more effective on Staphylococcus aureus than on Pseudomonas aeruginosa. S. aureus was not detected after 24 h of contact, which demonstrated a microbicidal efficacy of greater than 5-log10 reduction. In contrast, P. aeruginosa was reduced by approximately 2 log10 at the same incubation time, which parallels the growth of the initial inoculum. This result could be interpreted either as a microbiostatic effect or as an adherence of P. aeruginosa to a low positively charged surface. Small amounts of CHG and OCT can penetrate the stratum corneum. Using these antiseptic agents, the viability of keratinocytes was reduced to 65-75% of that of the untreated RHE control following 24 h incubation in the presence of test microorganisms. With consideration of antimicrobial activity and cytotoxic effect, OCT corresponds better to a biocompatible antiseptic agent than CHG.
Collapse
Affiliation(s)
- G Müller
- Institute of Hygiene and Environmental Medicine, Ernst-Moritz-Arndt-University Greifswald, Germany
| | | | | | | |
Collapse
|
175
|
Bätz FM, Klipper W, Korting HC, Henkler F, Landsiedel R, Luch A, von Fritschen U, Weindl G, Schäfer-Korting M. Esterase activity in excised and reconstructed human skin – Biotransformation of prednicarbate and the model dye fluorescein diacetate. Eur J Pharm Biopharm 2013. [DOI: 10.1016/j.ejpb.2012.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
176
|
Chen S, Bhushan B. Nanomechanical and nanotribological characterization of two synthetic skins with and without skin cream treatment using atomic force microscopy. J Colloid Interface Sci 2013; 398:247-54. [DOI: 10.1016/j.jcis.2013.02.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
|
177
|
Heilmann S, Küchler S, Wischke C, Lendlein A, Stein C, Schäfer-Korting M. A thermosensitive morphine-containing hydrogel for the treatment of large-scale skin wounds. Int J Pharm 2013; 444:96-102. [PMID: 23352858 DOI: 10.1016/j.ijpharm.2013.01.027] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/11/2013] [Accepted: 01/13/2013] [Indexed: 11/25/2022]
Abstract
PURPOSE Topically applied opioids are an option to induce efficient analgesia in patients with severe skin wounds. For ongoing pain reduction, the vehicle should provide sustained drug release in order to increase the intervals during the regular wound dressing changes. In addition, the formulation should not impair wound healing. Hydrogels provide a moist wound environment, which is known to facilitate the healing process. METHODS AND RESULTS Investigating poloxamer hydrogels as a carrier system for morphine in terms of release behavior and (per-)cutaneous absorption, poloxamer 407 25wt.% hydrogel sustained morphine release up to 24h. The drug release rate decreased with increasing concentration of the gel forming triblock copolymer. Poloxamer 407 25wt.% hydrogel retarded morphine uptake into reconstructed human skin and percutaneous drug absorption compared to a hydroxyethyl cellulose reference gel. CONCLUSIONS The results of our in vitro study indicate that the thermosensitive poloxamer 407 25wt.% hydrogel is an appropriate carrier system for the topical application of morphine with regard to sustained drug release and ongoing analgesia.
Collapse
Affiliation(s)
- Sarah Heilmann
- Institute for Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
178
|
Increased Presence of Monounsaturated Fatty Acids in the Stratum Corneum of Human Skin Equivalents. J Invest Dermatol 2013; 133:59-67. [DOI: 10.1038/jid.2012.262] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
179
|
Carney EW, Settivari R. Predictive Toxicology. A COMPREHENSIVE GUIDE TO TOXICOLOGY IN PRECLINICAL DRUG DEVELOPMENT 2013:777-806. [DOI: 10.1016/b978-0-12-387815-1.00033-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
180
|
Windbergs M, Hansen S, Schroeter A, Schaefer U, Lehr CM, Bouwstra J. From the Structure of the Skin Barrier and Dermal Formulations to in vitro Transport Models for Skin Absorption: Skin Research in the Netherlands and in Germany. Skin Pharmacol Physiol 2013; 26:317-30. [DOI: 10.1159/000351936] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Accepted: 03/03/2013] [Indexed: 11/19/2022]
|
181
|
Gibbons MC, Foley MA, Cardinal KO. Thinking inside the box: keeping tissue-engineered constructs in vitro for use as preclinical models. TISSUE ENGINEERING PART B-REVIEWS 2012; 19:14-30. [PMID: 22800715 DOI: 10.1089/ten.teb.2012.0305] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineers have made great strides toward the creation of living tissue replacements for a wide range of tissue types and applications, with eventual patient implantation as the primary goal. However, an alternate use of tissue-engineered constructs exists: as in vitro preclinical models for purposes such as drug screening and device testing. Tissue-engineered preclinical models have numerous potential advantages over existing models, including cultivation in three-dimensional geometries, decreased cost, increased reproducibility, precise control over cultivation conditions, and the incorporation of human cells. Over the past decade, a number of researchers have developed and used tissue-engineered constructs as preclinical models for testing pharmaceuticals, gene therapies, stents, and other technologies, with examples including blood vessels, skeletal muscle, bone, cartilage, skin, cardiac muscle, liver, cornea, reproductive tissues, adipose, small intestine, neural tissue, and kidney. The focus of this article is to review accomplishments toward the creation and use of tissue-engineered preclinical models of each of these different tissue types.
Collapse
Affiliation(s)
- Michael C Gibbons
- Department of Biomedical and General Engineering, Cal Poly San Luis Obispo, San Luis Obispo, California 93407, USA
| | | | | |
Collapse
|
182
|
Yunis R, Albrecht H, Kalanetra KM, WU S, Rocke DM. Genomic characterization of a three-dimensional skin model following exposure to ionizing radiation. JOURNAL OF RADIATION RESEARCH 2012; 53:860-75. [PMID: 22915785 PMCID: PMC3483859 DOI: 10.1093/jrr/rrs063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
This study aimed at characterizing the genomic response to low versus moderate doses of ionizing radiation (LDIR versus MDIR) in a three-dimensional (3D) skin model, which exhibits a closer tissue complexity to human skin than monolayer cell cultures. EpiDermFT skin plugs were exposed to 0, 0.1 and 1 Gy doses of X-rays and harvested at 5 min, 3, 8 and 24 h post-irradiation (post-IR). RNA was interrogated for global gene expression alteration. Our results show that MDIR modulated a larger number of genes over the course of 24 h compared to LDIR. However, immediately and throughout the first 3h post-IR, LDIR modulated a larger number of genes than MDIR, mostly associated with cell-cell signaling and survival promotion. Significant modulation of pathways was detected only at 3 h post-IR in MDIR with induction of genes promoting apoptosis. Collectively, the data show different dynamics in the response to LDIR versus MDIR, especially in cell-cycle distribution. LDIR-exposed tissues showed signs of attempted cell-cycle re-entry as early as 3 h post-IR, but were arrested beyond 8 h at the G1/S checkpoint. At 24 h, cells appeared to accumulate at the G2/M checkpoint. MDIR-exposed tissues did not exhibit a prolonged G1/S arrest but rather a prolonged G2/M arrest, which was sustained at least up to 24 h. By 24 h cells exhibited signs of recovery in both LDIR- and MDIR-exposed tissues. In summary, the most pronounced difference in the initial cellular response to LDIR versus MDIR is the promotion of protection and survival in LDIR versus the promotion of apoptosis in MDIR.
Collapse
|
183
|
Westmoreland C, Holmes AM. Assuring consumer safety without animals: Applications for tissue engineering. Organogenesis 2012; 5:67-72. [PMID: 19794902 DOI: 10.4161/org.5.2.9128] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 05/29/2009] [Indexed: 12/27/2022] Open
Abstract
Humans are exposed to a variety of chemicals in their everyday lives through interactions with the environment and through the use of consumer products. It is a basic requirement that these products are tested to assure they are safe under normal and reasonably foreseeable conditions of use. Within the European Union, the majority of tests used for generating toxicological data rely on animals. However recent changes in legislation (e.g., 7(th) amendment of the Cosmetics Directive and REACH) are driving researchers to develop and adopt non-animal alternative methods with which to assure human safety. Great strides have been made to this effect, but what other opportunities/technologies exist that could expedite this? Tissue engineering has increasing scope to contribute to replacing animals with scientifically robust alternatives in basic research and safety testing, but is this application of the technology being fully exploited? This review highlights how the consumer products industry is applying tissue engineering to ensure chemicals are safe for human use without using animals, and identifies areas for future development and application of the technology.
Collapse
Affiliation(s)
- Carl Westmoreland
- Safety and Environmental Assurance Centre (SEAC); Unilever; Sharnbrook, Bedfordshire UK
| | | |
Collapse
|
184
|
Krulikowska M, Arct J, Lucova M, Cetner B, Majewski S. Artificial membranes as models in penetration investigations. Skin Res Technol 2012; 19:e139-45. [DOI: 10.1111/j.1600-0846.2012.00620.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2012] [Indexed: 11/27/2022]
Affiliation(s)
| | - J. Arct
- Academy of Cosmetics and Health Care; Warsaw; Poland
| | - M. Lucova
- Slovak University of Technology in Bratislava; Bratislava; Slovak Republic
| | - B. Cetner
- Warsaw University of Technology, Faculty of Chemistry
| | | |
Collapse
|
185
|
Valgimigli L, Gabbanini S, Berlini E, Lucchi E, Beltramini C, Bertarelli YL. Lemon (Citrus limon, Burm.f.) essential oil enhances the trans-epidermal release of lipid-(A, E) and water-(B6, C) soluble vitamins from topical emulsions in reconstructed human epidermis. Int J Cosmet Sci 2012; 34:347-56. [PMID: 22515469 DOI: 10.1111/j.1468-2494.2012.00725.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Topical bioavailability of lipid- and water-soluble vitamins is a critical issue for protecting or anti-ageing formulations. Using 17-day-old SkinEthic(®) reconstructed human epidermis, we investigated (at 34°C) the role of lemon EO in enhancing the penetration of α-tocopherol (E) and retinyl acetate (A), pyridoxine (B(6)) and ascorbic acid (C), released from O/W or W/O emulsions. D-limonene, α-pinene and p-cymene (65.9, 2.2 and 0.5%w/w of the oil) had skin permeability coefficients Ps (10(-3) cm h(-1)) of 0.56 ± 0.03 (or 0.73 ± 0.02), 0.72 ± 0.05 (or 0.98 ± 0.05) and 0.84 ± 0.04 (or 1.14 ± 0.04), respectively, when incorporated in a W/O (or O/W) emulsion. Vitamins B6, C and A had Ps values of (3.0 ± 0.4) × 10(-3), (7.9 ± 0.6) × 10(-3) and (0.37 ± 0.02) × 10(-5) cm h(-1), respectively, and their flux through the skin was enhanced by a factor of 4.1, 3.4 and 5.8, respectively, in the presence of lemon EO. The penetration of vitamin E was nine-fold enhanced. Lemon EO produced only reversible modification of TEWL, and it is a safe and effective penetration enhancer for topical administration of lipid- and water-soluble vitamins.
Collapse
Affiliation(s)
- L Valgimigli
- Department of Organic Chemistry, Faculty of Pharmacy, University of Bologna, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
186
|
Labouta HI, Schneider M. Interaction of inorganic nanoparticles with the skin barrier: current status and critical review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 9:39-54. [PMID: 22542824 DOI: 10.1016/j.nano.2012.04.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Revised: 04/02/2012] [Accepted: 04/12/2012] [Indexed: 11/18/2022]
Abstract
UNLABELLED Integration of nanotechnology with biology leads to various advantages in applied pharmaceutical and medical sciences. In that regard, the behavior of nanoparticles (NPs) in relation to the skin, an important biological barrier, has been the target of several recent studies. Yet the potential ability of NPs to penetrate into the underlying viable tissue lies at the center of debate. This review briefly highlights the current applications of inorganic NPs, then discusses the current status of their skin penetration in view of the vast variation among the experimental setups in use. Determinants of particle penetration, adopted approaches for enhanced penetration, the underlying mechanism, as well as qualitative and quantitative analysis of NPs present in the skin are also within the scope of this review article. We emphasize analyzing the data generated from experiments on human skin, the "gold standard" for assessment of in vitro skin penetration. Based on this, we include some recommendations for future research. FROM THE CLINICAL EDITOR Transdermal application of inorganic nanoparticle-based medications is of growing interest in nanomedicine research. This critical review discusses the knowns and the unknowns of this field, providing insightful recommendations for future research.
Collapse
Affiliation(s)
- Hagar I Labouta
- Pharmaceutical Nanotechnology, Saarland University, Saarbrücken, Germany
| | | |
Collapse
|
187
|
Reus AA, Usta M, Krul CAM. The use of ex vivo human skin tissue for genotoxicity testing. Toxicol Appl Pharmacol 2012; 261:154-63. [PMID: 22507867 DOI: 10.1016/j.taap.2012.03.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 03/21/2012] [Accepted: 03/28/2012] [Indexed: 11/28/2022]
Abstract
As a result of the chemical legislation concerning the registration, evaluation, authorization and restriction of chemicals (REACH), and the Seventh Amendment to the Cosmetics Directive, which prohibits animal testing in Europe for cosmetics, alternative methods for safety evaluation of chemicals are urgently needed. Current in vitro genotoxicity assays are not sufficiently predictive for the in vivo situation, resulting in an unacceptably high number of misleading positives. For many chemicals and ingredients of personal care products the skin is the first site of contact, but there are no in vitro genotoxicity assays available in the skin for additional evaluation of positive or equivocal responses observed in regulatory in vitro genotoxicity assays. In the present study ex vivo human skin tissue obtained from surgery was used for genotoxicity evaluation of chemicals by using the comet assay. Fresh ex vivo human skin tissue was cultured in an air-liquid interface and topically exposed to 20 chemicals, including true positive, misleading positive and true negative genotoxins. Based on the results obtained in the present study, the sensitivity, specificity and accuracy of the ex vivo skin comet assay to predict in vivo genotoxicity were 89%, 90% and 89%, respectively. Donor and experimental variability were mainly reflected in the magnitude of the response and not the difference between the presence and absence of a genotoxic response. The present study indicates that human skin obtained from surgery is a promising and robust model for safety evaluation of chemicals that are in direct contact with the skin.
Collapse
Affiliation(s)
- Astrid A Reus
- TNO Triskelion BV, Utrechtseweg 48, 3704 HE, Zeist, The Netherlands
| | | | | |
Collapse
|
188
|
Jäckh C, Fabian E, van Ravenzwaay B, Landsiedel R. Relevance of xenobiotic enzymes in human skin in vitro models to activate pro-sensitizers. J Immunotoxicol 2012; 9:426-38. [PMID: 22471730 DOI: 10.3109/1547691x.2012.664578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Skin exposure to sensitizing chemicals can induce allergic reactions. Certain chemicals, so called pro-sensitizers, need metabolic activation to become allergenic. Their metabolic activation occurs in skin cells such as keratinocytes or dendritic cells. These cell types are also incorporated into dermal in vitro test systems used to assess the sensitizing potential of chemicals for humans. In vitrosystems range from single cell cultures to organotypic multi-cellular reconstructed skin models. Until now, their metabolic competence to unmask sensitizing potential of pro-sensitizers was rarely investigated. This review aims to summarize current information on available skin in vitro models and the relevance of xenobiotic metabolizing enzymes for the activation of pro-sensitizers such as eugenol, 4-allylanisole, and ethylendiamine. Among others, these chemicals are discussed as performance standards to validate new coming in vitro systems for their potential to identify pro-sensitizers.
Collapse
Affiliation(s)
- Christine Jäckh
- BASF SE, Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany
| | | | | | | |
Collapse
|
189
|
A critical evaluation of in vitro cell culture models for high-throughput drug screening and toxicity. Pharmacol Ther 2012; 134:82-106. [DOI: 10.1016/j.pharmthera.2012.01.001] [Citation(s) in RCA: 276] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 12/22/2011] [Indexed: 01/10/2023]
|
190
|
Sarmento B, Andrade F, da Silva SB, Rodrigues F, das Neves J, Ferreira D. Cell-based in vitro models for predicting drug permeability. Expert Opin Drug Metab Toxicol 2012; 8:607-21. [PMID: 22424145 DOI: 10.1517/17425255.2012.673586] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION In vitro cell models have been used to predict drug permeation in early stages of drug development, since they represent an easy and reproducible method, allowing the tracking of drug absorption rate and mechanism, with an advantageous cost-benefit ratio. Such cell-based models are mainly composed of immortalized cells with an intrinsic ability to grow in a monolayer when seeded in permeable supports, maintaining their physiologic characteristics regarding epithelium cell physiology and functionality. AREAS COVERED This review summarizes the most important intestinal, pulmonary, nasal, vaginal, rectal, ocular and skin cell-based in vitro models for predicting the permeability of drugs. Moreover, the similitude between in vitro cell models and in vivo conditions are discussed, providing evidence that each model may provisionally resemble different drug absorption route. EXPERT OPINION Despite the widespread use of in vitro cell models for drug permeability and absorption evaluation purposes, a detailed study on the properties of these models and their in vitro-in vivo correlation compared with human data are required to further use in order to consider a future drug discovery optimization and clinical development.
Collapse
Affiliation(s)
- Bruno Sarmento
- Department of Pharmaceutical Technology, LTF/CICF, Faculty of Pharmacy, University of Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
191
|
Bhushan B. Nanotribological and nanomechanical properties of skin with and without cream treatment using atomic force microscopy and nanoindentation. J Colloid Interface Sci 2012; 367:1-33. [DOI: 10.1016/j.jcis.2011.10.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 10/06/2011] [Accepted: 10/07/2011] [Indexed: 11/16/2022]
|
192
|
Eros G, Hartmann P, Berkó S, Csizmazia E, Csányi E, Sztojkov-Ivanov A, Németh I, Szabó-Révész P, Zupkó I, Kemény L. A novel murine model for the in vivo study of transdermal drug penetration. ScientificWorldJournal 2012; 2012:543536. [PMID: 22272176 PMCID: PMC3259504 DOI: 10.1100/2012/543536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Accepted: 11/02/2011] [Indexed: 11/17/2022] Open
Abstract
Enhancement of the transdermal penetration of different active agents is an important research goal. Our aim was to establish a novel in vivo experimental model which provides a possibility for exact measurement of the quantity of penetrated drug. The experiments were performed on SKH-1 hairless mice. A skin fold in the dorsal region was fixed with two fenestrated titanium plates. A circular wound was made on one side of the skin fold. A metal cylinder with phosphate buffer was fixed into the window of the titanium plate. The concentration of penetrated drug was measured in the buffer. The skin fold was morphologically intact and had a healthy microcirculation. The drug appeared in the acceptor buffer after 30 min, and its concentration exhibited a continuous increase. The presence of ibuprofen was also detected in the plasma. In conclusion, this model allows an exact in vivo study of drug penetration and absorption.
Collapse
Affiliation(s)
- Gábor Eros
- Department of Dermatology and Allergology, University of Szeged, 6720 Szeged, Hungary.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Shakesheff KM, Rose FRAJ. Tissue engineering in the development of replacement technologies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 745:47-57. [PMID: 22437812 DOI: 10.1007/978-1-4614-3055-1_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The field of tissue engineering is generating new scaffolds, bioreactors and methods for stimulating cells within complex cultures, with the aim of recreating the conditions under which cells form functional tissues. Hitherto, the primary focus of this field has been on clinical applications. However, there are many methods of in vitro tissue engineering that represent new opportunities in 3D cell culture and could be the basis for new replacement methods that either replace the use of a tissue isolated from an animal or the use of a living animal. This chapter presents an overview of tissue engineering and provides tissue-specific examples of recent advances.
Collapse
Affiliation(s)
- Kevin M Shakesheff
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre Biomolecular for Studies, School of Pharmacy, University of Nottingham, UK.
| | | |
Collapse
|
194
|
Bouvier d'Yvoire M, Bremer S, Casati S, Ceridono M, Coecke S, Corvi R, Eskes C, Gribaldo L, Griesinger C, Knaut H, Linge JP, Roi A, Zuang V. ECVAM and new technologies for toxicity testing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 745:154-80. [PMID: 22437818 DOI: 10.1007/978-1-4614-3055-1_10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The development of alternative empirical (testing) and non-empirical (non-testing) methods to traditional toxicological tests for complex human health effects is a tremendous task. Toxicants may potentially interfere with a vast number of physiological mechanisms thereby causing disturbances on various levels of complexity of human physiology. Only a limited number of mechanisms relevant for toxicity ('pathways' of toxicity) have been identified with certainty so far and, presumably, many more mechanisms by which toxicants cause adverse effects remain to be identified. Recapitulating in empirical model systems (i.e., in vitro test systems) all those relevant physiological mechanisms prone to be disturbed by toxicants and relevant for causing the toxicity effect in question poses an enormous challenge. First, the mechanism(s) of action of toxicants in relation to the most relevant adverse effects of a specific human health endpoint need to be identified. Subsequently, these mechanisms need to be modeled in reductionist test systems that allow assessing whether an unknown substance may operate via a specific (array of) mechanism(s). Ideally, such test systems should be relevant for the species of interest, i.e., based on human cells or modeling mechanisms present in humans. Since much of our understanding about toxicity mechanisms is based on studies using animal model systems (i.e., experimental animals or animal-derived cells), designing test systems that model mechanisms relevant for the human situation may be limited by the lack of relevant information from basic research. New technologies from molecular biology and cell biology, as well as progress in tissue engineering, imaging techniques and automated testing platforms hold the promise to alleviate some of the traditional difficulties associated with improving toxicity testing for complex endpoints. Such new technologies are expected (1) to accelerate the identification of toxicity pathways with human relevance that need to be modeled in test methods for toxicity testing (2) to enable the reconstruction of reductionist test systems modeling at a reduced level of complexity the target system/organ of interest (e.g., through tissue engineering, use of human-derived cell lines and stem cells etc.), (3) to allow the measurement of specific mechanisms relevant for a given health endpoint in such test methods (e.g., through gene and protein expression, changes in metabolites, receptor activation, changes in neural activity etc.), (4) to allow to measure toxicity mechanisms at higher throughput rates through the use of automated testing. In this chapter, we discuss the potential impact of new technologies on the development, optimization and use of empirical testing methods, grouped according to important toxicological endpoints. We highlight, from an ECVAM perspective, the areas of topical toxicity, skin absorption, reproductive and developmental toxicity, carcinogenicity/genotoxicity, sensitization, hematopoeisis and toxicokinetics and discuss strategic developments including ECVAM's database service on alternative methods. Neither the areas of toxicity discussed nor the highlighted new technologies represent comprehensive listings which would be an impossible endeavor in the context of a book chapter. However, we feel that these areas are of utmost importance and we predict that new technologies are likely to contribute significantly to test development in these fields. We summarize which new technologies are expected to contribute to the development of new alternative testing methods over the next few years and point out current and planned ECVAM projects for each of these areas.
Collapse
|
195
|
Thakoersing VS, Gooris GS, Mulder A, Rietveld M, El Ghalbzouri A, Bouwstra JA. Unraveling Barrier Properties of Three Different In-House Human Skin Equivalents. Tissue Eng Part C Methods 2012; 18:1-11. [DOI: 10.1089/ten.tec.2011.0175] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Varsha S. Thakoersing
- Gorlaeus Laboratories, Department of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Gerrit S. Gooris
- Gorlaeus Laboratories, Department of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Aat Mulder
- Gorlaeus Laboratories, Department of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | - Marion Rietveld
- Department of Dermatology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Abdoelwaheb El Ghalbzouri
- Department of Dermatology, Leiden University Medical Center, Leiden University, Leiden, The Netherlands
| | - Joke A. Bouwstra
- Gorlaeus Laboratories, Department of Drug Delivery Technology, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
196
|
Park YH, Jeong SH, Yi SM, Choi BH, Kim YR, Kim IK, Kim MK, Son SW. Analysis for the potential of polystyrene and TiO2 nanoparticles to induce skin irritation, phototoxicity, and sensitization. Toxicol In Vitro 2011; 25:1863-9. [DOI: 10.1016/j.tiv.2011.05.022] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Revised: 02/17/2011] [Accepted: 05/19/2011] [Indexed: 01/04/2023]
|
197
|
LI HAIRUI, KOCHHAR JASPREETSINGH, PAN JING, CHAN SUIYUNG, KANG LIFENG. NANO/MICROSCALE TECHNOLOGIES FOR DRUG DELIVERY. J MECH MED BIOL 2011. [DOI: 10.1142/s021951941100406x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nano- and microscale technologies have made a marked impact on the development of drug delivery systems. The loading efficiency and particle size of nano/micro particles can be better controlled with these new technologies than conventional methods. Moreover, drug delivery systems are moving from simple particles to smart particles and devices with programmable functions. These technologies are also contributing to in vitro and in vivo drug testing, which are important to evaluate drug delivery systems. For in vitro tests, lab-on-a-chip models are potentially useful as alternatives to animal models. For in vivo test, nano/micro-biosensors are developed for testing chemicals and biologics with high sensitivity and selectivity. Here, we review the recent development of nanoscale and microscale technologies in drug delivery including drug delivery systems, in vitro and in vivo tests.
Collapse
Affiliation(s)
- HAIRUI LI
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - JASPREET SINGH KOCHHAR
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - JING PAN
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - SUI YUNG CHAN
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| | - LIFENG KANG
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore
| |
Collapse
|
198
|
Jäckh C, Blatz V, Fabian E, Guth K, van Ravenzwaay B, Reisinger K, Landsiedel R. Characterization of enzyme activities of Cytochrome P450 enzymes, Flavin-dependent monooxygenases, N-acetyltransferases and UDP-glucuronyltransferases in human reconstructed epidermis and full-thickness skin models. Toxicol In Vitro 2011; 25:1209-14. [DOI: 10.1016/j.tiv.2011.03.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 02/17/2011] [Accepted: 03/18/2011] [Indexed: 11/30/2022]
|
199
|
Sharma NS, Jindal R, Mitra B, Lee S, Li L, Maguire TJ, Schloss R, Yarmush ML. Perspectives on Non-Animal Alternatives for Assessing Sensitization Potential in Allergic Contact Dermatitis. Cell Mol Bioeng 2011; 5:52-72. [PMID: 24741377 DOI: 10.1007/s12195-011-0189-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Skin sensitization remains a major environmental and occupational health hazard. Animal models have been used as the gold standard method of choice for estimating chemical sensitization potential. However, a growing international drive and consensus for minimizing animal usage have prompted the development of in vitro methods to assess chemical sensitivity. In this paper, we examine existing approaches including in silico models, cell and tissue based assays for distinguishing between sensitizers and irritants. The in silico approaches that have been discussed include Quantitative Structure Activity Relationships (QSAR) and QSAR based expert models that correlate chemical molecular structure with biological activity and mechanism based read-across models that incorporate compound electrophilicity. The cell and tissue based assays rely on an assortment of mono and co-culture cell systems in conjunction with 3D skin models. Given the complexity of allergen induced immune responses, and the limited ability of existing systems to capture the entire gamut of cellular and molecular events associated with these responses, we also introduce a microfabricated platform that can capture all the key steps involved in allergic contact sensitivity. Finally, we describe the development of an integrated testing strategy comprised of two or three tier systems for evaluating sensitization potential of chemicals.
Collapse
Affiliation(s)
- Nripen S Sharma
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Rohit Jindal
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Bhaskar Mitra
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Serom Lee
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Lulu Li
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Tim J Maguire
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA ; Center for Engineering in Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
200
|
Misík J, Pavlíková R, Cabal J, Novotný L, Kuča K. METHOD OF STATIC DIFFUSION CELLS FOR ASSESSMENT OF PESTICIDES SKIN PERMEATION. ACTA ACUST UNITED AC 2011. [DOI: 10.31482/mmsl.2011.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|