151
|
Oxidative Stress and Cardiovascular Disease in Diabetes. OXIDATIVE STRESS IN APPLIED BASIC RESEARCH AND CLINICAL PRACTICE 2014. [DOI: 10.1007/978-1-4899-8035-9_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
152
|
Yamanaka D, Tajima K, Adachi Y, Ishibashi KI, Miura NN, Motoi M, Ohno N. Effect of polymeric caffeic acid on antitumour activity and natural killer cell activity in mice. J Funct Foods 2014. [DOI: 10.1016/j.jff.2013.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
153
|
Costa R, Negrão R, Valente I, Castela Â, Duarte D, Guardão L, Magalhães PJ, Rodrigues JA, Guimarães JT, Gomes P, Soares R. Xanthohumol modulates inflammation, oxidative stress, and angiogenesis in type 1 diabetic rat skin wound healing. JOURNAL OF NATURAL PRODUCTS 2013; 76:2047-2053. [PMID: 24200239 DOI: 10.1021/np4002898] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Type 1 diabetes mellitus is responsible for metabolic dysfunction, accompanied by chronic inflammation, oxidative stress, and endothelium dysfunction, and is often associated with impaired wound healing. Phenol-rich food improves vascular function, contributing to diabetes prevention. This study has evaluated the effect of phenol-rich beverage consumption in diabetic rats on wound healing, through angiogenesis, inflammation, and oxidative stress modulation. A wound-healing assay was performed in streptozotocin-induced diabetic Wistar rats drinking water, 5% ethanol, and stout beer with and without 10 mg/L xanthohumol (1), for a five-week period. Wounded skin microvessel density was reduced to normal values upon consumption of 1 in diabetic rats, being accompanied by decreased serum VEGF-A and inflammatory markers (IL-1β, NO, N-acetylglucosaminidase). Systemic glutathione and kidney and liver H2O2, 3-nitrotyrosine, and protein carbonylation also decreased to healthy levels after treatment with 1, implying an improvement in oxidative stress status. These findings suggest that consumption of xanthohumol (1) by diabetic animals consistently decreases inflammation and oxidative stress, allowing neovascularization control and improving diabetic wound healing.
Collapse
Affiliation(s)
- Raquel Costa
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto , 4200-319 Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Mangoni AA, Stockley CS, Woodman RJ. Effects of red wine on established markers of arterial structure and function in human studies: current knowledge and future research directions. Expert Rev Clin Pharmacol 2013; 6:613-25. [PMID: 24164610 DOI: 10.1586/17512433.2013.841077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evidence from observational studies suggests that mild-to-moderate consumption of red wine is associated with reduced cardiovascular morbidity and mortality. Various individual chemical components of red wine also show salutary effects on vascular homeostasis, that is, enhanced endothelial function and arterial distensibility, both in vitro and in animal studies. However, testing the beneficial potential of red wine in primary and secondary cardiovascular prevention on established surrogate cardiovascular markers requires further study with longer term intervention trials. This report reviews and critically appraises the published evidence for the effects of red wine on endothelium-dependent vasodilation, arterial stiffness and arterial wave reflections in healthy subjects and in patients with cardiovascular disease. Suggestions for future research directions are also provided.
Collapse
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, School of Medicine, Flinders University and Flinders Medical Centre, Flinders Drive, Bedford Park, SA 5042, Australia
| | | | | |
Collapse
|
155
|
Interaction of plant phenols with food macronutrients: characterisation and nutritional-physiological consequences. Nutr Res Rev 2013; 27:1-15. [PMID: 24169001 DOI: 10.1017/s095442241300019x] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Polyphenols are dietary constituents of plants associated with health-promoting effects. In the human diet, polyphenols are generally consumed in foods along with macronutrients. Because the health benefits of polyphenols are critically determined by their bioavailability, the effect of interactions between plant phenols and food macronutrients is a very important topic. In the present review, we summarise current knowledge, with a special focus on the in vitro and in vivo effects of food macronutrients on the bioavailability and bioactivity of polyphenols. The mechanisms of interactions between polyphenols and food macronutrients are also discussed. The evidence collected in the present review suggests that when plant phenols are consumed along with food macronutrients, the bioavailability and bioactivity of polyphenols can be significantly affected. The protein-polyphenol complexes can significantly change the plasma kinetics profile but do not affect the absorption of polyphenols. Carbohydrates can enhance the absorption and extend the time needed to reach a maximal plasma concentration of polyphenols, and fats can enhance the absorption and change the absorption kinetics of polyphenols. Moreover, as highlighted in the present review, not only a nutrient alone but also certain synergisms between food macronutrients have a significant effect on the bioavailability and biological activity of polyphenols. The review emphasises the need for formulations that optimise the bioavailability and in vivo activities of polyphenols.
Collapse
|
156
|
Perez-Ternero C, Rodriguez-Rodriguez R, Parrado J, Alvarez de Sotomayor M. Grape pomace enzymatic extract restores vascular dysfunction evoked by endothelin-1 and DETCA via NADPH oxidase downregulation and SOD activation. J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.07.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
157
|
Lentil-based diets attenuate hypertension and large-artery remodelling in spontaneously hypertensive rats. Br J Nutr 2013; 111:690-8. [PMID: 24063808 DOI: 10.1017/s0007114513002997] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Hypertension is a major risk factor for CVD, the leading cause of mortality worldwide. The prevalence of hypertension is expected to continue increasing, and current pharmacological treatments cannot alleviate all the associated problems. Pulse crops have been touted as a general health food and are now being studied for their possible effects on several disease states including hypertension, obesity and diabetes. In the present study, 15-week-old spontaneously hypertensive rats (SHR) were fed diets containing 30% w/w beans, peas, lentils, chickpeas, or mixed pulses or a pulse-free control diet for 4 weeks. Normotensive Wistar-Kyoto (WKY) rats were placed on a control diet. Pulse wave velocity (PWV) was measured weekly, while blood pressure (BP) was measured at baseline and week 4. Fasting serum obtained in week 4 of the study was analysed for circulating lipids. A histological analysis was carried out on aortic sections to determine vascular geometry. Of all the pulse varieties studied, lentils were found to be able to attenuate the rise in BP in the SHR model (P< 0·05). Lentils were able to decrease the media:lumen ratio and media width of the aorta. The total cholesterol (TC), LDL-cholesterol (LDL-C) and HDL-cholesterol levels of rats fed the pulse-based diets were found to be lower when compared with those of the WKY rat and SHR controls (P< 0·05). Although all pulses reduced circulating TC and LDL-C levels in the SHR, only lentils significantly reduced the rise in BP and large-artery remodelling in the SHR, but had no effect on PWV. These results indicate that the effects of lentils on arterial remodelling and BP in the SHR are independent of circulating LDL-C levels.
Collapse
|
158
|
Tribolo S, Lodi F, Winterbone MS, Saha S, Needs PW, Hughes DA, Kroon PA. Human metabolic transformation of quercetin blocks its capacity to decrease endothelial nitric oxide synthase (eNOS) expression and endothelin-1 secretion by human endothelial cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8589-8596. [PMID: 23947593 DOI: 10.1021/jf402511c] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The major dietary flavonol quercetin, which has been shown to improve endothelial function and decrease blood pressure, is extensively metabolized during absorption. This study examined the relative abilities of quercetin and its human metabolites to modulate the expression of eNOS and ET-1, which are involved in regulating endothelial homeostasis. Quercetin aglycone significantly reduced both eNOS protein and gene expression in HUVEC, mirroring the effects of the pro-inflammatory cytokine TNFα. In the presence of TNFα the aglycone caused further reductions in eNOS, whereas the metabolites were without effect in either TNFα-stimulated or unstimulated cells. ET-1 expression was significantly reduced by quercetin in both TNFα-stimulated or unstimulated HUVECs. The metabolites had no effect on ET-1 expression with the exception of quercetin-3'-sulfate, which caused a moderate increase in TNFα-stimulated cells. These results suggest that metabolic transformation of quercetin prevents it from causing a potentially deleterious decrease in eNOS in endothelial cells.
Collapse
Affiliation(s)
- Sandra Tribolo
- Food and Health Programme, Institute of Food Research , Norwich Research Park, Norwich NR4 7UA, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
159
|
Kristo AS, Kalea AZ, Schuschke DA, Klimis-Zacas D. Attenuation of alpha-adrenergic-induced vasoconstriction by dietary wild blueberries (Vaccinium angustifolium) is mediated by the NO-cGMP pathway in spontaneously hypertensive rats (SHRs). Int J Food Sci Nutr 2013; 64:979-87. [PMID: 23944991 DOI: 10.3109/09637486.2013.825698] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The role of wild blueberries (WB) on key signaling steps of nitric oxide (NO) and cyclooxygenase (COX) pathways was examined in spontaneously hypertensive rats (SHRs) after eight weeks on a control (C) or an 8% w/w WB diet. Aortic rings from SHRs were stimulated with phenylephrine (Phe) in the absence or presence of inhibitors of: soluble guanylyl cyclase (sGC), phosphodiesterase-5 (PDE(5)), prostaglandin I(2) (PGI(2)) synthase and thromboxane A(2) (TXA(2)) synthase. Additionally, enzymatic activities in these pathways were determined by the concentration of NO, cyclic guanosine monophosphate (cGMP), PGI(2) and TXA(2). In the WB-fed SHR, attenuation of Phe-induced vasoconstriction was mediated by an increased synthesis or preservation of cGMP. Despite an increased release of PGI(2) in the WB group, neither inhibition of PGI(2) or TXA(2) synthase resulted in a different response to Phe between the control and the WB rings. Hence, in the SHR, WB decrease Phe-mediated vasoconstriction under basal conditions by enhancing NO-cGMP signaling without a significant involvement of the COX pathway.
Collapse
|
160
|
Bahadoran Z, Mirmiran P, Azizi F. Dietary polyphenols as potential nutraceuticals in management of diabetes: a review. J Diabetes Metab Disord 2013; 12:43. [PMID: 23938049 PMCID: PMC7968452 DOI: 10.1186/2251-6581-12-43] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/07/2013] [Indexed: 12/12/2022]
Abstract
In recent years, there is growing evidence that plant-foods polyphenols, due to their biological properties, may be unique nutraceuticals and supplementary treatments for various aspects of type 2 diabetes mellitus. In this article we have reviewed the potential efficacies of polyphenols, including phenolic acids, flavonoids, stilbenes, lignans and polymeric lignans, on metabolic disorders and complications induced by diabetes. Based on several in vitro, animal models and some human studies, dietary plant polyphenols and polyphenol-rich products modulate carbohydrate and lipid metabolism, attenuate hyperglycemia, dyslipidemia and insulin resistance, improve adipose tissue metabolism, and alleviate oxidative stress and stress-sensitive signaling pathways and inflammatory processes. Polyphenolic compounds can also prevent the development of long-term diabetes complications including cardiovascular disease, neuropathy, nephropathy and retinopathy. Further investigations as human clinical studies are needed to obtain the optimum dose and duration of supplementation with polyphenolic compounds in diabetic patients.
Collapse
Affiliation(s)
- Zahra Bahadoran
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, No 46 Arghavan-e-gharbi St, Farahzadi Blv, Shahrak-e-Ghods, 19395-4741 Tehran, Iran.
| | | | | |
Collapse
|
161
|
Lugemwa FN, Snyder AL, Shaikh K. Determination of Radical Scavenging Activity and Total Phenols of Wine and Spices: A Randomized Study. Antioxidants (Basel) 2013; 2:110-21. [PMID: 26784340 PMCID: PMC4665441 DOI: 10.3390/antiox2030110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/20/2013] [Accepted: 07/13/2013] [Indexed: 11/28/2022] Open
Abstract
Thirty eight bottles of red wine (Carbanet Sauvignon) were randomly selected based on vintage, region, price, and age (number of months in a barrel). The total phenolic content of each wine was determined using Folin-Ciocalteau assay. The radical scavenging activity was evaluated using 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. Apart from a few bottles that exhibited above average radical scavenging activity and phenolic content, there was no good correlation of those two quantities with region, price or vintage. The average phenolic amount was 2874 mg/L. The lowest phenolic content was found to be 1648 mg/L for an eight dollar wine. Wine with the highest amount of phenol of 4495 mg/L was a 2007, nine dollar bottle from South America. High amount of phenols did not translate into high radical scavenging activity. Barrel-aging did not increase the amount of phenols or the radical scavenging activity of wine. In order to discover new and potent sources of antioxidants from plants, the following spices were studied: ginger, cilantro, cumin, anise, linden, eucalyptus, marjoram, oregano, sage, thyme and rosemary. Whole spices were crushed and extracted for 96 h at room temperature using a combination of ethyl acetate, ethyl alcohol and water in the ratio of 4.5:4.5:1 (v/v/v). The radical scavenging activity of extracts was evaluated using 2,2-diphenyl-1-picryhydrazyl (DPPH) assay. The total phenolic content of each spice was also determined using the Folin-Ciocalteau assay. Eucalyptus was found to be the most potent antioxidant with an LC50 of 324.1 mg of phenol/L, followed by marjoram with an LC50 of 407.5 mg of phenol/L, and rosemary with an LC50 of 414.0 mg/L. The least potent antioxidants were ginger and cilantro with LC50 of 7604 mg/L of phenol and 7876 mg of phenol/L, respectively.
Collapse
Affiliation(s)
- Fulgentius Nelson Lugemwa
- Department of Chemistry, Pennsylvania State University-York, 1031 Edgecomb Avenue, York, PA 17403, USA.
| | - Amanda L Snyder
- Department of Chemistry, Pennsylvania State University-York, 1031 Edgecomb Avenue, York, PA 17403, USA.
| | - Koonj Shaikh
- Department of Chemistry, Pennsylvania State University-York, 1031 Edgecomb Avenue, York, PA 17403, USA.
| |
Collapse
|
162
|
Habánová M, Habán M, Chlebo P, Schwarzová M. Changes of plasma lipids in relation to the regular consumption of bilberries (Vaccinium myrtillus L.). POTRAVINARSTVO 2013. [DOI: 10.5219/233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this work we studied the impact of regular consumption of bilberries on the lipid profile and triglycerides in the blood plasma. The research involved 18 women (average age 49.7) and 7 men (average age 52.8), who consumed 150 g of bilberries three times a week for 6 weeks. Based on these results, we can conclude that the average total cholesterol levels of women decreased from 5.65 mmol.l-1 at the beginning of research to 5.11 mmol.l-1. At end of the study, the average total cholesterol was 5.47 mmol.l-1. Similar results were found in the LDL cholesterol - the level of cholesterol of the second blood collection dropped from 4.06 mmol.l-1 to 3.70 mmol.l-1 and at the end of the study it increased again to 4.00 mmol.l-1. We observed a slight increase in HDL choleserol (by 0.07 mmol.l-1) and reduction of triglycerides (by 0.16 mmol.l-1). The total cholesterol monitored men due to the regular consumption of bilberries decreased by 0.36 mmol.l-1, LDL cholesterol by 0.31 mmol.l-1, HDL cholesterol by 0.49 mmol.l-1 and triglycerides by 0,49 mmol.l-1. The improvement of triglycerides and lipid profile in blood plasma of monitored subjects can by evaluated positively. The observed data confirm the biological activity of bilberries and the effectiveness of their use in prevention and comprehensive treatment of cardiovascular diseases.
Collapse
|
163
|
Aseervatham GSB, Sivasudha T, Jeyadevi R, Arul Ananth D. Environmental factors and unhealthy lifestyle influence oxidative stress in humans--an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2013; 20:4356-4369. [PMID: 23636598 DOI: 10.1007/s11356-013-1748-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
Oxygen is the most essential molecule for life; since it is a strong oxidizing agent, it can aggravate the damage within the cell by a series of oxidative events including the generation of free radicals. Antioxidative agents are the only defense mechanism to neutralize these free radicals. Free radicals are not only generated internally in our body system but also trough external sources like environmental pollution, toxic metals, cigarette smoke, pesticides, etc., which add damage to our body system. Inhaling these toxic chemicals in the environment has become unavoidable in modern civilization. Antioxidants of plant origin with free radical scavenging properties could have great importance as therapeutic agents in several diseases caused by environmental pollution. This review summarizes the generation of reactive oxygen species and damage to cells by exposure to external factors, unhealthy lifestyle, and role of herbal plants in scavenging these reactive oxygen species.
Collapse
Affiliation(s)
- G Smilin Bell Aseervatham
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli 620 024 Tamilnadu, India
| | | | | | | |
Collapse
|
164
|
Kivimäki AS, Siltari A, Ehlers PI, Korpela R, Vapaatalo H. Lingonberry juice lowers blood pressure of spontaneously hypertensive rats (SHR). J Funct Foods 2013. [DOI: 10.1016/j.jff.2013.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
165
|
Braakhuis AJ, Hopkins WG, Lowe TE. Effects of dietary antioxidants on training and performance in female runners. Eur J Sport Sci 2013; 14:160-8. [DOI: 10.1080/17461391.2013.785597] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
166
|
Giordo R, Cossu A, Pasciu V, Hoa PT, Posadino AM, Pintus G. Different redox response elicited by naturally occurring antioxidants in human endothelial cells. Open Biochem J 2013; 7:44-53. [PMID: 23730364 PMCID: PMC3664460 DOI: 10.2174/1874091x01307010044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 01/10/2023] Open
Abstract
Evidences that higher natural antioxidant (NA) intake provides protection against cardiovascular disease (CVD) are contradictory. Oxidative-induced endothelial cells (ECs) injury is the key step in the onset and progression of CVD and for this reason the cellular responses resulting from NA interaction with ECs are actively investigated. This study was designed to investigate the direct impact of different naturally occurring antioxidants on the intracellular ROS levels in cultured human ECs. NA-induced redox changes, in terms of modulation of the intracellular ROS levels, were assessed by using the ROS fluorescent probe 2',7'-dichlorodihydrofluorescein diacetate (H2DCF-DA). While caffeic and caftaric acid exerted an anti-oxidant effect, both coumaric acid and resveratrol were pro-oxidant. Anti- and pro-oxidant effects of the tested compounds were concentration dependent, showing the induction or the tendency to promote a pro-oxidant outcome with increasing concentrations. Interestingly, the anti- and pro-oxidant behavior of chlorogenic and ferulic acid was dependent on the basal intracellular redox state. Our data indicate that naturally occurring antioxidants are able to induce a rapid modification of the intracellular ROS levels in human ECs, which is dependent on both the applied concentration and the intracellular redox state.
Collapse
Affiliation(s)
- Roberta Giordo
- Laboratory of Vascular Biology, Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | | | | | | | | |
Collapse
|
167
|
Intake of Blueberry Fermented by Lactobacillus plantarum Affects the Gut Microbiota of L-NAME Treated Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:809128. [PMID: 23690854 PMCID: PMC3638594 DOI: 10.1155/2013/809128] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 03/08/2013] [Accepted: 03/16/2013] [Indexed: 01/19/2023]
Abstract
Prebiotics, probiotics, or synbiotics can be used as means to regulate the microbiota to exert preventative or beneficial effects to the host. However, not much is known about the effect of the gut microbiota on hypertension which is a major risk factor of cardiovascular disease and also a symptom of the metabolic syndrome. The NG-nitro-L-arginine methyl ester (L-NAME) induced hypertensive rats were used in order to test the effect of a synbiotic dietary supplement of Lactobacillus plantarum HEAL19 either together with fermented blueberry or with three phenolic compounds synthesized during fermentation. The experimental diets did not lower the blood pressure after 4 weeks. However, the fermented blueberries together with live L. plantarum showed protective effect on liver cells indicated by suppressed increase of serum alanine aminotransferase (ALAT) levels. The diversity of the caecal microbiota was neither affected by L-NAME nor the experimental diets. However, inhibition of the nitric oxide synthesis by L-NAME exerted a selection pressure that led to a shift in the bacterial composition. The mixture of fermented blueberries with the bacterial strain altered the caecal microbiota in different direction compared to L-NAME, while the three phenolic compounds together with the bacteria eliminated the selection pressure from the L-NAME.
Collapse
|
168
|
Brito ADF, Oliveira CVCD, Toscano LT, Silva AS. Supplements and Foods with Potential Reduction of Blood Pressure in Prehypertensive and Hypertensive Subjects: A Systematic Review. ACTA ACUST UNITED AC 2013. [DOI: 10.5402/2013/581651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although the dietary approaches for stop hypertension (DASH) is well established and effective in reduction of blood pressure, in recent years, new scientific studies have indicated that specific food, nutrients isolated from foods, and even commercial food supplements are not covered by DASH. In this research, these nutrients were evaluated through a review using the databases of PubMed with the terms “dietary supplements and blood pressure” without a limit of date. Vitamins (C, D, and E) and minerals (potassium and copper) promote the greatest reductions in BP, around 7 to 14 mmHg for systolic blood pressure (SBP) and 4 to 5 mmHg for diastolic blood pressure (PAD). Antioxidants reduce SBP and DBP in 3 to 27 mmHg and 3 to 4 mmHg, respectively. Among the amino acids, only L-arginine was effective in promoting reduction of 20 and 15 mmHg for SBP and DBP, respectively. In food, the grape juice promoted the highest reductions in SBP and DBP, around 8 mmHg and 6 mmHg, respectively. Finally, for commercial supplements, the fermented milk product GAIOR, the grain salba, and fish oil promoted reductions of about 4,4; 6; and 5 mmHg and 3,4; 3; and 1 mmHg for SBP and DBP, respectively. Therefore, new nutrients, foods, and supplements can enrich the recommendations of the DASH.
Collapse
Affiliation(s)
- Aline de Freitas Brito
- Department of Physical Education, Federal University of Paraíba, 58.051-900 João Pessoa, PB, Brazil
- Research Laboratory for Physical Training Applied to Performance and Health, Federal University of Paraíba, 58.051-900 João Pessoa, PB, Brazil
| | - Caio Victor Coutinho de Oliveira
- Research Laboratory for Physical Training Applied to Performance and Health, Federal University of Paraíba, 58.051-900 João Pessoa, PB, Brazil
- Department of Nutrition, Federal University of Paraíba, 58.051-900 João Pessoa, PB, Brazil
| | - Lydiane Tavares Toscano
- Research Laboratory for Physical Training Applied to Performance and Health, Federal University of Paraíba, 58.051-900 João Pessoa, PB, Brazil
- Department of Nutrition, Federal University of Paraíba, 58.051-900 João Pessoa, PB, Brazil
| | - Alexandre Sérgio Silva
- Department of Physical Education, Federal University of Paraíba, 58.051-900 João Pessoa, PB, Brazil
- Research Laboratory for Physical Training Applied to Performance and Health, Federal University of Paraíba, 58.051-900 João Pessoa, PB, Brazil
- Instituição Federal University of Paraíba/Health Sciences Center Endereço: Campus I-Castelo Branco I, 58.051-900 João Pessoa, PB, Brazil
| |
Collapse
|
169
|
Alhosin M, Anselm E, Rashid S, Kim JH, Madeira SVF, Bronner C, Schini-Kerth VB. Redox-sensitive up-regulation of eNOS by purple grape juice in endothelial cells: role of PI3-kinase/Akt, p38 MAPK, JNK, FoxO1 and FoxO3a. PLoS One 2013; 8:e57883. [PMID: 23533577 PMCID: PMC3606366 DOI: 10.1371/journal.pone.0057883] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 01/30/2013] [Indexed: 11/19/2022] Open
Abstract
The vascular protective effect of grape-derived polyphenols has been attributable, in part, to their direct action on blood vessels by stimulating the endothelial formation of nitric oxide (NO). The aim of the present study was to determine whether Concord grape juice (CGJ), which contains high levels of polyphenols, stimulates the expression of endothelial NO synthase (eNOS) in porcine coronary artery endothelial cells and, if so, to determine the signaling pathway involved. CGJ dose- and time-dependently increased eNOS mRNA and protein levels and this effect is associated with an increased formation of NO in endothelial cells. The stimulatory effect of CGJ on eNOS mRNA is not associated with an increased eNOS mRNA stability and inhibited by antioxidants such as MnTMPyP, PEG-catalase, and catalase, and by wortmannin (an inhibitor of PI3-kinase), SB 203580 (an inhibitor of p38 MAPK), and SP 600125 (an inhibitor of JNK). Moreover, CGJ induced the formation of reactive oxygen species (ROS) in endothelial cells and this effect is inhibited by MnTMPyP, PEG-catalase, and catalase. The CGJ-induced the phosphorylation of p38 MAPK and JNK kinases is abolished by MnTMPyP. CGJ induced phosphorylation of transcription factors FoxO1 and FoxO3a, which regulate negatively eNOS expression, and this effect is prevented by MnTMPyP, PEG-catalase, wortmannin, SB203580 and SP600125. Moreover, chromatin immunoprecipitation assay indicated that the FoxO3a protein is associated with the eNOS promoter in control cells and that CGJ induced its dissociation. Thus, the present study indicates that CGJ up-regulates the expression of eNOS mRNA and protein leading to an increased formation of NO in endothelial cells. The stimulatory effect of CGJ is a redox-sensitive event involving PI3-kinase/Akt, p38 MAPK and JNK pathways, and the inactivation of the FoxO transcription factors, FoxO1 and FoxO3a, thereby preventing their repression of the eNOS gene.
Collapse
Affiliation(s)
- Mahmoud Alhosin
- CNRS UMR 7213 Laboratoire de Biophotonique et Pharmacologie, Université de Strasbourg, Faculté de Pharmacie, Illkirch, France
| | | | | | | | | | | | | |
Collapse
|
170
|
Characterisation of hypertensive patients with improved endothelial function after dark chocolate consumption. Int J Hypertens 2013; 2013:985087. [PMID: 23533716 PMCID: PMC3603200 DOI: 10.1155/2013/985087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/01/2013] [Accepted: 02/06/2013] [Indexed: 12/28/2022] Open
Abstract
Recent findings indicate an inverse relationship between cardiovascular disease and consumption of flavonoids. We aimed to identify clinical and vascular parameters of treated hypertensive who present beneficial effects of dark chocolate for one-week period on vascular function. Twenty-one hypertensive subjects, aged 40–65 years, were included in a prospective study with measurement of blood pressure (BP), brachial flow-mediated dilatation (FMD), peripheral arterial tonometry, and central hemodynamic parameters. These tests were repeated after seven days of eating dark chocolate 75 g/day. Patients were divided according to the response in FMD: responders (n = 12) and nonresponders (n = 9). The responder group presented lower age (54 ± 7 versus 61 ± 6 years, P = 0.037), Framingham risk score (FRS) (2.5 ± 1.8 versus 8.1 ± 5.1%, P = 0.017), values of peripheral (55 ± 9 versus 63 ± 5 mmHg, P = 0.041), and central pulse pressure (PP) (44 ± 10 versus 54 ± 6 mmHg, P = 0.021). FMD response showed negative correlation with FRS (r = −0.60, P = 0.014), baseline FMD (r = −0.54, P = 0.011), baseline reactive hyperemia index (RHI; r = −0.56, P = 0.008), and central PP (r = −0.43, P = 0.05). However, after linear regression analysis, only FRS and baseline RHI were associated with FMD response. In conclusion, one-week dark chocolate intake significantly improved endothelial function and reduced BP in younger hypertensive with impaired endothelial function in spite of lower cardiovascular risk.
Collapse
|
171
|
Vasorelaxant prenylated flavonoids from the roots of Sophora flavescens. Biosci Biotechnol Biochem 2013; 77:395-7. [PMID: 23391924 DOI: 10.1271/bbb.120739] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bioassay-guided fractionation of the methanol extract from the root of Sophora flavescens led to the isolation of eight known prenylated flavonoids responsible for the vasorelaxation activity in porcine coronary arteries. Among them, kushenol N and 5-methylsophoraflavanone B strongly induced the relaxation of porcine coronary arteries with respective ED(50) values of 8.6 and 12.4 µM. This activity and the results of a high-performance liquid chromatographic analysis suggest that kushenol N and 5-methylsophoraflavanone B could be active markers in the S. flavescens extract for vasorelaxation activity.
Collapse
|
172
|
Lee CH, Yoon SJ, Lee SM. Chlorogenic acid attenuates high mobility group box 1 (HMGB1) and enhances host defense mechanisms in murine sepsis. Mol Med 2013; 18:1437-48. [PMID: 23168580 DOI: 10.2119/molmed.2012.00279] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 11/14/2012] [Indexed: 01/03/2023] Open
Abstract
Sepsis is a complex, multifactorial, rapidly progressive disease characterized by an overwhelming activation of the immune system and the countervailing antiinflammatory response. In the current study in murine peritoneal macrophages, chlorogenic acid suppressed endotoxin-induced high mobility group box 1 (HMGB1) release in a concentration-dependent manner. Administration of chlorogenic acid also attenuated systemic HMGB1 accumulation in vivo and prevented mortality induced by endotoxemia and polymicrobial sepsis. The mechanisms of action of chlorogenic acid included attenuation of the increase in toll-like receptor (TLR)-4 expression and suppression of sepsis-induced signaling pathways, such as c-Jun NH₂-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB, which are critical for cytokine release. The protection conferred by chlorogenic acid was achieved through modulation of cytokine and chemokine release, suppression of immune cell apoptosis and augmentation of bacterial elimination. Chlorogenic acid warrants further evaluation as a potential therapeutic agent for the treatment of sepsis and other potentially fatal systemic inflammatory disorders.
Collapse
Affiliation(s)
- Chan-Ho Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | | | | |
Collapse
|
173
|
NAKATA R, TAKIZAWA Y, TAKAI A, INOUE H. Evaluation of Food-derived Functional Ingredients According to Activation of PPAR and Suppression of COX-2 Expression. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2013. [DOI: 10.3136/fstr.19.339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
174
|
Filip X, Grosu IG, Miclăuş M, Filip C. NMR crystallography methods to probe complex hydrogen bonding networks: application to structure elucidation of anhydrous quercetin. CrystEngComm 2013. [DOI: 10.1039/c3ce40299a] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
175
|
Kinoshita Y, Kawakami S, Yanae K, Sano S, Uchida H, Inagaki H, Ito T. Effect of long-term piceatannol treatment on eNOS levels in cultured endothelial cells. Biochem Biophys Res Commun 2012; 430:1164-8. [PMID: 23246837 DOI: 10.1016/j.bbrc.2012.12.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 12/05/2012] [Indexed: 11/28/2022]
Abstract
Piceatannol (3, 3', 4, 5'-tetrahydroxy-trans-stilbene) is a naturally occurring phytochemical found in passion fruit (Passiflora edulis) seeds. Previously, we demonstrated that piceatannol has acute vasorelaxant effects in rat thoracic aorta. It was suggested that endothelial NO synthase (eNOS) might be involved in piceatannol-induced acute vasorelaxation. Here, we investigated the expression of eNOS in EA.hy926 human umbilical vein cells after long-term treatment with piceatannol, and compared this effect with that of resveratrol, an analog of piceatannol. Long-term treatment with piceatannol up-regulated eNOS mRNA expression and increased eNOS protein expression in a dose-dependent manner. Moreover, piceatannol increased the levels of phosphorylated eNOS. Treatment with resveratrol also increased eNOS expression, but to a lesser degree than piceatannol. These findings indicate that piceatannol may improve vascular function by up-regulating eNOS expression.
Collapse
Affiliation(s)
- Yosuke Kinoshita
- Health Care Division, Morinaga and Company Limited, 2-1-1 Shimosueyoshi, Tsurumi-ku, Yokohama 230-8504, Japan
| | | | | | | | | | | | | |
Collapse
|
176
|
Lipinski B, Pretorius E. Hydroxyl radical-modified fibrinogen as a marker of thrombosis: the role of iron. ACTA ACUST UNITED AC 2012; 17:241-7. [PMID: 22889519 DOI: 10.1179/1607845412y.0000000004] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Excessive free iron in blood and in organ tissues (so called iron overload) has been observed in degenerative diseases such as atherosclerosis, cancer, neurological, and certain autoimmune diseases, in which fibrin-like deposits are also found. Although most of the body iron is bound to hemoglobin and myoglobin in a divalent ferrous form, a certain amount of iron exists in blood as a trivalent (ferric) ion. This particular chemical state of iron has been shown to be toxic to the human body when not controlled by endogenous and/or dietary chelating agents. Experiments described in this paper show for the first time that ferric ions (Fe(3+)) can generate hydroxyl radicals without participation of any redox agent, thus making it a special case of the Fenton reaction. Ferric chloride was also demonstrated to induce aggregation of purified fibrinogen at the same molar concentrations that were used for the generation of hydroxyl radicals. Iron-aggregated fibrinogen, by contrast to native molecule, could not be dissociated into polypeptide subunit chains as shown in a polyacrylamide gel electrophoresis. The mechanism of this phenomenon is very likely based on hydroxyl radical-induced modification of fibrinogen tertiary structure with the formation of insoluble aggregates resistant to enzymatic and chemical degradations. Soluble modified fibrinogen species can be determined in blood of thrombotic patients by the reaction with protamine sulfate and/or by scanning electron microscopy. In view of these findings, it is postulated that iron-induced alterations in fibrinogen structure is involved in pathogenesis of certain degenerative diseases associated with iron overload and persistent thrombosis. It is concluded that the detection of hydroxyl radical-modified fibrinogen may be utilized as a marker of a thrombotic condition in human subjects.
Collapse
Affiliation(s)
- B Lipinski
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
177
|
Rodriguez-Rodriguez R, Justo ML, Claro CM, Vila E, Parrado J, Herrera MD, Alvarez de Sotomayor M. Endothelium-dependent vasodilator and antioxidant properties of a novel enzymatic extract of grape pomace from wine industrial waste. Food Chem 2012; 135:1044-51. [DOI: 10.1016/j.foodchem.2012.05.089] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 05/07/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
|
178
|
Consumption of high-polyphenol dark chocolate improves endothelial function in individuals with stage 1 hypertension and excess body weight. Int J Hypertens 2012; 2012:147321. [PMID: 23209885 PMCID: PMC3502851 DOI: 10.1155/2012/147321] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/28/2012] [Indexed: 12/20/2022] Open
Abstract
Background. Hypertension and excess body weight are important risk factors for endothelial dysfunction. Recent evidence suggests that high-polyphenol dark chocolate improves endothelial function and lowers blood pressure. This study aimed to evaluate the association of chocolate 70% cocoa intake with metabolic profile, oxidative stress, inflammation, blood pressure, and endothelial function in stage 1 hypertensives with excess body weight. Methods. Intervention clinical trial includes 22 stage 1 hypertensives without previous antihypertensive treatment, aged 18 to 60 years and presents a body mass index between 25.0 and 34.9 kg/m(2). All participants were instructed to consume 50 g of chocolate 70% cocoa/day (2135 mg polyphenols) for 4 weeks. Endothelial function was evaluated by peripheral artery tonometry using Endo-PAT 2000 (Itamar Medical). Results. Twenty participants (10 men) completed the study. Comparison of pre-post intervention revealed that (1) there were no significant changes in anthropometric parameters, percentage body fat, glucose metabolism, lipid profile, biomarkers of inflammation, adhesion molecules, oxidized LDL, and blood pressure; (2) the assessment of endothelial function through the reactive hyperemia index showed a significant increase: 1.94 ± 0.18 to 2.22 ± 0.08, P = 0.01. Conclusion.In individuals with stage 1 hypertension and excess body weight, high-polyphenol dark chocolate improves endothelial function.
Collapse
|
179
|
Landete JM. Updated knowledge about polyphenols: functions, bioavailability, metabolism, and health. Crit Rev Food Sci Nutr 2012; 52:936-48. [PMID: 22747081 DOI: 10.1080/10408398.2010.513779] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polyphenols are important constituents of food products of plant origin. Fruits, vegetables, and beverages are the main sources of phenolic compounds in the human diet. These compounds are directly related to sensory characteristics of foods such as flavor, astringency and color. Polyphenols are extensively metabolized both in tissues and by the colonic microbiota. Normally, the circulating polyphenols are glucuronidated and/or sulphated and no free aglycones are found in plasma. The presence of phenolic compounds in the diet is beneficial to health due to their antioxidant, anti-inflammatory, and vasodilating properties. The health effects of polyphenols depend on the amount consumed and their bioavailability. Moreover, polyphenols are able to kill or inhibit the growth of microorganisms such as bacteria, fungi, or protozoans. Some dietary polyphenols may have significant effects on the colonic flora providing a type of prebiotic effect. The anti-nutrient properties of polyphenols are also discussed in this paper. The antioxidant, anti-inflammatory, vasodilating, and prebiotic properties of polyphenols make them potential functional foods.
Collapse
Affiliation(s)
- J M Landete
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Paterna, (Valencia), España.
| |
Collapse
|
180
|
Hesperetin ameliorates hyperglycemia induced retinal vasculopathy via anti-angiogenic effects in experimental diabetic rats. Vascul Pharmacol 2012; 57:201-7. [DOI: 10.1016/j.vph.2012.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 02/01/2012] [Accepted: 02/15/2012] [Indexed: 12/18/2022]
|
181
|
Byun MW. Effect of procyanidin C1 on nitric oxide production and hyperpolarization through Ca(2+)-dependent pathway in endothelial cells. J Med Food 2012; 15:1032-7. [PMID: 23057780 DOI: 10.1089/jmf.2012.2297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Polyphenol-rich foods, such as fruits and vegetables, are protective against cardiovascular diseases, but the mechanisms of the beneficial effects are still unknown. The goal of this research was to clarify actions of procyanidin trimer (C1) in rat aortic endothelial cells (RAECs). Procyanidin C1 at concentrations up to 50 μM was not cytotoxic to the RAECs. The addition of procyanidin C1 to RAECs exerted a time-dependent hyperpolarization measured using a membrane potential-dependent fluorescent probe, bis-(1,3-dibutylbarbituric acid) trimethine oxonol, whereas the hyperpolarization was significantly inhibited by the nonspecific K(+) channel inhibitor tetraethylammonium chloride (TEA). Moreover, procyanidin C1 elevated intracellular Ca(2+) influx, which was totally abolished in the presence of Ca(2+)-free solution with EGTA. Procyanidin C1 caused a significant increase in nitric oxide (NO) production. The effect was significantly inhibited by an NO synthase inhibitor, N(G)-monomethyl-l-arginine, or TEA. In conclusion, we demonstrated for the first time that procyanidin C1 plays a potent role in promoting Ca(2+)-mediated signals such as the hyperpolarization via multiple K(+) channel activations and the NO release in RAECs, suggesting that procyanidin C1 may represent novel and effective therapy for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Myung-Woo Byun
- Department of Food Science and Biotechnology, Woosong University, Daejeon, Korea.
| |
Collapse
|
182
|
da Costa CA, de Oliveira PRB, de Bem GF, de Cavalho LCRM, Ognibene DT, da Silva AFE, dos Santos Valença S, Pires KMP, da Cunha Sousa PJ, de Moura RS, Resende AC. Euterpe oleracea Mart.-derived polyphenols prevent endothelial dysfunction and vascular structural changes in renovascular hypertensive rats: role of oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:1199-209. [DOI: 10.1007/s00210-012-0798-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/18/2012] [Indexed: 01/25/2023]
|
183
|
Cabrera A, Mach N. Flavonoides como agentes quimiopreventivos y terapéuticos contra el cáncer de pulmón. REVISTA ESPAÑOLA DE NUTRICIÓN HUMANA Y DIETÉTICA 2012. [DOI: 10.1016/s2173-1292(12)70089-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
184
|
Hort MA, Schuldt EZ, Bet ÂC, DalBó S, Siqueira JM, Ianssen C, Abatepaulo F, de Souza HP, Veleirinho B, Maraschin M, Ribeiro-do-Valle RM. Anti-Atherogenic Effects of a Phenol-Rich Fraction from Brazilian Red Wine (Vitis labrusca L.) in Hypercholesterolemic Low-Density Lipoprotein Receptor Knockout Mice. J Med Food 2012; 15:936-44. [DOI: 10.1089/jmf.2011.0333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Mariana Appel Hort
- Department of Biochemistry, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
- Department of Pharmacology, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Elke Zuleika Schuldt
- Department of Pharmacology, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Ângela Cristina Bet
- Department of Pharmacology, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Silvia DalBó
- Department of Pharmacology, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Jarbas Mota Siqueira
- Department of Pharmacology, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Carla Ianssen
- Laboratory of Plant Morphogenesis and Biochemistry, Agricultural Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Fátima Abatepaulo
- Laboratory of Medical Investigations, University of São Paulo, São Paulo, Brazil
| | | | - Beatriz Veleirinho
- Department of Pharmacology, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Marcelo Maraschin
- Laboratory of Plant Morphogenesis and Biochemistry, Agricultural Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Rosa Maria Ribeiro-do-Valle
- Department of Pharmacology, Biological Sciences Center, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| |
Collapse
|
185
|
Abstract
Hypertension is considered the most important risk factor in the development of cardiovascular disease. Considerable evidence suggests that oxidative stress, which results in an excessive generation of reactive oxygen species (ROS), plays a key role in the pathogenesis of hypertension. This phenomenon leads to endothelial dysfunction, an imbalance between endothelium-derived relaxing factors, such as nitric oxide (NO), and contracting factors, such as angiotensin-II and endothelin (ET)-1, favoring the latter. Vascular remodeling also takes place; both processes lead to hypertension establishment. Antioxidant therapies have been evaluated in order to decrease ROS production or increase their scavenging. In this line, polyphenols, widespread antioxidants in fruits, vegetables, and wine, have demonstrated their beneficial role in prevention and therapy of hypertension, by acting as free radical scavengers, metal chelators, and in enzyme modulation and expression. Polyphenols activate and enhance endothelial nitric oxide synthase (eNOS) expression by several signaling pathways, increase glutathione (GSH), and inhibit ROS-producing enzymes such as NADPH and xanthine oxidases. These pathways lead to improved endothelial function, subsequent normalization of vascular tone, and an overall antihypertensive effect. In practice, diets as Mediterranean and the "French paradox" phenomenon, the light and moderate red wine consumption, supplementation with polyphenols as resveratrol or quercetin, and also experimental and clinical trials applying the mentioned have coincided in the antihypertensive effect of polyphenols, either in prevention or in therapy. However, further trials are yet needed to fully assess the molecular mechanisms of action and the appearance of adverse reactions, if a more extensive recommendation of polyphenol introduction in diet wants to be made.
Collapse
Affiliation(s)
- Ramón Rodrigo
- Molecular & Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile.
| | | | | | | |
Collapse
|
186
|
Determination of Quercetin, Gallic Acid, Resveratrol, Catechin and Malvidin in Brazilian Wines Elaborated in the Vale do São Francisco Using Liquid–Liquid Extraction Assisted by Ultrasound and GC-MS. FOOD ANAL METHOD 2012. [DOI: 10.1007/s12161-012-9507-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
187
|
Kay CD, Hooper L, Kroon PA, Rimm EB, Cassidy A. Relative impact of flavonoid composition, dose and structure on vascular function: A systematic review of randomised controlled trials of flavonoid-rich food products. Mol Nutr Food Res 2012; 56:1605-16. [DOI: 10.1002/mnfr.201200363] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/26/2012] [Accepted: 08/07/2012] [Indexed: 02/05/2023]
Affiliation(s)
- Colin D. Kay
- Department of Nutrition; Norwich Medical School; University of East Anglia; UK
| | - Lee Hooper
- Department of Nutrition; Norwich Medical School; University of East Anglia; UK
| | - Paul A. Kroon
- Institute of Food Research; Norwich Research Park; Norwich UK
| | - Eric B. Rimm
- Channing Laboratory; Department of Medicine; Brigham and Women's Hospital and Harvard Medical School; Boston MA USA
- Departments of Nutrition and Epidemiology; Harvard School of Public Health; Boston MA USA
| | - Aedín Cassidy
- Department of Nutrition; Norwich Medical School; University of East Anglia; UK
| |
Collapse
|
188
|
Tanaka M, Zhao J, Suyama A, Matsui T. Epigallocatechin gallate promotes the vasorelaxation power of the antiatherosclerotic dipeptide Trp-His in contracted rat aorta. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9048-9054. [PMID: 22900606 DOI: 10.1021/jf3010228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The aim of this study was to demonstrate the enhancement of the vasorelaxation power of the antiatherosclerotic voltage-dependent L-type Ca(2+) channel (VDCC)-blocking peptide Trp-His by epigallocatechin gallate (EGCg). We found that 300 μM EGCg dramatically enhanced the magnitude of Trp-His-induced vasorelaxation by a factor of >6 (EC(50) of Trp-His: EGCg(-), 2.80 ± 0.05 mM; EGCg(+), 0.45 ± 0.04 mM) in phenylephrine-contracted rat aorta. The enhancing effect of EGCg was completely abolished in endothelium-removed aorta and high K(+)-contracted aorta. The enhancement of Trp-His-induced vasorelaxation by EGCg was significantly diminished by either N(G)-monomethyl-l-arginine acetate (NO synthase (NOS) inhibitor) or 1-H-[1,2,4]oxadiazolo[4,3]quinoxalin-1-one (soluble guanylyl cyclase inhibitor), together with the enhancement of NOS activity by EGCg. These results indicate that the enhancing effect of EGCg in Trp-His-induced vasorelaxation may be involved in the activation of NO/cGMP pathway.
Collapse
Affiliation(s)
- Mitsuru Tanaka
- Graduate School of Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| | | | | | | |
Collapse
|
189
|
Mubarak A, Bondonno CP, Liu AH, Considine MJ, Rich L, Mas E, Croft KD, Hodgson JM. Acute effects of chlorogenic acid on nitric oxide status, endothelial function, and blood pressure in healthy volunteers: a randomized trial. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:9130-6. [PMID: 22900702 DOI: 10.1021/jf303440j] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
There is mounting evidence that specific dietary polyphenols can enhance vascular health by augmenting nitric oxide. Our aim was to investigate the acute effects of chlorogenic acid, an important dietary phenolic acid present in coffee (400 mg, equivalent to 2 cups of coffee), on nitric oxide status, endothelial function, and blood pressure. Healthy men and women (n = 23) were recruited to a randomized, double-blind, placebo-controlled, crossover trial. Chlorogenic acid resulted in significantly higher plasma concentrations of chlorogenic acid (P < 0.001). Relative to control, the mean post-treatment systolic blood pressure (-2.41 mmHg, 95% CI: -0.03, -4.78; P = 0.05) and diastolic blood pressure (-1.53 mmHg, 95% CI: -0.05, -3.01; P = 0.04) were significantly lower with chlorogenic acid. Markers of nitric oxide status (P > 0.10) and the measure of endothelial function (P = 0.60) were not significantly influenced. Chlorogenic acid can lower blood pressure acutely, an effect that, if sustained, would benefit cardiovascular health.
Collapse
Affiliation(s)
- Aidilla Mubarak
- School of Medicine and Pharmacology, University of Western Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Nutraceutical interventions for promoting healthy aging in invertebrate models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:718491. [PMID: 22991584 PMCID: PMC3444043 DOI: 10.1155/2012/718491] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 01/11/2023]
Abstract
Aging is a complex and inevitable biological process that is associated with numerous chronically debilitating health effects. Development of effective interventions for promoting healthy aging is an active but challenging area of research. Mechanistic studies in various model organisms, noticeably two invertebrates, Caenorhabditis elegans and Drosophila melanogaster, have identified many genes and pathways as well as dietary interventions that modulate lifespan and healthspan. These studies have shed light on some of the mechanisms involved in aging processes and provide valuable guidance for developing efficacious aging interventions. Nutraceuticals made from various plants contain a significant amount of phytochemicals with diverse biological activities. Phytochemicals can modulate many signaling pathways that exert numerous health benefits, such as reducing cancer incidence and inflammation, and promoting healthy aging. In this paper, we outline the current progress in aging intervention studies using nutraceuticals from an evolutionary perspective in invertebrate models.
Collapse
|
191
|
SCM-198 attenuates early atherosclerotic lesions in hypercholesterolemic rabbits via modulation of the inflammatory and oxidative stress pathways. Atherosclerosis 2012; 224:43-50. [DOI: 10.1016/j.atherosclerosis.2012.06.066] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 06/26/2012] [Accepted: 06/26/2012] [Indexed: 11/23/2022]
|
192
|
Effect of catechin/epicatechin dietary intake on endothelial dysfunction biomarkers and proinflammatory cytokines in aorta of hyperhomocysteinemic mice. Eur J Nutr 2012; 52:1243-50. [DOI: 10.1007/s00394-012-0435-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 08/01/2012] [Indexed: 01/18/2023]
|
193
|
George TW, Paterson E, Waroonphan S, Gordon MH, Lovegrove JA. Effects of chronic consumption of fruit and vegetable puree-based drinks on vasodilation, plasma oxidative stability and antioxidant status. J Hum Nutr Diet 2012; 25:477-87. [DOI: 10.1111/j.1365-277x.2012.01279.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- T. W. George
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences; University of Reading; Whiteknights; Reading; UK
| | - E. Paterson
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences; University of Reading; Whiteknights; Reading; UK
| | - S. Waroonphan
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences; University of Reading; Whiteknights; Reading; UK
| | | | | |
Collapse
|
194
|
Cañuelo A, Gilbert-López B, Pacheco-Liñán P, Martínez-Lara E, Siles E, Miranda-Vizuete A. Tyrosol, a main phenol present in extra virgin olive oil, increases lifespan and stress resistance in Caenorhabditis elegans. Mech Ageing Dev 2012; 133:563-74. [PMID: 22824366 DOI: 10.1016/j.mad.2012.07.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 05/20/2012] [Accepted: 07/13/2012] [Indexed: 01/13/2023]
Abstract
Extra virgin olive oil (EVOO) consumption has been traditionally related to a higher longevity in the human population. EVOO effects on health are often attributed to its unique mixture of phenolic compounds with tyrosol and hydroxityrosol being the most biologically active. Although these compounds have been extensively studied in terms of their antioxidant potential and its role in different pathologies, their actual connection with longevity remains unexplored. This study utilized the nematode Caenorhabditis elegans to investigate the possible effects of tyrosol in metazoan longevity. Significant lifespan extension was observed at one specific tyrosol concentration, which also induced a higher resistance to thermal and oxidative stress and delayed the appearance of a biomarker of ageing. We also report that, although tyrosol was efficiently taken up by these nematodes, it did not induce changes in development, body length or reproduction. In addition, lifespan experiments with several mutant strains revealed that components of the heat shock response (HSF-1) and the insulin pathway (DAF-2 and DAF-16) might be implicated in mediating tyrosol effects in lifespan, while caloric restriction and sirtuins do not seem to mediate its effects. Together, our results point to hormesis as a possible mechanism to explain the effects of tyrosol on longevity in C. elegans.
Collapse
Affiliation(s)
- Ana Cañuelo
- Departamento de Biología Experimental, Universidad de Jaén, Edif. B-3, 23071 Jaén, Spain.
| | | | | | | | | | | |
Collapse
|
195
|
Malireddy S, Kotha SR, Secor JD, Gurney TO, Abbott JL, Maulik G, Maddipati KR, Parinandi NL. Phytochemical antioxidants modulate mammalian cellular epigenome: implications in health and disease. Antioxid Redox Signal 2012; 17:327-39. [PMID: 22404530 PMCID: PMC3353820 DOI: 10.1089/ars.2012.4600] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
UNLABELLED In living systems, the mechanisms of inheritance involving gene expression are operated by (i) the traditional model of genetics where the deoxyribonucleic acid (DNA) transcription and messenger ribonucleic acid stability are influenced by the DNA sequences and any aberrations in the primary DNA sequences and (ii) the epigenetic (above genetics) model in which the gene expression is regulated by mechanisms other than the changes in DNA sequences. The widely studied epigenetic alterations include DNA methylation, covalent modification of chromatin structure, state of histone acetylation, and involvement of microribonucleic acids. SIGNIFICANCE Currently, the role of cellular epigenome in health and disease is rapidly emerging. Several factors are known to modulate the epigenome-regulated gene expression that is crucial in several pathophysiological states and diseases in animals and humans. Phytochemicals have occupied prominent roles in human diet and nutrition as protective antioxidants in prevention/protection against several disorders and diseases in humans. RECENT ADVANCES However, it is beginning to surface that the phytochemical phenolic antioxidants such as polyphenols, flavonoids, and nonflavonoid phenols function as potent modulators of the mammalian epigenome-regulated gene expression through regulation of DNA methylation, histone acetylation, and histone deacetylation in experimental models. CRITICAL ISSUES AND FUTURE DIRECTIONS The antioxidant or pro-oxidant actions and their involvement in the epigenome regulation by the phytochemical phenolic antioxidants should be at least established in the cellular models under normal and pathophysiological states. The current review discusses the mechanisms of modulation of the mammalian cellular epigenome by the phytochemical phenolic antioxidants with implications in human diseases.
Collapse
Affiliation(s)
- Smitha Malireddy
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Dorothy M. Davis Heart and Lung Research Institute, Colleges of Medicine and Pharmacy, The Ohio State University, Columbus, Ohio
| | - Sainath R. Kotha
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Dorothy M. Davis Heart and Lung Research Institute, Colleges of Medicine and Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jordan D. Secor
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Dorothy M. Davis Heart and Lung Research Institute, Colleges of Medicine and Pharmacy, The Ohio State University, Columbus, Ohio
| | - Travis O. Gurney
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Dorothy M. Davis Heart and Lung Research Institute, Colleges of Medicine and Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jamie L. Abbott
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Dorothy M. Davis Heart and Lung Research Institute, Colleges of Medicine and Pharmacy, The Ohio State University, Columbus, Ohio
| | - Gautam Maulik
- Department of Radiology, Harvard Medical School, Boston, Massachusetts
| | - Krishna R. Maddipati
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan
| | - Narasimham L. Parinandi
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Lipid Signaling, Lipidomics, and Vasculotoxicity Laboratory, Dorothy M. Davis Heart and Lung Research Institute, Colleges of Medicine and Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
196
|
Srirangam R, Hippalgaonkar K, Avula B, Khan IA, Majumdar S. Evaluation of the intravenous and topical routes for ocular delivery of hesperidin and hesperetin. J Ocul Pharmacol Ther 2012; 28:618-27. [PMID: 22794525 DOI: 10.1089/jop.2012.0040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE The objective of this study was to determine the ocular bioavailability of hesperidin and hesperetin, especially with respect to their distribution into the posterior segment of the eye, following systemic and topical administration in rabbits. METHODS Hesperidin and hesperetin were administered either intravenously or topically to male New Zealand white (NZW) rabbits. Vitreous humor and plasma samples were collected after intravenous administration and analyzed to estimate the concentrations of the parent compounds and their metabolites. Ocular tissue concentrations, obtained on topical administration of hesperidin and hesperetin, were also determined. RESULTS In the systemic circulation, hesperidin and hesperetin were rapidly metabolized into their glucuronides, which are extremely hydrophilic in nature. Vitreal samples did not demonstrate any detectable levels of hesperidin/hesperetin following intravenous administration. Topical administration produced significant concentrations of hesperidin/hesperetin in all the ocular tissues tested at the 1 and 3 hours time points postdosing, with hesperetin showing higher levels compared to hesperidin. However, only low levels were generated in the vitreous humor. Inclusion of a penetration enhancer, benzalkonium chloride (BAK), improved the back-of-the-eye hesperetin levels. CONCLUSIONS Ocular delivery of hesperidin/hesperetin via the systemic route does not seem to be feasible considering the rapid generation of the hydrophilic metabolites. Topical application appears to be more promising and needs to be further developed/refined.
Collapse
Affiliation(s)
- Ramesh Srirangam
- Department of Pharmaceutics, School of Pharmacy, The University of Mississippi, University, Mississippi 38677, USA
| | | | | | | | | |
Collapse
|
197
|
Soto-Vaca A, Gutierrez A, Losso JN, Xu Z, Finley JW. Evolution of phenolic compounds from color and flavor problems to health benefits. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:6658-77. [PMID: 22568556 DOI: 10.1021/jf300861c] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Early studies focused on the negative effects on color and flavor of foods, followed by exploration of the antioxidant properties and the associated health benefits. The growing body of evidence suggests that plant-based polyphenols may help prevent or delay the onset of a multiplicity of diseases. Newer work suggests that a variety of polyphenols can alter the expression of genes in the inflammatory pathway. Data also show that the absorption of the polyphenols is very limited. Insulin resistance and endothelial and mitochondrial dysfunction are hallmarks of the metabolic syndrome and aging and occur at the early stages of the disease. There is limited clinical evidence that certain polyphenolic metabolites by virtue of their anti-inflammatory activities can improve insulin sensitivity and endothelial and mitochondrial function, suggesting that polyphenols are good for disease prevention. The goal of this review is to summarize the evolution and emphasize the potential benefits of polyphenols.
Collapse
Affiliation(s)
- Adriana Soto-Vaca
- Department of Food Science, Agricultural Center, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | | | | | | | | |
Collapse
|
198
|
Lee SJ, Park SS, Kim WJ, Moon SK. Gleditsia sinensis thorn extract inhibits proliferation and TNF-α-induced MMP-9 expression in vascular smooth muscle cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2012; 40:373-86. [PMID: 22419430 DOI: 10.1142/s0192415x12500292] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The thorns of Gleditsia sinensis, which are extensively used as a medicinal herb in Asian countries, have been reported to exert various pharmacological effects. However, the anti-atherogenic effect of Gleditsia sinensis thorns has never been investigated. In the present study, we investigated the role and effect of the ethanol extract of Gleditsia sinensis thorns (EEGS) on cultured vascular smooth muscle cells (VSMC). Treatment of VSMC with EEGS led to a significant decrease in cell growth by arresting cells in the G2/M-phase of the cell cycle, which was associated with up-regulated p21WAF1 levels and suppression of G2/M cell cycle regulators, cyclinB1, Cdc2 and Cdc25c. In addition, EEGS treatment led to the induction of extracellular signal-regulated kinase1/2 (ERK1/2), p38 MAPK, and JNK (c-Jun N-terminal kinases) activation. EEGS-induced p21WAF1 expression was blocked by treatment with the p38 MAPK-specific inhibitor SB203580. SB203580 also markedly recovered the inhibition of cell growth and decrease in cell cycle proteins in EEGS-treated VSMC. Moreover, EEGS inhibited matrix metalloproteinase-9 (MMP-9) expression induced by tumor necrosis factor-α (TNF-α) in VSMC. Finally, an electrophoresis mobility shift assay demonstrated that EEGS suppressed expression of transcription factor, nuclear factor kappaB (NF-κB) and activator protein-1 (AP-1), which are essential cis-elements for the MMP-9 promoter in TNF-α-treated VSMC. These results demonstrate that EEGS exerts a potent inhibitory effect on cell proliferation and MMP-9 expression in VSMC. These unexpected novel findings represent theoretical data for the preventive and therapeutic use of EEGS for the treatment of atherosclerosis disease.
Collapse
Affiliation(s)
- Se-Jung Lee
- Department of Biotechnology, Chungju National University, Chungju, Chungbuk, South Korea
| | | | | | | |
Collapse
|
199
|
George TW, Waroonphan S, Niwat C, Gordon MH, Lovegrove JA. The Glu298Asp single nucleotide polymorphism in the endothelial nitric oxide synthase gene differentially affects the vascular response to acute consumption of fruit and vegetable puree based drinks. Mol Nutr Food Res 2012; 56:1014-24. [PMID: 22689471 DOI: 10.1002/mnfr.201100689] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 11/08/2022]
Abstract
SCOPE Diets low in fruits and vegetables (FV) are responsible for 2.7 million deaths from cardiovascular diseases (CVD) and certain cancers annually. Many FV and their juices contain flavonoids, some of which increase endothelial nitric oxide synthase (eNOS) activity. A single nucleotide polymorphism in the eNOS gene, where thymine (T) replaces guanine (G) at position 894 predicting substitution of glutamate for aspartate at codon 298 (Glu298Asp), has been associated with increased CVD risk due to effects on nitric oxide synthesis and subsequently vascular reactivity. Individuals can be homozygous for guanine (GG), thymine (TT) or heterozygous (GT). METHODS AND RESULTS We investigated the effects of acute ingestion of a FV-puree-based-drink (FVPD) on vasodilation and antioxidant status in subjects retrospectively genotyped for this polymorphism. Healthy volunteers (n = 24; 11 GG, 11 GT, 2 TT) aged 30-70 were recruited to a randomized, controlled, crossover, acute study. We showed that acute consumption of 400 mL FVPD differentially affected individuals depending on their genotype. There was a significant genotype interaction for endothelium-dependent vasodilation measured by laser Doppler imaging with iontophoresis (P < 0.05) and ex vivo low-density lipoproteins (LDL) oxidation (P = 0.002). GG subjects had increased endothelium-dependent vasodilation 180 min (P = 0.028) and reduced ex vivo LDL oxidation (P = 0.013) after 60 min after FVPD compared with control, no differences were observed in GT subjects. CONCLUSION eNOS Glu298Asp genotype differentially affects vasodilation and ex vivo LDL oxidation after consumption of FV in the form of a puree-based drink.
Collapse
Affiliation(s)
- Trevor W George
- Hugh Sinclair Unit of Human Nutrition, Department of Food and Nutritional Sciences, The University of Reading, Whiteknights, Berkshire, UK
| | | | | | | | | |
Collapse
|
200
|
Abstract
Appropriate long-term drinking of red wine is associated with a reduced risk for lifestyle-related diseases such as cardiovascular disease and cancer, making resveratrol, a constituent of grapes and various other plants, an attractive compound to be studied. Historically, resveratrol has been identified as a phytoalexin, antioxidant, cyclooxygenase (COX) inhibitor, peroxisome proliferator-activated receptor (PPAR) activator, endothelial nitric oxide synthase (eNOS) inducer, silent mating type information regulation 2 homolog 1 (SIRT1) activator, and more. Despite scepticism concerning the biological availability of resveratrol, a growing body of in vivo evidence indicates that resveratrol has protective effects in several stress and disease models. Here, we provide a review of the studies on resveratrol, especially with respect to COX, PPAR, and eNOS activities, and discuss its potential for promoting human health.
Collapse
Affiliation(s)
- Rieko Nakata
- Department of Food Science and Nutrition, Nara Women's University, Kitauoyanishi-machi, Japan
| | | | | |
Collapse
|