151
|
Ryu D, Kim SJ, Hong Y, Jo A, Kim N, Kim HJ, Lee HO, Kim K, Park WY. Alterations in the Transcriptional Programs of Myeloma Cells and the Microenvironment during Extramedullary Progression Affect Proliferation and Immune Evasion. Clin Cancer Res 2019; 26:935-944. [PMID: 31558476 DOI: 10.1158/1078-0432.ccr-19-0694] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/02/2019] [Accepted: 09/23/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE In multiple myeloma, extramedullary progression is associated with treatment resistance and a high mortality rate. To understand the molecular mechanisms controlling the devastating progression of myeloma, we applied single-cell RNA-sequencing (RNA-seq) to myeloma in the bone marrow and myelomatous pleural effusions or ascites. EXPERIMENTAL DESIGN Bone marrow or extramedullary myeloma samples were collected from 15 patients and subjected to single-cell RNA-seq. The single-cell transcriptome data of malignant plasma cells and the surrounding immune microenvironment were analyzed. RESULTS Comparisons of single-cell transcriptomes revealed the systematic activation of proliferation, antigen presentation, proteasomes, glycolysis, and oxidative phosphorylation pathways in extramedullary myeloma cells. The myeloma cells expressed multiple combinations of growth factors and receptors, suggesting autonomous and pleiotropic growth potential at the single-cell level. Comparisons of the tumor microenvironment revealed the presence of cytotoxic T lymphocytes and natural killer (NK) cells in both the bone marrow and extramedullary ascites, demonstrating a gene-expression phenotype indicative of functional compromise. In parallel, isolated myeloma cells persistently expressed class I MHC molecules and upregulated inhibitory molecules for cytotoxic T and NK cells. CONCLUSIONS These data suggest that myeloma cells are equipped with specialized immune evasion mechanisms in cytotoxic microenvironments. Taken together, single-cell transcriptome analysis revealed transcriptional programs associated with aggressive myeloma progression that support autonomous cell proliferation and immune evasion.
Collapse
Affiliation(s)
- Daeun Ryu
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sunkyunkwan University School of Medicine, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seok Jin Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yourae Hong
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea
| | - Areum Jo
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sunkyunkwan University School of Medicine, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Nayoung Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sunkyunkwan University School of Medicine, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hae-Ock Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea. .,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sunkyunkwan University School of Medicine, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kihyun Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Korea. .,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sunkyunkwan University School of Medicine, Seoul, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
155
|
Adelman ER, Huang HT, Roisman A, Olsson A, Colaprico A, Qin T, Lindsley RC, Bejar R, Salomonis N, Grimes HL, Figueroa ME. Aging Human Hematopoietic Stem Cells Manifest Profound Epigenetic Reprogramming of Enhancers That May Predispose to Leukemia. Cancer Discov 2019; 9:1080-1101. [PMID: 31085557 PMCID: PMC7080409 DOI: 10.1158/2159-8290.cd-18-1474] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
Abstract
Aging is associated with functional decline of hematopoietic stem cells (HSC) as well as an increased risk of myeloid malignancies. We performed an integrative characterization of epigenomic and transcriptomic changes, including single-cell RNA sequencing, during normal human aging. Lineage-CD34+CD38- cells [HSC-enriched (HSCe)] undergo age-associated epigenetic reprogramming consisting of redistribution of DNA methylation and reductions in H3K27ac, H3K4me1, and H3K4me3. This reprogramming of aged HSCe globally targets developmental and cancer pathways that are comparably altered in acute myeloid leukemia (AML) of all ages, encompassing loss of 4,646 active enhancers, 3,091 bivalent promoters, and deregulation of several epigenetic modifiers and key hematopoietic transcription factors, such as KLF6, BCL6, and RUNX3. Notably, in vitro downregulation of KLF6 results in impaired differentiation, increased colony-forming potential, and changes in expression that recapitulate aging and leukemia signatures. Thus, age-associated epigenetic reprogramming may form a predisposing condition for the development of age-related AML. SIGNIFICANCE: AML, which is more frequent in the elderly, is characterized by epigenetic deregulation. We demonstrate that epigenetic reprogramming of human HSCs occurs with age, affecting cancer and developmental pathways. Downregulation of genes epigenetically altered with age leads to impairment in differentiation and partially recapitulates aging phenotypes.This article is highlighted in the In This Issue feature, p. 983.
Collapse
Affiliation(s)
- Emmalee R Adelman
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida.,Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Hsuan-Ting Huang
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Alejandro Roisman
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - André Olsson
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Antonio Colaprico
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| | - Tingting Qin
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - R Coleman Lindsley
- Department of Medical Oncology, Division of Hematological Malignancies, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Rafael Bejar
- Division of Hematology and Oncology, Moores Cancer Center, University of California, San Diego, La Jolla, California
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - H Leighton Grimes
- Division of Immunobiology and Center for Systems Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Maria E Figueroa
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
156
|
Taylor DM, Aronow BJ, Tan K, Bernt K, Salomonis N, Greene CS, Frolova A, Henrickson SE, Wells A, Pei L, Jaiswal JK, Whitsett J, Hamilton KE, MacParland SA, Kelsen J, Heuckeroth RO, Potter SS, Vella LA, Terry NA, Ghanem LR, Kennedy BC, Helbig I, Sullivan KE, Castelo-Soccio L, Kreigstein A, Herse F, Nawijn MC, Koppelman GH, Haendel M, Harris NL, Rokita JL, Zhang Y, Regev A, Rozenblatt-Rosen O, Rood JE, Tickle TL, Vento-Tormo R, Alimohamed S, Lek M, Mar JC, Loomes KM, Barrett DM, Uapinyoying P, Beggs AH, Agrawal PB, Chen YW, Muir AB, Garmire LX, Snapper SB, Nazarian J, Seeholzer SH, Fazelinia H, Singh LN, Faryabi RB, Raman P, Dawany N, Xie HM, Devkota B, Diskin SJ, Anderson SA, Rappaport EF, Peranteau W, Wikenheiser-Brokamp KA, Teichmann S, Wallace D, Peng T, Ding YY, Kim MS, Xing Y, Kong SW, Bönnemann CG, Mandl KD, White PS. The Pediatric Cell Atlas: Defining the Growth Phase of Human Development at Single-Cell Resolution. Dev Cell 2019; 49:10-29. [PMID: 30930166 PMCID: PMC6616346 DOI: 10.1016/j.devcel.2019.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/11/2019] [Accepted: 03/01/2019] [Indexed: 12/15/2022]
Abstract
Single-cell gene expression analyses of mammalian tissues have uncovered profound stage-specific molecular regulatory phenomena that have changed the understanding of unique cell types and signaling pathways critical for lineage determination, morphogenesis, and growth. We discuss here the case for a Pediatric Cell Atlas as part of the Human Cell Atlas consortium to provide single-cell profiles and spatial characterization of gene expression across human tissues and organs. Such data will complement adult and developmentally focused HCA projects to provide a rich cytogenomic framework for understanding not only pediatric health and disease but also environmental and genetic impacts across the human lifespan.
Collapse
Affiliation(s)
- Deanne M Taylor
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, and the Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Bruce J Aronow
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, and Cincinnati Children's Hospital Medical Center, Division of Biomedical Informatics, Cincinnati, OH 45229, USA.
| | - Kai Tan
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, and the Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Kathrin Bernt
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nathan Salomonis
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, and Cincinnati Children's Hospital Medical Center, Division of Biomedical Informatics, Cincinnati, OH 45229, USA
| | - Casey S Greene
- Childhood Cancer Data Lab, Alex's Lemonade Stand Foundation, Philadelphia, PA 19102, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alina Frolova
- Institute of Molecular Biology and Genetics, National Academy of Science of Ukraine, Kyiv 03143, Ukraine
| | - Sarah E Henrickson
- Division of Allergy Immunology, Department of Pediatrics, The Children's Hospital of Philadelphia and the Institute for Immunology, the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Andrew Wells
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Liming Pei
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jyoti K Jaiswal
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Center for Genetic Medicine Research, Children's National Medical Center, NW, Washington, DC, 20010-2970, USA
| | - Jeffrey Whitsett
- Cincinnati Children's Hospital Medical Center, Section of Neonatology, Perinatal and Pulmonary Biology, Perinatal Institute, Cincinnati, OH 45229, USA
| | - Kathryn E Hamilton
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sonya A MacParland
- Multi-Organ Transplant Program, Toronto General Hospital Research Institute, Departments of Laboratory Medicine and Pathobiology and Immunology, University of Toronto, Toronto, ON, Canada
| | - Judith Kelsen
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Robert O Heuckeroth
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - S Steven Potter
- Division of Developmental Biology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Laura A Vella
- Division of Infectious Diseases, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Natalie A Terry
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Louis R Ghanem
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Benjamin C Kennedy
- Division of Neurosurgery, Department of Surgery, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ingo Helbig
- Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, The Children's Hospital of Philadelphia and the Institute for Immunology, the University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Leslie Castelo-Soccio
- Department of Pediatrics, Section of Dermatology, The Children's Hospital of Philadelphia and University of Pennsylvania Perleman School of Medicine, Philadelphia, PA 19104, USA
| | - Arnold Kreigstein
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Florian Herse
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Martijn C Nawijn
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, and Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Gerard H Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Department of Pediatric Pulmonology and Pediatric Allergology, and Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands
| | - Melissa Haendel
- Oregon Clinical & Translational Research Institute, Oregon Health & Science University, Portland, OR, USA; Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Nomi L Harris
- Environmental Genomics and Systems Biology Division, E. O. Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jo Lynne Rokita
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yuanchao Zhang
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Koch Institure of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02140, USA
| | - Orit Rozenblatt-Rosen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jennifer E Rood
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Timothy L Tickle
- Data Sciences Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, South Cambridgeshire CB10 1SA, UK
| | - Saif Alimohamed
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, and Cincinnati Children's Hospital Medical Center, Division of Biomedical Informatics, Cincinnati, OH 45229, USA
| | - Monkol Lek
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520-8005, USA
| | - Jessica C Mar
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Brisbane, QLD 4072, Australia
| | - Kathleen M Loomes
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - David M Barrett
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Prech Uapinyoying
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Center for Genetic Medicine Research, Children's National Medical Center, NW, Washington, DC, 20010-2970, USA
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Pankaj B Agrawal
- The Manton Center for Orphan Disease Research, Divisions of Newborn Medicine and of Genetics and Genomics, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yi-Wen Chen
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Center for Genetic Medicine Research, Children's National Medical Center, NW, Washington, DC, 20010-2970, USA
| | - Amanda B Muir
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Lana X Garmire
- Department of Computational Medicine & Bioinformatics, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Javad Nazarian
- Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA; Center for Genetic Medicine Research, Children's National Medical Center, NW, Washington, DC, 20010-2970, USA
| | - Steven H Seeholzer
- Protein and Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hossein Fazelinia
- Protein and Proteomics Core Facility, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Larry N Singh
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Pichai Raman
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Noor Dawany
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Hongbo Michael Xie
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Batsal Devkota
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sharon J Diskin
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Stewart A Anderson
- Department of Psychiatry, The Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eric F Rappaport
- Nucleic Acid PCR Core Facility, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - William Peranteau
- Department of Surgery, Division of General, Thoracic, and Fetal Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kathryn A Wikenheiser-Brokamp
- Department of Pathology & Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Divisions of Pathology & Laboratory Medicine and Pulmonary Biology in the Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Sarah Teichmann
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, South Cambridgeshire CB10 1SA, UK; European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, South Cambridgeshire CB10 1SA, UK; Cavendish Laboratory, Theory of Condensed Matter, 19 JJ Thomson Ave, Cambridge CB3 1SA, UK
| | - Douglas Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Tao Peng
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, and the Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yang-Yang Ding
- Division of Oncology, Department of Pediatrics, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Man S Kim
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yi Xing
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children's Hospital, Departments of Biomedical Informatics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Department of Genomics and Precision Medicine, George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Kenneth D Mandl
- Computational Health Informatics Program, Boston Children's Hospital, Departments of Biomedical Informatics and Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Peter S White
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, and Cincinnati Children's Hospital Medical Center, Division of Biomedical Informatics, Cincinnati, OH 45229, USA
| |
Collapse
|