151
|
Tracing of Chemical Components of Odor in Peels and Flesh from Ripe Banana on a Daily Basis Using GC-MS Characterization and Statistical Analysis for Quality Monitoring During Storage. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01435-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
152
|
Phacharapiyangkul N, Thirapanmethee K, Sa-Ngiamsuntorn K, Panich U, Lee CH, Chomnawang MT. Effect of Sucrier Banana Peel Extracts on Inhibition of Melanogenesis through the ERK Signaling Pathway. Int J Med Sci 2019; 16:602-606. [PMID: 31171912 PMCID: PMC6535666 DOI: 10.7150/ijms.32137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 03/23/2019] [Indexed: 02/06/2023] Open
Abstract
Hyperpigmentation is a type of pigmentary disorder induced by overexpression of melanin content activated severe esthetic problems as melasma, freckle, ephelides, lentigo and other forms on human skin. Several whitening agents have restricted use because of their side effects or stability such as kojic acid, ascorbic acid and hydroquinone can act as cytotoxic substance which associated to dermatitis and skin cancer. To find for the safe substance, this study aimed to find for the ability of several components in Sucrier banana peel (SBP) extracts to inhibit melanogenesis process through p38 signaling pathway in B16F10 mouse melanoma cells. Tyrosinase activity and the cellular melanin content were dose dependent manner decreasing after SBP treatment. Furthermore, SBP decreased the expression of melanogenesis relate protein as microphthalmia-associated transcription factor (MITF) and tyrosinase protein after 24 hours incubation with α-melanocyte stimulating hormones (MSH) stimulating. The findings demonstrated that SBP contained an effective agent for hyperpigmentation inhibitor through p38 signaling pathways without any effect to ERK pathway, and subsequent down-regulate MITF expression and tyrosinase enzyme family production.
Collapse
Affiliation(s)
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | - Uraiwan Panich
- Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Che-Hsin Lee
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan
| | | |
Collapse
|
153
|
Wang T, Zhang H, Zhu H. CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. HORTICULTURE RESEARCH 2019; 6:77. [PMID: 31240102 PMCID: PMC6570646 DOI: 10.1038/s41438-019-0159-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/25/2019] [Accepted: 04/26/2019] [Indexed: 05/06/2023]
Abstract
Fruits are major sources of essential nutrients and serve as staple foods in some areas of the world. The increasing human population and changes in climate experienced worldwide make it urgent to the production of fruit crops with high yield and enhanced adaptation to the environment, for which conventional breeding is unlikely to meet the demand. Fortunately, clustered regularly interspaced short palindromic repeat (CRISPR) technology paves the way toward a new horizon for fruit crop improvement and consequently revolutionizes plant breeding. In this review, the mechanism and optimization of the CRISPR system and its application to fruit crops, including resistance to biotic and abiotic stresses, fruit quality improvement, and domestication are highlighted. Controversies and future perspectives are discussed as well.
Collapse
Affiliation(s)
- Tian Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| | - Hongyan Zhang
- Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Science, Shandong Normal University, 250014 Jinan, China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, 100083 Beijing, China
| |
Collapse
|
154
|
Luciano WA, Matte TC, Portela IA, de Medeiros LL, dos Santos Lima M, Maciel JF, de Souza EL, Garcia EF, Magnani M. Effects of Lactobacillus acidophilus LA-3 on physicochemical and sensory parameters of açaí and mango based smoothies and its survival following simulated gastrointestinal conditions. Food Res Int 2018; 114:159-168. [DOI: 10.1016/j.foodres.2018.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022]
|
155
|
Sidhu JS, Zafar TA. Bioactive compounds in banana fruits and their health benefits. FOOD QUALITY AND SAFETY 2018. [DOI: 10.1093/fqsafe/fyy019] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Jiwan S Sidhu
- Department of Food Science & Technology, College of Life Sciences, Kuwait University, Safat, Kuwait
| | - Tasleem A Zafar
- Department of Food Science & Technology, College of Life Sciences, Kuwait University, Safat, Kuwait
| |
Collapse
|
156
|
Amah D, van Biljon A, Brown A, Perkins-Veazie P, Swennen R, Labuschagne M. Recent advances in banana (musa spp.) biofortification to alleviate vitamin A deficiency. Crit Rev Food Sci Nutr 2018; 59:3498-3510. [DOI: 10.1080/10408398.2018.1495175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Delphine Amah
- Department of Plant Sciences (Plant Breeding), University of the Free State, Bloemfontein, South Africa
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Angeline van Biljon
- Department of Plant Sciences (Plant Breeding), University of the Free State, Bloemfontein, South Africa
| | - Allan Brown
- International Institute of Tropical Agriculture, Arusha, Tanzania
| | | | - Rony Swennen
- International Institute of Tropical Agriculture, Arusha, Tanzania
- Bioversity International, Heverlee, Belgium
- Department of Biosystems, KU Leuven, Heverlee, Belgium
| | - Maryke Labuschagne
- Department of Plant Sciences (Plant Breeding), University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
157
|
Li Z, Guo K, Lin L, He W, Zhang L, Wei C. Comparison of Physicochemical Properties of Starches from Flesh and Peel of Green Banana Fruit. Molecules 2018; 23:E2312. [PMID: 30208563 PMCID: PMC6225278 DOI: 10.3390/molecules23092312] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/04/2018] [Accepted: 09/10/2018] [Indexed: 11/22/2022] Open
Abstract
Green banana fruit is an important starch resource that consists of flesh and peel. The physicochemical properties of flesh starch have been widely studied; however, those of peel starch have hardly been studied, leading to the waste of peel. In this study, the physicochemical properties of the starches from the flesh and peel of green banana fruit were investigated and compared. The dry flesh and peel had 69.5% and 22.6% starch content, respectively. The starch had oval and irregular granules with eccentric hila. Their starches had similar bimodal size distribution; the volume-weighted mean diameter was approximate 17 μm, and the peel starch had a slightly smaller granule size than the flesh starch. The maximum absorption wavelength was higher in peel starch than in flesh starch. The apparent amylose content of flesh and peel starch was 21.3% and 25.7%, respectively. The flesh and peel starches both exhibited B-type crystalline structures and had similar relative crystallinity, short-range ordered degrees, and lamellar structures. The swelling power was similar between flesh and peel starches, but the water solubility was higher in peel starch than in flesh starch at 95 °C. The peel starch had a higher gelatinization temperature than flesh starch, but their gelatinization temperature range and enthalpy were similar. Both flesh and peel starches showed a diphasic hydrolysis dynamic, but peel starch had higher resistance to porcine pancreatic α-amylase hydrolysis than flesh starch. The contents of rapidly digestible starch, slowly digestible starch, and the resistant starch of flesh and peel were 1.7%, 4.3%, 94.1% and 1.4%, 3.4%, 95.2%, respectively, for native starch, and 73.0%, 5.1%, 21.9%, and 72.3%, 4.5%, 23.2%, respectively, for gelatinized starch.
Collapse
Affiliation(s)
- Zheng Li
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Ke Guo
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Lingshang Lin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Wei He
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Long Zhang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| | - Cunxu Wei
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture & Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
158
|
Qamar S, Shaikh A. Therapeutic potentials and compositional changes of valuable compounds from banana- A review. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.06.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
159
|
Fermoso FG, Serrano A, Alonso-Fariñas B, Fernández-Bolaños J, Borja R, Rodríguez-Gutiérrez G. Valuable Compound Extraction, Anaerobic Digestion, and Composting: A Leading Biorefinery Approach for Agricultural Wastes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8451-8468. [PMID: 30010339 DOI: 10.1021/acs.jafc.8b02667] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In a society where the environmental conscience is gaining attention, it is necessary to evaluate the potential valorization options for agricultural biomass to create a change in the perception of the waste agricultural biomass from waste to resource. In that sense, the biorefinery approach has been proposed as the roadway to increase profit of the agricultural sector and, at the same time, ensure environmental sustainability. The biorefinery approach integrates biomass conversion processes to produce fuels, power, and chemicals from biomass. The present review is focused on the extraction of value-added compounds, anaerobic digestion, and composting of agricultural waste as the biorefinery approach. This biorefinery approach is, nevertheless, seen as a less innovative configuration compared to other biorefinery configurations, such as bioethanol production or white biotechnology. However, any of these processes has been widely proposed as a single operation unit for agricultural waste valorization, and a thoughtful review on possible single or joint application has not been available in the literature up to now. The aim is to review the previous and current literature about the potential valorization of agricultural waste biomass, focusing on valuable compound extraction, anaerobic digestion, and composting of agricultural waste, whether they are not, partially, or fully integrated.
Collapse
Affiliation(s)
- Fernando G Fermoso
- Instituto de Grasa , Spanish National Research Council (CSIC) , Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera, km. 1 , 41013 Seville , Spain
| | - Antonio Serrano
- Instituto de Grasa , Spanish National Research Council (CSIC) , Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera, km. 1 , 41013 Seville , Spain
- School of Civil Engineering , The University of Queensland , Advanced Engineering Building 49, St Lucia , Queensland 4072 , Australia
| | - Bernabé Alonso-Fariñas
- Department of Chemical and Environmental Engineering, Higher Technical School of Engineering , University of Seville , Camino de los Descubrimientos, s/n , 41092 Seville , Spain
| | - Juan Fernández-Bolaños
- Instituto de Grasa , Spanish National Research Council (CSIC) , Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera, km. 1 , 41013 Seville , Spain
| | - Rafael Borja
- Instituto de Grasa , Spanish National Research Council (CSIC) , Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera, km. 1 , 41013 Seville , Spain
| | - Guillermo Rodríguez-Gutiérrez
- Instituto de Grasa , Spanish National Research Council (CSIC) , Campus Universitario Pablo de Olavide, Edificio 46, Carretera de Utrera, km. 1 , 41013 Seville , Spain
| |
Collapse
|
160
|
Morin as a Preservative for Delaying Senescence of Banana. Biomolecules 2018; 8:biom8030052. [PMID: 30002341 PMCID: PMC6164001 DOI: 10.3390/biom8030052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/10/2018] [Accepted: 07/10/2018] [Indexed: 01/09/2023] Open
Abstract
Banana is a climacteric fruit with desirable palatability and high nutritional value. It ripens rapidly accompanied with metabolite changes during postharvest storage. In this work, morin was applied to treat banana to delay senescence. Nuclear magnetic resonance (NMR) spectroscopy was used to monitor the changes of metabolite composition and levels in banana. The results showed that morin significantly delayed the changes of color and firmness. 1D and 2D NMR spectra reflected that the levels and composition of metabolites were changed with the senescence initiation. The principal component analysis revealed that the first principal components responsible for banana senescence were carbohydrates, amino acids, lipids and phenolics. Morin treatment delayed the transformation of starch to glucose, fructose and sucrose, accelerated the accumulations of alanine and γ-Amino-butyrate (GABA), postponed the generations of valine and l-aspartic acid, suppressed the degradation of saponin a. It indicated that morin was effective in delaying banana senescence.
Collapse
|
161
|
Sharma S, Biswal BK, Kumari D, Bindra P, Kumar S, Stobdan T, Shanmugam V. Ecofriendly Fruit Switches: Graphene Oxide-Based Wrapper for Programmed Fruit Preservative Delivery To Extend Shelf Life. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18478-18488. [PMID: 29722954 DOI: 10.1021/acsami.8b02048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
According to Food and Agriculture Organization 2015 report, post-harvest agricultural loss accounts for 20-50% annually; on the other hand, reports about preservatives toxicity are also increasing. Hence, preservative release with response to fruit requirement is desired. In this study, acid synthesized in the overripe fruits was envisaged to cleave acid labile hydrazone to release preservative salicylaldehyde from graphene oxide (GO). To maximize loading and to overcome the challenge of GO reduction by hydrazine, two-step activation with ethylenediamine and 4-nitrophenyl chloroformate respectively, are followed. The final composite shows efficient preservative release with the stimuli of the overripe fruit juice and improves the fruit shelf life. The composite shows less toxicity as compared to the free preservative along with the additional scope to reuse. The composite was vacuum-filtered through a 0.4 μm filter paper, to prepare a robust wrapper for the fruit storage.
Collapse
Affiliation(s)
- Sandeep Sharma
- Institute of Nano Science and Technology, Habitat Centre , Phase-10, Sector-64 , Mohali , Punjab 160062 , India
| | - Badal Kumar Biswal
- Institute of Nano Science and Technology, Habitat Centre , Phase-10, Sector-64 , Mohali , Punjab 160062 , India
| | - Divya Kumari
- Institute of Nano Science and Technology, Habitat Centre , Phase-10, Sector-64 , Mohali , Punjab 160062 , India
| | - Pulkit Bindra
- Institute of Nano Science and Technology, Habitat Centre , Phase-10, Sector-64 , Mohali , Punjab 160062 , India
| | - Satish Kumar
- Institute of Nano Science and Technology, Habitat Centre , Phase-10, Sector-64 , Mohali , Punjab 160062 , India
| | - Tsering Stobdan
- Defence Institute of High Altitude Research , Leh 901205 , India
| | - Vijayakumar Shanmugam
- Institute of Nano Science and Technology, Habitat Centre , Phase-10, Sector-64 , Mohali , Punjab 160062 , India
| |
Collapse
|
162
|
Mesquita CDB, Garcia ÉL, Bolfarini ACB, Leonel S, Franco CML, Leonel M. Phosphate fertilization changes the characteristics of ‘Maçã’ banana starch. Int J Biol Macromol 2018; 112:1138-1145. [DOI: 10.1016/j.ijbiomac.2018.02.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/05/2018] [Accepted: 02/11/2018] [Indexed: 01/26/2023]
|
163
|
Bioactivities of phytochemicals present in tomato. Journal of Food Science and Technology 2018; 55:2833-2849. [PMID: 30065393 DOI: 10.1007/s13197-018-3221-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/28/2018] [Accepted: 05/10/2018] [Indexed: 12/25/2022]
Abstract
Tomato is a wonder fruit fortified with health-promoting phytochemicals that are beneficial in preventing important chronic degenerative disorders. Tomato is a good source of phenolic compounds (phenolic acids and flavonoids), carotenoids (lycopene, α, and β carotene), vitamins (ascorbic acid and vitamin A) and glycoalkaloids (tomatine). Bioactive constituents present in tomato have antioxidant, anti-mutagenic, anti-proliferative, anti-inflammatory and anti-atherogenic activities. Health promoting bioactivities of tomatoes make them useful ingredient for the development of functional foods. Protective role of tomato (lycopene as a potent antioxidant) in humans against various degenerative diseases are known throughout the world. Intake of tomato is inversely related to the incidence of cancer, cardiovascular diseases, ageing and many other health problems. Bioavailability of phytoconstituents in tomato is generally not affected by routine cooking processes making it even more beneficial for human consumption. The present review provides collective information of phytochemicals in tomato along with discussing their bioactivities and possible health benefits.
Collapse
|
164
|
Casado N, Perestrelo R, Silva CL, Sierra I, Câmara JS. An improved and miniaturized analytical strategy based on μ-QuEChERS for isolation of polyphenols. A powerful approach for quality control of baby foods. Microchem J 2018. [DOI: 10.1016/j.microc.2018.02.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
165
|
Soto-Maldonado C, Concha-Olmos J, Cáceres-Escobar G, Meneses-Gómez P. Sensory evaluation and glycaemic index of a food developed with flour from whole (pulp and peel) overripe banana (Musa cavendishii) discards. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
166
|
|
167
|
Sulfated modification of polysaccharides: Synthesis, characterization and bioactivities. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.02.010] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
168
|
Nieman DC, Gillitt ND, Sha W, Esposito D, Ramamoorthy S. Metabolic recovery from heavy exertion following banana compared to sugar beverage or water only ingestion: A randomized, crossover trial. PLoS One 2018; 13:e0194843. [PMID: 29566095 PMCID: PMC5864065 DOI: 10.1371/journal.pone.0194843] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/21/2018] [Indexed: 11/18/2022] Open
Abstract
Objectives and methods Using a randomized, crossover, counterbalanced approach, cyclists (N = 20, overnight fasted state) engaged in the four 75-km time trials (2-week washout) while ingesting two types of bananas with similar carbohydrate (CHO) but different phenolic content (Cavendish, CAV; mini-yellow, MIY, 63% higher polyphenols), a 6% sugar beverage (SUG), and water only (WAT). CHO intake was set at 0.2 g/kg every 15 minutes. Blood samples were collected pre-exercise and 0 h-, 0.75 h-,1.5 h-, 3 h-, 4.5 h-, 21 h-, 45 h-post-exercise. Results Each of the CHO trials (CAV, MIY, SUG) compared to water was associated with higher post-exercise plasma glucose and fructose, and lower leukocyte counts, plasma 9+13 HODES, and IL-6, IL-10, and IL-1ra. OPLS-DA analysis showed that metabolic perturbation (N = 1,605 metabolites) for WAT (86.8±4.0 arbitrary units) was significantly greater and sustained than for CAV (70.4±3.9, P = 0.006), MIY (68.3±4.0, P = 0.002), and SUG (68.1±4.2, P = 0.002). VIP ranking (<3.0, N = 25 metabolites) showed that both CAV and MIY were associated with significant fold changes in metabolites including those from amino acid and xenobiotics pathways. OPLS-DA analysis of immediate post-exercise metabolite shifts showed a significant separation of CAV and MIY from both WAT and SUG (R2Y = 0.848, Q2Y = 0.409). COX-2 mRNA expression was lower in both CAV and MIY, but not SUG, versus WAT at 21-h post-exercise in THP-1 monocytes cultured in plasma samples. Analysis of immediate post-exercise samples showed a decrease in LPS-stimulated THP-1 monocyte extracellular acidification rate (ECAR) in CAV and MIY, but not SUG, compared to WAT. Conclusions CHO ingestion from bananas or a sugar beverage had a comparable influence in attenuating metabolic perturbation and inflammation following 75-km cycling. Ex-vivo analysis with THP-1 monocytes supported a decrease in COX-2 mRNA expression and reduced reliance on glycolysis for ATP production following ingestion of bananas but not sugar water when compared to water alone. Trial registration ClinicalTrials.gov, U.S. National Institutes of Health, identifier: NCT02994628
Collapse
Affiliation(s)
- David C. Nieman
- Human Performance Laboratory, Appalachian State University, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
- * E-mail:
| | - Nicholas D. Gillitt
- Dole Nutrition Research Laboratory, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Wei Sha
- Bioinformatics Services Division, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | - Debora Esposito
- Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, North Carolina, United States of America
| | | |
Collapse
|
169
|
Cömert ED, Gökmen V. Evolution of food antioxidants as a core topic of food science for a century. Food Res Int 2018; 105:76-93. [DOI: 10.1016/j.foodres.2017.10.056] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/18/2017] [Accepted: 10/28/2017] [Indexed: 01/16/2023]
|
170
|
Sitthiya K, Devkota L, Sadiq MB, Anal AK. Extraction and characterization of proteins from banana ( Musa Sapientum L) flower and evaluation of antimicrobial activities. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:658-666. [PMID: 29391630 PMCID: PMC5785391 DOI: 10.1007/s13197-017-2975-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 12/20/2022]
Abstract
Ultrasonic assisted alkaline extraction of protein from banana flower was optimized using response surface methodology. The extracted proteins were characterized by Fourier transform infrared spectroscopy and molecular weight distribution was determined by gel electrophoresis. The maximum protein yield of 252.25 mg/g was obtained under optimized extraction conditions: temperature 50 °C, 30 min extraction time and 1 M NaOH concentration. The alkaline extraction produced a significantly high protein yield compared to enzymatic extraction of banana flower. Chemical finger printing of proteins showed the presence of tyrosine, tryptophan and amide bonds in extracted protein. Alkaline and pepsin assisted extracted banana flower proteins showed characteristic bands at 40 and 10 kDA, respectively. The extracted proteins showed antibacterial effects against both gram positive and gram negative bacteria. The high protein content and antimicrobial activity indicate the potential applications of banana flower in the food and feed industry.
Collapse
Affiliation(s)
- Kewalee Sitthiya
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Khlong Luang, Pathum Thani 12120 Thailand
| | - Lavaraj Devkota
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Khlong Luang, Pathum Thani 12120 Thailand
| | - Muhammad Bilal Sadiq
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Khlong Luang, Pathum Thani 12120 Thailand
| | - Anil Kumar Anal
- Food Engineering and Bioprocess Technology, Department of Food, Agriculture and Bioresources, Asian Institute of Technology, Khlong Luang, Pathum Thani 12120 Thailand
| |
Collapse
|
171
|
Kuchnia AJ, Conlon B, Greenberg N. Natural Bioactive Food Components for Improving Enteral Tube Feeding Tolerance in Adult Patient Populations. Nutr Clin Pract 2018; 33:107-120. [PMID: 28820648 DOI: 10.1177/0884533617722164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023] Open
Abstract
Tube feeding (TF) is the most common form of nutrition support. In recent years, TF administration has increased among patient populations within and outside hospital settings, in part due to greater insurance coverage, reduced use of parenteral nutrition, and improved formularies suitable for sole source nutrition. With increasing life expectancy and improved access to TFs, the number of adults dependent on enteral nutrition is expected to grow. However, enteral TF intolerance (ETFI) is the most common complication of TFs, typically presenting with at least 1 adverse gastrointestinal event, including nausea, diarrhea, and constipation. ETFI often leads to reductions in TF volume with associated energy and protein deficits. Potentially ensuing malnutrition is a major public health concern due its effects on increased risk of morbidity and mortality, infections, prolonged hospital length of stay, and higher healthcare costs. As such, there is a need for intervention strategies to prevent and reduce ETFI. Incorporating whole foods with bioactive properties is a promising strategy. Emerging research has elucidated bioactive properties of whole foods with specific benefits for the prevention and management of adverse gastrointestinal events commonly associated with TFs. However, lack of evidence-based recommendations and technological challenges have limited the use of such foods in commercial TF formulas. This review addresses research gaps by discussing 5 whole foods (rhubarb, banana, curcumin, peppermint oil, and ginger) with bioactive attributes identified through literature searches and clinical experience as having substantial scientific rationale to consider their application for ETFI in adult populations.
Collapse
Affiliation(s)
- Adam J Kuchnia
- Department of Food Science and Nutrition, University of Minnesota-Twin Cities, Saint Paul, Minnesota, USA
| | - Beth Conlon
- Nestlé Nutrition R&D Centers Inc, Bridgewater, New Jersey, USA
| | | |
Collapse
|
172
|
Phenolics and essential mineral profile of organic acid pretreated unripe banana flour. Food Res Int 2018; 104:100-109. [DOI: 10.1016/j.foodres.2017.09.063] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/16/2017] [Accepted: 09/22/2017] [Indexed: 01/30/2023]
|
173
|
Batista A, Silva R, Cappato L, Ferreira M, Nascimento K, Schmiele M, Esmerino E, Balthazar C, Silva H, Moraes J, Pimentel T, Freitas M, Raices R, Silva M, Cruz A. Developing a synbiotic fermented milk using probiotic bacteria and organic green banana flour. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.037] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
174
|
Singh B, Singh JP, Kaur A, Singh N. Phenolic composition and antioxidant potential of grain legume seeds: A review. Food Res Int 2017; 101:1-16. [DOI: 10.1016/j.foodres.2017.09.026] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/04/2017] [Accepted: 09/08/2017] [Indexed: 02/07/2023]
|
175
|
Cellulose nanomaterials emulsion coatings for controlling physiological activity, modifying surface morphology, and enhancing storability of postharvest bananas ( Musa acuminate ). Food Chem 2017; 232:359-368. [DOI: 10.1016/j.foodchem.2017.04.028] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 11/21/2022]
|
176
|
Farahmandfar R, Mohseni M, Asnaashari M. Effects of quince seed, almond, and tragacanth gum coating on the banana slices properties during the process of hot air drying. Food Sci Nutr 2017; 5:1057-1064. [PMID: 29188032 PMCID: PMC5694881 DOI: 10.1002/fsn3.489] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/26/2017] [Accepted: 04/17/2017] [Indexed: 11/06/2022] Open
Abstract
Due to early deterioration of banana in drying process, almond, quince seed, and tragacanth gums as edible coatings were determined. For this purpose, banana slices were coated in 0.7% solution of each gum and one group remained uncoated as the control. The samples were examined at specific times considering the weight loss, color analyzing (a*, b*, and L*) through the method computer vision, color difference index, browning index, and rehydration after the samples being dried. The results showed that the weight loss of the coated samples was significantly (p < .05) higher than the uncoated samples which can be due to the alteration or destruction of the cell membrane. The almond gum-coated samples had significantly a lower ultimate browning index and quince seed gum-coated samples showed the highest rehydration. So, the gums coating is an effective way to preserve the quality characteristics of the banana slices.
Collapse
Affiliation(s)
- Reza Farahmandfar
- Department of Food Science and Technology Sari Agricultural Sciences & Natural Resources University (SANRU) Sari Iran
| | - Maedeh Mohseni
- Department of Food Science and Technology Khazar Institute of Higher Education Mahmoudabad Iran
| | - Maryam Asnaashari
- Department of Food Science and Technology Sari Agricultural Sciences & Natural Resources University (SANRU) Sari Iran
| |
Collapse
|
177
|
Shamla L, Nisha P. Acrylamide formation in plantain (Musa paradisiaca) chips influenced by different ripening stages: A correlation study with respect to reducing sugars, amino acids and phenolic content. Food Chem 2017; 222:53-60. [DOI: 10.1016/j.foodchem.2016.12.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/01/2016] [Accepted: 12/05/2016] [Indexed: 12/17/2022]
|
178
|
Singh B, Singh JP, Singh N, Kaur A. Saponins in pulses and their health promoting activities: A review. Food Chem 2017; 233:540-549. [PMID: 28530610 DOI: 10.1016/j.foodchem.2017.04.161] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/04/2017] [Accepted: 04/25/2017] [Indexed: 01/17/2023]
Abstract
Saponins are a class of natural compounds present in pulses having surface active properties. These compounds show variation in type, structure and composition of their aglycone moiety and oligosaccharide chains. Saponins have plasma cholesterol lowering effect in humans and are important in reducing the risk of many chronic diseases. Moreover, they have shown strong cytotoxic effects against cancer cell lines. However, more epidemiological and clinical studies are required for the proper validation of these health promoting activities. Processing and cooking promotes the loss of saponins from foods. The effect of soaking, sprouting and cooking on the stability and bioavailability of saponins in pulses is an important area which should be thoroughly worked out for achieving desirable health benefits. In the present review, the structures, contents and health benefits of saponins present in pulses are discussed. Moreover, the effect of processing (of pulses) on the saponins is also highlighted.
Collapse
Affiliation(s)
- Balwinder Singh
- Department of Biotechnology, Khalsa College, Amritsar 143002, Punjab, India
| | - Jatinder Pal Singh
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Narpinder Singh
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Amritpal Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar 143005, Punjab, India.
| |
Collapse
|
179
|
Singh B, Singh JP, Shevkani K, Singh N, Kaur A. Bioactive constituents in pulses and their health benefits. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:858-870. [PMID: 28303037 PMCID: PMC5336453 DOI: 10.1007/s13197-016-2391-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 10/15/2016] [Accepted: 10/20/2016] [Indexed: 12/01/2022]
Abstract
Pulses are good sources of bioactive compounds such as polyphenols, phytosterols and non-digestible carbohydrates that play important physiological as well as metabolic roles. These compounds vary in concentration amongst different pulse species and varieties. Pulse seed coats are rich in water-insoluble fibres and polyphenols (having high antioxidant activities), while cotyledons contain higher soluble fibres, oligosaccharides, slowly digestible and resistant starch content. Ferulic acid is the most abundant phenolic acid present in pulses, while flavonol glycosides, anthocyanins and tannins are responsible for the seed coat colour. Sitosterol (most abundant), stigmasterol, and campesterol are the major phytosterols present in pulses. Pulse fibres, resistant starch and oligosaccharides function as probiotics and possess several other health benefits such as anti-inflammatory, anti-tumour, and reduce glucose as well as lipid levels. Beans and peas contain higher amounts of oligosaccharides than other pulses. Processing methods affect resistant starch, polyphenol composition and generally increase antioxidant activities of different pulses. In this review, the current information on pulse polyphenols, phytosterols, resistant starch, dietary fibre, oligosaccharides, antioxidant and associated health benefits are discussed.
Collapse
Affiliation(s)
- Balwinder Singh
- Department of Biotechnology, Khalsa College, Amritsar, Punjab 143002 India
| | - Jatinder Pal Singh
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Khetan Shevkani
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
- Centre for Applied Agriculture, Central University of Punjab, Bathinda, 151001 India
| | - Narpinder Singh
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Amritpal Kaur
- Department of Food Science and Technology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| |
Collapse
|
180
|
Composition, bioactive compounds and antioxidant activity of common Indian fruits and vegetables. Journal of Food Science and Technology 2016; 53:4056-4066. [PMID: 28035161 DOI: 10.1007/s13197-016-2412-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/05/2016] [Accepted: 11/18/2016] [Indexed: 02/02/2023]
Abstract
The present work was undertaken to evaluate the chemical composition (proximate, minerals and dietary fibre), colour parameters, antioxidant activity and polyphenol profiles of different fruits (pomegranate, kinnow, mango, banana, jambolan, grapes and sapodilla) and vegetables (beetroot, brinjal, orange carrot, bitter gourd, mentha and spinach). The amount of insoluble dietary fibre was higher than soluble dietary fibre for all fruits and vegetables. Vegetables showed superior mineral composition (higher amounts of K, Ca and Fe) as compared to fruits. Total phenolic content (TPC) and antioxidant activity (ABTS and DPPH) ranged from 354.9 to 1639.7 mg GAE/100 g, 2.6 to 5.5 and 3.0 to 6.3 mM TE/g, respectively for different fruits, while it ranged from 179.3 to 1028.6 mg GAE/100 g, 2.1 to 4.7 and 2.0 to 5.0 mM TE/g, respectively for different vegetables. Gallic acid, protocatechuic acid, catechin, caffeic acid, ferulic acid, sinapic acid, quercetin, resveratrol and kaempferol were detected and quantified in different fruits and vegetables. The results highlighted that fruit peels could be used as valuable sources of minerals and polyphenols having high antioxidant activity.
Collapse
|
181
|
Torres MD, Arufe S, Chenlo F, Moreira R. Coeliacs cannot live by gluten-free bread alone - every once in awhile they need antioxidants. Int J Food Sci Technol 2016. [DOI: 10.1111/ijfs.13287] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- María D. Torres
- Department of Chemical Engineering; Universidade de Santiago de Compostela; Rúa Lope Gómez de Marzoa Santiago de Compostela E15782 Spain
| | - Santiago Arufe
- Department of Chemical Engineering; Universidade de Santiago de Compostela; Rúa Lope Gómez de Marzoa Santiago de Compostela E15782 Spain
| | - Francisco Chenlo
- Department of Chemical Engineering; Universidade de Santiago de Compostela; Rúa Lope Gómez de Marzoa Santiago de Compostela E15782 Spain
| | - Ramon Moreira
- Department of Chemical Engineering; Universidade de Santiago de Compostela; Rúa Lope Gómez de Marzoa Santiago de Compostela E15782 Spain
| |
Collapse
|
182
|
Kumar A, Kumar P, Koundal R, Agnihotri VK. Antioxidant properties and UPLC-MS/MS profiling of phenolics in jacquemont's hazelnut kernels ( Corylus jacquemontii) and its byproducts from western Himalaya. Journal of Food Science and Technology 2016; 53:3522-3531. [PMID: 27777458 DOI: 10.1007/s13197-016-2329-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/18/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022]
Abstract
A rapid and selective analytical method was developed to simultaneously quantify seven polyphenolic compounds (gallic acid, catechin, epicatechin, quercetin, kaempferol, syringic acid and p-coumaric acid). 15 phenolics of diverse groups in 80 % ethanolic extracts of jacquemont's hazelnut (Corylus jacquemontii) kernels and its byproducts from western Himalaya using ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) were identified. The developed analytical method showed excellent linearity, repeatability and accuracy. Total phenols concentrations were found to be 4446, 1199 and 105 mg gallic acid equivalent (GAE)/Kg of dried extract for jacquemont's hazelnut skin, hard shell and kernels respectively. Antioxidant potential of defatted, raw jacquemont's hazelnut skin, hard shell and kernel extracts assessed by 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 2,2'-diphenyl-1-picrylhydrazyl (DPPH) methods were increased in a dose-dependent manner. The IC50 values were observed as 23.12, 51.32, 136.46 and 45.73, 63.65, 169.30 μg/ml for jacquemont's hazelnut skin, hard shell, kernels by DPPH and ABTS assays, respectively. The high phenolic contents in jacquemont's hazelnut skin contributed towards their free radical scavenging capacities.
Collapse
Affiliation(s)
- Ashish Kumar
- Academy of Scientific and Innovative Research, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh India ; Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh India
| | - Pawan Kumar
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh India
| | - Rajkesh Koundal
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh India
| | - Vijai K Agnihotri
- Academy of Scientific and Innovative Research, CSIR- Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh India ; Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh India
| |
Collapse
|