151
|
Changes in quality characteristics of southern bluefin tuna (Thunnus maccoyii) during refrigerated storage and their correlation with color stability. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
152
|
Liu GH, Fan JC, Kang ZL, Mazurenko I. Combined effects of high-pressure processing and pre-emulsified sesame oil incorporation on physical, chemical, and functional properties of reduced-fat pork batters. Curr Res Food Sci 2022; 5:1084-1090. [PMID: 35845922 PMCID: PMC9278027 DOI: 10.1016/j.crfs.2022.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
In this study, the changes in emulsion stability, colour, textural properties, and protein secondary structure of reduced-fat pork batters (50% pork back-fat and 50% pre-emulsified sesame oil) treated under different pressures (0.1, 200 and 400 MPa) were investigated. The emulsion stability, cooking yield, L* value, texture properties, initial relaxation times of T2b, T21, and T22, and peak ratios of P21 in the samples treated under 200 and 400 MPa significantly increased (p < 0.05) compared with those at 0.1 MPa, but the a* and b* values, and the peak ratio of P22 significantly decreased (p < 0.05). The sample treated at 200 MPa exhibited the best emulsion stability, textural properties, water-holding capacity and sensory scores among the samples. High-pressure processing induced structural changes from α-helical to β-sheet, β-turn, and random coil structures, enhancing protein-water incorporation and lowering water mobility. High-pressure processing and pre-emulsified sesame oil improved the techno-functional properties and emulsion stability of reduced-fat pork batters. High pressure (HP) and pre-emulsified oil combined lowered the water mobility. HP and pre-emulsified oil combined increased emulsion stability and cooking yield. HP and pre-emulsified oil combined increased β-sheet, β-turn, random coil structures. Treat at 200 MPa improved the gel properties of reduced-fat pork batters.
Collapse
Affiliation(s)
- Guang-Hui Liu
- School of Pharmacy, Shangqiu Medical College, Shangqiu, 476100, PR China
| | - Jing-Chao Fan
- School of Pharmacy, Shangqiu Medical College, Shangqiu, 476100, PR China
| | - Zhuang-Li Kang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
- Corresponding author.
| | - Igor Mazurenko
- Department of Food Technology, Sumy National Agrarian University, Sumy, 40021, Ukraine
| |
Collapse
|
153
|
Wang H, Shi W, Wang X. Effects of different thawing methods on microstructure and the biochemical properties of tilapia (
Oreochromis niloticus
) fillets during frozen storage. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Hongli Wang
- College of Food Science and Technology Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai Ocean University Shanghai China
| | - Wenzheng Shi
- College of Food Science and Technology Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai Ocean University Shanghai China
| | - Xichang Wang
- College of Food Science and Technology Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai Ocean University Shanghai China
| |
Collapse
|
154
|
Effect of high-pressure treatment on the heat-induced emulsion gelation of rabbit myosin. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
155
|
Zhao F, Zhai X, Liu X, Lian M, Liang G, Cui J, Dong H, Wang W. Effects of High-Intensity Ultrasound Pretreatment on Structure, Properties, and Enzymolysis of Walnut Protein Isolate. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010208. [PMID: 35011440 PMCID: PMC8746484 DOI: 10.3390/molecules27010208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/16/2022]
Abstract
The purpose of this paper was to investigate the effect of high-intensity ultrasonication (HIU) pretreatment before enzymolysis on structural conformations of walnut protein isolate (WPI) and antioxidant activity of its hydrolysates. Aqueous WPI suspensions were subjected to ultrasonic processing at different power levels (600-2000 W) and times (5-30 min), and then changes in the particle size, zeta (ζ) potential, and structure of WPI were investigated, and antioxidant activity of its hydrolysates was determined. The particle size of the particles of aqueous WPI suspensions was decreased after ultrasound, indicating that sonication destroyed protein aggregates. The ζ-potential values of a protein solution significantly changed after sonication, demonstrating that the original dense structure of the protein was destroyed. Fourier transform infrared spectroscopy indicated a change in the secondary structure of WPI after sonication, with a decrease in β-turn and an increase in α-helix, β-sheet, and random coil content. Two absorption peaks of WPI were generated, and the fluorescence emission intensity of the proteins decreased after ultrasonic treatment, indicating that the changes in protein tertiary structure occurred. Moreover, the degree of hydrolysis and the antioxidant activity of the WPI hydrolysates increased after sonication. These results suggest that HIU pretreatment is a potential tool for improving the functional properties of walnut proteins.
Collapse
Affiliation(s)
- Fei Zhao
- College of Agronomy and Environment, Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China; (M.L.); (G.L.); (J.C.)
- Correspondence: (F.Z.); (W.W.); Tel.: +86-538-824-2850 (W.W.)
| | - Xiaosong Zhai
- College of Food Science and Engineering, Engineering and Technology Center for Grain Processing of Shandong Province, Shandong Agricultural University, Taian 271018, China; (X.Z.); (H.D.)
| | - Xuemei Liu
- Jinan Fruit Research Institute, All-China Federation of Supply and Marketing Co-Operatives, Jinan 250014, China;
| | - Meng Lian
- College of Agronomy and Environment, Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China; (M.L.); (G.L.); (J.C.)
| | - Guoting Liang
- College of Agronomy and Environment, Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China; (M.L.); (G.L.); (J.C.)
| | - Jingxiang Cui
- College of Agronomy and Environment, Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang 262700, China; (M.L.); (G.L.); (J.C.)
| | - Haizhou Dong
- College of Food Science and Engineering, Engineering and Technology Center for Grain Processing of Shandong Province, Shandong Agricultural University, Taian 271018, China; (X.Z.); (H.D.)
| | - Wentao Wang
- College of Food Science and Engineering, Engineering and Technology Center for Grain Processing of Shandong Province, Shandong Agricultural University, Taian 271018, China; (X.Z.); (H.D.)
- Correspondence: (F.Z.); (W.W.); Tel.: +86-538-824-2850 (W.W.)
| |
Collapse
|
156
|
Ma Y, Li X, Sun P, Li J. Effect of ultrasonic thawing on gel properties of tuna myofibrillar proteins. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Yingying Ma
- Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Centre of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, College of Food Science and Technology, Bohai University Jinzhou China
| | - Xiu‐xia Li
- Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Centre of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, College of Food Science and Technology, Bohai University Jinzhou China
| | - Pan Sun
- Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Centre of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, College of Food Science and Technology, Bohai University Jinzhou China
| | - Jian‐rong Li
- Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Centre of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products The Fresh Food Storage and Processing Technology Research Institute of Liaoning Provincial Universities, College of Food Science and Technology, Bohai University Jinzhou China
| |
Collapse
|
157
|
Abstract
Sustainable food supply has gained considerable consumer concern due to the high percentage of spoilage microorganisms. Food industries need to expand advanced technologies that can maintain the nutritive content of foods, enhance the bio-availability of bioactive compounds, provide environmental and economic sustainability, and fulfill consumers’ requirements of sensory characteristics. Heat treatment negatively affects food samples’ nutritional and sensory properties as bioactives are sensitive to high-temperature processing. The need arises for non-thermal processes to reduce food losses, and sustainable developments in preservation, nutritional security, and food safety are crucial parameters for the upcoming era. Non-thermal processes have been successfully approved because they increase food quality, reduce water utilization, decrease emissions, improve energy efficiency, assure clean labeling, and utilize by-products from waste food. These processes include pulsed electric field (PEF), sonication, high-pressure processing (HPP), cold plasma, and pulsed light. This review describes the use of HPP in various processes for sustainable food processing. The influence of this technique on microbial, physicochemical, and nutritional properties of foods for sustainable food supply is discussed. This approach also emphasizes the limitations of this emerging technique. HPP has been successfully analyzed to meet the global requirements. A limited global food source must have a balanced approach to the raw content, water, energy, and nutrient content. HPP showed positive results in reducing microbial spoilage and, at the same time, retains the nutritional value. HPP technology meets the essential requirements for sustainable and clean labeled food production. It requires limited resources to produce nutritionally suitable foods for consumers’ health.
Collapse
|
158
|
Chu Y, Tan M, Bian C, Xie J. Effect of ultrasonic thawing on the physicochemical properties, freshness, and protein-related properties of frozen large yellow croaker (Pseudosciaena crocea). J Food Sci 2021; 87:52-67. [PMID: 34897680 DOI: 10.1111/1750-3841.15983] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 11/30/2022]
Abstract
Ultrasonic treatment (UT) was used to thaw large yellow croaker in this study, and the effect of various ultrasonic power levels on the quality of large yellow croaker was evaluated after thawing. The effects of ultrasonic on water holding capacity (WHC), moisture distribution, thiobarbituric acid-reactive substance (TBARs), total volatile base nitrogen (TVB-N), ATP degradation (related to K value), surface color change, free amino acid (FAA) content, total sulfhydryl group (SH) content, Fourier transform infrared absorption spectra (FT-IR), fluorescence emission spectra, and microscopic observations of large yellow croaker myofibrillar proteins were investigated. The thawing times of the control sample, 200UT, 240UT, 280UT, and 320UT samples were 1750, 1190, 810, 580, and 570 s, respectively, which indicated that ultrasonic radiation could improve thawing efficiency. Additionally, ultrasonic thawing maintained better freshness and color and inhibited lipid oxidation. Compared with fresh samples, the TVB-N of large yellow croaker thawed by ultrasonication increased by 12.68%, and the K value increased by 0.9%. The 240UT sample had tightly arranged myofibrils and fewer changes in the structures of myogenic fibrillar proteins than the fresh samples, and the SH content of 240UT was decreased by 8.17%. Use of excessive ultrasonic power (320 W) damaged the protein microstructure and the microstructure of large yellow croaker. In conclusion, sample 240UT maintained the quality of large yellow croaker better with minimal damage, which is recommended for rapid thawing. PRACTICAL APPLICATION: Ultrasonic waves improve the thawing efficiency of large yellow croaker and maintain the freshness and color of the fish. According to results, sample 240UT exhibited slight changes in the structure of the myofibril protein, but excessive ultrasonic power destroyed the microstructure and protein structure. Appropriate ultrasonic treatment to the thawing of fish has good prospects.
Collapse
Affiliation(s)
- Yuanming Chu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Mingtang Tan
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Chuhan Bian
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China.,National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China.,Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China.,Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
159
|
Hu C, Xie J. The effect of multiple freeze–thaw cycles on protein oxidation and quality of
Trachurus murphyi. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Chunlin Hu
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
- Shanghai Engineering Research Center of Aquatic Product Processing and Preservation Shanghai China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation Shanghai China
| |
Collapse
|
160
|
Zheng HB, Xu BC, Xu XL, Li C, Bolumar T, Zhen ZY. Gelation of chicken batters during heating under high pressure. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
161
|
Liu Z, Guo Z, Wu D, Fei X, Ei-Seedi HR, Wang C. High-pressure homogenization influences the functional properties of protein from oyster (Crassostrea gigas). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
162
|
Ding Q, Tian G, Wang X, Deng W, Mao K, Sang Y. Effect of ultrasonic treatment on the structure and functional properties of mantle proteins from scallops (Patinopecten yessoensis). ULTRASONICS SONOCHEMISTRY 2021; 79:105770. [PMID: 34598102 PMCID: PMC8487091 DOI: 10.1016/j.ultsonch.2021.105770] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/05/2021] [Accepted: 09/20/2021] [Indexed: 05/14/2023]
Abstract
In this study, scallop mantle protein was treated by ultrasound at different powers, and then analyzed by ANS fluorescent probes, circular dichroism spectroscopy, endogenous fluorescence spectrum, DNTB colorimetry and in-vitro digestion model to elucidate the structure-function relationship. The results indicated that ultrasound can significantly affect the secondary structure of scallop mantle protein like enhancing hydrophobicity, lowering the particle size, increasing the relative contents of α-helix and decreasing contents of β-pleated sheet, β-turn and random coil, as well as altering intrinsic fluorescence intensity with blue shift of maximum fluorescence peak. But ultrasound had no effect on its primary structure. Moreover, the functions of scallop mantle protein were regulated by modifying its structures by ultrasound. Specifically, the protein had the highest performance in foaming property and in-vitro digestibility under ultrasonic power of 100 W, oil binding capacity under 100 W, water binding capacity under 300 W, solubility and emulsification capacity under 400 W, and emulsion stability under 600 W. These results prove ultrasonic treatment has the potential to effectively improve functional properties and quality of scallop mantle protein, benefiting in comprehensive utilization of scallop mantles.
Collapse
Affiliation(s)
- Qiuyue Ding
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Guifang Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xianghong Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Wenyi Deng
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Kemin Mao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
163
|
Tan M, Ding Z, Mei J, Xie J. Effect of cellobiose on the myofibrillar protein denaturation induced by pH changes during freeze-thaw cycles. Food Chem 2021; 373:131511. [PMID: 34763934 DOI: 10.1016/j.foodchem.2021.131511] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 11/04/2022]
Abstract
The aim of this study was to investigate myofibrillar protein (MFP) denaturation induced by pH changes during freeze-thaw (FT) cycles, and to propose an effective mitigation strategy. Owing to the selective crystallization of Na2HPO4·12H2O and the consequent pH change, a pH change of 3.32 units was observed when the MFP solution were frozen. The surface hydrophobicity, particle size and confocal laser scanning microscopy showed that the protein molecules gradually unfolded and formed larger protein aggregation as the number of FT cycles increases. Additionally, protein degradation, secondary and tertiary structure alterations suggested that the FT cycle could disrupt structural integrity. The addition of cellobiose could maximize the inhibition of pH changes (decrease of ∼0.62 unit), no Na2HPO4·12H2O crystallization was observed by X-ray diffraction. Cellobiose could minimize FT damage to myofibrillar protein, which was closest to the control. Thus, cellobiose can be used as a new and effective cryoprotectant.
Collapse
Affiliation(s)
- Mingtang Tan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing&Preservation, Shanghai 201306, China; Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jun Mei
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing&Preservation, Shanghai 201306, China; Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic Product Processing&Preservation, Shanghai 201306, China; Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
164
|
Zhao SM, Li Z, Li NN, Zhao YY, Kang ZL, Zhu MM, Ma HJ. Effects of high-pressure processing on the functional properties of pork batters containing Artemisia sphaerocephala krasch gum. J Food Sci 2021; 86:4946-4957. [PMID: 34653266 DOI: 10.1111/1750-3841.15921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/05/2021] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
Here, the effect of high-pressure conditions (0.1-400 MPa) on the water-loss, texture, gel strength, color, dynamic rheological property, and water migration of pork batters containing 0.1% (W/W) Artemisia sphaerocephala krasch gum (PB-AG) is studied. Results indicated that the cooking yield, water-holding capacity, texture, gel strength, L* values, and G' values increased with the increase in pressure (0.1-300 MPa) (p < 0.05). Dynamic rheological results (G') revealed that the thermal gelling ability of the PB-AG gel gradually increased with pressure (0.1-300 MPa). The minimum of T22 content was observed and the proportion of immobilized water decreased at 300 MPa by low-filed nuclear magnetic resonance. However, excessive high-pressure processing treatments (400 MPa) resulted in lower gel strength, WHC, texture, and G'. The scanning electron microscopy results shown that a denser network structure with small cavities was observed at 300 MPa. Therefore, moderate pressure treatment (≤300 MPa) may improve gelation properties of PB-AG gel, while excessive pressure treatment (400 MPa) may weaken the gelation properties. PRACTICAL APPLICATION: High-pressure processing combining Artemisia sphaerocephala krasch gum could enhance the gelation properties of pork batters. To do so, establishing knowledge on gelation properties of pork batters with Artemisia sphaerocephala krasch gum at different pressure levels treatment would be of paramount importance, because this contributes furnishing engineering data pertinent to the technical progress for the processing of emulsion-type meat with high quality.
Collapse
Affiliation(s)
- Sheng-Ming Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, People's Republic of China.,National Pork Processing Technology Research and Development Professional Center, Xinxiang, People's Republic of China
| | - Zhao Li
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, People's Republic of China.,National Pork Processing Technology Research and Development Professional Center, Xinxiang, People's Republic of China
| | - Ning-Ning Li
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, People's Republic of China.,National Pork Processing Technology Research and Development Professional Center, Xinxiang, People's Republic of China
| | - Yan-Yan Zhao
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, People's Republic of China
| | - Zhuang-Li Kang
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, People's Republic of China.,National Pork Processing Technology Research and Development Professional Center, Xinxiang, People's Republic of China
| | - Ming-Ming Zhu
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, People's Republic of China.,National Pork Processing Technology Research and Development Professional Center, Xinxiang, People's Republic of China
| | - Han-Jun Ma
- School of Food Science and Technology, Henan Institute of Science and Technology, Xinxiang, People's Republic of China.,National Pork Processing Technology Research and Development Professional Center, Xinxiang, People's Republic of China
| |
Collapse
|
165
|
Wang Y, Bai Y, Ma F, Li K, Zhou H, Chen C. Combination treatment of high‐pressure and CaCl
2
for the reduction of sodium content in chicken meat batters: effects on physicochemical properties and sensory characteristics. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Yu Wang
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou Henan 450000 China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou Henan 450000 China
| | - Yan‐hong Bai
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou Henan 450000 China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou Henan 450000 China
| | - Fei Ma
- School of Food and Biological Engineering Hefei University of Technology Hefei Anhui 230009 China
- Engineering Research Center of Bio‐process from Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| | - Ke Li
- College of Food and Bioengineering Zhengzhou University of Light Industry Zhengzhou Henan 450000 China
- Henan Key Laboratory of Cold Chain Food Quality and Safety Control Zhengzhou Henan 450000 China
| | - Hui Zhou
- School of Food and Biological Engineering Hefei University of Technology Hefei Anhui 230009 China
- Engineering Research Center of Bio‐process from Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| | - Cong‐gui Chen
- School of Food and Biological Engineering Hefei University of Technology Hefei Anhui 230009 China
- Engineering Research Center of Bio‐process from Ministry of Education Hefei University of Technology Hefei Anhui 230009 China
| |
Collapse
|
166
|
The mechanism of low-level pressure coupled with heat treatment on water migration and gel properties of Nemipterus virgatus surimi. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
167
|
Chu Y, Cheng H, Yu H, Mei J, Xie J. Quality enhancement of large yellow croaker (Pseudosciaena crocea) during frozen (-18 ºC) storage by spiral freezing. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1960895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yuanming Chu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Hao Cheng
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Huijie Yu
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
| | - Jun Mei
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
| | - Jing Xie
- College of Food Science & Technology, Shanghai Ocean University, Shanghai, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai Ocean University, Shanghai, China
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai Ocean University, Shanghai, China
- Collaborative Innovation Center of Seafood Deep Processing, Ministry of Education, Dalian, China
| |
Collapse
|
168
|
Effects of High Hydrostatic Pressure Treatment: Characterization of Eel (Anguilla japonica) Surimi, Structure, and Angiotensin-Converting Enzyme Inhibitory Activity of Myofibrillar Protein. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02658-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
169
|
Du X, Li H, Nuerjiang M, Rui L, Kong B, Xia X, Shao M. Influence of repeated freeze–thaw treatments on the functional and structural properties of myofibrillar protein from mirror carp (Cyprinus carpio L.). FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09689-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
170
|
Liu H, Xu Y, Zu S, Wu X, Shi A, Zhang J, Wang Q, He N. Effects of High Hydrostatic Pressure on the Conformational Structure and Gel Properties of Myofibrillar Protein and Meat Quality: A Review. Foods 2021; 10:1872. [PMID: 34441648 PMCID: PMC8393269 DOI: 10.3390/foods10081872] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/08/2021] [Accepted: 08/10/2021] [Indexed: 01/03/2023] Open
Abstract
In meat processing, changes in the myofibrillar protein (MP) structure can affect the quality of meat products. High hydrostatic pressure (HHP) has been widely utilized to change the conformational structure (secondary, tertiary and quaternary structure) of MP so as to improve the quality of meat products. However, a systematic summary of the relationship between the conformational structure (secondary and tertiary structure) changes in MP, gel properties and product quality under HHP is lacking. Hence, this review provides a comprehensive summary of the changes in the conformational structure and gel properties of MP under HHP and discusses the mechanism based on previous studies and recent progress. The relationship between the spatial structure of MP and meat texture under HHP is also explored. Finally, we discuss considerations regarding ways to make HHP an effective strategy in future meat manufacturing.
Collapse
Affiliation(s)
- Huipeng Liu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Shuyu Zu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Xuee Wu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China; (A.S.); (J.Z.)
| | - Jinchuang Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China; (A.S.); (J.Z.)
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China; (A.S.); (J.Z.)
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.L.); (Y.X.); (S.Z.); (X.W.)
| |
Collapse
|
171
|
Deng X, Ma Y, Lei Y, Zhu X, Zhang L, Hu L, Lu S, Guo X, Zhang J. Ultrasonic structural modification of myofibrillar proteins from Coregonus peled improves emulsification properties. ULTRASONICS SONOCHEMISTRY 2021; 76:105659. [PMID: 34242867 PMCID: PMC8273264 DOI: 10.1016/j.ultsonch.2021.105659] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 05/07/2023]
Abstract
This study evaluated the effects of high intensity ultrasonication (HIU, 100, 150, 200, and 250 W) and treatment time (0, 3, 6, 9, and 12 min) on the structure and emulsification properties of myofibrillar proteins (MPs) from Coregonus peled. These investigations were conducted using an ultrasonic generator at a frequency of 20 kHz (ultrasonic probe). Analysis of the carbonyl content and total number of sulfhydryl groups showed that HIU significantly improved the oxidative modification of MPs (P < 0.05). SDS-PAGE profiling showed significant degradation of the myosin heavy chain (P < 0.05). In addition, Fourier transformed infrared spectroscopy (FTIR) revealed that HIU altered these treated MP secondary structures, this was due to molecular unfolding and stretching, exposing interior hydrophobic groups. Particle size analysis showed that HIU treatment reduced particle sizes. Solubility, emulsification capacity, and emulsion stability were improved significantly, and each decreased with an increase in treatment time (up to 12 min), indicating aggregation with prolonged sonication. These results indicate that HIU could improve the emulsification properties of MPs from C. peled, demonstrating a promising method for fish protein processing.
Collapse
Affiliation(s)
- Xiaorong Deng
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yigang Ma
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Yongdong Lei
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xinrong Zhu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Lianfu Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ling Hu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
- Changji Hui Autonomous Prefecture Institute for Drug Control, Changji, Xinjiang 831100, China
| | - Shiling Lu
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Xin Guo
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Zhang
- School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
172
|
Arora B, Rizvi SSH. Process optimisation and product characterisation of milk protein concentrate extrudates expanded by supercritical carbon dioxide. INT J DAIRY TECHNOL 2021. [DOI: 10.1111/1471-0307.12801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Bindvi Arora
- Department of Food Science Cornell University Ithaca NY 14850 USA
| | - Syed S H Rizvi
- Department of Food Science Cornell University Ithaca NY 14850 USA
| |
Collapse
|
173
|
Bai Y, Zeng X, Zhang C, Zhang T, Wang C, Han M, Zhou G, Xu X. Effects of high hydrostatic pressure treatment on the emulsifying behavior of myosin and its underlying mechanism. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111397] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
174
|
Effect of high pressure processing and heat treatment on the gelation properties of blue crab meat proteins. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
175
|
Quality attributes enhancement of ready-to-eat hairtail fish balls by high-pressure processing. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111658] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
176
|
Zhou Y, Liu JJH, Kang Y, Cui H, Yang H. Effects of acid and alkaline treatments on physicochemical and rheological properties of tilapia surimi prepared by pH shift method during cold storage. Food Res Int 2021; 145:110424. [PMID: 34112426 DOI: 10.1016/j.foodres.2021.110424] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
Microbial, physicochemical, rheological, and microstructural changes of surimi prepared by pH shift methods and the traditional water-washing method during cold storage were investigated. The starting aerobic mesophilic count (AMC) of pH shift surimi was around 1 log CFU/g lower than water-washed surimi, suggesting antimicrobial effects of the pH shift. All samples could be stored for 5 to 6 days based on the AMC results. Throughout the storage, the gel strength of alkaline-treated surimi increased from 204.2 to 491.9 g, while water-washed surimi decreased from 462.1 to 172.9 g. After the storage, alkaline-treated surimi showed lower total volatile basic nitrogen (TVB-N) value and smaller network hole size that was suitable for incorporation of moisture and starch. It also remained its rheological properties comparing with acid-treated surimi, with better odour properties, less protein degradation, and better network formation. The results indicate that alkaline-treated surimi is more suitable for cold storage.
Collapse
Affiliation(s)
- Yige Zhou
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Jonathan Jia He Liu
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore
| | - Ying Kang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Hanjing Cui
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China
| | - Hongshun Yang
- Department of Food Science & Technology, National University of Singapore, Singapore 117542, Singapore; National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu 215123, PR China.
| |
Collapse
|
177
|
Han K, Feng X, Yang Y, Wei S, Tang X, Li S, Chen Y. Effects of camellia oil on the properties and molecular forces of myofibrillar protein gel induced by microwave heating. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Keying Han
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| | - Xiao Feng
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| | - Yuling Yang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| | - Sumeng Wei
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
- College of Food Science Northeast Agricultural University Harbin, Heilongjiang 150030 China
| | - Xiaozhi Tang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| | - Shanshan Li
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| | - Yumin Chen
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing Nanjing University of Finance and Economics Nanjing 210023 China
| |
Collapse
|
178
|
Li Y, Kang Z, Sukmanov V, Ma H. Technological and functional properties of reduced‐salt pork batter incorporated with soy protein isolate after pressure treatment. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Yan‐ping Li
- School of Food Science Henan Institute of Science and Technology Xinxiang 453003 China
- Food Technologies Faculty of Sumy National Agrarian University Sumy Ukraine
| | - Zhuang‐li Kang
- School of Food Science Henan Institute of Science and Technology Xinxiang 453003 China
| | - Valerii Sukmanov
- Food Technologies Faculty of Sumy National Agrarian University Sumy Ukraine
| | - Hanjun Ma
- School of Food Science Henan Institute of Science and Technology Xinxiang 453003 China
| |
Collapse
|
179
|
Kim TK, Yong HI, Kang MC, Jung S, Jang HW, Choi YS. Effects of High Hydrostatic Pressure on Technical Functional Properties of Edible Insect Protein. Food Sci Anim Resour 2021; 41:185-195. [PMID: 33987542 PMCID: PMC8114999 DOI: 10.5851/kosfa.2020.e85] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/24/2020] [Accepted: 10/07/2020] [Indexed: 12/03/2022] Open
Abstract
The objective of this study was to determine the effects of high pressure to
investigate the technical functional properties of the protein solution
extracted from an edible insect, Protaetia brevitarsis
seulensis. High pressure processing was performed at 0 (control),
100, 200, 300, 400, and 500 MPa at 35°C. The essential amino acid index
of the control was lower (p<0.05) than that of the P. brevitarsis
seulensis extract treated with 100 MPa. The SDS-PAGE patterns
tended to become faint at approximately 75 kDa and thicker at approximately 37
KDa after high pressure treatment. The protein solubility and pH of the protein
tended to increase as the hydrostatic pressure levels increased. The instrument
color values (redness and yellowness) of the P. brevitarsis
seulensis protein treated with high pressure were lower
(p<0.05) than those of the control. The forming capacity of the protein
solution with P. brevitarsis seulensis treated with high
pressure was higher (p<0.05) than that of the control. In conclusion, we
confirmed that the technical functional properties of edible insect proteins
extracted under high pressure of 200 MPa are improved. Our results indicate that
high pressure can improve the technical functional properties of proteins from
edible insects.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Hae In Yong
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Min-Cheol Kang
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| | - Samooel Jung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Hae Won Jang
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea.,Deparment of Food Science and Biotechnology, Sungshin Women's University, Seoul 01133, Korea
| | - Yun-Sang Choi
- Research Group of Food Processing, Korea Food Research Institute, Wanju 55365, Korea
| |
Collapse
|
180
|
Potential mechanism of different gelation properties of white and red muscle fibre from crocodile (Crocodylus siamensis) meat: Study of myofibrillar protein. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
181
|
Wang Q, Jiao X, Yan B, Meng L, Cao H, Huang J, Zhao J, Zhang H, Chen W, Fan D. Inhibitory effect of microwave heating on cathepsin l-induced degradation of myofibrillar protein gel. Food Chem 2021; 357:129745. [PMID: 33894571 DOI: 10.1016/j.foodchem.2021.129745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 10/21/2022]
Abstract
This work was aimed to compare the effect of microwave (MW) heating on the cathepsin L (Cat L)-induced degradation of myofibrillar protein (MP) gels with that of water bath (WB) heating. First, Cat L from silver carp was purified and determined to be 45 kDa. The gel strength of the MW-heated MP gels were significantly higher than those of the WB-heated when Cat L was added (P < 0.05). The gel electrophoresis pattern and scanning electron microscopy analysis indicated that MW heating inhibited the Cat l-induced hydrolysis of MP gels. In addition, the number of sulfhydryl groups and surface hydrophobicity of MW-heated gels were lower than those of WB-heated gels when Cat L was added. These results indicated that MW heating could effectively weaken the degradation of Cat L on MP gels by manipulating disulfide bonds and hydrophobic amino acids, resulting in good gel properties and a compact protein network.
Collapse
Affiliation(s)
- Qian Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xidong Jiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bowen Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Linglu Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hongwei Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China; Fujian Anjoyfood Share Co. Ltd., Xiamen 361022, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
182
|
Tan M, Xie J. Exploring the Effect of Dehydration on Water Migrating Property and Protein Changes of Large Yellow Croaker ( Pseudosciaena crocea) during Frozen Storage. Foods 2021; 10:784. [PMID: 33917293 PMCID: PMC8067423 DOI: 10.3390/foods10040784] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 11/30/2022] Open
Abstract
This study aimed to explore the effect of dehydration on the water migrating property and protein changes of large yellow croaker during frozen storage. A freeze-dryer was used to accelerate experiments, which was isolated from oxygen and excluded the effects of protein oxidation. After dehydration time (3, 9, 18, and 30 h) for both fast- and slow-freezing samples, the results showed that the ice sublimation of samples containing small ice crystals was faster than that of samples containing large ice crystals in the early stages of dehydration, but in the latest stage, there was an opposite trend. The results indicated that dehydration reduced the water freedom degrees and water-protein interaction. At the same time, dehydration had a significant effect on protein secondary and tertiary structures. The significant increase in surface hydrophobicity and particle size indicated that dehydration exacerbated myofibrillar protein aggregation. The ΔH1 values (from 1.275 to 0.834 J/g for slow-freezing group and from 1.129 to 0.855 J/g for fast-freezing group) decreased gradually as the dehydration time extended, indicating the decrease in protein thermal stability. Additionally, significant protein degradation occurred when the water content of the sample decreased to a certain level. This study showed that ice crystal size had an important effect on the rate of ice sublimation, and the occurrence of dehydration during frozen storage accelerated the water loss and the decrease in protein stability.
Collapse
Affiliation(s)
- Mingtang Tan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
- Shanghai Engineering Research Center of Aquatic Product Processing & Preservation, Shanghai 201306, China
- Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai 201306, China
| |
Collapse
|
183
|
Liu H, Li Y, Tang B, Peng Y, Wu X, Che L, Quek SY, He N. Effects of xylooligosaccharide on angiotensin I-converting enzyme inhibitory activity of fish actomyosin and quality of snakehead balls with or without high hydrostatic pressure treatment. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
184
|
Effect of phospholipids on the physicochemical properties of myofibrillar proteins solution mediated by NaCl concentration. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110895] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
185
|
Bhat ZF, Morton JD, Bekhit AEDA, Kumar S, Bhat HF. Emerging processing technologies for improved digestibility of muscle proteins. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
186
|
Alsalman FB, Ramaswamy HS. Changes in carbohydrate quality of high-pressure treated aqueous aquafaba. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
187
|
Zhang D, Zhang Y, Huang Y, Chen L, Bao P, Fang H, Zhou C. l-Arginine and l-Lysine Alleviate Myosin from Oxidation: Their Role in Maintaining Myosin's Emulsifying Properties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3189-3198. [PMID: 33496584 DOI: 10.1021/acs.jafc.0c06095] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study investigated the alleviative effects of l-arginine and l-lysine on the emulsifying properties and structural changes of myosin under hydroxyl radical (·OH) stress. The results showed that ·OH decreased the emulsifying activity index and emulsifying stability index but increased the creaming index and droplet size of a soybean oil-myosin emulsion (SOME). Confocal laser scanning microscopy demonstrated that ·OH caused larger and more inhomogeneous SOME droplets. l-Arginine and l-lysine effectively alleviated ·OH-induced destructive effects on the emulsifying properties of myosin. In addition, ·OH increased the extent of protein carbonylation and dityrosine formation, surface hydrophobicity, and β-sheet content, but decreased the tryptophan fluorescence intensity, solubility, total sulfhydryl, and α-helix content of myosin. Although l-lysine increased dityrosine fluorescence intensity, l-arginine and l-lysine effectively alleviated the aforementioned structural changes of myosin. Therefore, l-arginine and l-lysine could mitigate ·OH-induced structural changes of myosin, which enabled myosin to maintain its emulsifying capacity under oxidative stress.
Collapse
Affiliation(s)
- Daojing Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yinyin Zhang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Yajun Huang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Li Chen
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Pengqi Bao
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hongmei Fang
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Cunliu Zhou
- Engineering Research Center of Bio-Process, Ministry of Education, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
188
|
Kang ZL, Lu F, Li YP, Wang CY. Effects of high pressure and thermal combinations on gel properties and water distribution of pork batters. Journal of Food Science and Technology 2021; 58:3243-3249. [PMID: 34294987 DOI: 10.1007/s13197-021-05051-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
The effects of high pressure (100-500 MPa) and heated (80 °C, 25 min) combinations on gel properties, rheological characteristic and water distribution of pork batters were investigated. Compared to the only-heat, the cooking yield, a* value, hardness, cohesiveness, and chewiness of cooked pork batters treated less than 300 MPa were significantly increased (P < 0.05), meanwhile, the b* value was significantly decreased (P < 0.05). Opposite, the color and cooking yield were not significant different (P > 0.05) when over 300 MPa, except the L* value. At 300 MPa, the cooking yield, hardness, chewiness, and G' value at 80 °C of pork batter were the highest. The initial relaxation time of T21 was decreased significantly (P < 0.05), and the peak ration of P21 was increased significantly (P < 0.05) when treated at 200 and 300 MPa, that indicated the water was bound tightly and the ratio of immobilized water was increased. Overall, 300 MPa treatment and thermal combinations could improve the gel properties of pork batters.
Collapse
Affiliation(s)
- Zhuang-Li Kang
- Henan Institute of Science and Technology, Xinxiang, People's Republic of China.,College of Food Science and Technology, Henan University of Technology, Zhengzhou, 450001 People's Republic of China
| | - Fei Lu
- Henan Institute of Science and Technology, Xinxiang, People's Republic of China
| | - Yan-Ping Li
- Henan Institute of Science and Technology, Xinxiang, People's Republic of China.,Sumy National Agrarian University, Sumy, Ukraine
| | - Chun-Yan Wang
- Henan Institute of Science and Technology, Xinxiang, People's Republic of China.,School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian, 116034 People's Republic of China
| |
Collapse
|
189
|
Sun Y, Ma L, Fu Y, Dai H, Zhang Y. The improvement of gel and physicochemical properties of porcine myosin under low salt concentrations by pulsed ultrasound treatment and its mechanism. Food Res Int 2021; 141:110056. [PMID: 33641958 DOI: 10.1016/j.foodres.2020.110056] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/08/2020] [Accepted: 12/20/2020] [Indexed: 11/15/2022]
Abstract
The effects of pulsed ultrasound treatment (250 W, 0-12 min) on gel and physicochemical properties of porcine myosin at low-salt group (0.3 mol/L) and control groups (0.6 and 0.9 mol/L) were investigated. The texture and water holding capacity (WHC) of low-salt group gel were remarkably lower than in medium-salt (0.6 mol/L) and high-salt group (0.9 mol/L). However, 6-min ultrasound treatment could obviously improve the texture and WHC of low-salt group gel. After ultrasound treatment, the protein solubility was increased, as the degree of protein aggregation was reduced. Simultaneously, ultrasound treatment led to unfolding of protein structure and increasing surface hydrophobicity. The three-dimensional network of myosin gel gradually became uniform by 6-min ultrasound treatment. Under 12-min ultrasound treatment, the protein aggregated excessively during the gelation, which led to the deterioration of gel quality. These results suggested that moderate ultrasound treatment is promising to be used to enhance the quality of salt-reduced meat products.
Collapse
Affiliation(s)
- Yi Sun
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yu Fu
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China; Biological Science Research Center, Southwest University, Chongqing 400715, China.
| |
Collapse
|
190
|
Li YP, Kang ZL, Sukmanov V, Ma HJ. Effects of soy protein isolate on gel properties and water holding capacity of low-salt pork myofibrillar protein under high pressure processing. Meat Sci 2021; 176:108471. [PMID: 33647630 DOI: 10.1016/j.meatsci.2021.108471] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/28/2022]
Abstract
This paper studies the effects of soy protein isolate (SPI; 0, 2% and 4%; Weight/Weight) on texture, rheological property, sulfhydryl groups, and the water distribution state of low-salt (1% NaCl) pork myofibrillar protein systems under high pressure processing (HPP, 200 MPa, 10 min). The L⁎ value, cooking yield, hardness, total and reactive sulfhydryl, surface hydrophobicity, and the G' value at 80 °C of pork myofibrillar protein increased significantly (P < 0.05) when SPI was added; however, the springiness, cohesiveness, and chewiness of gels with 4% SPI were lower than of gels with 2% SPI. The rheological findings indicated that the thermal stability of the myofibrillar protein increased when SPI was added. The initial relaxation time of T2b, T21, and T22 decreased when SPI increased; meanwhile, the peak ratio of P21 increased significantly (P < 0.05), implying that water had lower mobility. Overall, the 2% SPI could enhance gel characteristics and water-holding capacity of pork myofibrillar protein under 200 MPa.
Collapse
Affiliation(s)
- Yan-Ping Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China; Food Technologies Faculty of Sumy National Agrarian University, Sumy, Ukraine
| | - Zhuang-Li Kang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China.
| | - Valerii Sukmanov
- Food Technologies Faculty of Sumy National Agrarian University, Sumy, Ukraine
| | - Han-Jun Ma
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, PR China
| |
Collapse
|
191
|
Effect and mechanism of psyllium husk (Plantago ovata) on myofibrillar protein gelation. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110651] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
192
|
Li J, Yu X, Tang W, Wan C, Lu Y, Dong N, Chen Z, Lei Z, Ren T, Wang Z, Liu J. Characterization of food gels prepared from the water extract of fish (Cyprinus carpio L.) scales: From molecular components to sensory attributes. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106263] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
193
|
Xu Y, Han M, Huang M, Xu X. Enhanced heat stability and antioxidant activity of myofibrillar protein-dextran conjugate by the covalent adduction of polyphenols. Food Chem 2021; 352:129376. [PMID: 33662917 DOI: 10.1016/j.foodchem.2021.129376] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/29/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
In the present study, three types of polyphenols, namely, (-)-epigallocatechin-3-gallate (EGCG), catechin (C), and gallic acid (GA), were grafted to myofibrillar protein (MP)-dextran (DX) conjugate through a free radical-mediated adduction method. The analysis of secondary structure showed that conjugation of polyphenols induced a decrease in contents of α-helix structures. The surface hydrophobicity of MP-DX conjugate was increased after polyphenols were covalently adducted, while that of the free amino, thiol groups, and tyrosine residues were decreased, especially with the addition of EGCG (p < 0.05). Analysis of rheological properties showed that covalently linking of polyphenols decreased the thermal gelling capacity by inhibiting myosin-head aggregation and myosin tails interaction. Moreover, polyphenol adduction was able to remarkably improve the thermal stability and antioxidant activity of MP-DX conjugate. The findings regarding enhanced functionalities evidence potential of applying the ternary adduct as a novel antioxidant.
Collapse
Affiliation(s)
- Yujuan Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Minyi Han
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Mingyuan Huang
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Xinglian Xu
- Key Laboratory of Animal Products Processing, Ministry of Agriculture, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Jiangsu Synergetic Innovation Center of Meat Production and Processing, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
194
|
Ultrasonic treatment increased functional properties and in vitro digestion of actomyosin complex during meat storage. Food Chem 2021; 352:129398. [PMID: 33652197 DOI: 10.1016/j.foodchem.2021.129398] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/19/2021] [Accepted: 02/13/2021] [Indexed: 02/07/2023]
Abstract
We investigated the effects of ultrasonic treatment (400 W, 20 kHz, 45.52 W/L) and storage time (0 d, 3 d, 7 d and 10 d) on functional properties, structural changes and in vitro digestion of actomyosin complex isolated from vacuum-packed pork. As storage time increased, turbidity, surface hydrophobicity, active sulfhydryl and total sulfhydryl of actomyosin complex increased, while protein solubility decreased. Ultrasonic treatment increased surface hydrophobicity, protein solubility and active sulfhydryl content but decreased turbidity and total sulfhydryl content compared with the control. Ultrasonic treatment caused a reduction in α-helix content on 0 day and the fluorescence intensity of tryptophan and tyrosine residues. It increased pancreatin digestibility of actomyosin complex and the number of peptides of smaller than 1 kDa. However, it decreased the number of peptides. The findings provide a new insight into the application of appropriate ultrasonic treatment to promote meat digestibility.
Collapse
|
195
|
Li DY, Tan ZF, Liu ZQ, Wu C, Liu HL, Guo C, Zhou DY. Effect of hydroxyl radical induced oxidation on the physicochemical and gelling properties of shrimp myofibrillar protein and its mechanism. Food Chem 2021; 351:129344. [PMID: 33647688 DOI: 10.1016/j.foodchem.2021.129344] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/21/2021] [Accepted: 02/08/2021] [Indexed: 12/01/2022]
Abstract
Protein oxidation is considered as an important factor affecting the texture quality of surimi. In this work, the myofibrillar protein (MP) from shrimp (Penaeus vannamei) was subjected to a hydroxyl radical generating system at various concentrations of H2O2, to simulate the oxidative environment during surimi processing. After the hydroxyl radical oxidation, it was found that the carbonyl content, surface hydrophobicity, and MP aggregation increased. Meanwhile, the a-helix decreased, but β-sheet increased after oxidation. The moderate oxidation led to a dense network microstructure, increased water holding capacity (WHC) and decreased water mobility, which ultimately enhanced textural (hardness and springiness increased by 0.51- and 0.06-fold, respectively) and rheological properties of MP gel (MPG). However, excessive oxidation could reduce the mechanical properties of MPG. The microstructure, WHC and water distribution played a key role in the mechanical properties of MPG. This study can provide a theoretical basis for processing of shrimp surimi products.
Collapse
Affiliation(s)
- De-Yang Li
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, China
| | - Zhi-Feng Tan
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, China
| | - Zi-Qiang Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, China
| | - Chao Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, China
| | - Hui-Lin Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, China
| | - Chao Guo
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, China
| | - Da-Yong Zhou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; National Engineering Research Center of Seafood, Dalian 116034, China.
| |
Collapse
|
196
|
Wang X, Wang L, Yang K, Wu D, Ma J, Wang S, Zhang Y, Sun W. Radio frequency heating improves water retention of pork myofibrillar protein gel: An analysis from water distribution and structure. Food Chem 2021; 350:129265. [PMID: 33610837 DOI: 10.1016/j.foodchem.2021.129265] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/16/2021] [Accepted: 01/31/2021] [Indexed: 01/04/2023]
Abstract
This study was to explore effects of hot air assisted or not assisted radio frequency (RF, 27.12 MHz, 1.4 kW) heating with different electrode gaps (100 mm, 120 mm, and 140 mm) on the water-holding capacity (WHC) of myofibrillar protein (MP) gel and to understand the underlying mechanism through chemical forces, water distribution, and structure. The results showed that the MP gels heated by RF (100 mm) had the highest WHC and uniform gel network structure. As for RF with 100 mm electrode gap, the increased ionic and hydrogen bonds might be conducive to the WHC compared to water bath heating, which was verified by Low-field nuclear magnetic resonance results that the free water converted into the immobilized water. Raman spectroscopy results revealed that RF (100 mm) induced the self-assembly of β-sheet to α-helix, which conduced to the stable and ordered gel network structure.
Collapse
Affiliation(s)
- Xian Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Limei Wang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Kun Yang
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Di Wu
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Jing Ma
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Shaojin Wang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling 712100, PR China
| | - Yunhua Zhang
- School of Mechanical Engineering, Yangtze University, Jingzhou, Hubei 434023, PR China
| | - Weiqing Sun
- College of Life Science, Yangtze University, Jingzhou, Hubei 434023, PR China
| |
Collapse
|
197
|
Yang HJ, Han MY, Wang HF, Cao GT, Tao F, Xu XL, Zhou GH, Shen Q. HPP improves the emulsion properties of reduced fat and salt meat batters by promoting the adsorption of proteins at fat droplets/water interface. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
198
|
Li S, He Z, Qu C, Yu S, Li M, Li H. Insights into the structural characteristic of rabbit glycated myofibrillar protein with high solubility in low ionic strength medium. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110387] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
199
|
Shi R, Li T, Li M, Munkh-Amgalan G, Qayum A, Bilawal A, Jiang Z. Consequences of dynamic high-pressure homogenization pretreatment on the physicochemical and functional characteristics of citric acid-treated whey protein isolate. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110303] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
200
|
Ma S, Liu N, Wang Z, Wang X. Wheat bran dietary fibre‐induced changes in gluten aggregation and conformation in a dough system. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.14603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Sen Ma
- School of Food Science and Technology Henan University of Technology Zhengzhou Henan 450001 China
| | - Ning Liu
- School of Food Science and Technology Henan University of Technology Zhengzhou Henan 450001 China
| | - Zhen Wang
- School of Food Science and Technology Henan University of Technology Zhengzhou Henan 450001 China
| | - Xiaoxi Wang
- School of Food Science and Technology Henan University of Technology Zhengzhou Henan 450001 China
| |
Collapse
|