151
|
Extraction and Purification of Capsaicin from Capsicum Oleoresin Using a Combination of Tunable Aqueous Polymer-Phase Impregnated Resin (TAPPIR) Extraction and Chromatography Technology. Molecules 2019; 24:molecules24213956. [PMID: 31683728 PMCID: PMC6866130 DOI: 10.3390/molecules24213956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 10/28/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023] Open
Abstract
Capsaicin, which mainly comes from pepper, exhibits anticancer, antioxidant, and anti-obesity properties. This work aims to construct a comprehensive technology for the extraction and purification of capsaicin from capsicum oleoresin. The tunable aqueous polymer phase impregnated HZ816 resins were selected in extraction step. In the extraction process, 3 g of impregnated HZ816 macroporous resin was employed per system. The results showed that a higher molecular weight of Polyethylene glycol (PEG) and 1-ethyl-3-methyl imidazolium acetate ([Emim] [OAc]) are more beneficial to the improvement of the yield of capsaicin. Screening experiment using fractional factorial designs indicated that the amount of sample loading, pH, and concentration of [Emim] [OAc] and PEG 6000 significantly affect the yield of capsaicin. Mathematical models of capsaicin yield in tunable aqueous polymer-phase impregnated resins were established and optimum condition was obtained using response surface methodology. The optimum impregnated phase was the polymer phase of an aqueous two-phase system which contained 18.5% (w/w) PEG6000, 15% (w/w) sodium citrate, and 10% (w/w) [Emim] [OAc] at pH 6.5. Under the optimal conditions, the yield of capsaicin reached 95.82% when the extraction system contains 0.25 g capsicum oleoresin. Ultimately, capsaicinoids extract was purified by reverse-phase resin (SKP-10-4300) chromatographic column. The capsaicin recovery and purity achieved 85% and 92%, respectively.
Collapse
|
152
|
Šeregelj V, Tumbas Šaponjac V, Lević S, Kalušević A, Ćetković G, Čanadanović-Brunet J, Nedović V, Stajčić S, Vulić J, Vidaković A. Application of encapsulated natural bioactive compounds from red pepper waste in yogurt. J Microencapsul 2019; 36:704-714. [PMID: 31516053 DOI: 10.1080/02652048.2019.1668488] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Aim: The aim of this study was to encapsulate red pepper waste (RPW) bioactives and monitor their stability in yogurt.Methods: RPW extract was encapsulated in whey protein using spray and freeze-drying techniques. Physicochemical characteristics of encapsulates were evaluated, and better encapsulates were used to develop functional yogurt. Retention of bioactives was followed over 21 days of storage, and sensory analyses were assessed.Results: Freeze-dried encapsulates (FDE) showed better characteristics like water activity, moisture content, solubility, flowing and colour properties, and, therefore, incorporated in yogurt. Yogurt with FDE successfully retained carotenoids (71.43%) and caused increasing of polyphenol retention (up to 123.73%). This yogurt exhibited higher sensory and general acceptability scores compared to control sample. The fortification of yogurts had a positive influence on maintaining the initial number of lactic acid bacteria during storage.Conclusion: Freeze drying and utilisation of pepper waste are efficient for functional food development, with improved nutritional, colour and bioactive properties.
Collapse
Affiliation(s)
- Vanja Šeregelj
- Department of Applied and Engineering Chemistry, University of Novi Sad, Faculty of Technology, Novi Sad, Serbia
| | - Vesna Tumbas Šaponjac
- Department of Applied and Engineering Chemistry, University of Novi Sad, Faculty of Technology, Novi Sad, Serbia
| | - Steva Lević
- Faculty of Agriculture, Department of Food Technology and Biochemistry, University of Belgrade, Zemun, Serbia
| | - Ana Kalušević
- Faculty of Agriculture, Department of Food Technology and Biochemistry, University of Belgrade, Zemun, Serbia.,Institute of Meat Hygiene and Technology, Belgrade, Serbia
| | - Gordana Ćetković
- Department of Applied and Engineering Chemistry, University of Novi Sad, Faculty of Technology, Novi Sad, Serbia
| | - Jasna Čanadanović-Brunet
- Department of Applied and Engineering Chemistry, University of Novi Sad, Faculty of Technology, Novi Sad, Serbia
| | - Viktor Nedović
- Faculty of Agriculture, Department of Food Technology and Biochemistry, University of Belgrade, Zemun, Serbia
| | - Slađana Stajčić
- Department of Applied and Engineering Chemistry, University of Novi Sad, Faculty of Technology, Novi Sad, Serbia
| | - Jelena Vulić
- Department of Applied and Engineering Chemistry, University of Novi Sad, Faculty of Technology, Novi Sad, Serbia
| | - Ana Vidaković
- Department of Biotechnology and Pharmaceutical Engineering, University of Novi Sad, Faculty of Technology, Novi Sad, Serbia
| |
Collapse
|
153
|
de Sá Mendes N, Santos MC, Santos MC, Cameron LC, Ferreira MS, Gonçalves ÉCA. Characterization of pepper (Capsicum baccatum) - A potential functional ingredient. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
154
|
Sánchez-Montero L, Córdoba JJ, Alía A, Peromingo B, Núñez F. Effect of Spanish smoked paprika "Pimentón de La Vera" on control of ochratoxin A and aflatoxins production on a dry-cured meat model system. Int J Food Microbiol 2019; 308:108303. [PMID: 31437694 DOI: 10.1016/j.ijfoodmicro.2019.108303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/26/2019] [Accepted: 08/09/2019] [Indexed: 01/19/2023]
Abstract
Environmental conditions during ripening of dry-cured meat products favour growth of fungal population on their surface. Some of these moulds can produce mycotoxins. Paprika is one of the ingredients usually used in the formulation of raw-cured sausages, and its addition could influence the growth and production of mycotoxins of the moulds present in these products. In this work the effect of Spanish smoked paprika "Pimentón de la Vera" on growth of Aspergillus parasiticus and Penicillium nordicum and production of aflatoxins B1 (AFB1), G1 (AFG1) and ochratoxin A (OTA) respectively, was evaluated. Moulds were grown in a culture medium made from lyophilized fresh pork meat added with 4% salt and different concentrations of Spanish smoked paprika (1, 2 and 3%) at several water activity values (0.98, 0.94 and 0.87) and temperature (20-25 °C), to simulate conditions usually found during ripening of dry-cured meat products. Mould growth was evaluated by measuring the diameter of the colony every 24 h, and the production of mycotoxins by UHPLC-MS/MS every 2 days, during 10 days of incubation. Addition of paprika favours growth of the two mould species tested. However, the synthesis of mycotoxins was reduced at 0.94 and 0.98 aw when at least a 2% of paprika was added. Therefore, the addition of Spanish smoked paprika at 2-3% in the formulations may help to minimize AFs and OTA production in dry-cured meat products such as loins or "chorizo" sausages.
Collapse
Affiliation(s)
- Lourdes Sánchez-Montero
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n. 10003, ES-10003 Cáceres, Spain
| | - Juan J Córdoba
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n. 10003, ES-10003 Cáceres, Spain.
| | - Alberto Alía
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n. 10003, ES-10003 Cáceres, Spain
| | - Belén Peromingo
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n. 10003, ES-10003 Cáceres, Spain
| | - Félix Núñez
- Food Hygiene and Safety, Meat and Meat Products Research Institute, Faculty of Veterinary Science, University of Extremadura, Avda. de las Ciencias, s/n. 10003, ES-10003 Cáceres, Spain
| |
Collapse
|
155
|
Moreno-Ramírez YDR, Martínez-Ávila GCG, González-Hernández VA, Castro-López C, Torres-Castillo JA. Free Radical-Scavenging Capacities, Phenolics and Capsaicinoids in Wild Piquin Chili ( Capsicum annuum var. Glabriusculum). Molecules 2018; 23:E2655. [PMID: 30332792 PMCID: PMC6222680 DOI: 10.3390/molecules23102655] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/07/2018] [Accepted: 10/11/2018] [Indexed: 01/18/2023] Open
Abstract
The total phenolic compounds content, free radical-scavenging capacity and capsaicinoid content in populations of wild Piquin chili (C. annuum) were studied. Aqueous and hydroalcoholic extracts from nine ecotypes were evaluated. High contents of phenolic compounds and free radical-scavenging capacities were observed for both extracts; however, the values that were found for the hydroalcoholic phase were substantially higher. LC-MS analysis allowed for the detection of 32 compounds, where apigenin-8-C-glucoside followed by vanillic acid 1-O-β-o-glucopyranosylester (Isomer I or II) and 7-ethoxy-4-methylcoumarin were the most widely distributed; they were found in more than 89% of the ecotypes. The diversity of identified phenolic compounds was different among ecotypes, allowing them to be distinguished by chemical diversity, free radical-scavenging capacities and heat Scoville units. The total capsaicinoid content was higher in Population I (23.5 mg/g DW) than in Populations II and III, which had contents of 15.3 and 10.7 mg/g DW, respectively. This variability could lead to phytochemical exploitation and the conservation of the natural populations of wild chili.
Collapse
Affiliation(s)
- Yolanda Del Rocio Moreno-Ramírez
- Institute of Applied Ecology, Autonomous University of Tamaulipas, Gulf Division 356, Ciudad Victoria, 87019 Tamaulipas, Mexico.
| | - Guillermo C G Martínez-Ávila
- Laboratory of Chemistry and Biochemistry, School of Agronomy, Autonomous University of Nuevo Leon, General Escobedo, 66050 Nuevo Leon, Mexico.
| | - Víctor Arturo González-Hernández
- Posgrado de Recursos Genéticos y Productividad-Fisiología Vegetal, Colegio de Postgraduados, Texcoco, 56230 Estado de Mexico, Mexico.
| | - Cecilia Castro-López
- Laboratory of Chemistry and Biochemistry, School of Agronomy, Autonomous University of Nuevo Leon, General Escobedo, 66050 Nuevo Leon, Mexico.
| | - Jorge Ariel Torres-Castillo
- Institute of Applied Ecology, Autonomous University of Tamaulipas, Gulf Division 356, Ciudad Victoria, 87019 Tamaulipas, Mexico.
| |
Collapse
|