151
|
Calligaris S, Moretton M, Melchior S, Mosca AC, Pellegrini N, Anese M. Designing food for the elderly: the critical impact of food structure. Food Funct 2022; 13:6467-6483. [PMID: 35678510 DOI: 10.1039/d2fo00099g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ageing is an unavoidable progressive process causing many changes of the individual life. However, if faced in an efficient way, living longer in a healthy status could be an opportunity for all. In this context, food consumption and dietary patterns are pivotal factors in promoting active and healthy ageing. The development of food products tailored for the specific needs of the elderly might favour the fulfilment of nutritionally balanced diets, while reducing the consequences of malnutrition. To this aim, the application of a food structure design approach could be particularly profitable, being food structure responsible to the final functionalities of food products. In this narrative review, the physiological changes associated to food consumption occurring during ageing were firstly discussed. Then, the focus shifted to the possible role of food structure in delivering target functionalities, considering food acceptability, digestion of the nutrients, bioactive molecules and probiotic bacteria.
Collapse
Affiliation(s)
- Sonia Calligaris
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Martina Moretton
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Sofia Melchior
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Ana Carolina Mosca
- Food and Drug Department, University of Parma, Parco Area delle Scienze, 47/A, 43124 Parma, Italy
| | - Nicoletta Pellegrini
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| | - Monica Anese
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
| |
Collapse
|
152
|
The non-covalent interactions between whey protein and various food functional ingredients. Food Chem 2022; 394:133455. [PMID: 35732088 DOI: 10.1016/j.foodchem.2022.133455] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 11/20/2022]
Abstract
In daily diet, Whey protein (WP) is often coexisted with various Food functional ingredients (FFI) such as proteins, polyphenols, polysaccharides and vitamins, which inevitably affect or interact with each other. Generally speaking, they may be interact by two different mechanisms: non-covalent and covalent interactions, of which the former is more common. We reviewed the non-covalent interactions between WP and various FFI, explained the effect of each WP-FFI interaction, and provided possible applications of WP-FFI complex in the food industry. The biological activity, physical and chemical stability of FFI, and the structure and functionalities of WP were enhanced through the non-covalent interactions. The development of non-covalent interactions between WP and FFI provides opportunities for the design of new ingredients and biopolymer complex, which can be applied in different fields. Future research will further focus on the influence of external or environmental factors in the food system and processing methods on interactions.
Collapse
|
153
|
Liu Q, Wang Y, Yang Y, Bian S, Zhou X, Zhu K, Xu L, Jin Z, Jiao A. Effects of extrusion and enzymatic debranching on the structural characteristics and digestibility of corn and potato starches. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
154
|
Constantino ABT, Garcia-Rojas EE. Proteins from pseudocereal seeds: solubility, extraction, and modifications of the physicochemical and techno-functional properties. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2630-2639. [PMID: 34997591 DOI: 10.1002/jsfa.11750] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Pseudocereals (amaranth, buckwheat and quinoa) are emerging as popular gluten-free crops. This may be attributed to their wide-ranging health benefits, including antioxidant, hypoglycemic and serum-cholesterol reducing properties. Proteins of these crops have a high nutritional quality as a result of the presence of essential amino acids. Additionally, amaranth, buckwheat and quinoa proteins (AP, BP and QP, respectively) have physicochemical properties that are useful for the manufacture of different types of food. However, native pseudocereal proteins demonstrate a low solubility in water, mainly because of their composition. The major components of these proteins are albumins (water-soluble) and globulins (salt-soluble), although some proportions of glutelin (alkali-soluble) and prolamins (alcohol-soluble) are also found. The most commonly used method for extracting pseudocereal proteins is the alkaline extraction method, which may contribute to the low solubility of pseudocereal protein. Fortunately, different methods for modifying physicochemical (or techno-functional) properties have been proposed to extend their industrial application. For example, high-intensity ultrasound (HIUS) proved useful for improving the solubility of API and QP. Heating can allow for the formation of soluble aggregates of QP. The combination of heating and HIUS can improve the digestibility, solubility and foam properties of AP. Conjugation through the Maillard reaction can improve BPI and QP interfacial properties. Thus, present study provides a review of the solubility, extraction and modification of the techno-functional properties of AP, BP and QP. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Augusto Bene Tomé Constantino
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Universidade Federal Rural de Rio de Janeiro (UFRRJ), Seropédica, Brazil
- Faculdade de Ciências de Saúde, Universidade Zambeze, Cidade de Tete, Mozambique
| | - Edwin Elard Garcia-Rojas
- Programa de Pós-graduação em Ciência e Tecnologia de Alimentos (PPGCTA), Universidade Federal Rural de Rio de Janeiro (UFRRJ), Seropédica, Brazil
- Laboratório de Engenharia e Tecnologia Agroindustrial (LETA), Universidade Federal Fluminense (UFF), Volta Redonda, Brazil
| |
Collapse
|
155
|
Zhang W, Huang Q, Yang R. Gluten‐free quinoa noodles: effects of intermediate moisture extrusion and soy protein isolates supplement on cooking quality and
in vitro
digestibility. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wenbin Zhang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Qicheng Huang
- School of Food Science and Technology Jiangnan University Wuxi China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Technology Jiangnan University Wuxi China
- School of Food Science and Technology Jiangnan University Wuxi China
| |
Collapse
|
156
|
Chen X, Zhang Y, Zhao H, Chen L, Zeng Y, Liang Z, Zhu J, Li L. Effects of heat moisture treatment on the structural, physicochemical and digestibility properties of potato starch–soybean peptide complexes. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xu Chen
- Engineering Research Center of Health Food Design and Nutrition Regulation School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry Dongguan University of Technology Dongguan 523808 China
| | - Yuge Zhang
- Engineering Research Center of Health Food Design and Nutrition Regulation School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry Dongguan University of Technology Dongguan 523808 China
- College of Food Science South China Agricultural University Guangzhou Guangdong 510642 China
| | - Huabin Zhao
- Engineering Research Center of Health Food Design and Nutrition Regulation School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry Dongguan University of Technology Dongguan 523808 China
| | - Liyun Chen
- Engineering Research Center of Health Food Design and Nutrition Regulation School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Yan Zeng
- Engineering Research Center of Health Food Design and Nutrition Regulation School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
| | - Zhili Liang
- School of Food Science Guangdong Food and Drug Vocational College Guangzhou 510520 China
| | - Jie Zhu
- Engineering Research Center of Health Food Design and Nutrition Regulation School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry Dongguan University of Technology Dongguan 523808 China
| | - Lin Li
- Engineering Research Center of Health Food Design and Nutrition Regulation School of Chemical Engineering and Energy Technology Dongguan University of Technology Dongguan 523808 China
- Key Laboratory of Healthy Food Development and Nutrition Regulation of China National Light Industry Dongguan University of Technology Dongguan 523808 China
| |
Collapse
|
157
|
Lin L, Yu X, Gao Y, Mei L, Zhu Z, Du X. Physicochemical properties and in vitro starch digestibility of wheat starch/rice protein hydrolysate complexes. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107348] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
158
|
Zhang X, Wang L, Xu J, Yuan J, Fan X. Effect of starch chain structure and non‐starch components on the hydrolysis of starch by α‐amylase. STARCH-STARKE 2022. [DOI: 10.1002/star.202100107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xun Zhang
- Key Laboratory of Science and Technology of Eco‐Textile, Ministry of Education Jiangnan University Wuxi Jiangsu 214122 China
| | - Lili Wang
- Key Laboratory of Science and Technology of Eco‐Textile, Ministry of Education Jiangnan University Wuxi Jiangsu 214122 China
| | - Jin Xu
- Key Laboratory of Science and Technology of Eco‐Textile, Ministry of Education Jiangnan University Wuxi Jiangsu 214122 China
| | - Jiugang Yuan
- Key Laboratory of Science and Technology of Eco‐Textile, Ministry of Education Jiangnan University Wuxi Jiangsu 214122 China
| | - Xuerong Fan
- Key Laboratory of Science and Technology of Eco‐Textile, Ministry of Education Jiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
159
|
Complete nutrition drink with retrograded starch is low glycemic, and the individual glucose response to the low glycemic complete nutrition drink depends on fasting insulin levels and HOMA-IR in a randomized cross-over control trial. J Nutr Sci 2022; 11:e25. [PMID: 35462880 PMCID: PMC9003636 DOI: 10.1017/jns.2022.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022] Open
Abstract
Complete nutrition drinks with a low glycemic index (GI) provide nutritional support and prevent hyperglycaemia. The present study identified GI and factors predicting individual glucose response to a new complete nutrition drink. A randomised cross-over controlled trial was conducted in eighteen healthy volunteers (FPG < 100 mg/dl). Complete nutrition drinks containing retrograded starch, glucose solution and white bread were assigned in a random sequence with 14-day wash-out intervals. Plasma glucose and insulin levels were measured from baseline to 180 min after consuming each food. Results show the adjusted GIs of the drink was 48.2 ± 10.4 and 46.7 ± 12.7 with glucose and white bread as the reference, respectively. While the drink has low GI (<55), the individual glucose responses varied (GI: 7–149). Comparing characters in individual GI < 55 (n = 12) and GI ≥ 55 (n = 6) groups revealed significantly higher baseline insulin in the low GI group (14.86 ± 16.51 μIU/ml v. 4.9 ± 3.4 μIU/ml, P < 0·05). The correlation matrix confirms only two predictive factors for having individual GI <55 were baseline insulin (r = 0·5, P = 0·03) and HOMA-IR (r = 0·55, P = 0·02). ROC curve reveals fasting insulin above 1.6 μIU/ml and HOMA-IR above 1.05 as the cut-off values. The findings suggest that the complete nutrition drink has a low GI, but there was wide variability in individual responses partly explained by fasting insulin levels and HOMA-IR. Screening for fasting insulin and HOMA-IR may be encouraged to maximise the functional benefit of the drink.
Collapse
|
160
|
Rong L, Shen M, Wen H, Xiao W, Li J, Xie J. Effects of xanthan, guar and Mesona chinensis Benth gums on the pasting, rheological, texture properties and microstructure of pea starch gels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
161
|
Rong L, Shen M, Wen H, Xiao W, Li J, Xie J. Eggshell powder improves the gel properties and microstructure of pea starch-Mesona chinensis Benth polysaccharide gels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
162
|
Tomar M, Bhardwaj R, Verma R, Singh SP, Dahuja A, Krishnan V, Kansal R, Yadav VK, Praveen S, Sachdev A. Interactome of millet-based food matrices: A review. Food Chem 2022; 385:132636. [PMID: 35339804 DOI: 10.1016/j.foodchem.2022.132636] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/28/2022]
Abstract
Millets are recently being recognized as emerging food ingredients with multifaceted applications. Whole grain flours made from millets, exhibit diverse chemical compositions, starch digestibility and physicochemical properties. A food matrix can be viewed as a section of food microstructure, commonly coinciding with a physical spatial domain that interacts or imparts specific functionalities to a particular food constituent. The complex millet-based food matrices can help individuals to attain nutritional benefits due to the intricate and unique digestive properties of these foods. This review helps to fundamentally understand the binary and ternary interactions of millet-based foods. Nutritional bioavailability and bioaccessibility are also discussed based on additive, synergistic, masking, the antagonistic or neutralizing effect of different food matrix components on each other and the surrounding medium. The molecular basis of these interactions and their effect on important functional attributes like starch retrogradation, gelling, pasting, water, and oil holding capacity is also discussed.
Collapse
Affiliation(s)
- Maharishi Tomar
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 284003, India; Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rakesh Bhardwaj
- Germplasm Evaluation Division, National Bureau of Plant Genetic Resources, New Delhi 110012, India.
| | - Reetu Verma
- Division of Crop Improvement, ICAR -Indian Grassland and Fodder Research Institute, Jhansi 284003, India
| | - Sumer Pal Singh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi 284003, India
| | - Anil Dahuja
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Veda Krishnan
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India
| | - Rekha Kansal
- ICAR-National Institute for Plant Biotechnology, Pusa, New Delhi 110012, India
| | - Vijay Kumar Yadav
- Division of Seed Technology, ICAR - Indian Grassland and Fodder Research Institute, Jhansi 284003, India
| | - Shelly Praveen
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Archana Sachdev
- Division of Biochemistry, ICAR - Indian Agricultural Research Institute, New Delhi 110012, India.
| |
Collapse
|
163
|
Zhang S, Yang C, Zhu S, Zhong F, Huang D, Li Y. Understanding the mechanisms of whey protein isolate mitigating the digestibility of corn starch by in vitro simulated digestion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
164
|
Influence of starch physicochemical properties on biscuit-making quality of wheat lines with high-molecular-weight glutenin subunit (HMW-GS) absence. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
165
|
Lu LW, Chen JH. Seaweeds as Ingredients to Lower Glycemic Potency of Cereal Foods Synergistically-A Perspective. Foods 2022; 11:714. [PMID: 35267347 PMCID: PMC8909722 DOI: 10.3390/foods11050714] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
Seaweeds are traditional food ingredients mainly in seaside regions. Modern food science and nutrition researchers have identified seaweed as a source of functional nutrients, such as dietary soluble and insoluble fibers, proteins, omega-3 fatty acids, prebiotic polysaccharides, polyphenols, and carotenoids. Owing to the rich nutrients, seaweeds and seaweed extract can be used as functional ingredients by modifying the nutrients composition to reduce the proportion of available carbohydrates, delaying the gastric emptying time and the absorption rate of glucose by increasing the digesta viscosity, and attenuating the digesting rate by blocking the activity of digestive enzymes. This review presents the concept of using seaweed as unconventional ingredients that can function synergistically to reduce the glycemic potency of cereal products.
Collapse
Affiliation(s)
- Louise Weiwei Lu
- Human Nutrition Unit, School of Biological Sciences, University of Auckland, Auckland 1024, New Zealand
- High Value Nutrition, National Science Challenge, Auckland 1010, New Zealand
| | - Jie-Hua Chen
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
166
|
Chakraborty I, N P, Mal SS, Paul UC, Rahman MH, Mazumder N. An Insight into the Gelatinization Properties Influencing the Modified Starches Used in Food Industry: A review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02761-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractNative starch is subjected to various forms of modification to improve its structural, mechanical, and thermal properties for wider applications in the food industry. Physical, chemical, and dual modifications have a substantial effect on the gelatinization properties of starch. Consequently, this review explores and compares the different methods of starch modification applicable in the food industry and their effect on the gelatinization properties such as onset temperature (To), peak gelatinization temperature (Tp), end set temperature (Tc), and gelatinization enthalpy (ΔH), studied using differential scanning calorimetry (DSC). Chemical modifications including acetylation and acid hydrolysis decrease the gelatinization temperature of starch whereas cross-linking and oxidation result in increased gelatinization temperatures. Common physical modifications such as heat moisture treatment and annealing also increase the gelatinization temperature. The gelatinization properties of modified starch can be applied for the improvement of food products such as ready-to-eat, easily heated or frozen food, or food products with longer shelf life.
Collapse
|
167
|
Zhang X, Wang L, Xu J, Yuan J, Fan X. Effects of endogenous proteins on the hydrolysis of gelatinized starch and their mechanism of inhibition. Process Biochem 2022. [DOI: 10.1016/j.procbio.2021.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
168
|
The structural, thermal, pasting and gel properties of the mixtures of enzyme-treated potato protein and potato starch. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112882] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
169
|
Huang Y, Zhan L, Du B, Li P, Lin Q, Zheng J, Chen P. Effects of Inca peanut seed albumin fraction on rheological, thermal and microstructural properties of native corn starch. Int J Biol Macromol 2022; 194:626-631. [PMID: 34822826 DOI: 10.1016/j.ijbiomac.2021.11.106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/30/2022]
Abstract
In this work, the effect of Inca peanut seed albumin fraction (IPA) on the rheological, thermal and microstructural properties of native corn starch (NCS) was firstly studied. Compared to the NCS, IPA addition could obviously decrease the transparency of NCS, and the transparency of NCS and NCS-IPA suspensions decreased during the storage time. The textural paraments of NCS pastes with or without IPA reached to the maximum at a concentration of 5%. Steady shear rheological tests showed that all systems were non-Newtonian fluid, and the consistency coefficient (K) values reached to the maximum at 5% IPA concentration. The storage and loss modulus values of NCS-IPA pastes were higher than those of NCS pastes, and curves of loss angle (tan δ) indicated that all pastes were typical weak gel. With the increasing addition of IPA, DSC analysis showed that the thermal properties (To, Tp and Tc) of NCS were significantly changed, whereas, there was no distinct difference in the enthalpy. Microscopy illustrated that there were some wrinkle shrinkage and severe folds on the NCS-IPA granules. Fourier-transform infrared (FT-IR) spectroscopy showed that the hydrogen bonding was primarily interaction forces between IPA and NCS molecules.
Collapse
Affiliation(s)
- Yanxia Huang
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lei Zhan
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Expert Research Station of Bing Du, Pu'er City, Yunnan 665000, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qiumin Lin
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jingshao Zheng
- Xinxing County Weifeng Agricultural Science and Technology Co. Ltd, Yunfu, Guangdong 510642, China
| | - Pei Chen
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
170
|
The characterization of structural, thermal, pasting and gel properties of the blends of laccase- and tyrosinase-treated potato protein and starch. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
171
|
Hu L, Yang Y, Chen F, Fan J, Wang B, Fu Y, Bian X, Yu D, Wu N, Shi Y, Zhang X, Zhang N. Soybean protein isolate‐rice starch interactions during the simulated gluten‐free rice bread making process. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Liang‐shu Hu
- School of Food Engineering Harbin University of Commerce Harbin 150076 China
| | - Yang Yang
- School of Food Engineering Harbin University of Commerce Harbin 150076 China
| | - Feng‐lian Chen
- School of Food Engineering Harbin University of Commerce Harbin 150076 China
| | - Jing Fan
- School of Food Engineering Harbin University of Commerce Harbin 150076 China
| | - Bing Wang
- School of Food Engineering Harbin University of Commerce Harbin 150076 China
| | - Yu Fu
- College of Food Science Southwest University Chongqing 400715 China
| | - Xin Bian
- School of Food Engineering Harbin University of Commerce Harbin 150076 China
| | - De‐hui Yu
- School of Food Engineering Harbin University of Commerce Harbin 150076 China
| | - Na Wu
- School of Food Engineering Harbin University of Commerce Harbin 150076 China
| | - Yan‐guo Shi
- School of Food Engineering Harbin University of Commerce Harbin 150076 China
| | - Xiu‐min Zhang
- School of Food Engineering Harbin University of Commerce Harbin 150076 China
- Beijing Academy of Food Sciences Beijing 100068 China
| | - Na Zhang
- School of Food Engineering Harbin University of Commerce Harbin 150076 China
| |
Collapse
|
172
|
Lu X, Ma R, Qiu H, Sun C, Tian Y. Mechanism of effect of endogenous/exogenous rice protein and its hydrolysates on rice starch digestibility. Int J Biol Macromol 2021; 193:311-318. [PMID: 34699891 DOI: 10.1016/j.ijbiomac.2021.10.140] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
The role of endogenous/exogenous rice protein and its hydrolysates in the enzymatic hydrolysis resistance of rice starch was investigated. Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) and Fourier transform infrared spectroscopy (FTIR) results showed that different types of rice endogenous proteins retarded the digestion of rice starch by the same way. Exogenous addition of protein hydrolysates was more effective than protein for impeding starch digestion. FTIR results indicated that rice protein hydrolysates were bound to starch granules through hydrogen bonds, and their interaction strengthened the ordered structure of the starch. Further, the intensity of the starch V- type peak was enhanced after the addition of protein hydrolysates, indicating that some peptides or free amino acids released by the protein formed complexes with the starch, thereby contributing to high slowly-digestible starch content. These findings provide a theoretical basis for the preparation of low glycemic index starch-based foods.
Collapse
Affiliation(s)
- Xiaoxue Lu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Rongrong Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Hongwei Qiu
- Zhucheng Xingmao Corn Developing Co., Ltd, Weifang 262200, China
| | - Chunrui Sun
- Zhucheng Xingmao Corn Developing Co., Ltd, Weifang 262200, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
173
|
Effects of whey protein on the in vitro digestibility and physicochemical properties of potato starch. Int J Biol Macromol 2021; 193:1744-1751. [PMID: 34748784 DOI: 10.1016/j.ijbiomac.2021.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 11/23/2022]
Abstract
The aim of this study was to examine the effect of whey protein isolate (WPI) on the digestibility and physicochemical properties of potato starch (PS) after heat treatment. WPI reduced the digestibility of PS and increased the order and aggregation structure of gelatinized PS. Examination of the rheological properties of the PS-WPI mixed system before and after adding different chemicals (sodium chloride, urea, and sodium dodecyl sulfate) indicated an involvement of hydrogen bonds and hydrophobic interactions in the PS-WPI gelatinization system. The pasting properties, swelling power, and thermal properties indicated that WPI suppressed the swelling and gelatinization of PS. The addition of WPI reduced the amylose leaching rate from the starch granules, indicating that the presence of exogenous protein could prevent amylose diffusion from the starch granules. Native WPI and its hydrolysate also inhibited amyloglucosidase activity. These findings indicated that the mechanism by which WPI reduces PS digestion involves hydrophobic interactions and hydrogen bonding between WPI and PS, as well as enzyme activity inhibition.
Collapse
|
174
|
Physicochemical, Digestive, and Sensory Properties of Panax Notoginseng Saponins Encapsulated by Polymerized Whey Protein. Foods 2021; 10:foods10122942. [PMID: 34945493 PMCID: PMC8701336 DOI: 10.3390/foods10122942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 12/25/2022] Open
Abstract
Panax Notoginseng Saponins (PNS) may be beneficial to human health due to their bioactive function. The application of PNS in functional foods was limited due to the bitter taste and low oral bioavailability. PNS were encapsulated by polymerized whey protein (PWP) nanoparticles. The physicochemical, digestive, and sensory properties of the nanoparticles were investigated. Results showed that the nanoparticles had a particle size of 55 nm, the zeta potential of -28 mV, and high PNS encapsulation efficiency (92.94%) when the mass ratio of PNS to PWP was 1:30. Differential Scanning Calorimetry (DSC) results revealed that PNS were successfully encapsulated by PWP. The mainly intermolecular forces between PNS and PWP were hydrogen bonding and electrostatic attraction confirmed by Fourier Transform Infrared Spectroscopy (FTIR). Results of simulated gastrointestinal digestion indicated that the PNS-PWP (1:30) nanoparticles had smaller average particle size (36 nm) after treatment with gastric fluids and increased particle size (75 nm) after treatment with intestinal fluids. Transmission Electron Microscopy (TEM) micrographs reflected that the nanoparticles had irregular spherical structures. The encapsulated PNS exhibited significantly (p < 0.05) decreased bitterness compared to the non-encapsulated PNS confirmed by the electronic tongue. The results indicated that encapsulation of PNS with PWP could facilitate their application in functional foods.
Collapse
|
175
|
Infrared modification of sorghum to produce a low digestible grain fraction. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
176
|
Prakash PK, Aswathanarayana Setty JL. Macronutrient Interactions to Facilitate Sustained Carbohydrate Digestibility in Tertiary Food Matrix Systems and Their Potential Applications in Indian Pancake. STARCH-STARKE 2021. [DOI: 10.1002/star.202100117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Pavan Kumar Prakash
- Protein Chemistry and Technology Department CSIR ‐ Central Technological Research Institute Mysuru Karnataka 570020 India
| | | |
Collapse
|
177
|
Kumar L, Brennan M, Brennan C, Zheng H. Influence of whey protein isolate on pasting, thermal, and structural characteristics of oat starch. J Dairy Sci 2021; 105:56-71. [PMID: 34756432 DOI: 10.3168/jds.2021-20711] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/03/2021] [Indexed: 11/19/2022]
Abstract
We investigated the effects of different concentrations of whey protein isolate (WPI) on oat starch characteristics in terms of pasting, thermal, and structural properties. The pasting properties of the starch showed that hot paste viscosity increased with the addition of WPI in the system, and relative breakdown decreased. Thermal analysis showed a significant effect of WPI on oat starch by increasing the peak temperature of differential scanning calorimeter endotherms. The X-ray diffraction and Fourier transform infrared spectroscopy studies revealed that WPI increased the ordered structuration of starch paste, as evident by an increase in relative crystallinity; in addition, a decrease in infrared bands at 1,024 cm-1 and 1,080 cm-1 suggested decreased gelatinization of oat starch granules. Overall, WPI at different concentrations affected the oat starch gelatinization properties.
Collapse
Affiliation(s)
- Lokesh Kumar
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647 New Zealand
| | - Margaret Brennan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln 7647 New Zealand
| | - Charles Brennan
- School of Science, RMIT University, Melbourne, VIC 3000, Australia; Riddet Institute, Palmerston North 4442, New Zealand
| | - Haotian Zheng
- Southeast Dairy Foods Research Center, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh 27695.
| |
Collapse
|
178
|
Zhou X, Yu W, Li C. Protein content correlates with the in vitro starch digestibility of raw barley flour. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
179
|
Bhatt Y, Aswathanarayana Setty JL. Formulation of Rice and Wheat Based Snacks with Modulated Starch Digestibility by Altering the Dietary Composition. STARCH-STARKE 2021. [DOI: 10.1002/star.202100139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yogita Bhatt
- Protein Chemistry and Technology Department CSIR‐Central Food Technological Research Institute Mysore Karnataka India
- Academy of Scientific and Innovative Research Ghaziabad Uttar Pradesh India
| | | |
Collapse
|
180
|
Liu B, Zhu S, Zhong F, Yokoyama W, Huang D, Li Y. Modulating storage stability of binary gel by adjusting the ratios of starch and kappa-carrageenan. Carbohydr Polym 2021; 268:118264. [PMID: 34127213 DOI: 10.1016/j.carbpol.2021.118264] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/09/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022]
Abstract
This study aimed to investigate the interaction mechanism of the waxy starch and kappa carrageenan (KC) gel with different ratios during co-gelatinization and storage. Water distributions, mobilities and rheological properties of the mixture gels were studied. When KC concentration was low (0.5%KC and 4% starch), the starch dominated the system, and the gel strength was the lowest. When KC concentration increased to 0.75%, the gel had the lowest change rate of fracture force, and the most homogeneous network of the freeze-dried gel was observed. When KC concentration increased to 1.0%, the gel strength was high, but the uneven structure led to the instability of the gel. Overall, the gel with 0.75%KC and 4% starch was the most stable during storage, and the exclusion of the two components to each other was the weakest, resulting in the uniform structure of the gel.
Collapse
Affiliation(s)
- Bo Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Song Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Fang Zhong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wallace Yokoyama
- Healthy Processed Food Research, Agricultural Research Service, USDA, Albany, CA 94710, USA
| | - Dejian Huang
- Department of Food Science and Technology, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Yue Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
181
|
Leakhena O, Thong‐gnam M, Jhoo J, Boonsupthip W. Microstructural, dehydration and rehydration properties of rice starch granules in noodles as affected by water and oil addition using vacuum impregnation. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- On Leakhena
- Department of Food Science and Technology, Faculty of Agro‐Industry Kasetsart University Bangkok Thailand
| | - Mas‐u‐bon Thong‐gnam
- Department of Food Science and Technology, Faculty of Agro‐Industry Kasetsart University Bangkok Thailand
| | - Jin‐Woo Jhoo
- Animal Products and Food Science Program, Division of Applied Animal Science, College of Animal Life Sciences Kangwon National University Chuncheon South Korea
| | - Waraporn Boonsupthip
- Department of Food Science and Technology, Faculty of Agro‐Industry Kasetsart University Bangkok Thailand
| |
Collapse
|
182
|
Zhang B, Qiao D, Zhao S, Lin Q, Wang J, Xie F. Starch-based food matrices containing protein: Recent understanding of morphology, structure, and properties. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
183
|
Effect of removal of endogenous non-starch components on the structural, physicochemical properties, and in vitro digestibility of highland barley starch. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
184
|
Zheng M, Ye A, Zheng B, Zhang Y. Impacts of Whey Protein on Digestion of Lotus Seed Starch Subjected to a Dynamic In Vitro Gastric Digestion. FOOD BIOPHYS 2021. [DOI: 10.1007/s11483-021-09682-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
185
|
Effects of Different Processing Methods and Internal Components on Physicochemical Properties and Glycemic Index of Adzuki Bean Powder. Foods 2021; 10:foods10081685. [PMID: 34441463 PMCID: PMC8391287 DOI: 10.3390/foods10081685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/03/2022] Open
Abstract
The estimated glycemic index (eGI) value of adzuki bean powder prepared by steamed cooking (SC), extruded cooking (EC) and roller cooking (RC) was studied comparatively. Results showed that RC had the highest eGI, with 80.1, and both EC and SC resulted in a lower eGI value of 70.0 and 49.7, respectively. Compared with the EC and RC methods, the SC method provided a more intact physical barrier for starch digestion, resulting in a less destroyed cell structure. As the essential components that form the cell wall, the study further investigated the effects of protein and fiber on physicochemical properties, in vitro starch digestibility and the eGI of adzuki bean powder processed with the SC method. Viscozyme and Protamax were used to obtain the deprotein and defiber samples. Results showed that the SC treatment with Viscozyme and Protamax, respectively, had significant effects on in vitro starch digestibility. The eGI of different samples were given as follows: steamed cooking adzuki bean powder (49.7) < deproteined adzuki bean powder (60.5) < defibered adzuki bean powder (83.1), which indicates that fiber may have a greater influence on the eGI than protein.
Collapse
|
186
|
Neylon E, Arendt EK, Zannini E, Sahin AW. Fermentation as a Tool to Revitalise Brewers' Spent Grain and Elevate Techno-Functional Properties and Nutritional Value in High Fibre Bread. Foods 2021; 10:foods10071639. [PMID: 34359509 PMCID: PMC8307366 DOI: 10.3390/foods10071639] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022] Open
Abstract
Recycling of by-products from the food industry has become a central part of research to help create a more sustainable future. Brewers’ spent grain is one of the main side-streams of the brewing industry, rich in protein and fibre. Its inclusion in bread, however, has been challenging and requires additional processing. Fermentation represents a promising tool to elevate ingredient functionality and improve bread quality. Wheat bread was fortified with spray-dried brewers’ spent grain (BSG) and fermented brewers’ spent grain (FBSG) at two addition levels to achieve “source of fibre” and “high in fibre” claims according to EU regulations. The impact of BSG and FBSG on bread dough, final bread quality and nutritional value was investigated and compared to baker’s flour (BF) and wholemeal flour (WMF) breads. The inclusion of BSG and FBSG resulted in a stronger and faster gluten development; reduced starch pasting capacity; and increased dough resistance/stiffness. However, fermentation improved bread characteristics resulting in increased specific volume, reduced crumb hardness and restricted microbial growth rate over time. Additionally, the inclusion of FBSG slowed the release in reducing sugars over time during in vitro starch digestion. Thus, fermentation of BSG can ameliorate bread techno-functional properties and improve nutritional quality of breads.
Collapse
Affiliation(s)
- Emma Neylon
- School of Food and Nutritional Science, University College Cork, College Road, T12K8AF Cork, Ireland; (E.N.); (E.Z.); (A.W.S.)
| | - Elke K. Arendt
- School of Food and Nutritional Science, University College Cork, College Road, T12K8AF Cork, Ireland; (E.N.); (E.Z.); (A.W.S.)
- APC Microbiome Ireland, University College Cork, Western Road, T12K8AF Cork, Ireland
- Correspondence: ; Tel.: +35-32-1490-2064
| | - Emanuele Zannini
- School of Food and Nutritional Science, University College Cork, College Road, T12K8AF Cork, Ireland; (E.N.); (E.Z.); (A.W.S.)
| | - Aylin W. Sahin
- School of Food and Nutritional Science, University College Cork, College Road, T12K8AF Cork, Ireland; (E.N.); (E.Z.); (A.W.S.)
| |
Collapse
|
187
|
Zhang H, He F, Wang T, Chen G. Thermal, pasting, and rheological properties of potato starch dual-treated with CaCl2 and dry heat. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
188
|
Liu C, Yu B, Tao H, Liu P, Zhao H, Tan C, Cui B. Effects of soy protein isolate on mechanical and hydrophobic properties of oxidized corn starch film. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
189
|
The impact of endogenous proteins on hydration, pasting, thermal and rheology attributes of foxtail millet. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
190
|
Lu X, Chang R, Lu H, Ma R, Qiu L, Tian Y. Effect of amino acids composing rice protein on rice starch digestibility. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111417] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
191
|
Yang T, Wang P, Zhou Q, Wang X, Cai J, Huang M, Jiang D. Investigation on the Molecular and Physicochemical Changes of Protein and Starch of Wheat Flour during Heating. Foods 2021; 10:foods10061419. [PMID: 34207388 PMCID: PMC8233833 DOI: 10.3390/foods10061419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
The behaviors of starch and protein in wheat flour during heating were investigated, and the molecular changes of starch and protein and their effects on the textural characteristics were assessed. The results showed that with the increased temperature, soluble protein aggregated to insoluble high-molecular-weight protein polymers when the heating temperature exceeded 70 °C, and the aggregation of protein was mainly caused by covalent bonds of disulfide (SS) bonds. Hydrophobic interaction was the main noncovalent bond that participated in the formation of protein aggregates. The major change in the secondary structure during heating was a pronounced transition towards β-sheet-like structures. Considerable disruption of ordered structures of starch occurred at 70 °C, and starch was fully gelatinized at 80 °C. Typical starch pasting profiles of cooked flour were observed when the temperature was below 70 °C, and heat treatment decreased the pasting viscosity of the cooked flour from control to 80 °C, whereas the viscosity of the wheat flour increased in heating treatment at 90, 95 and 100 °C. The intense protein-starch interaction during heating affected the textural characteristic of flour gelation, which showed higher strength at 90, 95 and 100 °C. This study may provide a basis for improving wheat flour processing conditions and could lead to the production of new wheat products.
Collapse
Affiliation(s)
- Tao Yang
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (T.Y.); (X.W.); (J.C.); (M.H.); (D.J.)
| | - Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China
- Correspondence: (P.W.); (Q.Z.); Tel.: +86-25-8439-6293 (P.W.); +86-25-8439-9627 (Q.Z.)
| | - Qin Zhou
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (T.Y.); (X.W.); (J.C.); (M.H.); (D.J.)
- Correspondence: (P.W.); (Q.Z.); Tel.: +86-25-8439-6293 (P.W.); +86-25-8439-9627 (Q.Z.)
| | - Xiao Wang
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (T.Y.); (X.W.); (J.C.); (M.H.); (D.J.)
| | - Jian Cai
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (T.Y.); (X.W.); (J.C.); (M.H.); (D.J.)
| | - Mei Huang
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (T.Y.); (X.W.); (J.C.); (M.H.); (D.J.)
| | - Dong Jiang
- College of Agriculture, Nanjing Agricultural University, No. 1 Weigang Road, Nanjing 210095, China; (T.Y.); (X.W.); (J.C.); (M.H.); (D.J.)
| |
Collapse
|
192
|
Sun L, Xu Z, Song L, Ma M, Zhang C, Chen X, Xu X, Sui Z, Corke H. Removal of starch granule associated proteins alters the physicochemical properties of annealed rice starches. Int J Biol Macromol 2021; 185:412-418. [PMID: 34144068 DOI: 10.1016/j.ijbiomac.2021.06.082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 11/16/2022]
Abstract
The effect of removal of starch granule associated proteins (SGAPs), annealing and dual-treatment on physicochemical properties of three rice starches with different amylose content (AC) was investigated. SGAPs removal reduced stability of starch granules, thus increasing amylose leaching, swelling power, solubility, and pseudoplasticity of Qiuguang (15.6% AC) and Luhui (22.1% AC) rice starches, decreasing pseudoplasticity of Yangfunuo (1.56% AC) starch, and decreasing To, Tp, and Tc, pasting viscosity and storage modulus of all three rice starches. Annealing decreased amylose leaching of the three starches, and pasting properties, pseudoplastic and storage modulus of Yangfunuo starch, but increased swelling power of the three starches, ΔH and To of Qiuguang starch, and pasting properties and pseudoplasticity of Qiuguang and Luhui starches. The effect of dual-treatment was generally the sum of effect of SGAPs removal and annealing treatment. But an interaction effect of the dual-treatment was observed for some parameters. The effect of annealing was closely related to the variety and composition of the starch.
Collapse
Affiliation(s)
- Letong Sun
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Shandong 250000, China
| | - Zekun Xu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lulu Song
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengting Ma
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chuangchuang Zhang
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojing Chen
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xianming Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100, Haining Road, Shanghai 200080, China.
| | - Zhongquan Sui
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China; Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
193
|
Donmez D, Pinho L, Patel B, Desam P, Campanella OH. Characterization of starch–water interactions and their effects on two key functional properties: starch gelatinization and retrogradation. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2020.12.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
194
|
Extrusion pregelatinization improves texture, viscoelasticity and in vitro starch digestibility of mango and amaranth flours. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104441] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
195
|
Chen Y, Yi X, Pan MH, Chiou YS, Li Z, Wei S, Yin X, Ding B. The interaction mechanism between liposome and whey protein: Effect of liposomal vesicles concentration. J Food Sci 2021; 86:2491-2498. [PMID: 33929043 DOI: 10.1111/1750-3841.15708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/03/2021] [Accepted: 03/09/2021] [Indexed: 12/01/2022]
Abstract
The interaction mechanism between liposomes (Lips) and whey protein isolates (WPI) with different mass ratios was explored in this paper. After binding with different concentration of Lips, the changes in hydrophilic and hydrophobic regions of WPI were investigated with fluorescein isothiocyanate (FITC) and pyrene fluorescence probes. The spatial structure changes of WPI were further characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, and circular dichroism. The results indicated that the structure of WPI was changed due to binding with Lips in hydrophilic and hydrophobic groups. The binding process might result in the migration, recombination, and alignment of WPI and Lip groups. Moreover, the oil-water interfacial tension with WPI decreased from 9.20 mN/m to 3.29 mN/m upon increasing the Lip-to-WPI ratio. This work suggests that the physiochemical properties of Lip-WPI complexes could be manipulated by adjusting the Lip-to-WPI ratio. This study shed some light on the mechanism explanation of the WPI structural changes due to the interaction with Lips during food processing.
Collapse
Affiliation(s)
- Yang Chen
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China
| | - Xiangzhou Yi
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China.,College of Food Science and Technology, Hainan University, Haikou, Hainan, 570228, P.R. China
| | - Min-Hsiung Pan
- Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan, 10617, Republic of China
| | - Yi-Shiou Chiou
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen, P.R. China
| | - Zhenshun Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China
| | - Shudong Wei
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China
| | - Xiaoli Yin
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China
| | - Baomiao Ding
- College of Life Science, Yangtze University, Jingzhou, Hubei, 434025, P. R. China.,Institute of Food Sciences and Technology, National Taiwan University, Taipei, Taiwan, 10617, Republic of China
| |
Collapse
|
196
|
Zhu J, Chen X, Luo J, Liu Y, Wang B, Liang Z, Li L. Insight into the binding modes and mechanisms of inhibition between soybean-peptides and α-amylase based on spectrofluorimetry and kinetic analysis. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110977] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
197
|
Interactions between caffeic acid and corn starch with varying amylose content and their effects on starch digestion. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106544] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
198
|
Wang L, Wang L, Wang A, Qiu J, Li Z. Effects of superheated steam on starch structure and physicochemical properties of buckwheat flour during storage. J Cereal Sci 2021. [DOI: 10.1016/j.jcs.2021.103221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
199
|
|
200
|
Influence of an O/W emulsion on the gelatinization, retrogradation and digestibility of rice starch with varying amylose contents. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106547] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|