Zha F, Yang Z, Rao J, Chen B. Gum Arabic-Mediated Synthesis of Glyco-pea Protein Hydrolysate via Maillard Reaction Improves Solubility, Flavor Profile, and Functionality of Plant Protein.
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019;
67:10195-10206. [PMID:
31436982 DOI:
10.1021/acs.jafc.9b04099]
[Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pea protein hydrolysate (PPH) is successfully conjugated with gum arabic (GA) through Maillard-driven chemistry. The effect of cross-linking conjugation on the structure, solubility, volatile substances, emulsification, and antioxidative activity of glyco-PPH is investigated, and found to improve all properties. The formation of glyco-PPH is confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), Fourier-transform infrared (FTIR), and scanning electron microscopy (SEM). Size exclusion chromatography-multi angle light scattering (SEC-MALS) unveils that the maximum molecular mass of glyco-PPH occurs after 1 day of conjugation and approximately 1.2 mol of gum arabic conjugates on one mole of PPH. Headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) reveals the odor changes of glycoprotein before and after cross-linking. We have also prepared oil-in-water emulsions using glyco-PPH, which have enhanced physical stability against pH changes and chemical stability against lipid oxidation. The mechanism proposed involves Maillard-driven synthesis of the cross-linked PPH-GA conjugates, which increase the surface hydrophilicity and steric hindrance of glyco-PPH. These findings could provide a rational foundation for tailoring the physicochemical properties and functionalities of plant-based protein, which are attractive for food and functional materials applications.
Collapse