151
|
Fan CW, Li MS, Song XX, Luo L, Jiang JC, Luo JZ, Wang HS. Discovery of novel 2-oximino-2-indolylacetamide derivatives as potent anticancer agents capable of inducing cell autophagy and ferroptosis. Bioorg Med Chem 2023; 80:117176. [PMID: 36709571 DOI: 10.1016/j.bmc.2023.117176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023]
Abstract
A series of 2-oximino-2-indolylacetamide derivatives were designed, synthesized and evaluated for their antitumour effects. Among them, 4d exhibited the most potent antiproliferative effect in vitro on the tested human cancer cells. Additionally, 4d significantly induced cell apoptosis, caused mitochondrial dysfunction, promoted Bax, cleaved-PARP and p53 expression and inhibited Bcl-2 expression in 5-8F cells. Moreover, 4d remarkably promoted autophagosome formation, leading to cell apoptosis. Further investigation indicated that 4d could trigger cell death through cell ferroptosis, including increased ROS generation and lipid peroxidation and decreased glutathione peroxidase 4 (GPx4) expression and glutathione (GSH) levels. More importantly, 4d induced 5-8F cell death by activating ROS/MAPK and inhibiting the AKT/mTOR and STAT3 signalling pathways. Interestingly, 4d significantly suppressed tumour growth in a 5-8F cell xenograft model without obvious toxicity to mice. Overall, these results demonstrate that 4d may be a potential compound for cancer therapy.
Collapse
Affiliation(s)
- Cai-Wen Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; Scientific Experiment Center, Guilin Medical University, Guilin 541199, China
| | - Mei-Shan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xi-Xi Song
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Li Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jing-Chen Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jia-Zi Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
152
|
Gu Y, Li Y, Wang J, Zhang L, Zhang J, Wang Y. Targeting ferroptosis: Paving new roads for drug design and discovery. Eur J Med Chem 2023; 247:115015. [PMID: 36543035 DOI: 10.1016/j.ejmech.2022.115015] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
Ferroptosis, first proposed in 2012, is an iron-dependent form of regulated cell death characterized by excessive polyunsaturated fatty acid oxidation. In the past decade, researchers have revealed the formation and mechanisms of ferroptosis. Cancer drug resistance can be reversed by ferroptosis induction, and inhibiting ferroptosis has been shown to block certain disease processes. As a result, several ferroptosis-targeting drugs have been developed. However, the first-generation ferroptosis-targeting agents remain hampered from clinical use, mainly due to poor selectivity and pharmacokinetics. The discoveries of FSP1, GCH1, and other potential ferroptosis-regulating pathways independent of Xc--GSH-GPX4 provide novel targets for drug design. Recently, protein-targeted degradation and antibody-drug conjugate strategy show promise in future drug design. With novel targets, further optimizations, and new technologies, the next-generation ferroptosis-targeting agents show a promising future with improved selectivity and efficacy. In this review, we summarize mechanisms, target types, drug design, and novel technologies of ferroptosis, aiming to pave the way for future drug design and discovery in the next decade.
Collapse
Affiliation(s)
- Yilin Gu
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China
| | - Yizhe Li
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, Tennessee, United States
| | - Lele Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China.
| | - Yuxi Wang
- Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Joint Research Institution of Altitude Health, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Tianfu Jincheng Laboratory, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
153
|
Zeng ZW, Chen D, Chen L, He B, Li Y. A comprehensive overview of Artemisinin and its derivatives as anticancer agents. Eur J Med Chem 2023; 247:115000. [PMID: 36538859 DOI: 10.1016/j.ejmech.2022.115000] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022]
Abstract
Artemisinin is the crucial ingredient of artemisia annua, a traditional Chinese medicine used for the therapy of malaria in China for hundreds of years. In recent years, the anticancer properties of artemisinin and its derivatives have also been reported. This review has summarized the research and development of artemisinin and its derivatives as anticancer agents, which included both natural and synthetic monomers as well as their dimers. In addition, it highlights the antitumor effects of artemisinin and its derivatives after site-modification or after transformation to a nano-delivery system. Moreover, we have further explored their potential mechanisms of action and also discussed the clinical trials of ARTs used to treat cancer, which will facilitate in further development of novel anticancer drugs based on the scaffold of artemisinin.
Collapse
Affiliation(s)
- Zi-Wei Zeng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Di Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China
| | - Bin He
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China.
| | - Yan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Provincial Key Laboratory of Pharmaceutics, School of Pharmacy, School of Basic Medical Science, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
154
|
The crosstalk between classic cell signaling pathways, non-coding RNAs and ferroptosis in drug resistance of tumors. Cell Signal 2023; 102:110538. [PMID: 36436800 DOI: 10.1016/j.cellsig.2022.110538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Ferroptosis is an iron-dependent oxidative cell death characterized by the lethal accumulation of lipid-based reactive oxygen species (ROS), which is distinct from apoptosis, necrosis, and autophagy. Extensive studies suggest that ferroptosis be critical in regulating the growth and drug resistance of tumors, thus providing potential targets for cancer therapy. The development of resistance to cancer therapy remains a major challenge. Ferroptosis is associated with cancer drug resistance and inducing ferroptosis has been demonstrated to reverse drug resistance. This review focuses on a detailed account of the interplay between ferroptosis and related signaling pathways, including the Hippo signaling pathway, Keap1-Nrf2-ARE signaling pathway, Autophagy, and non-coding RNAs, which will shed light on developing the therapeutic role of regulating ferroptosis in reversing the resistance of cancer.
Collapse
|
155
|
Jin Y, Wu S, Zhang L, Yao G, Zhao H, Qiao P, Zhang J. Artesunate inhibits osteoclast differentiation by inducing ferroptosis and prevents iron overload-induced bone loss. Basic Clin Pharmacol Toxicol 2023; 132:144-153. [PMID: 36433916 DOI: 10.1111/bcpt.13817] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/23/2022] [Accepted: 11/16/2022] [Indexed: 11/28/2022]
Abstract
Artemisinin compounds have been demonstrated to have anti-osteoporosis effects by inhibiting bone resorption. During osteoclast differentiation, osteoclasts take up a large amount of iron through transferrin receptor 1 (TfR1) mediated endocytosis of transferrin (Tf). Since iron-dependent cleavage of endoperoxide bridge is of great importance for the antimalarial effects of artemisinin compounds, we raised a hypothesis that the cytotoxic effects of artemisinin compounds on osteoclasts were associated with enhanced iron uptake. In the present study, we found that Tf aggravated the inhibitory effects of artesunate (ART) on osteoclast viability and differentiation. ART induced the production of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) in a dose-dependent manner and led to the appearance of mitochondrial features of ferroptotic cells. TfR1 knockdown alleviated these cytotoxic effects of ART on osteoclasts. In addition, ART effectively prevented bone loss induced by iron overload. Our results indicate that ART inhibits iron-uptake stimulated osteoclast differentiation by inducing ferroptosis. Artemisinin compounds are potential drugs for treating iron overload-induced osteoporosis.
Collapse
Affiliation(s)
- Yuanqing Jin
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Shuguang Wu
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Lingyan Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Gang Yao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Hai Zhao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Penghai Qiao
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jian Zhang
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
156
|
Zinc Protoporphyrin-9 Potentiates the Anticancer Activity of Dihydroartemisinin. Antioxidants (Basel) 2023; 12:antiox12020250. [PMID: 36829809 PMCID: PMC9952556 DOI: 10.3390/antiox12020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Besides the clinically proven superior antimalarial activity, artemisinins (ARTs) are also associated with anticancer properties, albeit at much lower potency. Iron and heme have been proposed as possible activators of ARTs against cancer cells. Here we show that zinc protoporphyrin-9 (ZnPPIX), a heme homolog and a natural metabolite for heme synthesis during iron insufficiency, greatly enhanced the anticancer activity of dihydroartemisinin (DHA) in multiple cell lines. Using melanoma B16 and breast cancer 4T1 cells, we demonstrated ZnPPIX dramatically elevated intracellular free heme levels, accompanied by heightened reactive oxidative species (ROS) production. The tumor-suppression activity of ZnPPIX and DHA is mitigated by antioxidant vitamin E or membrane oxidation protectant ferrostatin. In vivo xenograft animal models confirmed that ZnPPIX significantly potentiated the tumor-inhibition capability of DHA while posing no apparent toxicity to the mice. The proliferating index and growth of tumors after the combinatory treatment of DHA and ZnPPIX were evidently reduced. Considering the clinical safety profiles of both DHA and ZnPPIX, their action synergy offers a promising strategy to improve the application of ARTs in our fight against cancer.
Collapse
|
157
|
Wu Z, Fang ZX, Hou YY, Wu BX, Deng Y, Wu HT, Liu J. Review of ferroptosis in colorectal cancer: Friends or foes? World J Gastroenterol 2023; 29:469-486. [PMID: 36688016 PMCID: PMC9850932 DOI: 10.3748/wjg.v29.i3.469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a newly discovered type of cell-regulated death. It is characterized by the accumulation of iron-dependent lipid peroxidation and can be distinguished from other forms of cell-regulated death by different morphology, biochemistry, and genetics. Recently, studies have shown that ferroptosis is associated with a variety of diseases, including liver, kidney and neurological diseases, as well as cancer. Ferroptosis has been shown to be associated with colorectal epithelial disorders, which can lead to cancerous changes in the gut. However, the potential role of ferroptosis in the occurrence and development of colorectal cancer (CRC) is still controversial. To elucidate the underlying mechanisms of ferroptosis in CRC, this article systematically reviews ferroptosis, and its cellular functions in CRC, for furthering the understanding of the pathogenesis of CRC to aid clinical treatment.
Collapse
Affiliation(s)
- Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Bing-Xuan Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu Deng
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
158
|
Yu L, Cheng M, Liu J, Ye X, Wei Z, Xu J, Xie Q, Liang J. Crosstalk between microwave ablation and ferroptosis: The next hot topic? Front Oncol 2023; 13:1099731. [PMID: 36712497 PMCID: PMC9880492 DOI: 10.3389/fonc.2023.1099731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Microwave ablation has been one form of thermal ablation in treatments for many tumors, which can locally control unresectable tumors. Ferroptosis is iron-dependent cell death caused by the cumulative reactive oxygen species and lipid peroxidation products. Recently, increasing evidence has shown that ferroptosis might play a vital role in MWA-induced tumor suppression. In this article, we briefly illustrate the concept of ferroptosis, the related signal pathways and inducers, the basic principle of microwave ablation in killing tumors, and the key molecules released after microwave ablation. Then, we describe the cross-talking molecules between microwave ablation and ferroptosis, and discussed the potential mechanism of microwave ablation-induced ferroptosis. This review explores the therapeutic target of ferroptosis in enhancing the systemic antitumor effect after microwave ablation, providing theoretical support in combinational microwave ablation with pro-ferroptosis therapy.
Collapse
Affiliation(s)
- Lu Yu
- Department of Oncology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Min Cheng
- Department of Oncology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jie Liu
- Department of Oncology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Xin Ye
- Department of Oncology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhigang Wei
- Department of Oncology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jiamei Xu
- Department of Oncology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qi Xie
- Department of Oncology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Jing Liang
- Department of Oncology, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| |
Collapse
|
159
|
Long F, Lin Z, Long Q, Lu Z, Zhu K, Zhao M, Yang M. CircZBTB46 Protects Acute Myeloid Leukemia Cells from Ferroptotic Cell Death by Upregulating SCD. Cancers (Basel) 2023; 15:cancers15020459. [PMID: 36672408 PMCID: PMC9857113 DOI: 10.3390/cancers15020459] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Circular RNAs (circRNAs) have been shown to be closely linked to the tumorigenesis and treatment response of hematological malignancies. However, the biological functions and clinical implications of circRNAs in acute myeloid leukemia (AML) remain largely unknown. CircRNA microarray datasets were analyzed to screen differentially expressed circRNAs in AML patients. It was found that circZBTB46 was significantly upregulated in AML patients and AML cells. Moreover, the expression of circZBTB46 was associated with the stages of AML patients and showed high sensitivity and specificity for diagnosing AML. Silencing of circZBTB46 inhibited AML cell proliferation and induced cell cycle arrest. Importantly, the depletion of circZBTB46 notably increased ferroptosis and enhanced RSL3-induced ferroptosis in AML cells. Mechanistically, circZBTB46 upregulated the expression of stearoyl-CoA desaturase 1 (SCD) possibly by acting as a miRNA sponge. Finally, the circZBTB46 knockdown repressed the tumor growth of AML in vivo. In conclusion, circZBTB46 protects AML cells from ferroptosis and promotes the proliferation by upregulating SCD, thus suggesting that circZBTB46 may be a potential therapeutic target for AML.
Collapse
Affiliation(s)
- Fei Long
- Department of Gastrointestinal Surgery, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Postdoctoral Research Station of Basic Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Zhi Lin
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Qinpeng Long
- Department of Pediatrics, The First Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Zhixing Lu
- Department of Gastrointestinal, Hernia and Enterofistula Surgery, People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning 530022, China
| | - Kaiyu Zhu
- School of Basic Medical Science, Central South University, Changsha 410078, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Minghua Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Hunan Clinical Research Center of Pediatric Cancer, Changsha 410078, China
- Correspondence:
| |
Collapse
|
160
|
Overcoming cancer chemotherapy resistance by the induction of ferroptosis. Drug Resist Updat 2023; 66:100916. [PMID: 36610291 DOI: 10.1016/j.drup.2022.100916] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 12/31/2022]
Abstract
Development of resistance to chemotherapy in cancer continues to be a major challenge in cancer management. Ferroptosis, a unique type of cell death, is mechanistically and morphologically different from other forms of cell death. Ferroptosis plays a pivotal role in inhibiting tumour growth and has presented new opportunities for treatment of chemotherapy-insensitive tumours in recent years. Emerging studies have suggested that ferroptosis can regulate the therapeutic responses of tumours. Accumulating evidence supports ferroptosis as a potential target for chemotherapy resistance. Pharmacological induction of ferroptosis could reverse drug resistance in tumours. In this review article, we first discuss the key principles of chemotherapeutic resistance in cancer. We then provide a brief overview of the core mechanisms of ferroptosis in cancer chemotherapeutic drug resistance. Finally, we summarise the emerging data that supports the fact that chemotherapy resistance in different types of cancers could be subdued by pharmacologically inducing ferroptosis. This review article suggests that pharmacological induction of ferroptosis by bioactive compounds (ferroptosis inducers) could overcome chemotherapeutic drug resistance. This article also highlights some promising therapeutic avenues that could be used to overcome chemotherapeutic drug resistance in cancer.
Collapse
|
161
|
Ajoolabady A, Tang D, Kroemer G, Ren J. Ferroptosis in hepatocellular carcinoma: mechanisms and targeted therapy. Br J Cancer 2023; 128:190-205. [PMID: 36229582 PMCID: PMC9902568 DOI: 10.1038/s41416-022-01998-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/25/2022] [Accepted: 09/22/2022] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma is the most prevalent form of primary liver cancer with a multifactorial aetiology comprising genetic, environmental, and behavioural factors. Evading cell death is a defining hallmark of hepatocellular carcinoma, underpinning tumour growth, progression, and therapy resistance. Ferroptosis is a form of nonapoptotic cell death driven by an array of cellular events, including intracellular iron overload, free radical production, lipid peroxidation and activation of various cell death effectors, ultimately leading to rupture of the plasma membrane. Although induction of ferroptosis is an emerging strategy to suppress hepatocellular carcinoma, malignant cells manage to develop adaptive mechanisms, conferring resistance to ferroptosis and ferroptosis-inducing drugs. Herein, we aim at elucidating molecular mechanisms and signalling pathways involved in ferroptosis and offer our opinions on druggable targets and new therapeutic strategy in an attempt to restrain the growth and progression of hepatocellular carcinoma through induction of ferroptotic cell death.
Collapse
Affiliation(s)
- Amir Ajoolabady
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital Fudan University, Shanghai, China.
| |
Collapse
|
162
|
Peng Z, Peng N. Microsomal glutathione S-transferase 1 targets the autophagy signaling pathway to suppress ferroptosis in gastric carcinoma cells. Hum Exp Toxicol 2023; 42:9603271231172915. [PMID: 37161854 DOI: 10.1177/09603271231172915] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
OBJECTIVE Ferroptosis is a newly discovered form of programmed cell death; however, the specific mechanisms that regulate ferroptosis have yet to be fully elucidated in gastric carcinoma. In this study, we aimed to investigate how microsomal glutathione S-transferase 1 (MGST1) regulates ferroptosis in gastric carcinoma cells. METHODS Gastric adenocarcinoma (SGC7901) cells that overexpressed MGST1 or expressed only low levels of MGST1, were treated with specific compounds (erastin, sorafenib, RSL3, MK-2206 and SC79). Then, we detected the levels of malondialdehyde (MDA), glutathione (GSH), iron and reactive oxygen species (ROS). Protein expression levels of the non-classical autophagy and protein kinase B (Akt)/glycogen synthase kinase-3β (GSK-3β) pathways were determined by western blotting and cell viability was analyzed by Cell Counting Kit-8 (CCK-8) assays. The expressions of target genes were detected using qRT-PCR. RESULTS We evaluated a range of ferroptosis-inducing compounds and found that MGST1 expression was down-regulated during ferroptosis in SGC7901 cells. The ferroptosis inducer RSL3 played a role in classical ferroptotic events while the overexpression of MGST1 impaired these effects. Interestingly, the overexpression of MGST1 resulted in the inactivation of autophagy by repressing the expression of ATG16L1 and the conversion of LC3-I to LC3-II. The upregulation of ATG16L1 eliminated the inhibitory action of MGST1 on ferroptosis. Notably, the overexpression of MGST1 induced the activation of the Akt/GSK-3β pathway. An Akt inhibitor antagonized the inhibitory effects of MGST1 on autophagy and ferroptosis. CONCLUSION Collectively, our findings demonstrate a novel molecular mechanism and signaling pathway for ferroptosis. We also characterized that the overexpression of MGST1 induces gastric carcinoma cell proliferation by activating the Akt/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Z Peng
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, People's Republic of China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention Hubei, Huangshi, People's Republic of China
| | - N Peng
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Huangshi, People's Republic of China
- Hubei Key Laboratory of Kidney Disease Pathogenesis and Intervention Hubei, Huangshi, People's Republic of China
| |
Collapse
|
163
|
Liu Y, Du Z, Huang J, Li T, Zhang J, Li Y, Yi W, Chen C. Ferroptosis in hematological malignant tumors. Front Oncol 2023; 13:1127526. [PMID: 37139157 PMCID: PMC10149970 DOI: 10.3389/fonc.2023.1127526] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Ferroptosis is a kind of iron-dependent programmed cell death discovered in recent years. Its main feature is the accumulation of lipid reactive oxygen species in cells, eventually leading to oxidative stress and cell death. It plays a pivotal role in normal physical conditions and the occurrence and development of various diseases. Studies have shown that tumor cells of the blood system, such as leukemia cells and lymphoma cells, are sensitive to the response to ferroptosis. Regulators that modulate the Ferroptosis pathway can accelerate or inhibit tumor disease progression. This article reviews the mechanism of ferroptosis and its research status in hematological malignancies. Understanding the mechanisms of ferroptosis could provide practical guidance for treating and preventing these dreaded diseases.
Collapse
Affiliation(s)
- Yong Liu
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Zefan Du
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Junbin Huang
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Tianwen Li
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Jing Zhang
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, China
| | - Yixian Li
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Wenfang Yi
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
- *Correspondence: Wenfang Yi, ; Chun Chen,
| | - Chun Chen
- Pediatric Hematology Laboratory, Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
- *Correspondence: Wenfang Yi, ; Chun Chen,
| |
Collapse
|
164
|
Xia M, Wu Y, Zhu H, Duan W. Tanshinone I induces ferroptosis in gastric cancer cells via the KDM4D/p53 pathway. Hum Exp Toxicol 2023; 42:9603271231216963. [PMID: 37989263 DOI: 10.1177/09603271231216963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
INTRODUCTION Tanshinone I (Tan I) is one of the bioactive components of Salvia miltiorrhiza. Whether it inhibits gastric cancer through ferroptosis has not been reported. This study aimed to confirm the effect of Tan I on ferroptosis in gastric cancer cells. METHODS AGS and HGC27 cells were treated with Tan I. First, oxidative stress-related parameters and the expression of ferroptosis-related proteins were examined. Combined with a ferroptosis inhibitor, Tan I was found to inhibit gastric cancer cells via the ferroptosis pathway. Finally, with bioinformatics analysis, the target protein of Tan I was identified. RESULTS Tan I significantly inhibited the expression level of GPX4. This molecule also increased ROS, MDA, and Fe2+ contents and decreased GSH enzyme activity. Therefore, we hypothesized that Tan I may inhibit gastric cancer cells by inducing ferroptosis. Western blotting results showed that Tan I inhibited the expression levels of the ferroptosis resistance-related proteins GPX4, SLC7A11, and FTH1, while the pro-ferroptosis-related proteins TFR1 and ACSL4 were significantly upregulated. A ferroptosis inhibitor effectively reversed these regulatory effects of Tan I in gastric cancer. With these data combined with the bioinformatics analysis, KDM4D was identified as a key regulatory target of Tan I. Mechanistically, Tan I induced positive regulation of ferroptosis resistance-related indicators by inhibiting KDM4D to upregulate p53 protein expression. Overexpression of KDM4D significantly reversed the effect of Tan I-induced ferroptosis resistance in gastric cancer cells. CONCLUSIONS Tan I induced ferroptosis inhibition in gastric cancer by regulating the KDM4D/p53 pathway.
Collapse
Affiliation(s)
- Minming Xia
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Yifeng Wu
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Hui Zhu
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Wenbiao Duan
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
165
|
Jia FJ, Han J. Liver injury in COVID-19: Holds ferritinophagy-mediated ferroptosis accountable. World J Clin Cases 2022; 10:13148-13156. [PMID: 36683648 PMCID: PMC9850986 DOI: 10.12998/wjcc.v10.i36.13148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/20/2022] [Accepted: 12/08/2022] [Indexed: 12/26/2022] Open
Abstract
Even in patients without a history of liver disease, liver injury caused by coronavirus disease 2019 (COVID-19) is gradually becoming more common. However, the precise pathophysiological mechanisms behind COVID-19's liver pathogenicity are still not fully understood. We hypothesize that inflammation may become worse by cytokine storms caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Elevated ferritin levels can initiate ferritinophagy mediated by nuclear receptor coactivator 4 (NCOA4), which leads to iron elevation, and ferroptosis. In COVID-19 patients, ferroptosis can be restricted to reduce disease severity and liver damage by targeting NCOA4-mediated ferritinophagy. To confirm the role of ferritinophagy-mediated ferroptosis in SARS-CoV-2 infection, further research is required.
Collapse
Affiliation(s)
- Feng-Ju Jia
- School of Nursing, Qingdao University, Qingdao 266071, Shandong Province, China
| | - Jing Han
- School of Nursing, Qingdao University, Qingdao 266071, Shandong Province, China
| |
Collapse
|
166
|
Huang M, Cao X, Jiang Y, Shi Y, Ma Y, Hu D, Song X. Evaluation of the Combined Effect of Artemisinin and Ferroptosis Inducer RSL3 against Toxoplasma gondii. Int J Mol Sci 2022; 24:ijms24010229. [PMID: 36613672 PMCID: PMC9820390 DOI: 10.3390/ijms24010229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Toxoplasma gondii is a widespread intracellular pathogen that infects humans and a variety of animals. Dihydroartemisinin (DHA), an effective anti-malarial drug, has potential anti-T. gondii activity that induces ferroptosis in tumor cells, but the mechanism by which it kills T. gondii is not fully understood. In this study, the mechanism of DHA inhibiting T. gondii growth and its possible drug combinations are described. DHA potently inhibited T. gondii with a half-maximal effective concentration (EC50) of 0.22 μM. DHA significantly increased the ROS level of parasites and decreased the mitochondrial membrane potential, which could be reversed by ferroptosis inhibitors (DFO). Moreover, the ferroptosis inducer RSL3 inhibited T. gondii with an EC50 of 0.75 μM. In addition, RSL3 enhanced the DHA-induced ROS level, and the combination of DHA and RSL3 significantly increased the anti-Toxoplasma effect as compared to DHA alone. In summary, we found that DHA-induced ROS accumulation in tachyzoites may be an important cause of T. gondii growth inhibition. Furthermore, we found that the combination of DHA and RSL3 may be an alternative to toxoplasmosis. These results will provide a new strategy for anti-Toxoplasma drug screening and clinical medication guidance.
Collapse
Affiliation(s)
- Mao Huang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xinru Cao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yucong Jiang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuehong Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yazhen Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Dandan Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
| | - Xingju Song
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530004, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning 530004, China
- Correspondence:
| |
Collapse
|
167
|
Tong X, Tang R, Xiao M, Xu J, Wang W, Zhang B, Liu J, Yu X, Shi S. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol 2022; 15:174. [PMID: 36482419 PMCID: PMC9733270 DOI: 10.1186/s13045-022-01392-3] [Citation(s) in RCA: 409] [Impact Index Per Article: 136.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
Many types of human cells self-destruct to maintain biological homeostasis and defend the body against pathogenic substances. This process, called regulated cell death (RCD), is important for various biological activities, including the clearance of aberrant cells. Thus, RCD pathways represented by apoptosis have increased in importance as a target for the development of cancer medications in recent years. However, because tumor cells show avoidance to apoptosis, which causes treatment resistance and recurrence, numerous studies have been devoted to alternative cancer cell mortality processes, namely necroptosis, pyroptosis, ferroptosis, and cuproptosis; these RCD modalities have been extensively studied and shown to be crucial to cancer therapy effectiveness. Furthermore, evidence suggests that tumor cells undergoing regulated death may alter the immunogenicity of the tumor microenvironment (TME) to some extent, rendering it more suitable for inhibiting cancer progression and metastasis. In addition, other types of cells and components in the TME undergo the abovementioned forms of death and induce immune attacks on tumor cells, resulting in enhanced antitumor responses. Hence, this review discusses the molecular processes and features of necroptosis, pyroptosis, ferroptosis, and cuproptosis and the effects of these novel RCD modalities on tumor cell proliferation and cancer metastasis. Importantly, it introduces the complex effects of novel forms of tumor cell death on the TME and the regulated death of other cells in the TME that affect tumor biology. It also summarizes the potential agents and nanoparticles that induce or inhibit novel RCD pathways and their therapeutic effects on cancer based on evidence from in vivo and in vitro studies and reports clinical trials in which RCD inducers have been evaluated as treatments for cancer patients. Lastly, we also summarized the impact of modulating the RCD processes on cancer drug resistance and the advantages of adding RCD modulators to cancer treatment over conventional treatments.
Collapse
Affiliation(s)
- Xuhui Tong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Rong Tang
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiang Liu
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Shanghai Pancreatic Cancer Institute, No. 270 Dong'An Road, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University, Shanghai, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
168
|
Cheikh IA, El-Baba C, Youssef A, Saliba NA, Ghantous A, Darwiche N. Lessons learned from the discovery and development of the sesquiterpene lactones in cancer therapy and prevention. Expert Opin Drug Discov 2022; 17:1377-1405. [PMID: 36373806 DOI: 10.1080/17460441.2023.2147920] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Sesquiterpene lactones (SLs) are one of the most diverse bioactive secondary metabolites found in plants and exhibit a broad range of therapeutic properties . SLs have been showing promising potential in cancer clinical trials, and the molecular mechanisms underlying their anticancer potential are being uncovered. Recent evidence also points to a potential utility of SLs in cancer prevention. AREAS COVERED This work evaluates SLs with promising anticancer potential based on cell, animal, and clinical models: Artemisinin, micheliolide, thapsigargin dehydrocostuslactone, arglabin, parthenolide, costunolide, deoxyelephantopin, alantolactone, isoalantolactone, atractylenolide 1, and xanthatin as well as their synthetic derivatives. We highlight actionable molecular targets and biological mechanisms underlying the anticancer therapeutic properties of SLs. This is complemented by a unique assessment of SL mechanisms of action that can be exploited in cancer prevention. We also provide insights into structure-activity and pharmacokinetic properties of SLs and their potential use in combination therapies. EXPERT OPINION We extract seven major lessons learned and present evidence-based solutions that can circumvent some scientific limitations or logistic impediments in SL anticancer research. SLs continue to be at the forefront of cancer drug discovery and are worth a joint interdisciplinary effort in order to leverage their potential in cancer therapy and prevention.
Collapse
Affiliation(s)
- Israa A Cheikh
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Chirine El-Baba
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Ali Youssef
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Najat A Saliba
- Department of Chemistry, American University of Beirut, Beirut, Lebanon
| | - Akram Ghantous
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, Lyon, France
| | - Nadine Darwiche
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
169
|
Li J, Zhang W. From iron chelation to overload as a therapeutic strategy to induce ferroptosis in hematologic malignancies. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2022; 27:1163-1170. [PMID: 36222350 DOI: 10.1080/16078454.2022.2132362] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Ferroptosis is an iron-dependent, non-apoptotic mode of cell death characterized by excessive accumulation of reactive oxygen species (ROS). It plays an important role in the occurrence, development and treatment of various cancers, but little is known regarding the role of ferroptosis in hematologic malignancies. This review elaborates the regulatory mechanism of ferroptosis and the treatment opportunities for targeting ferroptosis in hematologic malignancies. METHODS A systematic literature review through PubMed was conducted to summarize the published evidence on the therapeutic potential of targeting ferroptosis in hematological malignant tumors. Literature sources published in English were searched, using the terms ferroptosis, leukemia, myelodysplastic syndrome, lymphoma and multiple myeloma. RESULTS More and more small molecules have been found to induce ferroptosis in hematologic malignancies through targeted iron metabolism and lipid peroxidation, and some ferroptosis inducers have been proved to have synergistic effect with other chemotherapeutic drugs. CONCLUSION This paper discusses the significance of ferroptosis in hematologic malignancies and provides a new way for the treatment of hematologic malignancies, and more experimental studies should be conducted in future.
Collapse
Affiliation(s)
- Jiaojiao Li
- Department of Hematology, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Wei Zhang
- Department of Hematology, General Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
170
|
Zhong FM, Yao FY, Liu J, Zhang HB, Zhang J, Zhang N, Lin J, Li SQ, Li MY, Jiang JY, Cheng Y, Xu S, Wen W, Yang YL, Zhang XR, Cheng XX, Huang B, Wang XZ. Ferroptosis-related molecular patterns reveal immune escape, inflammatory development and lipid metabolism characteristics of the tumor microenvironment in acute myeloid leukemia. Front Oncol 2022; 12:888570. [PMID: 36518303 PMCID: PMC9742468 DOI: 10.3389/fonc.2022.888570] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/08/2022] [Indexed: 08/16/2023] Open
Abstract
BACKGROUND An increasing number of studies have revealed the influencing factors of ferroptosis. The influence of immune cell infiltration, inflammation development and lipid metabolism in the tumor microenvironment (TME) on the ferroptosis of tumor cells requires further research and discussion. METHODS We explored the relationship between ferroptosis-related genes and acute myeloid leukemia (AML) from the perspective of large sample analysis and multiomics, used multiple groups to identify and verify ferroptosis-related molecular patterns, and analyzed the sensitivity to ferroptosis and the state of immune escape between different molecular pattern groups. The single-sample gene set enrichment analysis (ssGSEA) algorithm was used to quantify the phenotypes of ferroptosis-related molecular patterns in individual patients. HL-60 and THP-1 cells were treated with ferroptosis inducer RSL3 to verify the therapeutic value of targeted inhibition of GPX4. RESULTS Three ferroptosis-related molecular patterns and progressively worsening phenotypes including immune activation, immune exclusion and immunosuppression were found with the two different sequencing approaches. The FSscore we constructed can quantify the development of ferroptosis-related phenotypes in individual patients. The higher the FSscore is, the worse the patient's prognosis. The FSscore is also highly positively correlated with pathological conditions such as inflammation development, immune escape, lipid metabolism, immunotherapy resistance, and chemotherapy resistance and is negatively correlated with tumor mutation burden. Moreover, RSL3 can induce ferroptosis of AML cells by reducing the protein level of GPX4. CONCLUSIONS This study revealed the characteristics of immunity, inflammation, and lipid metabolism in the TME of different AML patients and differences in the sensitivity of tumor cells to ferroptosis. The FSscore can be used as a biomarker to provide a reference for the clinical evaluation of the pathological characteristics of AML patients and the design of personalized treatment plans. And GPX4 is a potential target for AML treatment.
Collapse
Affiliation(s)
- Fang-Min Zhong
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Fang-Yi Yao
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Liu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hai-Bin Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jing Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Nan Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jin Lin
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Shu-Qi Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Mei-Yong Li
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jun-Yao Jiang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ying Cheng
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Shuai Xu
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Wen Wen
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Yu-Lin Yang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Xue-Ru Zhang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Xue-Xin Cheng
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiao-Zhong Wang
- Jiangxi Province Key Laboratory of Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
171
|
Gong C, Ji Q, Wu M, Tu Z, Lei K, Luo M, Liu J, Lin L, Li K, Li J, Huang K, Zhu X. Ferroptosis in tumor immunity and therapy. J Cell Mol Med 2022; 26:5565-5579. [DOI: 10.1111/jcmm.17529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Chuandong Gong
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| | - Qiankun Ji
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| | - Miaojing Wu
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| | - Zewei Tu
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| | - Kunjian Lei
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| | - Min Luo
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| | - Junzhe Liu
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| | - Li Lin
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| | - Kuangxun Li
- College of Queen Mary Nanchang University Nanchang China
| | - Jingying Li
- Department of Comprehensive Intensive Care Unit Second Affiliated Hospital of Nanchang University Nanchang China
| | - Kai Huang
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| | - Xingen Zhu
- Department of Neurosurgery The Second Affiliated Hospital of Nanchang University Nanchang China
- Institute of Neuroscience, Nanchang University Nanchang China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases Nanchang China
| |
Collapse
|
172
|
Li Y, Sun M, Cao F, Chen Y, Zhang L, Li H, Cao J, Song J, Ma Y, Mi W, Zhang X. The Ferroptosis Inhibitor Liproxstatin-1 Ameliorates LPS-Induced Cognitive Impairment in Mice. Nutrients 2022; 14:4599. [PMID: 36364859 PMCID: PMC9656387 DOI: 10.3390/nu14214599] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 08/10/2023] Open
Abstract
CNS inflammation is known to be an important pathogenetic mechanism of perioperative neurocognitive disorder (PND), and iron overload was reported to participate in this process accompanied by oxidative stress. Ferroptosis is an iron-dependent form of cell death, and occurs in multiple neurodegenerative diseases with cognitive disorder. However, the effect of ferroptosis in inflammation-related PND is unknown. In this study, we found that the ferroptosis inhibitor liproxstatin-1 ameliorated memory deficits in the mouse model of lipopolysaccharide (LPS)-induced cognitive impairment. Moreover, liproxstatin-1 decreased the activation of microglia and the release of interleukin (IL)-6 and tumor necrosis factor-alpha (TNF)-α, attenuated oxidative stress and lipid peroxidation, and further weakened mitochondrial injury and neuronal damage after LPS exposure. Additionally, the protective effect of liproxstatin-1 was related to the alleviation of iron deposition and the regulation of the ferroptosis-related protein family TF, xCT, Fth, Gpx4, and FtMt. These findings enhance our understanding of inflammation-involved cognitive dysfunction and shed light on future preclinical studies.
Collapse
Affiliation(s)
- Yang Li
- Chinese PLA Medical School, Beijing 100853, China
- Department of Anesthesiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Miao Sun
- Chinese PLA Medical School, Beijing 100853, China
- Department of Anesthesiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Fuyang Cao
- Chinese PLA Medical School, Beijing 100853, China
- Department of Anesthesiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Yu Chen
- Department of Anesthesiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing 100048, China
| | - Linlin Zhang
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hao Li
- Department of Anesthesiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jiangbei Cao
- Department of Anesthesiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jie Song
- Nursing Department, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Yulong Ma
- Department of Anesthesiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Weidong Mi
- Department of Anesthesiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaoying Zhang
- Department of Anesthesiology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
173
|
Iron-Sulfur Clusters: A Key Factor of Regulated Cell Death in Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7449941. [PMID: 36338346 PMCID: PMC9629928 DOI: 10.1155/2022/7449941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 11/21/2022]
Abstract
Iron-sulfur clusters are ancient cofactors that play crucial roles in myriad cellular functions. Recent studies have shown that iron-sulfur clusters are closely related to the mechanisms of multiple cell death modalities. In addition, numerous previous studies have demonstrated that iron-sulfur clusters play an important role in the development and treatment of cancer. This review first summarizes the close association of iron-sulfur clusters with cell death modalities such as ferroptosis, cuprotosis, PANoptosis, and apoptosis and their potential role in cancer activation and drug resistance. This review hopes to generate new cancer therapy ideas and overcome drug resistance by modulating iron-sulfur clusters.
Collapse
|
174
|
Man H, Zhou L, Zhu G, Zheng Y, Ye Z, Huang Z, Teng X, Ai C, Ge G, Xiao Y. Super-Resolution Imaging of Autophagy by a Preferred Pair of Self-Labeling Protein Tags and Fluorescent Ligands. Anal Chem 2022; 94:15057-15066. [PMID: 36262049 DOI: 10.1021/acs.analchem.2c03125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Autophagy is a core recycling process for homeostasis, with its dysfunction associated with tumorigenesis and various diseases. Yet, its subtle intracellular details are covered due to the limited resolution of conventional microscopies. The major challenge for modern super-resolution microscopy deployment is the lack of a practical labeling system, which could provide robust fluorescence with fidelity in the context of the dynamic autophagy microenvironment. Herein, a representative autophagy marker LC3 protein is selected to develop two hybrid self-labeling systems with tetramethylrhodamine (TMR) fluorophores through SNAP/Halo-tag technologies. A systematic investigation indicated that the match of the LC3-Halo and TMR ligand remarkably outperforms that of LC3-SNAP, as the former Halo system exhibited more robust single-molecule brightness (440 vs 247), total photon numbers (45600 vs 13500), and dwell time of the initial bright state (0.82 vs 0.40 s) than the latter. With the aid of this desirable Halo system, for the first time, live-cell ferritinophagy is monitored with a spatial resolution of ∼50 nm, which disclosed reduced sizes of autophagosomes (∼650 nm, ferritinophagy) than those in nonselective (∼840 nm, mammalian target of rapamycin (mTOR)) and selective autophagy (∼900 nm, mitophagy).
Collapse
Affiliation(s)
- Huizi Man
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lin Zhou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Guanghao Zhu
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Ying Zheng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhiwei Ye
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhenlong Huang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xinru Teng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| | - Chunzhi Ai
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yucai Road, Guilin 541004, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
175
|
Wang X, Xu B, Du J, Xia J, Lei G, Zhou C, Hu J, Zhang Y, Chen S, Shao F, Yang J, Li Y. Characterization of pyruvate metabolism and citric acid cycle patterns predicts response to immunotherapeutic and ferroptosis in gastric cancer. Cancer Cell Int 2022; 22:317. [PMID: 36229828 PMCID: PMC9563156 DOI: 10.1186/s12935-022-02739-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/28/2022] [Indexed: 11/27/2022] Open
Abstract
Background Gastric cancer is one of the most common malignancies of the digestive system with a high lethal rate. Studies have shown that inherited and acquired mutations in pyruvate metabolism and citric acid cycle (P-CA) enzymes are involved in tumorigenesis and tumor development. However, it is unclear how different P-CA patterns affect the tumor microenvironment (TME), which is critical for cancer progression. Methods This study mainly concentrated on investigating the role of the P-CA patterns in multicellular immune cell infiltration of GC TME. First, the expression levels of P-CA regulators were profiled in GC samples from The Cancer Genome Atlas and Gene Expression Omnibus cohorts to construct a consensus clustering analysis and identify three distinct P-CA clusters. GSVA was conducted to reveal the different biological processes in three P-CA clusters. Subsequently, 1127 cluster-related differentially expressed genes were identified, and prognostic-related genes were screened using univariate Cox regression analysis. A scoring system was then set up to quantify the P-CA gene signature and further evaluate the response of the patients to the immunotherapy. Results We found that GC patients in the high P-CA score group had a higher tumor mutational burden, higher microsatellite instability, and better prognosis. The opposite was observed in the low P-CA score group. Interestingly, we demonstrated P-CA gene cluster could predict the sensitivity to immunotherapy and ferroptosis-induced therapy. Conclusion Collectively, the P-CA gene signature in this study exhibits potential roles in the tumor microenvironment and predicts the response to immunotherapeutic. The identification of these P-CA patterns may significantly accelerate the strategic development of immunotherapy for GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02739-z.
Collapse
Affiliation(s)
- Xu Wang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, Sichuan, China.,Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Bing Xu
- Department of Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, 310005, Zhejiang, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Guojie Lei
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Jiayu Hu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Yinhao Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Sufeng Chen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Fangchun Shao
- Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
| | - Jiyun Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Center for Medical Genetics, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology, Chengdu, 610072, Sichuan, China.
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
176
|
Ferroptosis, a Rising Force against Renal Fibrosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7686956. [PMID: 36275899 PMCID: PMC9581688 DOI: 10.1155/2022/7686956] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/11/2022] [Indexed: 11/18/2022]
Abstract
Ferroptosis is a type of programmed cell death characterized by iron overload, oxidative stress, imbalance in lipid repair, and mitochondria-specific pathological manifestations. Growing number of molecular mechanisms and signaling pathways have been found to be involved in ferroptosis progression, including iron metabolism, amino acid metabolism, lipid metabolism, and energy metabolism. It is worth noting that ferroptosis is involved in the progression of fibrotic diseases such as liver cirrhosis, cardiomyopathy, and idiopathic pulmonary fibrosis, and inhibition of ferroptosis has acquired beneficial outcomes in rodent models, while studies on ferroptosis and renal fibrosis remains limited. Recent studies have revealed that targeting ferroptosis can effectively mitigate chronic kidney injury and renal fibrosis. Moreover, myofibroblasts suffer from ferroptosis during fiber and extracellular matrix deposition in the fibrotic cascade reaction and pharmacological modulation of ferroptosis shows great therapeutic effect on renal fibrosis. Here, we summarize the latest molecular mechanisms of ferroptosis from high-quality studies and review its therapeutic potential in renal fibrosis.
Collapse
|
177
|
Huang R, Dong R, Wang N, He Y, Zhu P, Wang C, Lan B, Gao Y, Sun L. Adaptive Changes Allow Targeting of Ferroptosis for Glioma Treatment. Cell Mol Neurobiol 2022; 42:2055-2074. [PMID: 33893939 PMCID: PMC11421619 DOI: 10.1007/s10571-021-01092-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a type of regulated cell death that plays an essential role in various brain diseases, including cranial trauma, neuronal diseases, and brain tumors. It has been reported that cancer cells rely on their robust antioxidant capacity to escape ferroptosis. Therefore, ferroptosis exploitation could be an effective strategy to prevent tumor proliferation and invasion. Glioma is a common malignant craniocerebral tumor exhibiting complicated drug resistance and survival mechanisms, resulting in a high mortality rate and short survival time. Recent studies have determined that metabolic alterations in glioma offer exploitable therapeutic targets. These metabolic alterations allow targeted therapy to achieve some initial efficacy but have failed to inhibit glioma growth, invasion, and drug resistance effectively. It has been proposed that the reason for the high malignancy and drug resistance observed with glioma is that these tumors can effectively evade ferroptosis. Ferroptosis-inducing drugs were found to exert a positive effect by targeting this particular characteristic of glioma cells. Moreover, gliomas develop enhanced drug resistance through anti-ferroptosis mechanisms. In this study, we provided an overview of the mechanisms by which glioma aggressiveness and drug resistance are mediated by the evasion of ferroptosis. This information might provide new targets for glioma therapy as well as new insights and ideas for future research.
Collapse
Affiliation(s)
- Renxuan Huang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Rui Dong
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Nan Wang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Yichun He
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Peining Zhu
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Chong Wang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Beiwu Lan
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Yufei Gao
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China.
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| |
Collapse
|
178
|
Catanzaro E, Turrini E, Kerre T, Sioen S, Baeyens A, Guerrini A, Bellau MLA, Sacchetti G, Paganetto G, Krysko DV, Fimognari C. Perillaldehyde is a new ferroptosis inducer with a relevant clinical potential for acute myeloid leukemia therapy. Biomed Pharmacother 2022; 154:113662. [PMID: 36800294 DOI: 10.1016/j.biopha.2022.113662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Ferroptosis induction is an emerging strategy to treat cancer and contrast the tricky issue of chemoresistance, which can arise towards apoptosis. This work elucidates the anticancer mechanisms evoked by perillaldehyde, a monoterpenoid isolated from Ammodaucus leucotrichus Coss. & Dur. We investigated and characterized its antileukemic potential in vitro, disclosing its ability to trigger ferroptosis. Specifically, perillaldehyde induced lipid peroxidation, decreased glutathione peroxidase 4 protein expression, and depleted intracellular glutathione on HL-60 promyelocytic leukemia cells. Besides, it stimulated the active secretion of ATP, one of the most crucial events in the induction of efficient anticancer response, prompting further studies to disclose its possible nature as an immunogenic cell death inducer. To preliminarily assess the clinical relevance of perillaldehyde, we tested its ability to induce cell death on patient-derived acute myeloid leukemia biopsies, recording a similar mechanism of action and potency compared to HL-60 cells. To round the study off, we tested its selectivity towards tumor cells and disclosed lower toxicity on normal cells compared to both HL-60 and acute myeloid leukemia biopsies. Altogether, these data depict a favorable risk-benefit profile for perillaldehyde and reveal its peculiar antileukemic potential, which qualifies this natural product to proceed further through the drug development pipeline.
Collapse
Affiliation(s)
- Elena Catanzaro
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Eleonora Turrini
- Department for Life Quality Studies, University of Bologna, C.so d'Augusto 237, 47921 Rimini, Italy
| | - Tessa Kerre
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium; Department of Diagnostic Sciences, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium; Department of Hematology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Simon Sioen
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Radiobiology Research Group, Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Ans Baeyens
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Radiobiology Research Group, Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Alessandra Guerrini
- Pharmaceutical Biology Lab., Research Unit 7 of Terra&Acqua Tech Technopole Lab., Department of Life Sciences and Biotechnology, University of Ferrara, P.le Chiappini 2, 44123 Ferrara, Italy
| | | | - Gianni Sacchetti
- Pharmaceutical Biology Lab., Research Unit 7 of Terra&Acqua Tech Technopole Lab., Department of Life Sciences and Biotechnology, University of Ferrara, P.le Chiappini 2, 44123 Ferrara, Italy
| | - Guglielmo Paganetto
- Pharmaceutical Biology Lab., Research Unit 7 of Terra&Acqua Tech Technopole Lab., Department of Life Sciences and Biotechnology, University of Ferrara, P.le Chiappini 2, 44123 Ferrara, Italy
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy (CDIT) Laboratory, Department of Human Structure and Repair, Ghent University, Corneel Heymanslaan 10, 9000 Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Pathophysiology, Sechenov First Moscow State Medical University (Sechenov University), Bol'shaya Pirogovskaya Ulitsa, 19с1, Moscow 119146, Russia
| | - Carmela Fimognari
- Department for Life Quality Studies, University of Bologna, C.so d'Augusto 237, 47921 Rimini, Italy.
| |
Collapse
|
179
|
Guo Z, Zhang Y. Allicin promotes autophagy and ferroptosis in esophageal squamous cell carcinoma by activating AMPK/mTOR signaling. Heliyon 2022; 8:e11005. [PMID: 36311361 PMCID: PMC9615361 DOI: 10.1016/j.heliyon.2022.e11005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022] Open
Abstract
The antitumor effects of allicin have been demonstrated in various cancers. However, whether allicin improves esophageal squamous cell carcinoma (ESCC) has not yet been explored. The present study aimed to explore the function and underlying mechanism of action of allicin in ESCC treatment. Our data showed that allicin significantly suppressed ESCC cell proliferation in a dose- and time-dependent manner. A green fluorescent protein-light chain 3 (LC3) transfection assay showed that autophagosomes were elevated in ESCC cells treated with allicin compared with control ESCC cells and that 3-methyladenine (an autophagy inhibitor) reversed allicin-induced LC3 puncta. Furthermore, allicin significantly elevated the ratio of LC3II/LC3I but decreased p62 expression in ESCC cells. Allicin also increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation but decreased that of the mechanistic target of rapamycin kinase (mTOR), which then induced the elevation of autophagy-related 5 and autophagy-related 7 proteins in ESCC cells. Furthermore, allicin treatment increased the expression of nuclear receptor coactivator 4 (a selective cargo receptor) but suppressed the expression of ferritin heavy chain 1 (the major intracellular iron-storage protein) in ESCC cells and elevated malondialdehyde and Fe2+ production levels. In vivo assays showed that allicin significantly decreased tumor weight and volume. In summary, allicin may induce cell death in ESCC cells by activating AMPK/mTOR-mediated autophagy and ferroptosis. Therefore, allicin may have excellent potential for use in the treatment of ESCC.
Collapse
Affiliation(s)
- Zhanfang Guo
- Department of Gastroenterology, Dalian Municipal Central Hospital, No. 826, Southwest Road, Hekou District, Dalian City, 116023, Liaoning Province, China
| | - Yanjiao Zhang
- The Third Department of Cadres, 967 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, No. 80 Shengli Road, Xigang District, Dalian, 116000, Liaoning Province, China
| |
Collapse
|
180
|
Guo J, Zhou Y, Liu D, Wang M, Wu Y, Tang D, Liu X. Mitochondria as multifaceted regulators of ferroptosis. LIFE METABOLISM 2022; 1:134-148. [PMID: 39872359 PMCID: PMC11749789 DOI: 10.1093/lifemeta/loac035] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/30/2025]
Abstract
Mitochondria are well known to be "energy factories" of the cell as they provide intracellular ATP via oxidative phosphorylation. Interestingly, they also function as a "cellular suicidal weapon store" by acting as a key mediator of various forms of regulated cell death, including apoptosis, pyroptosis, necroptosis, and ferroptosis. Ferroptosis, distinct from the other types of regulated cell death, is characterized by iron-dependent lipid peroxidation and subsequent plasma membrane rupture. Growing evidence suggests that an impaired ferroptotic response is implicated in various diseases and pathological conditions, and this impaired response is associated with dramatic changes in mitochondrial morphology and function. Mitochondria are the center of iron metabolism and energy production, leading to altered lipid peroxidation sensitivity. Although a growing number of studies have explored the inextricable link between mitochondria and ferroptosis, the role of this organelle in regulating ferroptosis remains unclear. Here, we review recent advances in our understanding of the role of mitochondria in ferroptosis and summarize the characteristics of this novel iron-based cellular suicide weapon and its arsenal. We also discuss the importance of ferroptosis in pathophysiology, including the need for further understanding of the relationship between mitochondria and ferroptosis to identify combinatorial targets that are essential for the development of successful drug discovery.
Collapse
Affiliation(s)
- Jingyi Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Yunhao Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Dingfei Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Mengfei Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Yi Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences; Guangzhou Medical University, Guangzhou, Guangdong 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong, China
| |
Collapse
|
181
|
Ke P, Bao X, Liu C, Zhou B, Huo M, Chen Y, Wang X, Wu D, Ma X, Liu D, Chen S. LPCAT3 is a potential prognostic biomarker and may be correlated with immune infiltration and ferroptosis in acute myeloid leukemia: a pan-cancer analysis. Transl Cancer Res 2022; 11:3491-3505. [PMID: 36388050 PMCID: PMC9641088 DOI: 10.21037/tcr-22-985] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/17/2022] [Indexed: 09/21/2023]
Abstract
BACKGROUND Recent studies have highlighted the critical role of lysophosphatidylcholine acyltransferase 3 (LPCAT3) during cancer development. However, the abnormal expression and prognostic significance of pan-cancer have not been determined. METHODS We explored the expression level and prognostic value of LPCAT3 in 33 cancers by bioinformatics techniques, and comprehensively studied the biological function and immune infiltration based on the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases as well as many online websites. RESULTS LPCAT3 is significantly upregulated in many cancers, and it is associated with prognosis. Pan-cancer Cox regression analysis indicated that the high expression of LPCAT3 was associated with poor prognosis in acute myeloid leukemia (AML), lower-grade glioma (LGG), ovarian cancer (OV), and uveal melanoma (UVM), while better prognosis in kidney renal clear cell carcinoma (KIRC) (all P<0.05). Further analysis indicated that higher LPCAT3 expression in most cancers markedly decreased the infiltration of immune cells, except diffuse large B-cell lymphoma (DLBC), AML, LGG, stomach adenocarcinoma (STAD), and UVM. In contrast, the expression level of LPCAT3 was positively correlated with most immune checkpoints in colon adenocarcinoma (COAD), DLBC, LGG, liver hepatocellular carcinoma (LIHC), and UVM. Additionally, LPCAT3 expression was associated with tumor mutational burden (TMB) in 4 cancer types, while microsatellite instability (MSI) was in 3 cancer types. Functional enrichment analysis showed LPCAT3 upregulation was highly associated with lipid metabolism and ferroptosis processes. In addition, the result of prediction drug response suggested that B-cell lymphoma 2 (BCL2) inhibitors and Midostaurin may be a potential treatment option for AML with low-LPCAT3 expression. CONCLUSIONS LPCAT3 expression is increased in multiple cancers. Overexpression of LPCAT3 is associated with poor prognosis and tumor immune microenvironment in many cancers, especially in AML. Our results showed that the oncogene of LPCAT3 may serve as a potential prognostic biomarker and/or therapeutic target in AML patients.
Collapse
Affiliation(s)
- Peng Ke
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Chenxi Liu
- Department of General Practice, Shenzhen People’s Hospital, Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Biqi Zhou
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Mengjia Huo
- Soochow Hopes Hematonosis Hospital, Suzhou, China
| | - Yanxin Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xing Wang
- Soochow Hopes Hematonosis Hospital, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Xiao Ma
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Dan Liu
- Soochow Hopes Hematonosis Hospital, Suzhou, China
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
182
|
Li Y, Xu B, Ren X, Wang L, Xu Y, Zhao Y, Yang C, Yuan C, Li H, Tong X, Wang Y, Du J. Inhibition of CISD2 promotes ferroptosis through ferritinophagy-mediated ferritin turnover and regulation of p62-Keap1-NRF2 pathway. Cell Mol Biol Lett 2022; 27:81. [PMID: 36180832 PMCID: PMC9523958 DOI: 10.1186/s11658-022-00383-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND CDGSH iron sulfur domain 2 (CISD2) is an iron-sulfur protein with a [2Fe-2S] cluster, which is critical for cell proliferation and iron homeostasis. It has been demonstrated that aberrant expression of CISD2 is associated with the progression of multiple cancers. However, the underlying mechanism of CISD2 in regulating tumorigenesis remains obscure. METHODS Bioinformatics strategies were used to investigate the protein interaction network and functional annotation of CISD2. In the functional experiment, cell viability was measured by CCK-8 kit. The levels of cellular reactive oxygen species (ROS), intracellular free iron, lipid peroxides, and lysosomal activity were determined by DCF-DA, RPA, C11-BODIPY, and cathepsin B staining, respectively. The glutathione (GSH) content was determined using a GSH assay kit. RESULTS We showed that knockdown of CISD2 significantly accelerated the Erastin-induced ferroptotic cell death with excess lipid peroxidation, GSH exhaustion, and iron accumulation, while overexpression of CISD2 hindered the sensitivity to Erastin. Further assays via confocal microscopy and western blot exhibited that CISD2 knockdown markedly enhanced the lysosomal activity, and activated ferritinophagy under the exposure of Erastin. Pharmacological inhibition of lysosomal function could inhibit the degradation of ferritin heavy chain (FTH), and attenuate the phenotypes of ferroptosis, such as accelerated iron accumulation and lipid peroxidation. Notably, we found that Erastin-induced compensatory elevation of nuclear factor erythroid 2-related factor 2 (NRF2) could be eliminated in CISD2 depletion cells. Mechanically, CISD2 knockdown promoted the degradation of autophagy adaptor p62 and resulted in an increased binding affinity of Keap1 with NRF2, thus leading to the increased ubiquitination and subsequent degradation of NRF2. Enforced expression of NRF2 reversed the sensitivity of shCISD2 cells to ferroptosis both in vitro and in vivo. Conversely, enforced expression of Keap1 exacerbated the degradation of NRF2, reduced the transcriptional expression of FTH and heme oxygenase 1 (HO-1), increased the oxidative damage, and thus further facilitated ferroptosis. CONCLUSION Taken together, our current results illustrated two parallel mechanisms involved in the shCISD2-mediated ferroptosis. One was that shCISD2 enhanced the accumulation of free iron via ferritinophagy-dependent ferritin turnover; the other was that CISD2 depletion induced the inhibition of the p62-Keap1-NRF2 pathway, which resulted in oxidative stress and ferroptosis.
Collapse
Affiliation(s)
- Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Bing Xu
- Department of Clinical Laboratory, Hangzhou Women's Hospital, Hangzhou, 310016, Zhejiang, China
| | - Xueying Ren
- Department of Laboratory Medicine, The Second Affiliated Hospital of Zhejiang Chinese Medical University, 310005, Hangzhou, Zhejiang, China
| | - Luyang Wang
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Yaqing Xu
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Yefeng Zhao
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Chen Yang
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Chen Yuan
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Huanjuan Li
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China
| | - Xiangmin Tong
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang, China.
| | - Jing Du
- Department of Clinical Laboratory, Laboratory Medicine Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
183
|
Zhou Y, Fang C, Xu H, Yuan L, Liu Y, Wang X, Zhang A, Shao A, Zhou D. Ferroptosis in glioma treatment: Current situation, prospects and drug applications. Front Oncol 2022; 12:989896. [PMID: 36249003 PMCID: PMC9557197 DOI: 10.3389/fonc.2022.989896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Ferroptosis is a regulatory form of iron-dependent cell death caused by the accumulation of lipid-based reactive oxygen species (ROS) and differs from apoptosis, pyroptosis, and necrosis. Especially in neoplastic diseases, the susceptibility of tumor cells to ferroptosis affects prognosis and is associated with complex effects. Gliomas are the most common primary intracranial tumors, accounting for disease in 81% of patients with malignant brain tumors. An increasing number of studies have revealed the particular characteristics of iron metabolism in glioma cells. Therefore, agents that target a wide range of molecules involved in ferroptosis may regulate this process and enhance glioma treatment. Here, we review the underlying mechanisms of ferroptosis and summarize the potential therapeutic options for targeting ferroptosis in glioma.
Collapse
Affiliation(s)
- Yuhang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China
- The First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Danyang Zhou,
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Danyang Zhou,
| | - Danyang Zhou
- Health Management Center, Tongde Hospital of Zhejiang Province, Hangzhou, China
- *Correspondence: Anke Zhang, ; Anwen Shao, ; Danyang Zhou,
| |
Collapse
|
184
|
Fujihara KM, Zhang BZ, Jackson TD, Ogunkola MO, Nijagal B, Milne JV, Sallman DA, Ang CS, Nikolic I, Kearney CJ, Hogg SJ, Cabalag CS, Sutton VR, Watt S, Fujihara AT, Trapani JA, Simpson KJ, Stojanovski D, Leimkühler S, Haupt S, Phillips WA, Clemons NJ. Eprenetapopt triggers ferroptosis, inhibits NFS1 cysteine desulfurase, and synergizes with serine and glycine dietary restriction. SCIENCE ADVANCES 2022; 8:eabm9427. [PMID: 36103522 PMCID: PMC9473576 DOI: 10.1126/sciadv.abm9427] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The mechanism of action of eprenetapopt (APR-246, PRIMA-1MET) as an anticancer agent remains unresolved, although the clinical development of eprenetapopt focuses on its reported mechanism of action as a mutant-p53 reactivator. Using unbiased approaches, this study demonstrates that eprenetapopt depletes cellular antioxidant glutathione levels by increasing its turnover, triggering a nonapoptotic, iron-dependent form of cell death known as ferroptosis. Deficiency in genes responsible for supplying cancer cells with the substrates for de novo glutathione synthesis (SLC7A11, SHMT2, and MTHFD1L), as well as the enzymes required to synthesize glutathione (GCLC and GCLM), augments the activity of eprenetapopt. Eprenetapopt also inhibits iron-sulfur cluster biogenesis by limiting the cysteine desulfurase activity of NFS1, which potentiates ferroptosis and may restrict cellular proliferation. The combination of eprenetapopt with dietary serine and glycine restriction synergizes to inhibit esophageal xenograft tumor growth. These findings reframe the canonical view of eprenetapopt from a mutant-p53 reactivator to a ferroptosis inducer.
Collapse
Affiliation(s)
- Kenji M. Fujihara
- Gastrointestinal Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Corresponding author. (N.J.C.); (K.M.F.)
| | - Bonnie Z. Zhang
- Gastrointestinal Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Thomas D. Jackson
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Moses O. Ogunkola
- Institute of Biochemistry and Biology Department for Molecular Enzymology, University of Potsdam, Potsdam, Germany
| | - Brunda Nijagal
- Metabolomics Australia, The Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Victoria, Australia
| | - Julia V. Milne
- Gastrointestinal Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - David A. Sallman
- Malignant Hematology Department, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Ching-Seng Ang
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Iva Nikolic
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Conor J. Kearney
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Translational Hematology Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Simon J. Hogg
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Translational Hematology Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carlos S. Cabalag
- Gastrointestinal Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Surgical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Vivien R. Sutton
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Sally Watt
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Asuka T. Fujihara
- Gastrointestinal Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Joseph A. Trapani
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kaylene J. Simpson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Diana Stojanovski
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, Victoria, Australia
| | - Silke Leimkühler
- Institute of Biochemistry and Biology Department for Molecular Enzymology, University of Potsdam, Potsdam, Germany
| | - Sue Haupt
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Tumor Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Wayne A. Phillips
- Gastrointestinal Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Department of Surgery (St. Vincent’s Hospital), The University of Melbourne, Parkville, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Nicholas J. Clemons
- Gastrointestinal Cancer Program, Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
- Corresponding author. (N.J.C.); (K.M.F.)
| |
Collapse
|
185
|
Lv X, Dong M, Tang W, Qin J, Wang W, Li M, Teng F, Yi L, Dong J, Wei Y. Ferroptosis, novel therapeutics in asthma. Biomed Pharmacother 2022; 153:113516. [DOI: 10.1016/j.biopha.2022.113516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
|
186
|
Ma H, Liu Y, Miao Z, Cheng S, Zhu Y, Wu Y, Fan X, Yang J, Li X, Guo L. Neratinib inhibits proliferation and promotes apoptosis of acute myeloid leukemia cells by activating autophagy-dependent ferroptosis. Drug Dev Res 2022; 83:1641-1653. [PMID: 36031759 DOI: 10.1002/ddr.21983] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/11/2022]
Abstract
Acute myeloid leukemia (AML) is a hematologic malignancy with increased lethality. We focused on elucidating the role of Neratinib, a tyrosine kinase inhibitor, in the progression of AML and identify the potential mechanisms. Upon the treatment of Neratinib, autophagy suppressor 3-methyladenine (3-MA) and ferroptosis stimulator Erastin, the viability and proliferation of HL-60 cells were evaluated by cell counting kit-8 and 5-Ethynyl-20-Deoxyuridine staining assays. A flow cytometer was to observe cell cycle and apoptosis. Production of reactive oxygen species (ROS) was tested via 2,7-dichlorodihydrofluorescein diacetate assay. Additionally, malondialdehyde (MDA) content and Fe2+ activity were examined with commercial kits. LC3-II expression was examined by using immunofluoresence staining. Western blot analysis ascertained the expression of proliferation, apoptosis, ferroptosis and autophagy-associated proteins. It was noted that Neratinib notably mitigated cell viability and proliferation, cut down Ki67 and proliferating cell nuclear antigen expression. Moreover, Neratinib hindered cell cycle at G0/G1 phase whereas exacerbated apoptosis. ROS, MDA and Fe2+ activities were elevated by Neratinib, coupled with the reduced glutathione peroxidase 4, ferritin heavy chain 1 expression and enhanced acyl-CoA synthetase long-chain family member 4 expression. Furthermore, Neratinib promoted autophagy of HL-60 cells, evidenced by raised LC3-II, ATG5, Beclin1 expression and lessened p62 expression. Importantly, 3-MA eased the impacts of Neratinib on cell ferroptosis, proliferation and apoptosis, which were offset by further administration of Erastin. To conclude, Neratinib could suppress proliferation and promote apoptosis of HL-60 cells through autophagy-dependent ferroptosis.
Collapse
Affiliation(s)
- Hongxia Ma
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Yang Liu
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Zhen Miao
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Shijia Cheng
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Yunan Zhu
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Yifan Wu
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Xinxin Fan
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Jing Yang
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Xingang Li
- Department of Hematology, The Third People's Hospital of Zhengzhou, Zhengzhou, Henan, China
| | - Liyin Guo
- Department of Hematology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
187
|
Rev-erbs agonist SR9009 alleviates ischemia-reperfusion injury by heightening endogenous cardioprotection at onset of type-2 diabetes in rats: Down-regulating ferritinophagy/ferroptosis signaling. Biomed Pharmacother 2022; 154:113595. [PMID: 36029539 DOI: 10.1016/j.biopha.2022.113595] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 01/13/2023] Open
Abstract
The complex progression of type-2 diabetes (T2DM) results in inconsistent findings on myocardial susceptibility to ischemia-reperfusion (IR). IR injuries in multiple organs interconnect with ferroptosis. Targeting Rev-erbs might limit ferroptosis, with increasing attention turning to the application of circadian medicine against IR injuries. However, whether the Rev-erbs agonist SR9009 could mitigate diabetic IR injury remains unknown. Here, we investigated the susceptibility to IR at onset of T2DM in rats and its potential association between SR9009 and ferritinophagy/ferroptosis signaling. Onset of T2DM model was induced with a high-fat diet and the intraperitoneal injection of a low dose of streptozotocin. Myocardial IR model was established as well. Rats' general characteristics, cardiac function, glycolipid profiles, serum biochemistry, apoptosis index (AI) and morphological histology were observed and analyzed. Western blot and immunofluorescence (IF) were employed to evaluate the expression of ferritinophagy/ferroptosis signaling and its co-localization. Glycolipid profiles and cardiac diastolic function were significantly impaired in diabetic rats. CK-MB, AI levels and ferritinophagy/ferroptosis-related proteins expression decreased towards myocardial IR in diabetic rats compared to non-diabetic rats'. The ferroptosis inducer Erastin up-regulated SOD, MDA, and AI levels, as well as the expression of ferritinophagy/ferroptosis-related proteins in diabetic rats towards IR. Treatment with SR9009 down-regulated the degree of myocardial injury and ferritinophagy/ferroptosis-related proteins expression compared to diabetic rats treated with or without Erastin. Onset of T2DM activated endogenous cardioprotection against the susceptibility to myocardial IR injury, and SR9009 exogenously enhanced this endogenous mechanism and alleviated myocardial IR injury at onset of T2DM by down-regulating ferritinophagy/ferroptosis signaling.
Collapse
|
188
|
Li H, Xu B, Du J, Wu Y, Shao F, Gao Y, Zhang P, Zhou J, Tong X, Wang Y, Li Y. Autophagy-related prognostic signature characterizes tumor microenvironment and predicts response to ferroptosis in gastric cancer. Front Oncol 2022; 12:959337. [PMID: 36052243 PMCID: PMC9424910 DOI: 10.3389/fonc.2022.959337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/20/2022] [Indexed: 12/26/2022] Open
Abstract
Background Gastric cancer (GC) is an important disease and the fifth most common malignancy worldwide. Autophagy is an important process for the turnover of intracellular substances. Autophagy-related genes (ARGs) are crucial in cancer. Accumulating evidence indicates the clinicopathological significance of the tumor microenvironment (TME) in predicting prognosis and treatment efficacy. Methods Clinical and gene expression data of GC were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. A total of 22 genes with differences in expression and prognosis were screened from 232 ARGs. Three autophagy patterns were identified using an unsupervised clustering algorithm and scored using principal component analysis to predict the value of autophagy in the prognosis of GC patients. Finally, the relationship between autophagy and ferroptosis was validated in gastric cancer cells. Results The expression of ARGs showed obvious heterogeneity in GC patients. Three autophagy patterns were identified and used to predict the overall survival of GC patients. These three patterns were well-matched with the immunophenotype. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses showed that the biological functions of the three autophagy patterns were different. A scoring system was then set up to quantify the autophagy model and further evaluate the response of the patients to the immunotherapy. Patients with high autophagy scores had a more severe tumor mutation burden and better prognosis. High autophagy scores were accompanied by high microsatellite instability. Patients with high autophagy scores had significantly higher PD-L1 expression and increased survival. The experimental results confirmed that the expression of ferroptosis genes was positively correlated with the expression of autophagy genes in different autophagy clusters, and inhibition of autophagy dramatically reversed the decrease in ferroptotic cell death and lipid accumulation. Conclusions Autophagy patterns are involved in TME diversity and complexity. Autophagy score can be used as an independent prognostic biomarker in GC patients and to predict the effect of immunotherapy and ferroptosis-based therapy. This might benefit individualized treatment for GC.
Collapse
Affiliation(s)
- Haoran Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Bing Xu
- Department of Clinical Laboratory, Hangzhou Women’s Hospital, Hangzhou, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Fangchun Shao
- Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junyu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
189
|
Wang X, Li P, Jing X, Zhou Y, Shao Y, Zheng M, Wang J, Ran H, Tang H. Folate-modified erythrocyte membrane nanoparticles loaded with Fe 3O 4 and artemisinin enhance ferroptosis of tumors by low-intensity focused ultrasound. Front Oncol 2022; 12:864444. [PMID: 36033521 PMCID: PMC9399670 DOI: 10.3389/fonc.2022.864444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 07/11/2022] [Indexed: 12/03/2022] Open
Abstract
To overcome the challenges of the low efficiency of artemisinin (ART) in anticancer therapy due to its poor water solubility and poor bioavailability, we constructed folate (FA)-modified erythrocyte membrane (EM)-camouflaged poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) (PFH/ART@PLGA/Fe3O4-eFA). Specifically, the inner core of these NPs is mainly composed of phase-changeable perfluorohexane (PFH), magnetic Fe3O4 and ART. In vitro experiments showed that the prepared PFH/ART@PLGA/Fe3O4-eFA was readily taken up by 4T1 cancer cells. PFH/ART@PLGA/Fe3O4-eFA was exposed to low-intensity focused ultrasound (LIFU) irradiation to induce PFH phase transition and NPs collapse, which promoted the release of ART and Fe3O4. After LIFU irradiation, the proportion of dead 4T1 cells, the level of reactive oxygen species (ROS) and the concentration of intracellular Fe2+ ions in the PFH/ART@PLGA/Fe3O4-eFA group were much higher than those in the other group, indicating that the synergistic effect between the intracellular Fe2+ ions and the released ART played a critical role in tumor cell ferroptosis by enhancing ROS generation in vitro. We demonstrated that FA-modified EM NPs could enhance the targeting and accumulation of the NPs at the tumor site in vivo. After LIFU irradiation at 3 W/m2 for 7 min, tumor growth was completely suppressed through FA-modified EM NPs collapse and the release of ART and Fe3O4, which exerted synergistic effects in inducing tumor ferroptosis. Because of these characteristics, these NPs are considered as a promising approach for the delivery of drugs with poor water solubility for efficient cancer therapy.
Collapse
Affiliation(s)
- Xingyue Wang
- Department of Ultrasonography, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Peng Li
- Department of Diagnostic Ultrasoundand Echocardiography, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xiangxiang Jing
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Yun Zhou
- Department of Ultrasound, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yongfu Shao
- Department of Ultrasonography, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Min Zheng
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Junrui Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Institute of Ultrasound Imaging, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hailin Tang
- Department of Ultrasound, the International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
190
|
Ma TL, Chen JX, Zhu P, Zhang CB, Zhou Y, Duan JX. Focus on ferroptosis regulation: Exploring novel mechanisms and applications of ferroptosis regulator. Life Sci 2022; 307:120868. [DOI: 10.1016/j.lfs.2022.120868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 10/15/2022]
|
191
|
Abedi M, Rahgozar S. Puzzling Out Iron Complications in Cancer Drug Resistance. Crit Rev Oncol Hematol 2022; 178:103772. [PMID: 35914667 DOI: 10.1016/j.critrevonc.2022.103772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Iron metabolism are frequently disrupted in cancer. Patients with cancer are prone to anemia and receive transfusions frequently; the condition which results in iron overload, contributing to serious therapeutic complications. Iron is introduced as a carcinogen that may increase tumor growth. However, investigations regarding its impact on response to chemotherapy, particularly the induction of drug resistance are still limited. Here, iron contribution to cell signaling and various molecular mechanisms underlying iron-mediated drug resistance are described. A dual role of this vital element in cancer treatment is also addressed. On one hand, the need to administer iron chelators to surmount iron overload and improve the sensitivity of tumor cells to chemotherapy is discussed. On the other hand, the necessary application of iron as a therapeutic option by iron-oxide nanoparticles or ferroptosis inducers is explained. Authors hope that this paper can help unravel the clinical complications related to iron in cancer therapy.
Collapse
Affiliation(s)
- Marjan Abedi
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| | - Soheila Rahgozar
- Department of Cell and Molecular biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|
192
|
Chen J, Wang S, Blokhuis B, Ruijtenbeek R, Garssen J, Redegeld F. Cell Death Triggers Induce MLKL Cleavage in Multiple Myeloma Cells, Which may Promote Cell Death. Front Oncol 2022; 12:907036. [PMID: 35965541 PMCID: PMC9369655 DOI: 10.3389/fonc.2022.907036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
Necroptosis is a type of caspase-independent programmed cell death that has been implicated in cancer development. Activation of the canonical necroptotic pathway is often characterized with successive signaling events as the phosphorylation of mixed lineage kinase domain-like (MLKL) by receptor-interacting protein kinase-3 (RIPK3), followed by MLKL oligomerization and plasma membrane rupture. Here, we demonstrate that omega-3 polyunsaturated fatty acids DHA/EPA and the proteasome inhibitor bortezomib induce necroptosis in human multiple myeloma (MM) cells in a RIPK3 independent manner. In addition, it seemed to be that phosphorylation of MLKL was not essential for necroptosis induction in MM cells. We show that treatment of MM cells with these cytotoxic compounds induced cleavage of MLKL into a 35 kDa protein. Furthermore, proteolytic cleavage of MLKL was triggered by activated caspase-3/8/10, and mutation of Asp140Ala in MLKL blocked this cleavage. The pan-caspase inhibitor ZVAD-FMK efficiently prevented DHA/EPA and bortezomib induced cell death. In addition, nuclear translocation of total MLKL and the C-terminus were detected in treated MM cells. Collectively, this present study suggests that caspase-mediated necroptosis may occur under (patho)physiological conditions, delineating a novel regulatory mechanism of necroptosis in RIPK3-deficient cancer cells.
Collapse
Affiliation(s)
- Jing Chen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | | | - Bart Blokhuis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | | | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Nutricia Research, Utrecht, Netherlands
| | - Frank Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
- *Correspondence: Frank Redegeld,
| |
Collapse
|
193
|
Zhang X, Ai Z, Zhang Z, Dong R, Wang L, Jin S, Wei H. Dihydroartemisinin Triggers Ferroptosis in Multidrug-Resistant Leukemia Cells. DNA Cell Biol 2022; 41:705-715. [PMID: 35687364 DOI: 10.1089/dna.2021.1145] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The molecular mechanisms and role of ferroptosis in tumor drug resistance remain unclear. In this study, we found that multidrug-resistant (MDR) K562/adriamycin (ADM) leukemia cells possessed higher glutathione (GSH) levels and iron-regulatory protein 2 (IRP2), transferrin receptor, ferritin heavy chain 1 (FTH1), and peroxidase-4 (GPX4) expression than parental drug-sensitive K562 leukemia cells. These elevations might have increased the antioxidant ability of K562/ADM cells and granted them increased buffering capacity against iron disorder, protecting them from ferroptosis and favoring drug resistance. However, dihydroartemisinin (DHA) restrained MDR K562/ADM cell viability and enhanced the sensitivity to ADM by strengthening ferroptosis induced by downregulation of GSH levels and GPX4, IRP2, and FTH expression, upregulation of reactive oxygen species (ROS) levels, and the consequent suppression of total serine/threonine kinase (AKT), total mammalian target of rapamycin (t-mTOR), phosphorylated mTOR (p-mTOR), and p-mTOR/t-mTOR levels. Moreover, compared with K562 cells, MDR K562/ADM cells exhibited greater ROS increases, GSH decreases, and viability rescue after ferroptosis inhibitor treatment owing to further suppression of FTH1, GPX4, p-mTOR, and p-mTOR/t-mTOR. Collectively, the increase in oxidative damage and the blockade of antioxidant defence shaped DHA-induced ferroptosis, which was responsible for the sensitivity of MDR leukemia cells to DHA. Regulating iron homeostasis/ROS/AKT/mTOR might be a potential chemotherapeutic strategy for sensitizing drug-resistant leukemia.
Collapse
Affiliation(s)
- Xueyan Zhang
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China.,Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Ziying Ai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Zhewen Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Rui Dong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Lina Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Suya Jin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
194
|
Cui Z, Fu Y, Yang Z, Gao Z, Feng H, Zhou M, Zhang L, Chen C. Comprehensive Analysis of a Ferroptosis Pattern and Associated Prognostic Signature in Acute Myeloid Leukemia. Front Pharmacol 2022; 13:866325. [PMID: 35656299 PMCID: PMC9152364 DOI: 10.3389/fphar.2022.866325] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/19/2022] [Indexed: 11/24/2022] Open
Abstract
Ferroptosis is a widespread form of programmed cell death. The environment of cancer cells makes them vulnerable to ferroptosis, including AML cells, yet the specific association between ferroptosis and AML outcome is little known. In this study, we utilized ferroptosis-related genes to distinguish two subtypes in TCGA cohort, which were subsequently validated in independent AML cohorts. The subtypes were linked with tumor-related immunological abnormalities, mutation landscape and pathway dysregulation, and clinical outcome. Further, we developed a 13-gene prognostic model for AML from DEG analysis in the two subtypes. A risk score was calculated for each patient, and then the overall group was stratified into high- and low-risk groups; the higher risk score correlated with short survival. The model was validated in both independent AML cohorts and pan-cancer cohorts, which demonstrated robustness and extended the usage of the model. A nomogram was constructed that integrated risk score, FLT3-ITD, TP53, and RUNX1 mutations, and age. This model had the additional value of discriminating the sensitivity of several chemotherapeutic drugs and ferroptosis inducers in the two risk groups, which increased the translational value of this model as a potential tool in clinical management. Through integrated analysis of ferroptosis pattern and its related model, our work shed new light on the relationship between ferroptosis and AML, which may facilitate clinical application and therapeutics.
Collapse
Affiliation(s)
- Zelong Cui
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Fu
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zongcheng Yang
- Center of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhenxing Gao
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Huimin Feng
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Minran Zhou
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lu Zhang
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunyan Chen
- Department of Hematology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
195
|
Sun Q, Zhen P, Li D, Liu X, Ding X, Liu H. Amentoflavone promotes ferroptosis by regulating reactive oxygen species (ROS) /5’AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) to inhibit the malignant progression of endometrial carcinoma cells. Bioengineered 2022; 13:13269-13279. [PMID: 35635082 PMCID: PMC9275900 DOI: 10.1080/21655979.2022.2079256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
It was reported that amentoflavone (AF) had anti-tumor ability. Therefore, this study aimed to investigate the role of AF in endometrial cancer as well as to discuss its underlying mechanism. The viability, proliferation, and apoptosis of endometrial carcinoma cells (KLE) with AF administration were detected by methyl tetrazolium (MTT) assay, clone formation, and terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assays. Thiobarbituric acid reactive substance (TBARS) production and Fe2+ level in AF-treated KLE cells were detected by TBARS assay and Iron assay. The expressions of proliferation- apoptosis-, ferroptosis-, and 5'AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling-related proteins in AF-treated KLE cells were detected by western blot analysis. Reactive oxygen species (ROS) expression in AF-treated KLE cells was determined by ROS assay kit. N-acetyl cysteine (NAC), which is an inhibitor of ROS, was used to confirm whether AF exerted its effects on KLE cells through ROS/AMPK/mTOR signaling. As a result, AF inhibited the viability and proliferation of KLE cells but promoted apoptosis and ferroptosis. The expressions of ROS and AMPK were increased, while mTOR expression was decreased in AF-treated KLE cells. NAC reversed the effects of AF on biological behaviors of KLE cells by inactivating ROS/AMPK/mTOR signaling. In conclusion, AF promoted ferroptosis by activating ROS/AMPK/mTOR to inhibit the viability and proliferation and promoted the apoptosis and ferroptosis of KLE cells.
Collapse
Affiliation(s)
- Qi Sun
- Traditional Chinese Medicine (Mongolian Medicine) College, Chifeng University, Chifeng, Inner Mongolia, China
| | - Peng Zhen
- Department of Radiation Oncology, Chifeng Cancer Hospital, Chifeng, Inner Mongolia, China
| | - Dandan Li
- Rehabilitation Department, Chifeng Cancer Hospital, Chifeng, Inner Mongolia, China
| | - Xiaochen Liu
- Rehabilitation Department, Chifeng Cancer Hospital, Chifeng, Inner Mongolia, China
| | - Xinling Ding
- Department of Human Anatomy, Basic Medical College, Chifeng University, Chifeng, Inner Mongolia, China
| | - Huihui Liu
- Cancer Rehabilitation Department, Chifeng Cancer Hospital, Chifeng, Inner Mongolia, China
| |
Collapse
|
196
|
Seo W, Silwal P, Song IC, Jo EK. The dual role of autophagy in acute myeloid leukemia. J Hematol Oncol 2022; 15:51. [PMID: 35526025 PMCID: PMC9077970 DOI: 10.1186/s13045-022-01262-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/14/2022] [Indexed: 01/18/2023] Open
Abstract
Acute myeloid leukemia (AML) is a severe hematologic malignancy prevalent in older patients, and the identification of potential therapeutic targets for AML is problematic. Autophagy is a lysosome-dependent catabolic pathway involved in the tumorigenesis and/or treatment of various cancers. Mounting evidence has suggested that autophagy plays a critical role in the initiation and progression of AML and anticancer responses. In this review, we describe recent updates on the multifaceted functions of autophagy linking to genetic alterations of AML. We also summarize the latest evidence for autophagy-related genes as potential prognostic predictors and drivers of AML tumorigenesis. We then discuss the crosstalk between autophagy and tumor cell metabolism into the impact on both AML progression and anti-leukemic treatment. Moreover, a series of autophagy regulators, i.e., the inhibitors and activators, are described as potential therapeutics for AML. Finally, we describe the translation of autophagy-modulating therapeutics into clinical practice. Autophagy in AML is a double-edged sword, necessitating a deeper understanding of how autophagy influences dual functions in AML tumorigenesis and anti-leukemic responses.
Collapse
Affiliation(s)
- Wonhyoung Seo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Prashanta Silwal
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea.,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Ik-Chan Song
- Division of Hematology/Oncology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, 35015, Korea
| | - Eun-Kyeong Jo
- Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Microbiology, Chungnam National University College of Medicine, Daejeon, 35015, Korea. .,Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|
197
|
Yang J, Zhou Y, Li Y, Hu W, Yuan C, Chen S, Ye G, Chen Y, Wu Y, Liu J, Wang Y, Du J, Tong X. Functional deficiency of succinate dehydrogenase promotes tumorigenesis and development of clear cell renal cell carcinoma through weakening of ferroptosis. Bioengineered 2022; 13:11187-11207. [PMID: 35510387 PMCID: PMC9278435 DOI: 10.1080/21655979.2022.2062537] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal carcinomas, with high mortality and poor prognoses worldwide. Succinate dehydrogenase (SDH) consists of four nuclear-encoded subunits and it is the only complex involved in both the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Previous studies have shown decreased SDH activity in ccRCC. However, the role and underlying molecular mechanisms of SDH in ccRCC initiation and development remain unclear. In the present study, pan-cancer analysis of SDH gene expression was analyzed and the relationship between SDH gene expression and clinicopathological parameters was assessed using different databases. cBioPortal, UACLAN, and Tumor Immune Estimation Resource (TIMER) were subsequently utilized to analyze genetic alterations, methylation, and immune cell infiltration of SDH genes in ccRCC patients. We found SDHs were significantly downregulated in ccRCC tissues and correlated with ccRCC progression. Increased methylation and high SDH promoter mutation rates may be the cause of reduced expression of SDHs in ccRCC. Moreover, the interaction network showed that SDH genes were correlated with ferroptosis-related genes. We further demonstrated that SDH inhibition dampened oxidative phosphorylation, reduced ferroptotic events, and restored ferroptotic cell death, characterized by eliminated mitochondrial ROS levels, decreased cellular ROS and diminished peroxide accumulation. Collectively, this study provides new insights into the regulatory role of SDH in the carcinogenesis and progression of ccRCC, introducing a potential target for advanced antitumor therapy through ferroptosis.
Collapse
Affiliation(s)
- Jing Yang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yi Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wanye Hu
- Graduate School, Bengbu Medical College, Bengbu, Anhui, China
| | - Chen Yuan
- Graduate School, Bengbu Medical College, Bengbu, Anhui, China
| | - Shida Chen
- Graduate School, Bengbu Medical College, Bengbu, Anhui, China
| | - Gaoqi Ye
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yuzhou Chen
- Pittsburgh Institute, Sichuan University, Chengdu, Sichuan, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Jing Liu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Ying Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.,Department of Central Laboratory, Affiliated Hangzhou first people's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Xiangmin Tong
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, China.,School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, China.,Graduate School, Bengbu Medical College, Bengbu, Anhui, China
| |
Collapse
|
198
|
Zhou C, Wang L, Hu W, Tang L, Zhang P, Gao Y, Du J, Li Y, Wang Y. CDC25C is a prognostic biomarker and correlated with mitochondrial homeostasis in pancreatic adenocarcinoma. Bioengineered 2022; 13:13089-13107. [PMID: 35615982 PMCID: PMC9275923 DOI: 10.1080/21655979.2022.2078940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a common digestive tract malignant tumor with an extremely poor prognosis. The survival and prognosis may significantly improve if it is diagnosed early. Therefore, identifying biomarkers for early diagnosis is still considered a great clinical challenge in PAAD. Cell Division Cycle 25C (CDC25C), a cardinal cell cycle regulatory protein, directly mediates the G2/M phase and is intimately implicated in tumor development. In the current study, we aim to explore the possible functions of CDC25C and determine the potential role of CDC25C in the early diagnosis and prognosis of PAAD. Expression analysis indicated that CDC25C was overexpressed in PAAD . In addition, survival analysis revealed a strong correlation between the enhanced expression of CDC25C and poor survival in PAAD. Furthermore, pathway analysis showed that CDC25C is related to TP53 signaling pathways, glutathione metabolism, and glycolysis. Mechanically, our in vitro experiments verified that CDC25C was capable of promoting cell viability and proliferation. CDC25C inhibition increases the accumulation of ROS, inhibits mitochondrial respiration, suppresses glycolysis metabolism and reduces GSH levels. To summarize, CDC25C may be involved in energy metabolism by maintaining mitochondrial homeostasis. Our results suggested that CDC25C is a potential biological marker and promising therapeutic target of PAAD.
Collapse
Affiliation(s)
- Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Central Laboratory, Affiliated Hangzhou first people’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Luyang Wang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Wanye Hu
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Lusheng Tang
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, China
| | - Ping Zhang
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yan Gao
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yanchun Li
- Department of Central Laboratory, Affiliated Hangzhou first people’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Wang
- Department of Central Laboratory, Affiliated Hangzhou first people’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
199
|
Bekric D, Ocker M, Mayr C, Stintzing S, Ritter M, Kiesslich T, Neureiter D. Ferroptosis in Hepatocellular Carcinoma: Mechanisms, Drug Targets and Approaches to Clinical Translation. Cancers (Basel) 2022; 14:1826. [PMID: 35406596 PMCID: PMC8998032 DOI: 10.3390/cancers14071826] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis, an iron and reactive oxygen species (ROS)-dependent non-apoptotic type of regulated cell death, is characterized by a massive iron overload and peroxidation of polyunsaturated fatty acids (PUFAs), which finally results in cell death. Recent studies suggest that ferroptosis can influence carcinogenesis negatively and therefore may be used as a novel anti-cancer strategy. Hepatocellular carcinoma (HCC) is a deadly malignancy with poor chances of survival and is the second leading cause of cancer deaths worldwide. Diagnosis at an already late stage and general resistance to current therapies may be responsible for the dismal outcome. As the liver acts as a key factor in iron metabolism, ferroptosis is shown to play an important role in HCC carcinogenesis and, more importantly, may hold the potential to eradicate HCC. In this review, we summarize the current knowledge we have of the role of ferroptosis in HCC and the application of ferroptosis as a therapy option and provide an overview of the potential translation of ferroptosis in the clinical practice of HCC.
Collapse
Affiliation(s)
- Dino Bekric
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (C.M.); (M.R.); (T.K.)
| | - Matthias Ocker
- Translational Medicine & Clinical Pharmacology, Boehringer Ingelheim Pharma GmbH & Co. KG, 55216 Ingelheim, Germany;
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology, Campus Charité Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany;
| | - Christian Mayr
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (C.M.); (M.R.); (T.K.)
- Department of Internal Medicine I, Paracelsus Medical University/University Hospital Salzburg (SALK), 5020 Salzburg, Austria
| | - Sebastian Stintzing
- Medical Department, Division of Hematology, Oncology, and Cancer Immunology, Campus Charité Mitte, Charité University Medicine Berlin, 10117 Berlin, Germany;
| | - Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (C.M.); (M.R.); (T.K.)
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, Paracelsus Medical University, 5020 Salzburg, Austria
- Gastein Research Institute, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Tobias Kiesslich
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, 5020 Salzburg, Austria; (D.B.); (C.M.); (M.R.); (T.K.)
- Department of Internal Medicine I, Paracelsus Medical University/University Hospital Salzburg (SALK), 5020 Salzburg, Austria
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University/University Hospital Salzburg (SALK), 5020 Salzburg, Austria
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
200
|
Ferroptosis in hematological malignancies and its potential network with abnormal tumor metabolism. Biomed Pharmacother 2022; 148:112747. [PMID: 35240523 DOI: 10.1016/j.biopha.2022.112747] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/12/2022] [Accepted: 02/21/2022] [Indexed: 12/24/2022] Open
Abstract
Ferroptosis, a new type of regulated cell death, displays characteristics that transparently differ from apoptosis, autophagy and necroptosis. There is growing appreciation that targeting ferroptosis is potentially a novel strategy in anti-tumor therapy, especially for invasive malignancies demonstrating resistance to chemotherapy. Almost all types of cancer cells depend on abnormal metabolic activities to participate in vicious progression, giving the possibility to interfere with underlying metabolic preferences and compromise malignant cells by inducing ferroptosis. In this perspective, we give an overview of potential interactions between ferroptosis and abnormal tumor metabolism, with special focus on systematic researches in hematological malignancies.
Collapse
|