151
|
Lan H, Hong W, Qian D, Peng F, Li H, Liang C, Du M, Gu J, Mai J, Bai B, Peng G. Quercetin modulates the gut microbiota as well as the metabolome in a rat model of osteoarthritis. Bioengineered 2021; 12:6240-6250. [PMID: 34486477 PMCID: PMC8806632 DOI: 10.1080/21655979.2021.1969194] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although the mechanism of osteoarthritis (OA) has been widely studied and the use of quercetin for OA therapy is well documented, the relevant characteristics of the microbiome and metabolism remain unclear. This study reports changes in the gut microbiota and metabolism during quercetin therapy for OA in a rat model and provides an integrative analysis of the biomechanism. In this study, the rats were categorized into 3 different groups: the OA model, quercetin treatment, and control groups. The OA rats was conducted using a monoiodoacetate (MIA) injection protocol. The rats in the quercetin group received daily intragastric administration of quercetin from day 1 to day 28. Stool samples were collected, and DNA was extracted. We used an integrated approach that combined the sequencing of whole 16S rRNA, short-chain fatty acid (SCFA) measurements and metabolomics analysis by mass spectrometry (MS) to characterize the functional impact of quercetin on the gut microbiota and metabolism in a rat model of OA. The use of quercetin partially abrogated intestinal flora disorder and reversed fecal metabolite abnormalities. Compared with the control rats, the OA rats showed differences at both the class level (Clostridia, Bacteroidia, and Bacilli) and the genus level (Lactobacillus and unidentified Ruminococcaceae). Acetic acid, propionic acid and 24 metabolites were significantly altered among the three groups. However, the changes were significantly abrogated in quercetin-treated OA rats. Consequently, this study provided important evidence regarding perturbations of the gut microbiome and the function of these changes in a potential new mechanism of quercetin treatment.
Collapse
Affiliation(s)
- Haifeng Lan
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei Hong
- The Division of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Gmu-gibh Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongyang Qian
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou Medical University/Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, Guangdong, China
| | - Fang Peng
- Department of Critical Care Medicine, The Third Affiliated Hospital of Guangzhou Medical University Guangzhou, Guangdong, China
| | - Haiqing Li
- The Division of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunxiao Liang
- Department of Thoracic Medicine, Shenzhen Second People's Hospital, the First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China
| | - Min Du
- Gmu-gibh Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jinlan Gu
- Gmu-gibh Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Junxuan Mai
- Gmu-gibh Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Bo Bai
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou Medical University/Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, Guangdong, China
| | - Gongyong Peng
- The Division of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, National Center for Respiratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
152
|
Mohammed HA, Sulaiman GM, Anwar SS, Tawfeeq AT, Khan RA, Mohammed SAA, Al-Omar MS, Alsharidah M, Rugaie OA, Al-Amiery AA. Quercetin against MCF7 and CAL51 breast cancer cell lines: apoptosis, gene expression and cytotoxicity of nano-quercetin. Nanomedicine (Lond) 2021; 16:1937-1961. [PMID: 34431317 DOI: 10.2217/nnm-2021-0070] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Aims: To evaluate the anti breast-cancer activity, biocompatibility and toxicity of poly(d,l)-lactic-co-glycolic acid (PLGA)-encapsulated quercetin nanoparticles (Q-PLGA-NPs). Materials & methods: Quercetin was nano-encapsulated by an emulsion-diffusion process, and the nanoparticles were fully characterized through Fourier transform infrared spectroscopy, x-ray diffractions, FESEM and zeta-sizer analysis. Activity against CAL51 and MCF7 cell lines were assessed by DNA fragmentation assays, fluorescence microscopy, and acridine-orange, and propidium-iodide double-stainings. Biocompatibility towards red blood cells and toxicity towards mice were also explored. Results: The Q-PLGA-NPs exhibited apoptotic activity against the cell lines. The murine in vivo studies showed no significant alterations in the liver and kidney's functional biomarkers, and no apparent abnormalities, or tissue damages were observed in the histological images of the liver, spleen, lungs, heart and kidneys. Conclusion: The study established the preliminary in vitro efficacy and in vivo safety of Q-PLGA-NPs as a potential anti-breast cancer formulation.
Collapse
Affiliation(s)
- Hamdoon A Mohammed
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia.,Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Cairo, 11371, Egypt
| | - Ghassan M Sulaiman
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad,10066, Iraq
| | - Sahar S Anwar
- Division of Biotechnology, Department of Applied Sciences, University of Technology, Baghdad,10066, Iraq
| | - Amer T Tawfeeq
- Department of Molecular Biology, Iraqi Center for Cancer and Medical Genetics Research, Mustansiriyah University, PO Box 14022, Baghdad, Iraq
| | - Riaz A Khan
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Salman A A Mohammed
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia
| | - Mohsen S Al-Omar
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim, 51452, Saudi Arabia.,Medicinal Chemistry and Pharmacognosy Department, Faculty of Pharmacy, JUST, Irbid, 22110, Jordan
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Qassim, 51452, Kingdom of Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, PO Box 991, Qassim, 51911, Saudi Arabia
| | - Ahmed A Al-Amiery
- Unit of Applied Sciences Research, Department of Applied Science, University of Technology, Baghdad,10066, Iraq.,Department of Chemical and Process Engineering, University of Kebangsaan Malaysia (UKM), Bangi, Selangor, 43000, Malaysia
| |
Collapse
|
153
|
Sun L, Lu B, Liu Y, Wang Q, Li G, Zhao L, Zhao C. Synthesis, characterization and antioxidant activity of quercetin derivatives. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1942059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lei Sun
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Bo Lu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Yandan Liu
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Qian Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
| | - Gao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji, China
| | - Longxuan Zhao
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, China
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| | - Chunhui Zhao
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| |
Collapse
|
154
|
Liu X, Chen M, Luo J, Zhao H, Zhou X, Gu Q, Yang H, Zhu X, Cui W, Shi Q. Immunopolarization-regulated 3D printed-electrospun fibrous scaffolds for bone regeneration. Biomaterials 2021; 276:121037. [PMID: 34325336 DOI: 10.1016/j.biomaterials.2021.121037] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 12/12/2022]
Abstract
Three-dimension (3D)-printed bioscaffolds are precise and personalized for bone regeneration. However, customized 3D scaffolds may activate the immune response in vivo and consequently impede bone formation. In this study, with layer-by-layer deposition and electrospinning technology to control the physical structure, 3D-printed PCL scaffolds with PLLA electrospun microfibrous (3D-M-EF) and nanofibrous (3D-N-EF) composites were constructed, and their immunomodulatory effect and the subsequent osteogenic effects were explored. Compared to 3D-N-EF scaffolds, 3D-M-EF scaffolds polarized more RAW264.7 cells toward alternatively activated macrophages (M2), as demonstrated by increased M2 and deceased classically activated macrophage (M1) phenotypic marker expression in the cells. In addition, the 3D-M-EF scaffolds shifted RAW264.7 cells to the M2 phenotype through PI3K/AKT signaling and enhanced VEGF and BMP-2 expression. Conditional medium from the RAW264.7 cells seeded in 3D-M-EF scaffolds promoted osteogenesis of MC3T3-E1 cells. Furthermore, in vivo study of repairing rat calvarial defects, the 3D-M-EF scaffolds increased the polarization of M2 macrophages, enhanced angiogenesis, and accelerated new bone formation. Collectively, our data suggested that well-designed 3D-M-EF scaffolds are favorable for osteogenesis through regulation of M2 polarization. Therefore, it is potential to utilize the physical structure of 3D-printed scaffolds to manipulate the osteoimmune environment to promote bone regeneration.
Collapse
Affiliation(s)
- Xingzhi Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 708 Renmin Road, Suzhou, Jiangsu, 215007, PR China; School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 388 Ruoshui Road, Suzhou, Jiangsu, 215123, PR China; University of Science and Technology of China, 96 Jinzai Road, Hefei, Anhui, 230026, PR China
| | - Mimi Chen
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 708 Renmin Road, Suzhou, Jiangsu, 215007, PR China
| | - Junchao Luo
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 708 Renmin Road, Suzhou, Jiangsu, 215007, PR China
| | - Huan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 708 Renmin Road, Suzhou, Jiangsu, 215007, PR China
| | - Xichao Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 708 Renmin Road, Suzhou, Jiangsu, 215007, PR China
| | - Qiaoli Gu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 708 Renmin Road, Suzhou, Jiangsu, 215007, PR China
| | - Huilin Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 708 Renmin Road, Suzhou, Jiangsu, 215007, PR China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 708 Renmin Road, Suzhou, Jiangsu, 215007, PR China.
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, PR China.
| | - Qin Shi
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Medical College of Soochow University, Orthopedic Institute of Soochow University, 708 Renmin Road, Suzhou, Jiangsu, 215007, PR China.
| |
Collapse
|
155
|
Chen W, Lin T, He Q, Yang P, Zhang G, Huang F, Wang Z, Peng H, Li B, Liang D, Wang H. Study on the potential active components and molecular mechanism of Xiao Huoluo Pills in the treatment of cartilage degeneration of knee osteoarthritis based on bioinformatics analysis and molecular docking technology. J Orthop Surg Res 2021; 16:460. [PMID: 34273999 PMCID: PMC8285844 DOI: 10.1186/s13018-021-02552-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Knee osteoarthritis is a common joint degenerative disease. Xiao Huoluo Pills (XHLP) has been used to treat degenerative diseases such as osteoarthritis and hyperosteogeny. However, XHLP’s specific effective ingredients and mechanism of action against osteoarthritis have not been explored. Therefore, bioinformatics technology and molecular docking technology are employed in this study to explore the molecular basis and mechanism of XHLP in the treatment of knee osteoarthritis. Methods Public databases (TCMSP, Batman-TCM, HERB, DrugBank, and UniProt) are used to find the effective active components and corresponding target proteins of XHLP (screening conditions: OB > 30%, DL ≥ 0.18). Differentially expressed genes related to cartilage lesions of knee osteoarthritis are obtained based on the GEO database (screening conditions: adjust P value < 0.01, |log2 FC|≥1.0). The Venn package in R language and the BisoGenet plug-in in Cytoscape are adopted to predict the potential molecules of XHLP in the treatment of knee osteoarthritis. The XHLP-active component-target interaction network and the XHLP-knee osteoarthritis-target protein core network are constructed using Cytoscape software. Besides, GO/KEGG enrichment analysis on core genes is performed using the Bioconductor package and clusterProfiler package in the R language to explain the biological functions and signal pathways of the core proteins. Finally, molecular docking is performed through software such as Vina, LeDock, Discovery Studio 2016, PyMOL, AutoDockTools 1.5.6, so as to verify the binding ability between the active components of the drug and the core target protein. Results XHLP has been screened out of 71 potentially effective active compounds for the treatment of OA, mainly including quercetin, Stigmasterol, beta-sitosterol, Izoteolin, and ellagic acid. Knee osteoarthritis cartilage lesion sequencing data (GSE114007) was screened out of 1672 differentially expressed genes, including 913 upregulated genes and 759 downregulated genes, displayed as heat maps and volcano maps. Besides, 33 core target proteins are calculated by Venn data package in R and BisoGenet plug-in in Cytoscape. The enrichment analysis on these target genes revealed that the core target genes are mainly involved in biological processes such as response to oxygen levels, mechanical stimulus, vitamin, drug, and regulation of smooth muscle cell proliferation. These core target genes are involved in signaling pathways related to cartilage degeneration of knee osteoarthritis such as TNF signaling pathway and PI3K-Akt signaling pathway. Finally, the molecular docking verification demonstrates that some active components of the drug have good molecular docking and binding ability with the core target protein, further confirming that XHLP has the effect of inhibiting cartilage degeneration in knee osteoarthritis. Conclusions In this study, based on the research foundation of bioinformatics and molecular docking technology, the active components and core target molecules of XHLP for the treatment of cartilage degeneration of knee osteoarthritis are screened out, and the potential mechanism of XHLP inhibiting cartilage degeneration of knee osteoarthritis is deeply explored. The results provide theoretical basis and new treatment plan for XHLP in the treatment of knee osteoarthritis.
Collapse
Affiliation(s)
- Weijian Chen
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510045, Guangdong, China.,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China
| | - Tianye Lin
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,Department of Joint Orthopaedic, the Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Qi He
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Peng Yang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,Department of Joint Orthopaedic, the Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Gangyu Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Fayi Huang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China.,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China.,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Zihao Wang
- Queen's University Belfast, University Road, Belfast, Northen Ireland, BT7 1NN, United Kingdom
| | - Hao Peng
- Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510045, Guangdong, China
| | - Baolin Li
- Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510045, Guangdong, China
| | - Du Liang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China. .,Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, 510045, Guangdong, China. .,Department of Orthopaedics, Guangzhou Orthopedic Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Haibin Wang
- Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China. .,The Lab of Orthopaedics of Chinese Medicine of Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, ,510405, Guangdong, China. .,The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, Guangdong, China. .,Department of Orthopaedics, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
156
|
Li W, Wang Y, Tang Y, Lu H, Qi Y, Li G, He H, Lu F, Yang Y, Sun H. Quercetin Alleviates Osteoarthritis Progression in Rats by Suppressing Inflammation and Apoptosis via Inhibition of IRAK1/NLRP3 Signaling. J Inflamm Res 2021; 14:3393-3403. [PMID: 34295174 PMCID: PMC8291879 DOI: 10.2147/jir.s311924] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/29/2021] [Indexed: 12/28/2022] Open
Abstract
Introduction Quercetin was recently reported to help protect against osteoarthritis (OA) progression, but the molecular mechanism for that protective affect remains unclear. Methods Here, OA model rats were intraperitoneally injected with quercetin, and the severity of cartilage damage in the rats was evaluated by H&E, Safranin O, and Toluidine blue, as well as by using the Osteoarthritis Research Society International (OARSI) Scoring System. Additionally, rat chondrocytes were treated with quercetin and then stimulated with IL-1β. The levels of pro-inflammatory cytokines (IL-1β, IL-18, and TNF-α) were detected by ELISA.Cell apoptosis was evaluated by flow cytometry and Hoechst staining. ROS levels were measured using a DCFH-DA probe. Protein expression was evaluated by Western blotting, immunohistochemical staining, and immunofluorescence. Results Our data showed that quercetin attenuated the degeneration and erosion of articular cartilage, suppressed inflammation and apoptosis, and downregulated the levels of IRAK1, NLRP3, and caspase-3 expression. In vitro data showed that overexpression of NLRP3 could reverse the suppressive effect of quercetin on IL-1β-induced rat chondrocyte injuries. Importantly, rescue experiments confirmed that quercetin inhibited IL-1β-induced rat chondrocyte injuries in vitro by suppressing the IRAK1/NLRP3 signaling pathway. Conclusion Our study indicated that quercetin inhibits IL-1β-induced inflammation and cartilage degradation by suppressing the IRAK1/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Wenjun Li
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong Province, People's Republic of China
| | - Yeyang Wang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong Province, People's Republic of China
| | - Yaqin Tang
- Department of Internal Medicine, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine and Pharmacology, Guangzhou, Guangdong Province, 510405, People's Republic of China
| | - Hanyu Lu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong Province, People's Republic of China
| | - Yong Qi
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong Province, People's Republic of China
| | - Guitao Li
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong Province, People's Republic of China
| | - Hebei He
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong Province, People's Republic of China
| | - Fanglian Lu
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong Province, People's Republic of China
| | - Yixin Yang
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong Province, People's Republic of China
| | - Hongtao Sun
- Department of Orthopedics, Guangdong Second Provincial General Hospital, Guangzhou, 510317, Guangdong Province, People's Republic of China
| |
Collapse
|
157
|
Zhu P, Wang Z, Sun Z, Liao B, Cai Y. Recombinant platelet-derived growth factor-BB alleviates osteoarthritis in a rat model by decreasing chondrocyte apoptosis in vitro and in vivo. J Cell Mol Med 2021; 25:7472-7484. [PMID: 34250725 PMCID: PMC8335691 DOI: 10.1111/jcmm.16779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/08/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is a common joint disease that mainly affects the diarthrodial joints. Treatments for OA include non‐pharmacological interventions, topical and oral therapies, intra‐articular therapies and joint surgery. However, all the treatments mentioned above mainly aim to control the symptoms instead of improving or reversing the joint condition. In this research, we observed the effect of recombinant platelet‐derived growth factor (PDGF)‐BB on OA in a monosodium iodoacetate (MIA)–induced rat model and revealed the possible mechanisms. In vitro, the level of inflammation in the chondrocytes was gradually alleviated, and the apoptosis rate was gradually decreased by PDGF‐BB at increasing concentrations. The levels of p‐p38, Bax and caspase‐3 decreased, and the level of p‐Erk increased with increasing PDGF‐BB concentration. In vivo, PDGF‐BB could significantly reverse chondrocyte and matrix loss. Furthermore, high concentrations of PDGF‐BB could alleviate cartilage hyperplasia to remodel the tissue. The level of collagen II was up‐regulated, and the levels of collagen X and apoptosis were down‐regulated by increasing concentrations of PDGF‐BB. In conclusion, recombinant PDGF‐BB alleviated OA by down‐regulating caspase‐3‐dependent apoptosis. The effects of PDGF‐BB on OA mainly include inhibiting chondrocyte loss, reducing cartilage hyperplasia and osteophyte formation, and regulating collagen anabolism.
Collapse
Affiliation(s)
- Pengfei Zhu
- Department of Cardiology, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhengchao Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenxing Sun
- Department of Ultrasound, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bokai Liao
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Yu Cai
- Department of Rehabilitation, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
158
|
Proteomic Analysis Reveals Commonly Secreted Proteins of Mesenchymal Stem Cells Derived from Bone Marrow, Adipose Tissue, and Synovial Membrane to Show Potential for Cartilage Regeneration in Knee Osteoarthritis. Stem Cells Int 2021; 2021:6694299. [PMID: 34306096 PMCID: PMC8264516 DOI: 10.1155/2021/6694299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Paracrine factors secreted by mesenchymal stem cells (MSCs) reportedly modulate inflammation and reparative processes in damaged tissues and have been explored for knee osteoarthritis (OA) therapy. Although various studies have reported the effects of paracrine factors in knee OA, it is not yet clear which paracrine factors directly affect the regeneration of damaged cartilage and which are secreted under various knee OA conditions. In this study, we cultured MSCs derived from three types of tissues and treated each type with IL-1β and TNF-α or not to obtain conditioned medium. Each conditioned medium was used to analyse the paracrine factors related to cartilage regeneration using liquid chromatography-tandem mass spectrometry. Bone marrow-, adipose tissue-, and synovial membrane-MSCs (all-MSCs) exhibited expression of 93 proteins under normal conditions and 105 proteins under inflammatory conditions. It was confirmed that the types of secreted proteins differed depending on the environmental conditions, and the proteins were validated using ELISA. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis using a list of proteins secreted by all-MSCs under each condition confirmed that the secreted proteins were closely related to cartilage repair under inflammatory conditions. Protein-protein interaction networks were confirmed to change depending on environmental differences and were found to enhance the secretion of paracrine factors related to cartilage regeneration under inflammatory conditions. In conclusion, our results demonstrated that compared with knee OA conditions, the differential expression proteins may contribute to the regeneration of damaged cartilage. In addition, the detailed information on commonly secreted proteins by all-MSCs provides a comprehensive basis for understanding the potential of paracrine factors to influence tissue repair and regeneration in knee OA.
Collapse
|
159
|
Min L, Wu Y, Cao G, Mi D, Chen C. A network pharmacology strategy to investigate the anti-osteoarthritis mechanism of main lignans components of Schisandrae Fructus. Int Immunopharmacol 2021; 98:107873. [PMID: 34182246 DOI: 10.1016/j.intimp.2021.107873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 10/21/2022]
Abstract
Osteoarthritis (OA) is a chronic age-related progressive joint disorder. Degradation of the cartilage extracellular matrix (ECM) is considered a hallmark of OA and may be a target for new therapeutic methods. Schisandrae Fructus (SF) has been shown to be effective in treating OA. The major active components of SF are lignans. However, the targets of SF and the pharmacological mechanisms underlying the effects of SF lignans in the treatment of OA have not been elucidated. Therefore, based on network pharmacology, this research predicted the treatment targets of six lignans in SF, constructed a protein-protein interaction network and identified 15 hub genes in the OA-target protein-protein interaction network. Through Gene Ontology function and pathway analyses, the gene functions of lignans in the treatment of OA were determined. Finally, the anti-OA effects of lignans and underlying mechanisms identified in the network pharmacology analysis were verified by molecular docking, real-time PCR and western blotting in vitro. The biological processes of the genes and proteins targeted by lignans in the treatment of OA included the immune response, inflammatory response, cell signal transduction and phospholipid metabolism. Moreover, 20 metabolic pathways were enriched. Network pharmacology, molecular docking and in vitro and in vivo experimental results revealed that SF, schisanhenol and gamma-schisandrin inhibited EGFR and MAPK14 gene expression by inhibiting SRC gene expression and activity and then decreased MMP 13 and collagen II protein and gene expression. This research provides a basis for further study of the anti-OA effects and mechanisms of SF, schisanhenol and gamma-schisandrin.
Collapse
Affiliation(s)
- Lingtian Min
- Department of Orthopaedics, Nantong Hospital of Traditional Chinese Medicine, the Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nantong 226000, China
| | - Yu Wu
- Department of Pharmacy, Nantong Hospital of Traditional Chinese Medicine, the Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nantong 226000, China
| | - Gang Cao
- Department of Pharmacy, Nantong Hospital of Traditional Chinese Medicine, the Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nantong 226000, China
| | - Daguo Mi
- Department of Orthopaedics, Nantong Hospital of Traditional Chinese Medicine, the Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nantong 226000, China.
| | - Cheng Chen
- Department of Orthopaedics, Suqian First Hospital, Affiliated to Nanjing Medical University, Suqian 223800, China.
| |
Collapse
|
160
|
Fargesin ameliorates osteoarthritis via macrophage reprogramming by downregulating MAPK and NF-κB pathways. Arthritis Res Ther 2021; 23:142. [PMID: 33990219 PMCID: PMC8120707 DOI: 10.1186/s13075-021-02512-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/14/2021] [Indexed: 12/23/2022] Open
Abstract
Background To investigate the role and regulatory mechanisms of fargesin, one of the main components of Magnolia fargesii, in macrophage reprogramming and crosstalk across cartilage and synovium during osteoarthritis (OA) development. Methods Ten-week-old male C57BL/6 mice were randomized and assigned to vehicle, collagenase-induced OA (CIOA), or CIOA with intra-articular fargesin treatment groups. Articular cartilage degeneration was evaluated using the Osteoarthritis Research Society International (OARSI) score. Immunostaining and western blot analyses were conducted to detect relative protein. Raw264.7 cells were treated with LPS or IL-4 to investigate the role of polarized macrophages. ADTC5 cells were treated with IL-1β and conditioned medium was collected to investigate the crosstalk between chondrocytes and macrophages. Results Fargesin attenuated articular cartilage degeneration and synovitis, resulting in substantially lower Osteoarthritis Research Society International (OARSI) and synovitis scores. In particular, significantly increased M2 polarization and decreased M1 polarization in synovial macrophages were found in fargesin-treated CIOA mice compared to controls. This was accompanied by downregulation of IL-6 and IL-1β and upregulation of IL-10 in serum. Conditioned medium (CM) from M1 macrophages treated with fargesin reduced the expression of matrix metalloproteinase-13, RUNX2, and type X collagen and increased Col2a1 and SOX9 in OA chondrocytes, but fargesin alone did not affect chondrocyte catabolic processes. Moreover, fargesin exerted protective effects by suppressing p38/ERK MAPK and p65/NF-κB signaling. Conclusions This study showed that fargesin switched the polarized phenotypes of macrophages from M1 to M2 subtypes and prevented cartilage degeneration partially by downregulating p38/ERK MAPK and p65/NF-κB signaling. Targeting macrophage reprogramming or blocking the crosstalk between macrophages and chondrocytes in early OA may be an effective preventive strategy.
Collapse
|
161
|
Ding H, Chen L, Hong Z, Yu X, Wang Z, Feng J. Network pharmacology-based identification of the key mechanism of quercetin acting on hemochromatosis. Metallomics 2021; 13:6271328. [PMID: 33960370 DOI: 10.1093/mtomcs/mfab025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
Hemochromatosis is an iron overload disease, which lacks nutritional intervention strategies. This study explored the protective effect of quercetin on hemochromatosis and its possible mechanism through network pharmacology. We used Online Mendelian Inheritance in Man to screen the disease targets of hemochromatosis, and further constructed a potential protein interaction network through STITCH. The above-mentioned targets revealed by Gene enrichment analysis have played a significant role in ferroptosis, mineral absorption, basal cell carcinoma, and related signal pathways. Besides, the drug likeness of quercetin obtained by Comparative Toxicogenomics Database was evaluated by Traditional Chinese Medicine Systems Pharmacology, and potential drug targets identified by PharmMapper and similar compounds identified by PubChem were selected for further research. Moreover, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed the relationship between quercetin and glycosylation. Furthermore, we performed experiments to verify that the protective effect of quercetin on iron overload cells is to inhibit the production of reactive oxygen species, limit intracellular iron, and degrade glycosaminoglycans. Finally, iron-induced intracellular iron overload caused ferroptosis, and quercetin and fisetin were potential ferroptosis inhibitors. In conclusion, our study revealed the correlation between hemochromatosis and ferroptosis, provided the relationship between the target of quercetin and glycosylation, and verified that quercetin and its similar compounds interfere with iron overload related disease. Our research may provide novel insights for quercetin and its structurally similar compounds as a potential nutritional supplement for iron overload related diseases.
Collapse
Affiliation(s)
- Haoxuan Ding
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Lingjun Chen
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Zuopeng Hong
- Research Center of Zhejiang Weifeng Biotechnology Co., Ltd, Hangzhou 310000, China
| | - Xiaonan Yu
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Zhonghang Wang
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| | - Jie Feng
- College of Animal Sciences, Zhejiang University, Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Hangzhou 310058, China
| |
Collapse
|
162
|
Lakshmanan DK, Ravichandran G, Elangovan A, Jeyapaul P, Murugesan S, Thilagar S. Cissus quadrangularis (veldt grape) attenuates disease progression and anatomical changes in mono sodium iodoacetate (MIA)-induced knee osteoarthritis in the rat model. Food Funct 2021; 11:7842-7855. [PMID: 32812575 DOI: 10.1039/d0fo00992j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Cissus quadrangularis (CQ) stem has interesting nutritional and pharmacological properties to promote the health of the skeletal system. It is a well-recognized plant in the conventional system of medicine in India for treating bone and joint-associated complications. This study focuses on identifying the active constituents from the stem and root extracts of CQ and validating its anti-osteoarthritic activity by the in vivo model. Notable levels of phenolics and flavonoids were found in the ethanol extracts of both CQ stem (CQSE) and root (CQRE), among other solvent fractions. UPLC-MS/MS analysis of these selective extracts resulted in different classes of active compounds from both positive and negative ionization modes. By analyzing their mass spectra and fragmentation pattern, 25 active compounds were identified. The CQSE and CQRE extracts, along with the standard drug (naproxen), were further tested in mono-sodium iodoacetate-induced experimental OA animals. The modulatory effects of the test extracts were assessed by haematology, synovial and cartilage marker profiling, radiology and histopathological analysis. The in vivo findings from the biochemical and physiological studies have led to the conclusion that the CQSE extract is a good choice for the management of OA. The results were substantially better than CQ root extract and naproxen drug-treated groups. Thus, CQS has bioactive constituents, which could facilitate recovery from joint tissue damage, cellular metabolism and associated risk factors attributable to dysfunctions in OA incidence and progression.
Collapse
Affiliation(s)
- Dinesh Kumar Lakshmanan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India.
| | - Guna Ravichandran
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India.
| | - Abbirami Elangovan
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India.
| | - Preethi Jeyapaul
- Department of Biochemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India
| | - Selvakumar Murugesan
- Department of Biotechnology, Anna University, BIT-Campus, Tiruchirappalli, Tamil Nadu 620024, India
| | - Sivasudha Thilagar
- Department of Environmental Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India.
| |
Collapse
|
163
|
Pan TT, Pan F, Gao W, Hu SS, Wang D. Involvement of Macrophages and Spinal Microglia in Osteoarthritis Pain. Curr Rheumatol Rep 2021; 23:29. [PMID: 33893883 DOI: 10.1007/s11926-021-00997-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Chronic pain in osteoarthritis (OA) is characterized by pain sensitization, which involves both peripheral and central mechanisms. Studies suggest synovial macrophage and spinal microglia are implicated in pain sensitization in OA. We, therefore, reviewed the evidence of whether synovial macrophage and spinal microglia facilitated pain sensitization at diverse levels and how this event occurred in OA. RECENT FINDINGS Peripherally, joint inflammation is now believed to be a source of OA-related pain. Synovial macrophages accumulate in OA inflamed synovium and display a pro-inflammatory phenotype. Abundant macrophage-derived pro-inflammatory cytokines and other pain-causing substance facilitate hyperexcitation of primary sensory neuron in OA-related pain. Thus, activated synovial macrophage was considered a predictor for phenotyping of OA pain clinically. In response to affected joint-derived strong nociception, aberrant neuronal excitability is often associated with the hyperactivity of microglia in the spinal dorsal horn, thereby leading to central sensitization. Hyperactivity of synovial macrophage and spinal microglia underlies the mechanisms of pain sensitization at the peripheral and central level in OA. This concept provides not only a clinically relevant strategy for identifying the phenotype of OA-related pain but also has the potential to develop individualized interventions for OA, particularly in those patients with hyperactivity of macrophage and microglia.
Collapse
Affiliation(s)
- Ting-Ting Pan
- Department of Anesthesiology, Pain Clinic, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Feng Pan
- Menzies Institute for Medical Research, University of Tasmania, Private Bag 23, Hobart, TAS, 7000, Australia
| | - Wei Gao
- Department of Anesthesiology, Pain Clinic, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Shan-Shan Hu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China
| | - Di Wang
- Department of Anesthesiology, Pain Clinic, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
164
|
Valsamidou E, Gioxari A, Amerikanou C, Zoumpoulakis P, Skarpas G, Kaliora AC. Dietary Interventions with Polyphenols in Osteoarthritis: A Systematic Review Directed from the Preclinical Data to Randomized Clinical Studies. Nutrients 2021; 13:1420. [PMID: 33922527 PMCID: PMC8145539 DOI: 10.3390/nu13051420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/11/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis and a major cause of limited functionality and thus a decrease in the quality of life of the inflicted. Given the fact that the existing pharmacological treatments lack disease-modifying properties and their use entails significant side effects, nutraceuticals with bioactive compounds constitute an interesting field of research. Polyphenols are plant-derived molecules with established anti-inflammatory and antioxidant properties that have been extensively evaluated in clinical settings and preclinical models in OA. As more knowledge is gained in the research field, an interesting approach in the management of OA is the additive and/or synergistic effects that polyphenols may have in an optimized supplement. Therefore, the aim of this review was to summarize the recent literature regarding the use of combined polyphenols in the management of OA. For that purpose, a PubMed literature survey was conducted with a focus on some preclinical osteoarthritis models and randomized clinical trials on patients with osteoarthritis from 2018 to 2021 which have evaluated the effect of combinations of polyphenol-rich extracts and purified polyphenol constituents. Data indicate that combined polyphenols may be promising for the treatment of osteoarthritis in the future, but more clinical trials with novel approaches in the identification of the in-between relationship of such constituents are needed.
Collapse
Affiliation(s)
- Evdokia Valsamidou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 18345 Athens, Greece; (E.V.); (A.G.); (C.A.)
- Qualia Pharma, Ν. Kifissia, 14564 Attiki, Greece;
| | - Aristea Gioxari
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 18345 Athens, Greece; (E.V.); (A.G.); (C.A.)
| | - Charalampia Amerikanou
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 18345 Athens, Greece; (E.V.); (A.G.); (C.A.)
| | - Panagiotis Zoumpoulakis
- Qualia Pharma, Ν. Kifissia, 14564 Attiki, Greece;
- Department of Food Science and Technology, University of West Attica, Ag. Spyridonos, Egaleo, 12243 Athens, Greece
| | - George Skarpas
- Hellenic Open University/Sports Injuries & Regenarative Medicine Orthopaedic Clinic at “MITERA” Hospital, Marousi, 15123 Attiki, Greece;
| | - Andriana C. Kaliora
- Department of Nutrition and Dietetics, School of Health Science and Education, Harokopio University, 18345 Athens, Greece; (E.V.); (A.G.); (C.A.)
| |
Collapse
|
165
|
Martinez-Armenta C, Camacho-Rea MC, Martínez-Nava GA, Espinosa-Velázquez R, Pineda C, Gomez-Quiroz LE, López-Reyes A. Therapeutic Potential of Bioactive Compounds in Honey for Treating Osteoarthritis. Front Pharmacol 2021; 12:642836. [PMID: 33967778 PMCID: PMC8097136 DOI: 10.3389/fphar.2021.642836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
Dysregulation of joint tissue homeostasis induces articular degenerative changes and musculoskeletal diseases such as osteoarthritis. This pathology represents the first cause of motor disability in individuals over 60 years of age, impacting their quality of life and the costs of health systems. Nowadays, pharmacological treatments for cartilage disease have failed to achieve full tissue regeneration, resulting in a functional loss of the joint; therefore, joint arthroplasty is the gold standard procedure to cure this pathology in severe cases of Osteoarthritis. A different treatment is the use of anti-inflammatory drugs which mitigate pain and inflammation in some degree, but without significant inhibition of disease progression. In this sense, new therapeutic alternatives based on natural compounds have been proposed to delay osteoarthritis progression, particularly those agents that regulate articular homeostasis. Preclinical studies have shown a therapeutic application of honey and its bioactive compounds, ranging from treating wounds, coughs, skin infections, and are also used as a biological stimulant by exerting antioxidant and anti-inflammatory properties. In this article, we reviewed the current medicinal applications of honey with particular emphasis on its use regulating articular homeostasis by inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Carlos Martinez-Armenta
- Posgrado en Biología Experimental, Dirección de Ciencias Biológicas y de La Salud (DCBS), Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, Mexico
| | - María Carmen Camacho-Rea
- Departamento de Nutrición Animal, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Gabriela Angélica Martínez-Nava
- Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | | | - Carlos Pineda
- División de Enfermedades Musculo-esqueléticas y Reumáticas, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| | - Luis Enrique Gomez-Quiroz
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Alberto López-Reyes
- Facultad de Ciencias de La Salud, Universidad Anáhuac México Sur, Ciudad de México, Mexico.,Laboratorio de Gerociencias, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México, Mexico
| |
Collapse
|
166
|
Zhu X, Lee CW, Xu H, Wang YF, Yung PSH, Jiang Y, Lee OK. Phenotypic alteration of macrophages during osteoarthritis: a systematic review. Arthritis Res Ther 2021; 23:110. [PMID: 33838669 PMCID: PMC8035781 DOI: 10.1186/s13075-021-02457-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 02/18/2021] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE Osteoarthritis (OA) has long been regarded as a disease of cartilage degeneration, whereas mounting evidence implies that low-grade inflammation contributes to OA. Among inflammatory cells involved, macrophages play a crucial role and are mediated by the local microenvironment to exhibit different phenotypes and polarization states. Therefore, we conducted a systematic review to uncover the phenotypic alterations of macrophages during OA and summarized the potential therapeutic interventions via modulating macrophages. METHODS A systematic review of multiple databases (PubMed, Web of Science, ScienceDirect, Medline) was performed up to February 29, 2020. Included articles were discussed and evaluated by two independent reviewers. Relevant information was analyzed with a standardized and well-designed template. RESULTS A total of 28 studies were included. Results were subcategorized into two sections depending on sources from human tissue/cell-based studies (12 studies) and animal experiments (16 studies). The overall observation indicated that M1 macrophages elevated in both synovium and circulation during OA development, along with lower numbers of M2 macrophages. The detailed alterations of macrophages in both synovium and circulation were listed and analyzed. Furthermore, interventions against OA via regulating macrophages in animal models were highlighted. CONCLUSION This study emphasized the importance of the phenotypic alterations of macrophages in OA development. The classical phenotypic subcategory of M1 and M2 macrophages was questionable due to controversial and conflicting results. Therefore, further efforts are needed to categorize macrophages in an exhaustive manner and to use advanced technologies to identify the individual roles of each subtype of macrophages in OA.
Collapse
Affiliation(s)
- Xiaobo Zhu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Chien-Wei Lee
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Hongtao Xu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yu-Fan Wang
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick S H Yung
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yangzi Jiang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China.,School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Oscar K Lee
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong, China. .,Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China. .,Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China. .,Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
167
|
Goyal A, Agrawal N. Quercetin: A Potential Candidate For The Treatment Of Arthritis. Curr Mol Med 2021; 22:325-335. [PMID: 33719956 DOI: 10.2174/1566524021666210315125330] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
Diet plays a significant role in ensuring healthy life and the bioactive compounds present in food and medicinal plants may be developed as drugs that combat various illnesses. A bioactive flavanoid, quercetin which is a dietary component possesses numerous health-promoting effects. In preclinical models of rheumatoid arthritis, gouty arthritis and osteoarthritis, quercetin has shown significant joint protective effects. Taking into account the significance of this compound, the present review discusses its anti-arthritic properties, demonstrating its mechanism of action for the treatment of arthritis with its therapeutic potential.
Collapse
Affiliation(s)
- Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 [U.P.]. India
| | - Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University 17-Km. stone, NH-2 Mathura-Delhi Highway, P.O. Chaumuhan, Mathura-281406 [U.P.]. India
| |
Collapse
|
168
|
Shao Z, Wang B, Shi Y, Xie C, Huang C, Chen B, Zhang H, Zeng G, Liang H, Wu Y, Zhou Y, Tian N, Wu A, Gao W, Wang X, Zhang X. Senolytic agent Quercetin ameliorates intervertebral disc degeneration via the Nrf2/NF-κB axis. Osteoarthritis Cartilage 2021; 29:413-422. [PMID: 33242601 DOI: 10.1016/j.joca.2020.11.006] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 10/24/2020] [Accepted: 11/15/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Intervertebral disc degeneration (IDD) represents major cause of low back pain. Quercetin (QUE) is one of the approved senolytic agents. In this study, we evaluated the protective effects of QUE on IDD development and its underlying mechanism. METHODS Effects of senolytic agent QUE on the viability of nucleus pulposus cells (NPCs) were measured by CCK-8 assays and EdU staining. The senescence associated secreted phenotype (SASP) factors expressions were measured by qPCR, western blot, and ELISA; and NF-κB pathway was detected by immunofluorescence and western blot. Molecular docking was applied to predict the interacting protein of QUE; while Nrf2 was knocked down by siRNAs to confirm its role in QUE regulated senescence phenotype. X-ray, MRI, Hematoxylin-Eosin and Safranin O-Fast green staining were performed to evaluate the therapeutic effects of QUE on IDD in the puncture-induced rat model. RESULTS In in vitro experiments, QUE inhibited SASP factors expression and senescence phenotype in IL-1β-treated NPCs. Mechanistically, QUE suppressed IL-1β induced activation of the NF-κB pathway cascades; it was also demonstrated in molecular docking and knock down studies that QUE might bind to Keap1-Nrf2 complex to suppress NF-κB pathway. In vivo, QUE ameliorated the IDD process in the puncture-induced rat model. CONCLUSIONS Together the present work suggests that QUE inhibits SASP factors expression and senescence phenotype in NPCs and ameliorates the progression of IDD via the Nrf2/NF-κB axis, which supports senolytic agent QUE as a potential therapeutic agent for the treatment of IDD.
Collapse
Affiliation(s)
- Z Shao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - B Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Y Shi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - C Xie
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - C Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - B Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - H Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - G Zeng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - H Liang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Y Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Y Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - N Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - A Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - W Gao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - X Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - X Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Chinese Orthopaedic Regenerative Medicine Society, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
169
|
Yin J, Peng X, Lin J, Zhang Y, Zhang J, Gao H, Tian X, Zhang R, Zhao G. Quercetin amelioratesAspergillus fumigatuskeratitis by inhibiting fungal growth, toll-like receptors and inflammatory cytokines. Int Immunopharmacol 2021; 93:107435. [PMID: 33550031 DOI: 10.1016/j.intimp.2021.107435] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 02/08/2023]
Abstract
PURPOSE To investigate the antifungal and anti-inflammatory effects of quercetin on Aspergillus fumigatus (A. fumigatus) keratitis. METHODS Human corneal epithelial cells (HCECs) and C57BL/6 mice were stimulated by A. fumigatus and treated with quercetin or dimethyl sulfoxide (DMSO) after infection. In HCECs, minimum inhibitory concentration (MIC) and cytotoxicity tests (CCK-8) were used to detect the antifungal effect and cytotoxicity of quercetin. In mice with A. fumigatuskeratitis, clinical score, plate counting and hematoxylin-eosin (HE) staining were performed to evaluate the effects of quercetin in vivo. Myeloperoxidase (MPO) assay and immunofluorescence staining were applied to assess neutrophil recruitment and infiltration. Real time PCR (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and western blot were used to detect the mRNA and protein expressions of inflammatory mediators. RESULTS Compared with DMSO control, quercetin (16-64 μM) significantly inhibited the growth of A. fumigatus in a concentration-dependent manner without affecting cell viability in HCECs. In corneas of mice with A. fumigatuskeratitis, quercetin decreased clinical score and fungal load, and reduced neutrophil recruitment and infiltration to the corneal stroma. Moreover, quercetin attenuated the expression of inflammatory mediators including toll-like receptor-4 (TLR-4), TLR-2, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and high mobility group box 1 (HMGB1) in vitro and in vivo. CONCLUSIONS Our study demonstrated that quercetin treatment can ameliorate A. fumigatus keratitis by inhibiting the growth of A. fumigatus, decreasing neutrophil recruitment and infiltration, and downregulating the productions of TLR-4, TLR-2, TNF-α, IL-1β and HMGB1, indicating quercetin is likely to become a potential therapeutic agent in FK treatment.
Collapse
Affiliation(s)
- Jiao Yin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Xudong Peng
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China.
| | - Jing Lin
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Yingxue Zhang
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | - Jie Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Han Gao
- Department of Ophthalmology, Qingdao Central Hospital, NO. 127 Siliu South Road, Qingdao, Shandong Province 266042, China
| | - Xue Tian
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Ranran Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China
| | - Guiqiu Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, NO. 16 Jiangsu Road, Qingdao, Shandong Province 266000, China.
| |
Collapse
|
170
|
van den Bosch MHJ. Osteoarthritis year in review 2020: biology. Osteoarthritis Cartilage 2021; 29:143-150. [PMID: 33242602 DOI: 10.1016/j.joca.2020.10.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
This year in review about osteoarthritis biology highlights a selection of articles published between the 2019 and 2020 Osteoarthritis Research Society International (OARSI) World Congress meetings, within the field of osteoarthritis biology. Highlights were selected from PubMed searches covering osteoarthritis (OA) cartilage, subchondral bone, synovium and aging. Subsequently, a personal selection was based on new and emerging themes together with common research topics that were studied by multiple groups. Themes discussed include novel insights into the inflammatory changes during OA, with a number of noteworthy publications concerning the role of macrophages in healthy and osteoarthritic joints. Next, the application of mesenchymal stem cells as OA-dampening therapy is discussed, including possible ways to improve their efficacy by pre-treatment. Other significant themes including treatment of OA with metformin, enhancing autophagy to alleviate OA and the involvement of the gastro-intestinal microbiome in development of OA symptoms and structural damage are discussed. An effort was made to connect the seemingly distant topics from which the overarching conclusion can be drawn that over the last year promising breakthroughs have been achieved in further understanding the biology of OA development and that new therapeutic possibilities have been explored.
Collapse
Affiliation(s)
- M H J van den Bosch
- Experimental Rheumatology, Radboud university medical center Nijmegen, the Netherlands..
| |
Collapse
|
171
|
Guo H, Yin W, Zou Z, Zhang C, Sun M, Min L, Yang L, Kong L. Quercitrin alleviates cartilage extracellular matrix degradation and delays ACLT rat osteoarthritis development: An in vivo and in vitro study. J Adv Res 2021; 28:255-267. [PMID: 33364061 PMCID: PMC7753236 DOI: 10.1016/j.jare.2020.06.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/01/2020] [Accepted: 06/22/2020] [Indexed: 01/02/2023] Open
Abstract
Introduction: Disruptions of extracellular matrix (ECM) degradation homeostasis play a significant role in the pathogenesis of osteoarthritis (OA). Matrix metalloproteinase 13 (MMP13) and collagen Ⅱ are important components of ECM. Earlier we found that quercitrin could significantly decrease MMP13 gene expression and increase collagen Ⅱ gene expression in IL-1β-induced rat chondrocytes and human chondrosarcoma (SW1353) cells. Objectives: The effects and mechanism of quercitrin on OA were explored. Methods: Molecular mechanisms of quercitrin on OA were studied in vitro in primary chondrocytes and SW1353 cells. An anterior cruciate ligament transection (ACLT) rat model of OA was used to investigate the effect of quercitrin in vivo. Micro-CT analysis and Safranin O-Fast Green Staining of knee joint samples were performed to observe the damage degree of tibial subchondral bone. Immunohistochemistry of knee joint samples were conducted to observe the protein level of MMP13, collagen Ⅱ and p110α in articular cartilage. Results: In vitro, quercitrin promoted cell proliferation and delayed ECM degradation by regulating MMP13 and collagen II gene and protein expressions. Moreover, quercitrin activated the Phosphatidylinositol 3-kinase p110α (p110α)/AKT/mTOR signaling pathway by targeting p110α. We also firstly showed that the gene expression level of p110α was remarkably decreased in cartilage of OA patients. The results showed that intra-articular injection of quercitrin increased bone volume/tissue volume of tibial subchondral bone and cartilage thickness and reduced the Osteoarthritis Research Society International scores in OA rats. Meanwhile, immunohistochemical results showed that quercitrin exerted anti-OA effect by delaying ECM degradation. Conclusion: These findings suggested that quercitrin may be a prospective disease-modifying OA drug for prevention and treatment of early stage OA.
Collapse
Key Words
- ACLT, anterior cruciate ligament transection
- BV/TV, bone volume/tissue volume
- DMOAD, disease-modifying OA drug
- ECM, extracellular matrix
- Extracellular matrix degradation
- MMP13
- MMP13, matrix metalloproteinase 13
- NSAIDs, non-steroidal anti-inflammatory drugs
- OA, osteoarthritis
- OARSI, Osteoarthritis Research Society International
- Osteoarthritis
- PI3K, Phosphatidylinositol 3-kinase
- Phosphatidylinositol 3-kinase p110α
- Quercitrin
- p110α, Phosphatidylinositol 3-kinase p110α
Collapse
Affiliation(s)
- Hanli Guo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Weifeng Yin
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ziling Zou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Minghui Sun
- Department of Joint Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Lingtian Min
- Department of Joint Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Lei Yang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
172
|
Sgrò P, Ceci R, Lista M, Patrizio F, Sabatini S, Felici F, Sacchetti M, Bazzucchi I, Duranti G, Di Luigi L. Quercetin Modulates IGF-I and IGF-II Levels After Eccentric Exercise-Induced Muscle-Damage: A Placebo-Controlled Study. Front Endocrinol (Lausanne) 2021; 12:745959. [PMID: 34803913 PMCID: PMC8595302 DOI: 10.3389/fendo.2021.745959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Prolonged or unaccustomed eccentric exercise may cause muscle damage and depending from its extent, this event negatively affects physical performance. OBJECTIVES The aim of the present investigation was to evaluate, in humans, the effect of the flavonoid quercetin on circulating levels of the anabolic insulin-like growth factor 1 (IGF-I) and insulin-like growth factor 2 (IGF-II), produced during the recovery period after an eccentric-induced muscle damage (EIMD). METHODS A randomized, double-blind, crossover study has been performed; twelve young men ingested quercetin (1 g/day) or placebo for 14 days and then underwent an eccentric-induced muscle damaging protocol. Blood samples were collected, and cell damage markers [creatine kinase (CK), lactate dehydrogenase (LDH) and myoglobin (Mb)], the inflammatory responsive interleukin 6 (IL-6), IGF-I and IGF-II levels were evaluated before the exercise and at different recovery times from 24 hours to 7 days after EIMD. RESULTS We found that, in placebo treatment the increase in IGF-I (72 h) preceded IGF-II increase (7 d). After Q supplementation there was a more marked increase in IGF-I levels and notably, the IGF-II peak was found earlier, compared to placebo, at the same time of IGF-I (72 h). Quercetin significantly reduced plasma markers of cell damage [CK (p<0.005), LDH (p<0.001) and Mb (p<0.05)] and the interleukin 6 level [IL-6 (p<0.05)] during recovery period following EIMD compared to placebo. CONCLUSIONS Our data are encouraging about the use of quercetin as dietary supplementation strategy to adopt in order to mitigate and promote a faster recovery after eccentric exercise as suggested by the increase in plasma levels of the anabolic factors IGF-I and IGF-II.
Collapse
Affiliation(s)
- Paolo Sgrò
- Endocrinology Unit - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
- *Correspondence: Paolo Sgrò, ; Guglielmo Duranti,
| | - Roberta Ceci
- Laboratory of Biochemistry of Movement - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Marco Lista
- Endocrinology Unit - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Federica Patrizio
- Laboratory of Exercise Physiology - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Stefania Sabatini
- Laboratory of Biochemistry of Movement - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Francesco Felici
- Laboratory of Exercise Physiology - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Massimo Sacchetti
- Laboratory of Exercise Physiology - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Ilenia Bazzucchi
- Laboratory of Exercise Physiology - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| | - Guglielmo Duranti
- Laboratory of Biochemistry of Movement - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
- *Correspondence: Paolo Sgrò, ; Guglielmo Duranti,
| | - Luigi Di Luigi
- Endocrinology Unit - Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Roma, Italy
| |
Collapse
|
173
|
Wang D, He X, Wang D, Peng P, Xu X, Gao B, Zheng C, Wang H, Jia H, Shang Q, Sun Z, Luo Z, Yang L. Quercetin Suppresses Apoptosis and Attenuates Intervertebral Disc Degeneration via the SIRT1-Autophagy Pathway. Front Cell Dev Biol 2020; 8:613006. [PMID: 33363176 PMCID: PMC7758489 DOI: 10.3389/fcell.2020.613006] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
Intervertebral disc degeneration (IDD) has been generally accepted as the major cause of low back pain (LBP), which causes an enormous socioeconomic burden. Previous studies demonstrated that the apoptosis of nucleus pulposus (NP) cells and the dyshomeostasis of extracellular matrix (ECM) contributed to the pathogenesis of IDD, and effective therapies were still lacking. Quercetin, a natural flavonoid possessing a specific effect of autophagy stimulation and SIRT1 activation, showed some protective effect on a series of degenerative diseases. Based on previous studies, we hypothesized that quercetin might have therapeutic effects on IDD by inhibiting the apoptosis of NP cells and dyshomeostasis of ECM via the SIRT1-autophagy pathway. In this study, we revealed that quercetin treatment inhibited the apoptosis of NP cells and ECM degeneration induced by oxidative stress. We also found that quercetin promoted the expression of SIRT1 and autophagy in NP cells in a dose-dependent manner. Autophagy inhibitor 3-methyladenine (3-MA) reversed the protective effect of quercetin on apoptosis and ECM degeneration. Moreover, SIRT1 enzymatic activity inhibitor EX-527, suppressed quercetin-induced autophagy and the protective effect on NP cells, indicating that quercetin protected NP cells against apoptosis and prevented ECM degeneration via SIRT1-autophagy pathway. In vivo, quercetin was also demonstrated to alleviate the progression of IDD in rats. Taken together, our results suggest that quercetin prevents IDD by promoting SIRT1-dependent autophagy, indicating one novel and effective therapeutic method for IDD.
Collapse
Affiliation(s)
- Dong Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin He
- Department of Medicine Chemistry and Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | - Di Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Pandi Peng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Xiaolong Xu
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Chao Zheng
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Han Wang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Haoruo Jia
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiliang Shang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhen Sun
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zhuojing Luo
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Liu Yang
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China.,Medical Research Institute, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
174
|
Zhang M, Chen X, Radacsi N. New tricks of old drugs: Repurposing non-chemo drugs and dietary phytochemicals as adjuvants in anti-tumor therapies. J Control Release 2020; 329:96-120. [PMID: 33259852 DOI: 10.1016/j.jconrel.2020.11.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Combination therapy has long been applied to enhance therapeutic effect and deal with the occurrence of multi-drug resistance in cancer treatment. However, the overlapping toxicity of multiple anticancer drugs to healthy tissues and increasing financial burden on patients emerged as major concerns. As promising alternatives to chemo agents, repurposed non-chemo drugs and dietary phytochemicals have been investigated as adjuvants to conventional anti-tumor therapeutics, offering a safe and economic strategy for combination therapy. In this review, we aim to highlight the advances in research about combination therapy using conventional therapeutics and repurposed drugs or phytochemicals for an enhanced anti-tumor efficacy, along with the mechanisms involved in the synergism. Beyond these, we outlined the potential challenges and solutions for clinical translation of the proposed combination therapy, providing a safe and affordable strategy to improve the reach of cancer therapy to low income regions with such new tricks of old drugs.
Collapse
Affiliation(s)
- Mei Zhang
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom; School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom.
| |
Collapse
|
175
|
Mao X, Fu P, Wang L, Xiang C. Mitochondria: Potential Targets for Osteoarthritis. Front Med (Lausanne) 2020; 7:581402. [PMID: 33324661 PMCID: PMC7726420 DOI: 10.3389/fmed.2020.581402] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a common and disabling joint disorder that is mainly characterized by cartilage degeneration and narrow joint spaces. The role of mitochondrial dysfunction in promoting the development of OA has gained much attention. Targeting endogenous molecules to improve mitochondrial function is a potential treatment for OA. Moreover, research on exogenous drugs to improve mitochondrial function in OA based on endogenous molecular targets has been accomplished. In addition, stem cells and exosomes have been deeply researched in the context of cartilage regeneration, and these factors both reverse mitochondrial dysfunctions. Thus, we hypothesize that biomedical approaches will be applied to the treatment of OA. Furthermore, we have summarized the global status of mitochondria and osteoarthritis research in the past two decades, which will contribute to the research field and the development of novel treatment strategies for OA.
Collapse
Affiliation(s)
- Xingjia Mao
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Panfeng Fu
- Department of Respiratory and Critical Care, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Linlin Wang
- Department of Basic Medicine Sciences, The School of Medicine of Zhejiang University, Hangzhou, China
| | - Chuan Xiang
- Department of Orthopedic, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
176
|
An Emerging Target in the Battle against Osteoarthritis: Macrophage Polarization. Int J Mol Sci 2020; 21:ijms21228513. [PMID: 33198196 PMCID: PMC7697192 DOI: 10.3390/ijms21228513] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent chronic joint diseases worldwide, which causes a series of problems, such as joint pain, muscle atrophy, and joint deformities. Benefiting from some advances in the clinical treatment of OA, the quality of life of OA patients has been improved. However, the clinical need for more effective treatments for OA is still very urgent. Increasing findings show that macrophages are a critical breakthrough in OA therapy. Stimulated by different factors, macrophages are differentiated into two phenotypes: the pro-inflammatory M1 type and anti-inflammatory M2 type. In this study, various therapeutic reagents for macrophage-dependent OA treatment are summarized, including physical stimuli, chemical compounds, and biological molecules. Subsequently, the mechanisms of action of various approaches to modulating macrophages are discussed, and the signaling pathways underlying these treatments are interpreted. The NF-κB signaling pathway plays a vital role in the occurrence and development of macrophage-mediated OA, as NF-κB signaling pathway agonists promote the occurrence of OA, whereas NF-κB inhibitors ameliorate OA. Besides, several signaling pathways are also involved in the process of OA, including the JNK, Akt, MAPK, STAT6, Wnt/β-catenin, and mTOR pathways. In summary, macrophage polarization is a critical node in regulating the inflammatory response of OA. Reagents targeting the polarization of macrophages can effectively inhibit inflammation in the joints, which finally relieves OA symptoms. Our work lays the foundation for the development of macrophage-targeted therapeutic molecules and helps to elucidate the role of macrophages in OA.
Collapse
|
177
|
Gao X, Ma Y, Zhang G, Tang F, Zhang J, Cao J, Liu C. Targeted elimination of intracellular reactive oxygen species using nanoparticle-like chitosan- superoxide dismutase conjugate for treatment of monoiodoacetate-induced osteoarthritis. Int J Pharm 2020; 590:119947. [DOI: 10.1016/j.ijpharm.2020.119947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 12/17/2022]
|
178
|
A hydrogel system based on a lactose-modified chitosan for viscosupplementation in osteoarthritis. Carbohydr Polym 2020; 248:116787. [DOI: 10.1016/j.carbpol.2020.116787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/16/2023]
|
179
|
Nakashima M, Hisada M, Goda N, Tenno T, Kotake A, Inotsume Y, Kameoka I, Hiroaki H. Opposing Effect of Naringenin and Quercetin on the Junctional Compartment of MDCK II Cells to Modulate the Tight Junction. Nutrients 2020; 12:nu12113285. [PMID: 33120983 PMCID: PMC7693399 DOI: 10.3390/nu12113285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/16/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
Abstract
Maintaining tight junction (TJ) integrity is important for epithelial cell barriers. Previously, the enhancement of TJ integrity, induced by citrus-derived flavonoids, naringin (NRG) and hesperidin (HSD), was demonstrated, but the effects of their aglycones naringenin (NAR) and hesperetin (HST), and the mechanisms, have not been systematically investigated. Here we compared three series of flavonoids related to NAR, HST, quercetin (QUE) and their glycosides with the Madin–Darby canine kidney (MDCK) II cell monolayers. The effect of flavonoids on the protein expression level of claudin (CLD)-2 and its subcellular localization were investigated. NAR, NRG, and HSD increased the CLD-2 localization at the TJ compartment, and its protein expression level. QUE and HST showed TJ-mitigating activity. Narirutin (NRT), neohesperidin (NHD) and rutin (RUT) did not affect the TJ. In addition, NAR and QUE induced an increase or decrease of the transepithelial electrical resistance (TEER) values of the MDCK II monolayers. Two known signaling pathways, phosphatidyl-inositol-3 kinase (PI3K) and 5′-AMP-activated protein kinase (AMPK), were further compared with NAR. Two-dimensional polyacrylamide electrophoresis (2D PAGE) analysis of whole-cell proteins treated with NAR, AICA-riboside (AMPK activator) and LY294002 (PI3K inhibitor) showed in both a distinct pattern. This suggests the target of NAR’s CLD-2 or zonula occludens-1 (ZO-1) modulation was unique.
Collapse
Affiliation(s)
- Mio Nakashima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan; (M.N.); (M.H.); (N.G.); (T.T.)
- Department of Biological Sciences, Faculty of Science, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8602, Japan
| | - Misaki Hisada
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan; (M.N.); (M.H.); (N.G.); (T.T.)
| | - Natsuko Goda
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan; (M.N.); (M.H.); (N.G.); (T.T.)
| | - Takeshi Tenno
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan; (M.N.); (M.H.); (N.G.); (T.T.)
- BeCerllBar, LLC., Business Incubation Building, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Ayaka Kotake
- Cosmetics Research Department, Nicca Chemical Co. Ltd., Fukui 910-8670, Japan; (A.K.); (Y.I.); (I.K.)
| | - Yuko Inotsume
- Cosmetics Research Department, Nicca Chemical Co. Ltd., Fukui 910-8670, Japan; (A.K.); (Y.I.); (I.K.)
| | - Ikuo Kameoka
- Cosmetics Research Department, Nicca Chemical Co. Ltd., Fukui 910-8670, Japan; (A.K.); (Y.I.); (I.K.)
| | - Hidekazu Hiroaki
- Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8601, Japan; (M.N.); (M.H.); (N.G.); (T.T.)
- Department of Biological Sciences, Faculty of Science, Nagoya University, Furocho, Chikusa, Nagoya, Aichi 464-8602, Japan
- BeCerllBar, LLC., Business Incubation Building, Nagoya University, Furocho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Correspondence: ; Tel.: +81-52-789-4535
| |
Collapse
|
180
|
Ansari MY, Ahmad N, Haqqi TM. Oxidative stress and inflammation in osteoarthritis pathogenesis: Role of polyphenols. Biomed Pharmacother 2020; 129:110452. [PMID: 32768946 PMCID: PMC8404686 DOI: 10.1016/j.biopha.2020.110452] [Citation(s) in RCA: 355] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/13/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint degenerative disease leading to irreversible structural and functional changes in the joint and is a major cause of disability and reduced life expectancy in ageing population. Despite the high prevalence of OA, there is no disease modifying drug available for the management of OA. Oxidative stress, a result of an imbalance between the production of reactive oxygen species (ROS) and their clearance by antioxidant defense system, is high in OA cartilage and is a major cause of chronic inflammation. Inflammatory mediators, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) are highly upregulated in OA joints and induce ROS production and expression of matrix degrading proteases leading to cartilage extracellular matrix degradation and joint dysfunction. ROS and inflammation are interdependent, each being the target of other and represent ideal target/s for the treatment of OA. Plant polyphenols possess potent antioxidant and anti-inflammatory properties and can inhibit ROS production and inflammation in chondrocytes, cartilage explants and in animal models of OA. The aim of this review is to discuss the chondroprotective effects of polyphenols and modulation of different molecular pathways associated with OA pathogenesis and limitations and future prospects of polyphenols in OA treatment.
Collapse
Affiliation(s)
- Mohammad Yunus Ansari
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209, ST RT 44, Rootstown, Ohio, 44272, USA.
| | - Nashrah Ahmad
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209, ST RT 44, Rootstown, Ohio, 44272, USA; School of Biomedical Sciences, Kent State University, Kent, Ohio, USA.
| | - Tariq M Haqqi
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, 4209, ST RT 44, Rootstown, Ohio, 44272, USA.
| |
Collapse
|
181
|
Jian GH, Su BZ, Zhou WJ, Xiong H. Application of network pharmacology and molecular docking to elucidate the potential mechanism of Eucommia ulmoides- Radix Achyranthis Bidentatae against osteoarthritis. BioData Min 2020; 13:12. [PMID: 32874205 PMCID: PMC7456016 DOI: 10.1186/s13040-020-00221-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/09/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Osteoarthritis is a disabling disease, which seriously affects the quality of life of patients. Increasing evidence has indicated that Chinese herbal medicine including Eucommia ulmoides (EU) and Radix Achyranthis Bidentatae (RAB) have potential in the treatment of osteoarthritis, and this is associated with their multi-target and multi-link action characteristics. Although their potential anti-arthritic activity has been reported, the exact mechanism of EU-RAB action in osteoarthritis remains unexplored. Therefore, this study explores the mechanism of EU-RAB against osteoarthritis using network pharmacology and molecular docking technology. METHODS Public databases including TCMSP、BATMAN-TCM、OMIM and Genecards were used to predict the bioactive ingredients and putative targets of EU-RAB against osteoarthritis. Enrichment analysis was performed to expound the biological functions and associated pathways of the hub targets. Cytoscape software was used to construct a "compounds-targets-pathways" network for elucidating the comprehensive molecular mechanism of EU-RAB against osteoarthritis. Molecular docking was used to verify the correlation between the main active ingredients and hub targets. RESULTS Network pharmacological analysis of EU-RAB in the treatment of osteoarthritis, identified 50 active ingredients including quercetin, kaempferol, wogonin, and baicalein with important biological effect. A total of 68 key targets were screened, including IL-6, EGFR, MAPK8, etc., and they were found to be enriched in a series of signaling pathways, such as apoptosis, TNF, MAPK, PI3K/AKT, and IL-17 signaling pathways. Moreover, molecular docking analysis showed that the main ingredients were tightly bound to the core targets, further confirming the anti-arthritic effects. CONCLUSION Based on network pharmacology and molecular docking analysis, the present study provides insights into the potential mechanism of EU-RAB in osteoarthritis after successfully screening for associated key target genes and signaling pathways. These findings further provide a theoretical basis for further pharmacological research into the potential mechanism of EU-RAB in osteoarthritis.
Collapse
Affiliation(s)
- Gong-hui Jian
- Hunan University of Chinese Medicine, Changsha, Hunan Province People’s Republic of China
| | - Bing-zhu Su
- Hunan University of Chinese Medicine, Changsha, Hunan Province People’s Republic of China
| | - Wen-jia Zhou
- Hunan University of Chinese Medicine, Changsha, Hunan Province People’s Republic of China
| | - Hui Xiong
- Hunan University of Chinese Medicine, Changsha, Hunan Province People’s Republic of China
| |
Collapse
|
182
|
Oh H, Park SH, Kang MK, Kim YH, Lee EJ, Kim DY, Kim SI, Oh SY, Na W, Lim SS, Kang YH. Asaronic Acid Inhibited Glucose-Triggered M2-Phenotype Shift Through Disrupting the Formation of Coordinated Signaling of IL-4Rα-Tyk2-STAT6 and GLUT1-Akt-mTOR-AMPK. Nutrients 2020; 12:E2006. [PMID: 32640667 PMCID: PMC7400890 DOI: 10.3390/nu12072006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/21/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophage polarization has been implicated in the pathogenesis of metabolic diseases such as obesity, diabetes, and atherosclerosis. Macrophages responsiveness to polarizing signals can result in their functional phenotype shifts. This study examined whether high glucose induced the functional transition of M2 macrophages, which was inhibited by asaronic acid, one of purple perilla constituents. J774A.1 murine macrophages were incubated with 40 ng/mL interleukin (IL)-4 or exposed to 33 mM glucose in the presence of 1-20 μΜ asaronic acid. In macrophages treated with IL-4 for 48 h, asaronic acid further accelerated cellular induction of the M2 markers of IL-10, arginase-1, CD163, and PPARγ via increased IL-4-IL-4Rα interaction and activated Tyk2-STAT6 pathway. Asaronic acid promoted angiogenic and proliferative capacity of M2-polarized macrophages, through increasing expression of VEGF, PDGF, and TGF-β. In glucose-loaded macrophages, there was cellular induction of IL-4, IL-4 Rα, arginase-1, and CD163, indicating that high glucose skewed naïve macrophages toward M2 phenotypes via an IL-4-IL-4Rα interaction. However, asaronic acid inhibited M2 polarization in diabetic macrophages in parallel with inactivation of Tyk2-STAT6 pathway and blockade of GLUT1-mediated metabolic pathway of Akt-mTOR-AMPKα. Consequently, asaronic acid deterred functional induction of COX-2, CTGF, α-SMA, SR-A, SR-B1, and ABCG1 in diabetic macrophages with M2 phenotype polarity. These results demonstrated that asaronic acid allayed glucose-activated M2-phenotype shift through disrupting coordinated signaling of IL-4Rα-Tyk2-STAT6 in parallel with GLUT1-Akt-mTOR-AMPK pathway. Thus, asaronic acid has therapeutic potential in combating diabetes-associated inflammation, fibrosis, and atherogenesis through inhibiting glucose-evoked M2 polarization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Young-Hee Kang
- Department of Food Science and Nutrition and The Korean Institute of Nutrition, Hallym University, Chuncheon 24252, Korea; (H.O.); (S.-H.P.); (M.-K.K.); (Y.-H.K.); (E.-J.L.); (D.Y.K.); (S.-I.K.); (S.Y.O.); (W.N.); (S.S.L.)
| |
Collapse
|
183
|
Quercetin treatment reduces the severity of renal dysplasia in a beta-catenin dependent manner. PLoS One 2020; 15:e0234375. [PMID: 32555682 PMCID: PMC7299361 DOI: 10.1371/journal.pone.0234375] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/25/2020] [Indexed: 12/24/2022] Open
Abstract
Renal dysplasia, the major cause of childhood renal failure, is characterized by defective branching morphogenesis and nephrogenesis. Beta-catenin, a transcription factor and cell adhesion molecule, is markedly increased in the nucleus of kidney cells in human renal dysplasia and contributes to its pathogenesis by altering target genes that are essential for kidney development. Quercetin, a naturally occurring flavonoid, reduces nuclear beta-catenin levels and reduces beta-catenin transcriptional activity. In this study, we utilized wild type and dysplastic mouse kidney organ explants to determine if quercetin reduces beta-catenin activity during kidney development and whether it improves the severity of renal dysplasia. In wild type kidney explants, quercetin treatment resulted in abnormal branching morphogenesis and nephrogenesis in a dose dependent manner. In wild type embryonic kidneys, quercetin reduced nuclear beta-catenin expression and decreased expression of beta-catenin target genes Pax2, Six2, and Gdnf, which are essential for kidney development. Our RDB mouse model of renal dysplasia recapitulates the overexpression of beta-catenin and histopathological changes observed in human renal dysplasia. RDB kidneys treated with quercetin resulted in improvements in the overall histopathology, tissue organization, ureteric branching morphogenesis, and nephrogenesis. Quercetin treatment also resulted in reduced nuclear beta-catenin and reduced Pax2 expression. These improvements were associated with the proper organization of vimentin, NCAM, and E-cadherin, and a 45% increase in the number of developing and maturing nephrons. Further, our results show that in human renal dysplasia, beta-catenin, vimentin, and e-cadherin also have abnormal expression patterns. Taken together, these data demonstrate that quercetin treatment reduces nuclear beta-catenin and this is associated with improved epithelial organization of developing nephrons, resulting in increased developing nephrons and a partial rescue of renal dysplasia.
Collapse
|
184
|
Nutraceutical Activity in Osteoarthritis Biology: A Focus on the Nutrigenomic Role. Cells 2020; 9:cells9051232. [PMID: 32429348 PMCID: PMC7291002 DOI: 10.3390/cells9051232] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis (OA) is a disease associated to age or conditions that precipitate aging of articular cartilage, a post-mitotic tissue that remains functional until the failure of major homeostatic mechanisms. OA severely impacts the national health system costs and patients' quality of life because of pain and disability. It is a whole-joint disease sustained by inflammatory and oxidative signaling pathways and marked epigenetic changes responsible for catabolism of the cartilage extracellular matrix. OA usually progresses until its severity requires joint arthroplasty. To delay this progression and to improve symptoms, a wide range of naturally derived compounds have been proposed and are summarized in this review. Preclinical in vitro and in vivo studies have provided proof of principle that many of these nutraceuticals are able to exert pleiotropic and synergistic effects and effectively counteract OA pathogenesis by exerting both anti-inflammatory and antioxidant activities and by tuning major OA-related signaling pathways. The latter are the basis for the nutrigenomic role played by some of these compounds, given the marked changes in the transcriptome, miRNome, and methylome. Ongoing and future clinical trials will hopefully confirm the disease-modifying ability of these bioactive molecules in OA patients.
Collapse
|
185
|
Wu P, Huang Z, Shan J, Luo Z, Zhang N, Yin S, Shen C, Xing R, Mei W, Xiao Y, Xu B, Mao J, Wang P. Interventional effects of the direct application of "Sanse powder" on knee osteoarthritis in rats as determined from lipidomics via UPLC-Q-Exactive Orbitrap MS. Chin Med 2020; 15:9. [PMID: 31998403 PMCID: PMC6979340 DOI: 10.1186/s13020-020-0290-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/09/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Our previous clinical evidence suggested that the direct application of "Sanse powder" the main ingredient of "Yiceng" might represent an alternative treatment for knee osteoarthritis. However, the mechanism underlying its effect is poorly understood. In this study, we investigated the mechanism of the effect of direct "Sanse powder" application for the treatment of knee osteoarthritis (KOA) in rats by using lipidomics. METHODS KOA rats were established by cutting the anterior cruciate ligament, and the cold pain threshold and mechanical withdrawal threshold (MWT) of seven rats from each group were measured before modelling (0 days) and at 7, 14, 21 and 28 days after modelling. Histopathological evaluation of the synovial tissue was performed by haematoxylin and eosin (H&E) staining after modelling for 28 days. Interleukin-1β (IL-1β), pro-interleukin-1β (pro-IL-1β) and tumor necrosis factor-α (TNF-α) proteins in synovial tissue were measured by western blot, and the mRNA expression levels of IL-1β and TNF-α in synovial tissue were measured using Real-time reverse transcription polymerase chain reaction (qRT-PCR), the levels of IL-1β and TNF-α in rat serum were measured by enzyme-linked immunosorbent assay (ELISA), Serum lipid profiles were obtained by using ultra-performance liquid chromatography combined with quadrupole-Exactive Orbitrap mass spectrometry (UPLC-Q-Exactive Orbitrap MS). RESULTS The results confirmed that the direct application of "Sanse powder" had a significant protective effect against KOA in rats. Treatment with "Sanse powder" not only attenuated synovial tissue inflammation but also increased the levels of the cold pain threshold and MWT. In addition, the lipidomics results showed that the levels of diacylglycerol (DAG), triacylglycerols (TAGs), lysophosphatidylcholine (LPC), phosphatidylcholine (PC), fatty acid esters of hydroxy fatty acids (FAHFAs), and phosphatidylethanolamine (PE) were restored almost to control levels following treatment. CONCLUSIONS Lipidomics provides a better understanding of the actions of direct application "Sanse powder" therapy for KOA.
Collapse
Affiliation(s)
- Peng Wu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
- Key Laboratory for Metabolic Diseases in Chinese Medicine, First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Zhengquan Huang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Jinjun Shan
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Zichen Luo
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Nongshan Zhang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Songjiang Yin
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Cunsi Shen
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing, 210023 China
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing, 210023 China
| | - Runlin Xing
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Wei Mei
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Yancheng Xiao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Bo Xu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Jun Mao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| | - Peimin Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029 China
- Jiangsu Province Hospital of Chinese Medicine, Nanjing, 210029 China
| |
Collapse
|