151
|
Golla K, Cherukuvada B, Ahmed F, Kondapi AK. Efficacy, safety and anticancer activity of protein nanoparticle-based delivery of doxorubicin through intravenous administration in rats. PLoS One 2012; 7:e51960. [PMID: 23284832 PMCID: PMC3528733 DOI: 10.1371/journal.pone.0051960] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/09/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND AIMS Doxorubicin is a potent anticancer drug and a major limiting factor that hinders therapeutic use as its high levels of systemic circulation often associated with various off-target effects, particularly cardiotoxicity. The present study focuses on evaluation of the efficacy of doxorubicin when it is loaded into the protein nanoparticles and delivered intravenously in rats bearing Hepatocellular carcinoma (HCC). The proteins selected as carrier were Apotransferrin and Lactoferrin, since the receptors for these two proteins are known to be over expressed on cancer cells due to their iron transport capacity. METHODS Doxorubicin loaded apotransferrin (Apodoxonano) and lactoferrin nanoparticles (Lactodoxonano) were prepared by sol-oil chemistry. HCC in the rats was induced by 100 mg/l of diethylnitrosamine (DENA) in drinking water for 8 weeks. Rats received 5 doses of 2 mg/kg drug equivalent nanoparticles through intravenous administration. Pharmacokinetics and toxicity of nanoformulations was evaluated in healthy rats and anticancer activity was studied in DENA treated rats. The anticancer activity was evaluated through counting of the liver nodules, H & E analysis and by estimating the expression levels of angiogenic and antitumor markers. RESULTS In rats treated with nanoformulations, the numbers of liver nodules were found to be significantly reduced. They showed highest drug accumulation in liver (22.4 and 19.5 µg/g). Both nanoformulations showed higher localization compared to doxorubicin (Doxo) when delivered in the absence of a carrier. Higher amounts of Doxo (195 µg/g) were removed through kidney, while Apodoxonano and Lactodoxonano showed only a minimal amount of removal (<40 µg/g), suggesting the extended bioavailability of Doxo when delivered through nanoformulation. Safety analysis shows minimal cardiotoxicity due to lower drug accumulation in heart in the case of nanoformulation. CONCLUSION Drug delivery through nanoformulations not only minimizes the cardiotoxicity of doxorubicin but also enhances the efficacy and bioavailability of the drug in a target-specific manner.
Collapse
Affiliation(s)
- Kishore Golla
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
- Centre for Nanotechnology, University of Hyderabad, Hyderabad, India
| | | | - Farhan Ahmed
- Department of Biotechnology, University of Hyderabad, Hyderabad, India
| | - Anand K. Kondapi
- Department of Biotechnology, University of Hyderabad, Hyderabad, India
- Department of Biochemistry, University of Hyderabad, Hyderabad, India
- Centre for Nanotechnology, University of Hyderabad, Hyderabad, India
| |
Collapse
|
152
|
Lin J, Yu Y, Shigdar S, Fang DZ, Du JR, Wei MQ, Danks A, Liu K, Duan W. Enhanced antitumor efficacy and reduced systemic toxicity of sulfatide-containing nanoliposomal doxorubicin in a xenograft model of colorectal cancer. PLoS One 2012; 7:e49277. [PMID: 23145140 PMCID: PMC3492268 DOI: 10.1371/journal.pone.0049277] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Accepted: 10/08/2012] [Indexed: 11/18/2022] Open
Abstract
Sulfatide is a glycosphingolipid known to interact with several extracellular matrix proteins, such as tenascin-C which is overexpressed in many types of cancer including that of the colon. In view of the limited success of chemotherapy in colorectal cancer and high toxicity of doxorubicin (DOX), a sulfatide-containing liposome (SCL) encapsulation approach was taken to overcome these barriers. This study assessed the in vitro cytotoxicity, biodistribution, therapeutic efficacy and systemic toxicity in vivo of sulfatide-containing liposomal doxorubicin (SCL-DOX) using human colonic adenocarcinoma HT-29 xenograft as the experimental model. In vitro, SCL-DOX was shown to be delivered into the nuclei and displayed prolonged retention compared with the free DOX. The use of this nanodrug delivery system to deliver DOX for treatment of tumor-bearing mice produced a much improved therapeutic efficacy in terms of tumor growth suppression and extended survival in contrast to the free drug. Furthermore, treatment of tumor-bearing mice with SCL-DOX resulted in a lower DOX uptake in the principal sites of toxicity of the free drug, namely the heart and skin, as well as reduced myelosuppression and diminished cardiotoxicity. Such natural lipid-guided nanodrug delivery systems may represent a new strategy for the development of effective anticancer chemotherapeutics targeting the tumor microenvironment for both primary tumor and micrometastases.
Collapse
Affiliation(s)
- Jia Lin
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria, Australia
| | - Yan Yu
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria, Australia
| | - Sarah Shigdar
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria, Australia
| | - Ding Zhi Fang
- Department of Biochemistry and Molecular Biology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, People’s Republic of China
| | - Jun Rong Du
- Department of Pharmacology and Biopharmaceutics, West China School of Pharmacy, Sichuan University, Chengdu, People’s Republic of China
| | - Ming Q. Wei
- School of Medical Science and Griffith Health Institute, Griffith University, Gold Coast Campus, Southport, Australia
| | - Andrew Danks
- Department of Neurosurgery, Monash Medical Centre, Monash University, Clayton, Victoria, Australia
| | - Ke Liu
- Faculty of Life Sciences, Sichuan University, Chengdu, People’s Republic of China
| | - Wei Duan
- School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Victoria, Australia
- * E-mail:
| |
Collapse
|
153
|
Sedlacek O, Monnery BD, Filippov SK, Hoogenboom R, Hruby M. Poly(2-Oxazoline)s - Are They More Advantageous for Biomedical Applications Than Other Polymers? Macromol Rapid Commun 2012; 33:1648-62. [DOI: 10.1002/marc.201200453] [Citation(s) in RCA: 233] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
154
|
Koshkaryev A, Piroyan A, Torchilin VP. Increased apoptosis in cancer cells in vitro and in vivo by ceramides in transferrin-modified liposomes. Cancer Biol Ther 2012; 13:50-60. [PMID: 22336588 DOI: 10.4161/cbt.13.1.18871] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Lysosomes are a promising therapeutic target for induction apoptosis in cancer cells due to lysosomal membrane permeabilization (LMP) leading to leakage of hydrolytic enzymes, especially the cathepsins, into the cytoplasm. We hypothesized that with the modification of the ceramide-loaded liposomes with transferrin (Tf), we would achieve both tumor targeting and increased delivery of lysosome-destabilizing agents, such as ceramides to lysosomes, to initiate LMP-induced apoptosis. We prepared Tf-modified (TL) and plain (PL) liposomes and loaded with short (C6)- or long (C16) N-acyl chain ceramides. Uptake, intracellular localization of liposomes, stability of the lysosomal membrane and release of cathepsin D were investigated on Hela cells by fluorescence microscopy and flow cytometry. Apoptosis was evaluated by binding of fluorescently-labeled Annexin V. Antitumor and pro-apoptotic effects of C6Cer-loaded Tf-liposomes were demonstrated in vivo in an A2780-ovarian carcinoma xenograft mouse model. TL were internalized specifically via the TfR-dependent endocytic pathway and localized within the endosome-lysosomal compartment. Ceramide-loaded Tf-liposomes significantly increased apoptosis compared with ceramide-free and ceramide-loaded non-modified liposomes. The treatment of cancer cells with TL led to increased LMP and cytoplasmic relocation of the intralysosomal cathepsin D. A strong antitumor and pro-apoptotic effect of C6Cer-loaded TL was also demonstrated in vivo in an A2780-ovarian carcinoma xenograft mouse model. The lysosomal accumulation of ceramides delivered by Tf-liposomes initiates the permeabilization of the lysosomal membranes required for the release of lysosomal cathepsins into the cytoplasm and initiation of the cancer cell apoptosis both in vitro and in vivo.
Collapse
Affiliation(s)
- Alexander Koshkaryev
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | | | | |
Collapse
|
155
|
Hu YL, Huang B, Zhang TY, Miao PH, Tang GP, Tabata Y, Gao JQ. Mesenchymal stem cells as a novel carrier for targeted delivery of gene in cancer therapy based on nonviral transfection. Mol Pharm 2012; 9:2698-709. [PMID: 22862421 DOI: 10.1021/mp300254s] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The success of gene therapy relies largely on an effective targeted gene delivery system. Till recently, more and more targeted delivery carriers, such as liposome, nanoparticles, microbubbles, etc., have been developed. However, the clinical applications of these systems were limited for their several disadvantages. Therefore, design and development of novel drug/gene delivery vehicles became a hot topic. Cell-based delivery systems are emerging as an alternative for the targeted delivery system as we described previously. Mesenchymal stem cells (MSCs) are an attractive cell therapy carrier for the delivery of therapeutic agents into tumor sites mainly for their tumor-targeting capacities. In the present study, a nonviral vector, PEI(600)-Cyd, prepared by linking low molecular weight polyethylenimine (PEI) and β-cyclodextrin (β-CD), was used to introduce the therapeutical gene, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), to MSCs. Meanwhile, the characterization, transfection efficiency, cytotoxicity, cellular internalization, and its mechanism of this nonviral vector were evaluated. The in vitro expression of TRAIL from MSCs-TRAIL was demonstrated by both enzyme-linked immunosorbent assay and Western blot analysis. The lung tumor homing ability of MSCs was further confirmed by the in vitro and in vivo model. Moreover, the therapeutic effects as well as the safety of MSCs-TRAIL on lung metastases bearing C57BL/6 mice and normal C57BL/6 mice were also demonstrated. Our results supported both the effectiveness of nonviral vectors in transferring the therapeutic gene to MSCs and the feasibility of using MSCs as a targeted gene delivery carrier, indicating that MSCs could be a promising tumor target delivery vehicle in cancer gene therapy based on nonviral gene recombination.
Collapse
Affiliation(s)
- Yu-Lan Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
156
|
Gaspar MM, Radomska A, Gobbo OL, Bakowsky U, Radomski MW, Ehrhardt C. Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats. J Aerosol Med Pulm Drug Deliv 2012; 25:310-8. [PMID: 22857016 DOI: 10.1089/jamp.2011.0928] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer death worldwide. Pulmonary anticancer therapy might offer several advantages over systemic delivery, leading to an increased exposure of the lung tumor to the drug, while minimizing side effects, due to regional containment. Here, we studied if a combination of inhalation therapy and drug targeting holds potential as an even more efficient lung cancer therapy. METHODS Transferrin (Tf )-conjugated PEG liposomes loaded with doxorubicin (DOX) were administered using an intracorporeal nebulizing catheter to an orthotopic lung cancer model established in athymic Rowett nude rats. Different DOX formulations and doses (0.2 and 0.4 mg/kg) were tested and the influence on tumor progression and life span of rats was evaluated in comparison with the i.v. administration of Tf-PEG-liposomes loaded with DOX at a therapeutic dose of 2 mg/kg. RESULTS Rats in the untreated control group showed significant weight loss 2 weeks after tumor induction and died between days 19 and 29. Lungs of these animals showed multiple foci of neoplastic deposits, ranging up to 20 mm replacing the entire lobe. Empty Tf-liposomes showed a significant effect on survival time. This might be caused by the secondary cytotoxicity via stimulation of pulmonary macrophages. All animal treated intravenously also perished before the end of the study. No significant (p<0.05) improvement in survival was observed between the groups treated with aerosols of free drug, DOX encapsulated in plain and in Tf-modified liposomes. However, more animals survived in the Tf-liposome groups than in the other treatment regimes, and their lung tissue generally had fewer and smaller tumors. Nevertheless, the size of the groups, and the duration of the trial render it impossible to come to a definite conclusion. CONCLUSIONS Drug targeting demonstrated potential for improving the aerosol treatment of lung cancer.
Collapse
Affiliation(s)
- Maria Manuela Gaspar
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin, Ireland
| | | | | | | | | | | |
Collapse
|
157
|
de Barros AB, Tsourkas A, Saboury B, Cardoso VN, Alavi A. Emerging role of radiolabeled nanoparticles as an effective diagnostic technique. EJNMMI Res 2012; 2:39. [PMID: 22809406 PMCID: PMC3441881 DOI: 10.1186/2191-219x-2-39] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 07/05/2012] [Indexed: 12/19/2022] Open
Abstract
Nanomedicine is emerging as a promising approach for diagnostic applications. Nanoparticles are structures in the nanometer size range, which can present different shapes, compositions, charges, surface modifications, in vitro and in vivo stabilities, and in vivo performances. Nanoparticles can be made of materials of diverse chemical nature, the most common being metals, metal oxides, silicates, polymers, carbon, lipids, and biomolecules. Nanoparticles exist in various morphologies, such as spheres, cylinders, platelets, and tubes. Radiolabeled nanoparticles represent a new class of agent with great potential for clinical applications. This is partly due to their long blood circulation time and plasma stability. In addition, because of the high sensitivity of imaging with radiolabeled compounds, their use has promise of achieving accurate and early diagnosis. This review article focuses on the application of radiolabeled nanoparticles in detecting diseases such as cancer and cardiovascular diseases and also presents an overview about the formulation, stability, and biological properties of the nanoparticles used for diagnostic purposes.
Collapse
|
158
|
Chen Y, Liu L. Modern methods for delivery of drugs across the blood-brain barrier. Adv Drug Deliv Rev 2012; 64:640-65. [PMID: 22154620 DOI: 10.1016/j.addr.2011.11.010] [Citation(s) in RCA: 662] [Impact Index Per Article: 50.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 11/21/2011] [Accepted: 11/21/2011] [Indexed: 02/07/2023]
Abstract
The blood-brain barrier (BBB) is a highly regulated and efficient barrier that provides a sanctuary to the brain. It is designed to regulate brain homeostasis and to permit selective transport of molecules that are essential for brain function. Unfortunately, drug transport to the brain is hampered by this almost impermeable, highly selective and well coordinated barrier. With progress in molecular biology, the BBB is better understood, particularly under different pathological conditions. This review will discuss the barrier issue from a biological and pathological perspective to provide a better insight to the challenges and opportunities associated with the BBB. Modern methods which can take advantage of these opportunities will be reviewed. Applications of nanotechnology in drug transport, receptor-mediated targeting and transport, and finally cell-mediated drug transport will also be covered in the review. The challenge of delivering an effective therapy to the brain is formidable; solutions will likely involve concerted multidisciplinary approaches that take into account BBB biology as well as the unique features associated with the pathological condition to be treated.
Collapse
Affiliation(s)
- Yan Chen
- School of Pharmacy, CHIRI, WABRI, Curtin University, Perth, Western Australia, Australia.
| | | |
Collapse
|
159
|
Sharma G, Modgil A, Sun C, Singh J. Grafting of cell-penetrating peptide to receptor-targeted liposomes improves their transfection efficiency and transport across blood-brain barrier model. J Pharm Sci 2012; 101:2468-78. [PMID: 22517732 DOI: 10.1002/jps.23152] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/13/2012] [Accepted: 03/22/2012] [Indexed: 11/05/2022]
Abstract
We report bifunctional liposomal delivery system, combining transferrin (Tf)-mediated receptor targeting and poly-L-arginine (PR)-facilitated cell penetration, which overcomes the drawback of saturation of delivery. PR was conjugated to the distal end of distearoyl phosphoethanolamine-polyethylene glycol (PEG) 2000 and was incorporated with other phospholipids in chloroform/methanol (2:1) to form PR liposomes using thin-film hydration technique. Tf-PEG phospholipid micelles were incorporated into PR liposomes using postinsertion technique to form Tf-PR liposomes. The bifunctional liposomes demonstrated significantly (p < 0.05) higher cellular uptake by brain endothelial cells (bEnd.3) and about eightfold higher transfection in primary culture of glial cells as compared with the Tf liposomes. Cell viabilities of Tf-conjugated and bifunctional liposomes were not markedly different; however, transport across in vitro blood-brain barrier model improved considerably after dual modification. The study underlines the potential of bifunctional liposomes as high-efficiency and low-toxicity gene delivery system for the treatment of central nervous system disorders.
Collapse
Affiliation(s)
- Gitanjali Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy, Nursing and Allied Sciences, North Dakota State University, Fargo, North Dakota 58105, USA
| | | | | | | |
Collapse
|
160
|
Organic nanocarriers for cancer drug delivery. Curr Opin Pharmacol 2012; 12:414-9. [PMID: 22465543 DOI: 10.1016/j.coph.2012.02.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 02/23/2012] [Indexed: 11/23/2022]
Abstract
A major focus in translational cancer research is the study of nanocarriers as novel delivery systems for chemotherapeutics. Organic vesicular nanocarriers, such as liposomes and micelles, have the advantage of low toxicity and the versatility to carry diverse drugs and conjugate to targeting agents. This offers the potential for combining treatment and diagnosis (theranostics). Successful incorporation into these nanoformulations has been demonstrated for classical chemotherapeutic drugs that are mostly hydrophobic, small interfering RNA, biological therapeutics and specific nanoparticles, such as superparamagnetic nanoparticles. Liposomes and micelles appear to take advantage of the enhanced permeability and retention (EPR) effect in solid tumours to increase accumulation at the target site (passive targeting). This translates to the clinic, where liposomal drug formulations are reported to exhibit higher efficacy and less side effects. Multidrug formulations and combinations with other treatments, for example, radiation or radiofrequency ablation, to trigger drug release from the nanocarrier at the target site, are mostly at the pre-clinical stage. More complex formulations that incorporate treatment agents together with targeting (active targeting) and imaging molecules have also been investigated in in vivo models with encouraging results.
Collapse
|
161
|
Sawant RR, Torchilin VP. Challenges in development of targeted liposomal therapeutics. AAPS JOURNAL 2012; 14:303-15. [PMID: 22415612 DOI: 10.1208/s12248-012-9330-0] [Citation(s) in RCA: 246] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/03/2012] [Indexed: 01/09/2023]
Abstract
Liposomes, phospholipid vesicles with a bilayered membrane structure, have been widely used as pharmaceutical carriers for drugs and genes, in particular for treatment of cancer. To enhance the efficacy of the liposomal drugs, drug-loaded liposomes are targeted to the tumors by means of passive (enhanced permeability and retention mediated) targeting, based on the longevity of liposomes in blood and its accumulation in pathological sites with compromised vasculature, and active targeting, based on the attachment of specific ligands to the liposomal surface to bind certain antigens on the target cells. Antibody-targeted liposomes loaded with anticancer drugs demonstrate high potential for clinical applications. This review highlights evolution of liposomes for both passive and active targeting and challenges in development of targeted liposomal therapeutics specifically antibody-targeted liposomes.
Collapse
Affiliation(s)
- Rupa R Sawant
- Department of Pharmaceutical Sciences and Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Mugar Building, Room 312, 360 Huntington Avenue, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
162
|
Wei M, Xu Y, Zou Q, Tu L, Tang C, Xu T, Deng L, Wu C. Hepatocellular carcinoma targeting effect of PEGylated liposomes modified with lactoferrin. Eur J Pharm Sci 2012; 46:131-41. [PMID: 22369856 DOI: 10.1016/j.ejps.2012.02.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 01/19/2012] [Accepted: 02/12/2012] [Indexed: 10/28/2022]
Abstract
A hepatocellular carcinoma targeting lactoferrin (Lf) modified PEGylated liposome system was developed for improving drug efficacies to hepatic cancer cells. In this present work, PEGylated liposomes (PLS) were successfully prepared by the thin film hydration method combined with peglipid post insertion. Lf was covalently conjugated to the distal end of DSPE-PEG2000-COOH lipid by amide bound and loaded onto PEGylated liposomes surface as the targeting ligand. To confirm the targeting efficacies to hepatic cancer, coumarin-6 and DiR were encapsulated as fluorescent probes. The confocal microscopy and flow cytometry demonstrated that Lf conjugated PEGylated liposomes (Lf-PLS) were efficiently associated by HepG2 cells, while limited interaction was found for liposomes modified with a negative control protein. A similar pharmacokinetic behavior was observed in pharmacokinetics study of the liposomal formulations. Meanwhile, the in vivo imaging of liposomes in HepG2 tumor bearing mice indicated that Lf-PLS achieved more accumulation in tumor compared with PLS without Lf conjugated. The significant in vitro and in vivo results suggested that Lf-PLS might be a promising drug delivery system for hepatocellular carcinoma therapy with low toxicity.
Collapse
Affiliation(s)
- Minyan Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, PR China
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Vaidya B, Vyas SP. Transferrin coupled vesicular system for intracellular drug delivery for the treatment of cancer: development and characterization. J Drug Target 2012; 20:372-80. [PMID: 22339366 DOI: 10.3109/1061186x.2012.662687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES In the present study attempt has been made to enhance the selective tumor cell killing in mouse xenograft model using DQAsomes as a mitochondriotropic carrier and transferrin (Tf) as a ligand to target tumor cells. METHODS Tf modified DQAsomes (Tf-DQAsomes) were prepared by incubating preformed paclitaxel loaded DQAsomes with Tf in the presence of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride. Developed systems were characterized for size and size distribution, entrapment efficiency, and in vitro drug release. Fluorescence microscopy and flow cytometry were performed to evaluate cellular uptake of the carriers. Antitumor activity was determined using HeLa cells. In vivo therapeutic efficacy was determined in xenograft mouse model. KEY FINDINGS Uptake studies demonstrated that Tf-DQAsomes result in higher fluorescence intensity to the cancer cells as compared to plain DQAsomes. Tf-DQAsomes exhibited better antitumor activity in vitro as compared to plain DQAsomes and paclitaxel solution. In vivo biodistribution study revealed that paclitaxel concentration in the tumor was much higher in the case of Tf-DQAsomes as compared to plain DQAsomes and paclitaxel solution; however in other organs it was much lower than the latter two formulations. Tf-DQAsomes exhibited significant antitumor activity in the mouse xenograft model. CONCLUSIONS The finding demonstrated that Tf conjugated DQAsomes can effectively be delivered to the tumor in vivo and exhibit significant antitumor activity.
Collapse
Affiliation(s)
- Bhuvaneshwar Vaidya
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr. H. S. Gour University, Sagar (M.P.), India.
| | | |
Collapse
|
164
|
|
165
|
Dilnawaz F, Singh A, Sahoo SK. Transferrin-conjugated curcumin-loaded superparamagnetic iron oxide nanoparticles induce augmented cellular uptake and apoptosis in K562 cells. Acta Biomater 2012; 8:704-19. [PMID: 22051236 DOI: 10.1016/j.actbio.2011.10.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 09/19/2011] [Accepted: 10/17/2011] [Indexed: 12/22/2022]
Abstract
Superparamagnetic iron oxide nanoparticles are currently used for precise drug delivery and as an image contrast agent. In the present study, the potentiality of curcumin-loaded magnetic nanoparticles (Cur-MNPs) for the treatment of chronic myeloid leukemia (CML) was investigated. For active therapy, transferrin (Tf) ligand was further conjugated to Cur-MNPs, which demonstrated enhanced uptake compared to Cur-MNPs in p210bcr/abl-positive cell line (K562). Cur-MNPs demonstrated greater and sustained anti-proliferative activity in a dose- and time-dependent manner; however, with the advent of a magnetic field the anti-proliferative activity of Cur-MNPs as well as Tf-Cur-MNPs was enhanced due to higher cellular uptake with enhanced cytotoxicity activity. Down-regulation of Bcr-Abl protein activates intrinsic apoptotic pathways for promoting anti-leukemic responses. Our in vitro results advocate potential clinical applications of Cur-MNPs by activating multiple signaling pathways for provoking the anti-leukemic activity.
Collapse
|
166
|
Graham LM, Nguyen TM, Lee SB. Nanodetoxification: emerging role of nanomaterials in drug intoxication treatment. Nanomedicine (Lond) 2011; 6:921-8. [PMID: 21793680 DOI: 10.2217/nnm.11.75] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Treatment for intoxication involves the neutralization or clearance of a toxic compound, but the current methods of treatment are limited in their ability to safely and effectively detoxify the patient. Emerging research has focused on using nanoparticles as parenteral detoxifying agents to circulate through the body and capture toxins. The variable compositions of these nanoparticles control the mechanism in which they capture and remove specific compounds. As discussed in this article, the recent methods for utilizing nanoparticles for detoxification show great potential for intoxication treatment. However, several challenges must be overcome before a universal nanoparticle detoxification method is available for clinical use.
Collapse
Affiliation(s)
- Lauren M Graham
- Department of Chemistry & Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
167
|
Abstract
BACKGROUND Ligand targeted therapy (LTT) is a powerful pharmaceutical strategy to achieve selective drug delivery to pathological cells, for both therapeutic and diagnostic purposes, with the advantage of limited side effects and toxicity. This active drug targeting approach is based on the discovery that there are receptors overexpressed on pathological cells, compared to their expression in normal tissues. PURPOSE The purpose of this article is to review recently published data on LTT with applications, both in the field of cancer therapy and other diseases. Moreover, data on LTT exploiting receptors overexpressed at cytoplasmatic level are also reviewed. METHODS Data were deduced from Medline (PubMed) and SciFinder and their selections were made with preference to papers where the most relevant receptors were involved. RESULTS Several groups have reported improved delivery of targeted nanocarriers, as compared to nontargeted ones, to pathological cells. LTT offers several advantages, but there are also limitations in the development of this strategy. Moreover, LTT have shown encouraging results in in vitro and in animal models in vivo; hence their clinical potential awaits investigation. CONCLUSION Recent studies highlight that the ligand density plays an important role in targeting efficacy. Furthermore, LTT applications in diseases different from cancer and those exploiting receptors overexpressed at cytoplasmatic level are growing.
Collapse
|
168
|
Ji Z, Lin G, Lu Q, Meng L, Shen X, Dong L, Fu C, Zhang X. Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. J Colloid Interface Sci 2011; 365:143-9. [PMID: 21974923 DOI: 10.1016/j.jcis.2011.09.013] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 09/07/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
A new type of drug delivery system (DDS) involved chitosan (CHI) modified single walled carbon nanotubes (SWNTs) for controllable loading/release of anti-cancer doxorubicin (DOX) was constructed. CHI was non-covalently wrapped around SWNTs, imparting water-solubility and biocompatibility to the nanotubes. Folic acid (FA) was also bounded to the outer CHI layer to realize selective killing of tumor cells. The targeting DDS could effectively kill the HCC SMMC-7721 cell lines and depress the growth of liver cancer in nude mice, showing superior pharmaceutical efficiency to free DOX. The results of the blood routine and serum biochemical parameters, combined with the histological examinations of vital organs, demonstrating that the targeting DDS had negligible in vivo toxicity. Thus, this DDS is promising for high treatment efficacy and low side effects for future cancer therapy.
Collapse
Affiliation(s)
- Zongfei Ji
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Wang K, Na MH, Hoffman AS, Shim G, Han SE, Oh YK, Kwon IC, Kim IS, Lee BH. In situ dose amplification by apoptosis-targeted drug delivery. J Control Release 2011; 154:214-7. [DOI: 10.1016/j.jconrel.2011.06.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 11/28/2022]
|
170
|
Daniels TR, Bernabeu E, Rodríguez JA, Patel S, Kozman M, Chiappetta DA, Holler E, Ljubimova JY, Helguera G, Penichet ML. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta Gen Subj 2011; 1820:291-317. [PMID: 21851850 DOI: 10.1016/j.bbagen.2011.07.016] [Citation(s) in RCA: 526] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/19/2011] [Accepted: 07/28/2011] [Indexed: 12/12/2022]
Abstract
BACKGROUND Traditional cancer therapy can be successful in destroying tumors, but can also cause dangerous side effects. Therefore, many targeted therapies are in development. The transferrin receptor (TfR) functions in cellular iron uptake through its interaction with transferrin. This receptor is an attractive molecule for the targeted therapy of cancer since it is upregulated on the surface of many cancer types and is efficiently internalized. This receptor can be targeted in two ways: 1) for the delivery of therapeutic molecules into malignant cells or 2) to block the natural function of the receptor leading directly to cancer cell death. SCOPE OF REVIEW In the present article we discuss the strategies used to target the TfR for the delivery of therapeutic agents into cancer cells. We provide a summary of the vast types of anti-cancer drugs that have been delivered into cancer cells employing a variety of receptor binding molecules including Tf, anti-TfR antibodies, or TfR-binding peptides alone or in combination with carrier molecules including nanoparticles and viruses. MAJOR CONCLUSIONS Targeting the TfR has been shown to be effective in delivering many different therapeutic agents and causing cytotoxic effects in cancer cells in vitro and in vivo. GENERAL SIGNIFICANCE The extensive use of TfR for targeted therapy attests to the versatility of targeting this receptor for therapeutic purposes against malignant cells. More advances in this area are expected to further improve the therapeutic potential of targeting the TfR for cancer therapy leading to an increase in the number of clinical trials of molecules targeting this receptor. This article is part of a Special Issue entitled Transferrins: molecular mechanisms of iron transport and disorders.
Collapse
Affiliation(s)
- Tracy R Daniels
- Division of Surgical Oncology, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Kuo YC, Lin PI, Wang CC. Targeting nevirapine delivery across human brain microvascular endothelial cells using transferrin-grafted poly(lactide-co-glycolide) nanoparticles. Nanomedicine (Lond) 2011; 6:1011-26. [DOI: 10.2217/nnm.11.25] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aims: Poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs) were grafted with transferrin (Tf) to enhance the transport of nevirapine (NVP) across human brain microvascular endothelial cells (HBMECs). Methods: NVP-loaded PLGA NPs with surface-grafting Tf (Tf/NVP–PLGA NPs) were incubated with HBMECs and immunochemical staining characterized Tf receptors (TfRs). Results: The polydispersity index of Tf/NVP–PLGA NPs was lower than 0.008. The entrapment efficiency of NVP and loading efficiency of Tf was 20–75% and 15–80%, respectively. Tf slightly retarded the release of NVP from PLGA. Dioctadecyldimethylammonium bromide (DODAB)-stabilized Tf/NVP–PLGA NPs reduced the viability of HBMECs to 70–75%. The secretion of TNF-α was inhibited by Tf and stimulated by DODAB. The permeability of NVP across HBMECs reached maxima at 67% DODAB and 0.1–0.2% Tf. An increase in the concentration of Tf enhanced the uptake of Tf/NVP–PLGA NPs via a TfR-mediated mechanism. Conclusion: Tf/NVP–PLGA NPs are efficacious carriers in targeting delivery across HBMECs for viral therapy.
Collapse
Affiliation(s)
- Yung-Chih Kuo
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| | - Pei-I Lin
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| | - Cheng-Chin Wang
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi, Taiwan 62102, Republic of China
| |
Collapse
|
172
|
Lee SJ, Koo H, Jeong H, Huh MS, Choi Y, Jeong SY, Byun Y, Choi K, Kim K, Kwon IC. Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. J Control Release 2011; 152:21-9. [DOI: 10.1016/j.jconrel.2011.03.027] [Citation(s) in RCA: 158] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 01/08/2023]
|
173
|
A review on composite liposomal technologies for specialized drug delivery. JOURNAL OF DRUG DELIVERY 2011; 2011:939851. [PMID: 21490759 PMCID: PMC3065812 DOI: 10.1155/2011/939851] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 11/23/2010] [Accepted: 12/07/2010] [Indexed: 12/21/2022]
Abstract
The combination of liposomes with polymeric scaffolds could revolutionize the current state of drug delivery technology. Although liposomes have been extensively studied as a promising drug delivery model for bioactive compounds, there still remain major drawbacks for widespread pharmaceutical application. Two approaches for overcoming the factors related to the suboptimal efficacy of liposomes in drug delivery have been suggested. The first entails modifying the liposome surface with functional moieties, while the second involves integration of pre-encapsulated drug-loaded liposomes within depot polymeric scaffolds. This attempts to provide ingenious solutions to the limitations of conventional liposomes such as short plasma half-lives, toxicity, stability, and poor control of drug release over prolonged periods. This review delineates the key advances in composite technologies that merge the concepts of depot polymeric scaffolds with liposome technology to overcome the limitations of conventional liposomes for pharmaceutical applications.
Collapse
|
174
|
Das M, Sahoo SK. Epithelial cell adhesion molecule targeted nutlin-3a loaded immunonanoparticles for cancer therapy. Acta Biomater 2011; 7:355-69. [PMID: 20727991 DOI: 10.1016/j.actbio.2010.08.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/16/2010] [Accepted: 08/16/2010] [Indexed: 01/10/2023]
Abstract
Recently much attention has been given to the anti-cancer drug nutlin-3a, an antagonist of murine double minute 2 (MDM2) that actively inhibits p53-MDM2 interaction. Reactivating p53 function by nutlin-3a thus provides a promising therapeutic strategy for the treatment of cancer. Although nutlin-3a seems a potential candidate in restoring p53 activity, it has many lacunae, toxicity, poor bioavailability, nonspecific delivery, and most importantly it is a substrate of multidrug resistance protein. The objective of the present study is to prepare and characterize nutlin-3a loaded poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs), surface functionalized with epithelial cell adhesion molecule (EpCAM) antibody, with an aim to deliver encapsulated drug in a targeted manner to its site of action and to enhance its therapeutic efficacy many times over. The enhanced cellular uptake of EpCAM antibody conjugated nutlin-3a loaded NPs (EpCAM-nutlin-3a-NPs) over native nulin-3a, nutlin-3a loaded NPs (nutlin-3a-NPs) in HCT116 and A549 cells substantiate the targeting potentiality of conjugated system. IC₅₀ values depicted superior antiproliferative activity of EpCAM-nutlin-3a-NPs over nutlin-3a-NPs and native nutlin-3a in the above studied cell lines. Cell cycle arrest, loss of mitochondrial membrane potential and apoptosis induced by above formulation were confirmed by flow cytometry. Expression of p53, p21, EpCAM, and C-myc proteins involved in cell cycle regulation and apoptosis were investigated by western blotting. The above investigation indicates the enhanced therapeutic ability of EpCAM-nutlin-3a-NPs compared to nutlin-3a or nutlin-3a-NPs. Thus, our results suggest that EpCAM-nutlin-3a-NPs could be a potentially useful drug carrier system for targeted delivery of potent anti-cancer drug nutlin-3a for cancer therapy.
Collapse
Affiliation(s)
- Manasi Das
- Institute of Life Sciences, Bhubaneswar, India
| | | |
Collapse
|
175
|
Herringson TP, Altin JG. Increasing the antitumor efficacy of doxorubicin-loaded liposomes with peptides anchored via a chelator lipid. J Drug Target 2010; 19:681-9. [PMID: 21142652 DOI: 10.3109/1061186x.2010.536984] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The therapeutic efficacy of anticancer drugs like doxorubicin can be significantly increased by their incorporation into liposomes, but an ability to actively target the drug-containing liposomes to tumors could well provide an even greater curative effect. In this work, a commercial preparation of doxorubicin-loaded liposomes (Caelyx) was modified by incorporation of the metal chelator lipid 3(nitrilotriacetic acid)-ditetradecylamine (NTA(3)-DTDA) to enable engraftment of histidine-tagged targeting molecules. Our results show that when engrafted with p15-RGR, a His-tagged peptide containing a sequence purported to bind platelet-derived growth factor receptor β (PDGFRβ), NTA(3)-DTDA-containing Caelyx (3NTA-Caelyx) can be targeted to NIH-3T3 cells in vitro, leading to increased cytotoxicity compared with non-targeted 3NTA-Caelyx. PDGFRβ is known to be expressed on pericytes in the tumor vasculature; however, when radiolabeled p15-RGR liposomes were administered to mice bearing subcutaneous B16-F1 tumors, minimal accumulation into tumors was observed. In contrast, an alternative targeting peptide, p46-RGD, was found to actively direct liposomes to tumors (4.7 %ID/g). Importantly, when injected into tumor-bearing mice, p46-RGD-engrafted 3NTA-Caelyx significantly decreased the tumor growth rate compared with controls. These results indicate that the incorporation of NTA(3)-DTDA into liposomal drugs could represent a simple modification to the drug to allow engraftment of targeting molecules and to increase its efficacy.
Collapse
Affiliation(s)
- Thomas P Herringson
- Division of Biomedical Science and Biochemistry, Research School of Biology, ANU College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, Australia
| | | |
Collapse
|
176
|
Zhang J, Jin W, Wang X, Wang J, Zhang X, Zhang Q. A novel octreotide modified lipid vesicle improved the anticancer efficacy of doxorubicin in somatostatin receptor 2 positive tumor models. Mol Pharm 2010; 7:1159-68. [PMID: 20524673 DOI: 10.1021/mp1000235] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Octreotide (Oct) is a potential ligand due to its high affinity to somatostatin receptors (SSTRs), especially subtype 2 (SSTR2), as many tumor cells specifically overexpress SSTR2. In this study, we conjugated Oct to the PEG end of DSPE-PEG and prepared a novel doxorubicin (DOX)-loaded and Oct-modified sterically stabilized liposomes (Oct-SSL-DOX), in order to facilitate intracellular delivery of chemotherapeutic agent to the related tumor cells through active targeting and finally improve its antitumor activity. Three cells were proved to be different in expression level of SSTR2 and were used as model or control. It was demonstrated by fluorescence spectrophotometry, confocal laser scanning microscopy and flow cytometry that active sterically stabilized liposomes (SSL) increased intracellular delivery of DOX in SSTR2-positive cells, through a mechanism of receptor-mediated endocytosis. Compared to SSL, Oct modification on SSL exhibited little effect on the physicochemical properties of SSL. However, it reduced the circulation time of loaded-DOX to some extent in rats, increased cytotoxicity in SSTR2-positive tumor cells, enhanced drug accumulation in tumor tissue and improved anticancer efficacy in SSTR2-overexpressing tumor model. The correlation was found among intracellular uptake, cytotoxicity, drug distribution in tumor and pharmacodynamics of Oct-SSL-DOX, but not the pharmacokinetics based on plasma drug concentration. In summary, octreotide-modified SSL might be a promising system for the treatment of SSTR2-overexpressing cancers.
Collapse
Affiliation(s)
- Junlin Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, P. R. China
| | | | | | | | | | | |
Collapse
|
177
|
Suo A, Qian J, Yao Y, Zhang W. Galactosylated poly(ethylene glycol)-b-poly (l-lactide-co-β-malic acid) block copolymer micelles for targeted drug delivery: preparation and in vitro characterization. Int J Nanomedicine 2010; 5:1029-38. [PMID: 21170351 PMCID: PMC3000202 DOI: 10.2147/ijn.s14280] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Biodegradable galactosylated methoxy poly(ethylene glycol)/poly(l-lactide-co-β-malic acid) (Gal-PEG-b-PLMA) block copolymer micelles were successfully prepared by a solvent diffusion method, and could efficiently encapsulate doxorubicin. The Gal-PEG-b-PLMA micelles before and after doxorubicin loading were characterized by size, morphology, in vitro drug release, and in vitro cytotoxicity in HepG2 cells. Transmission electron microscopy and dynamic light scattering results showed that the empty and doxorubicin-loaded micelles were approximately spherical in shape and had mean sizes of about 72 nm and 85 nm, respectively. In vitro release behavior of doxorubicin from the micelles was pH-dependent, with obviously faster release rates at mildly acidic pH 4.5 and 5.5 compared with physiologic pH 7.4. Methylthiazoletetrazolium assay and flow cytometric analysis indicated that the doxorubicin-loaded galactosylated micelles exhibited a greater growth-inhibitory effect on HepG2 cells than the nongalactosylated doxorubicin-loaded micelles, and induced S phase cell cycle arrest. Confocal laser scanning microscope observations revealed that the galactosylated micelles could be efficiently internalized by HepG2 cells through receptor-mediated endocytosis. The results suggest that Gal-PEG-b-PLMA copolymer micelles are a promising carrier system for targeted drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Aili Suo
- Department of Medical Oncology, First Affiliated Hospital of Medical School, Xi'an Jiaotong University, Xi'an, China.
| | | | | | | |
Collapse
|
178
|
Xu S, Liu Y, Tai HC, Zhu J, Ding H, Lee RJ. Synthesis of transferrin (Tf) conjugated liposomes via Staudinger ligation. Int J Pharm 2010; 404:205-10. [PMID: 21056642 DOI: 10.1016/j.ijpharm.2010.10.053] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Revised: 10/25/2010] [Accepted: 10/30/2010] [Indexed: 11/26/2022]
Abstract
Staudinger ligation was evaluated as a strategy for synthesizing receptor targeted liposomes. First, an activated lipid derivative was synthesized by reacting dioleoyl phosphatidylethanolamine (DOPE) and 2-(diphenylphosphino) terephthalic acid 1-methyl 4-penta-fluorophenyldiester. Second, transferrin (Tf) was activated with p-azidophenyl isothiocyanate. Third, liposomes containing the activated lipid were prepared and then coupled to the activated Tf via the Staudinger reaction. These liposomes were evaluated in KB cells for cellular uptake and cytotoxicity, and in mice for pharmacokinetic properties. Tf-derivatized liposomes encapsulating calcein prepared by this conjugation method effectively targeted Tf receptor expressing KB cells. In addition, the Tf-targeted liposomes entrapping doxorubicin showed greatly enhanced in vitro cytotoxicity relative to non-targeted control liposomes. Pharmacokinetic parameters indicated that these liposomes retained long circulating properties relative to the free drug. In summary, Staudinger ligation is an effective method for the synthesis of receptor targeted liposomes.
Collapse
Affiliation(s)
- Songlin Xu
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | | | | | | | | | | |
Collapse
|
179
|
Cong W, Liu Q, Chen X, Gao R, Lu J, Wang Y, Luo G. Characterization and pharmacokinetics of a novel pirarubicin liposome powder. Drug Dev Ind Pharm 2010; 36:1186-94. [DOI: 10.3109/03639041003695097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
180
|
Mesenchymal stem cells: a promising targeted-delivery vehicle in cancer gene therapy. J Control Release 2010; 147:154-62. [PMID: 20493219 DOI: 10.1016/j.jconrel.2010.05.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/12/2010] [Indexed: 01/12/2023]
Abstract
The targeting drug delivery systems (TDDS) have attracted extensive attention of researchers in recent years. More and more drug/gene targeted delivery carriers, such as liposome, magnetic nanoparticles, ligand-conjugated nanoparticles, microbubbles, etc., have been developed and under investigation for their application. However, the currently investigated drug/gene carriers have several disadvantages, which limit their future use in clinical practice. Therefore, design and development of novel drug/gene delivery vehicles has been a hot area of research. Recent studies have shown the ability of mesenchymal stem cells (MSCs) to migrate towards and engraft into the tumor sites, which make them a great hope for efficient targeted-delivery vehicles in cancer gene therapy. In this review article, we examine the promising of using mesenchymal stem cells as a targeted-delivery vehicle for cancer gene therapy, and summarize various challenges and concerns regarding these therapies.
Collapse
|
181
|
The benefits and challenges associated with the use of drug delivery systems in cancer therapy. Biochem Pharmacol 2010; 80:762-70. [PMID: 20417189 DOI: 10.1016/j.bcp.2010.04.020] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 04/14/2010] [Accepted: 04/15/2010] [Indexed: 11/20/2022]
Abstract
The use of drug delivery systems as nanocarriers for chemotherapeutic agents can improve the pharmacological properties of drugs by altering drug pharmacokinetics and biodistribution. Among the many drug delivery systems available, both micelles and liposomes have gained the most attention in recent years due to their clinical success. There are several formulations of these nanocarrier systems in various stages of clinical trials, as well as currently clinically approved liposomal-based drugs. In this review, we discuss these drug carrier systems, as well as current efforts that are being made in order to further improve their delivery efficacy through the incorporation of targeting ligands. In addition, this review discusses aspects of drug resistance attributed to the remodeling of the extracellular matrix that occurs during tumor development and progression, as well as to the acidic, hypoxic, and glucose-deprived tumor microenvironment. Finally, we address future prospective approaches to overcoming drug resistance by further modifications made to these drug delivery systems, as well as the possibility of coencapsulation/coadministration of various drugs aimed to surmount some of these microenvironmental-influenced obstacles for efficacious drug delivery in chemotherapy.
Collapse
|
182
|
Overcoming cisplatin resistance of ovarian cancer cells by targeted liposomes in vitro. Int J Pharm 2010; 389:10-7. [DOI: 10.1016/j.ijpharm.2009.12.061] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 12/21/2009] [Accepted: 12/24/2009] [Indexed: 11/19/2022]
|
183
|
Self-assembled biodegradable micelles based on star-shaped PCL-b-PEG copolymers for chemotherapeutic drug delivery. Colloids Surf A Physicochem Eng Asp 2010. [DOI: 10.1016/j.colsurfa.2010.01.037] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
184
|
Musacchio T, Toniutti M, Kautz R, Torchilin VP. 1H NMR detection of mobile lipids as a marker for apoptosis: the case of anticancer drug-loaded liposomes and polymeric micelles. Mol Pharm 2010; 6:1876-82. [PMID: 19737025 DOI: 10.1021/mp900164n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cultured cancer cells undergoing apoptosis show an increase in the NMR signal at a chemical shift of 1.3 ppm (-CH2-) corresponding to the so-called "mobile lipids" (ML) originating from the mobile acyl chains in triacylglycerides. A single NMR spectrum can provide an overview of the cellular metabolic changes caused by anticancer drugs providing qualitative and quantitative information on cellular metabolites. With this in mind, we studied the appearance of ML resonance in BT-20 and MCF-7 human breast cancer cells after their exposure to paclitaxel-loaded liposomes and polymeric micelles as a method to follow the apoptotic activity initiated by drug-loaded pharmaceutical nanocarriers. BT-20 and MCF-7 cells were incubated with 1.5 microg/mL paclitaxel-loaded liposomes or micelles for 24, 48, and 72 h in DMEM medium. Empty liposomes and micelles and untreated cells were used as controls. The progression of apoptosis induced in cancer cells by drug-loaded nanocarriers was readily detectable by NMR with a markedly increased area of the ML peak at 1.3 ppm. The presence of liposome- and micelle-forming materials did not induce or interfere with the increase in ML signals. Thus, the use of NMR for the detection of ML as a marker of apoptosis can be successfully applied to the study of pharmacological effects of anticancer drugs loaded into pharmaceutical nanocarriers.
Collapse
Affiliation(s)
- T Musacchio
- Center for Pharmaceutical Biotechnology & Nanomedicine and Barnett Institute, Northeastern University, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
185
|
Kaasgaard T, Andresen TL. Liposomal cancer therapy: exploiting tumor characteristics. Expert Opin Drug Deliv 2010; 7:225-43. [DOI: 10.1517/17425240903427940] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|