151
|
Braza F, Chesne J, Durand M, Dirou S, Brosseau C, Mahay G, Cheminant MA, Magnan A, Brouard S. A regulatory CD9(+) B-cell subset inhibits HDM-induced allergic airway inflammation. Allergy 2015. [PMID: 26194936 DOI: 10.1111/all.12697] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Exposure to respiratory allergens triggers airway hyperresponsiveness and inflammation characterized by the expansion of TH 2 cells and the production of allergen specific IgE. Allergic asthma is characterized by an alteration in immune regulatory mechanisms leading to an imbalance between pro- and anti-inflammatory components of the immune system. AIMS Recently B cells have been described as central regulators of exacerbated inflammation, notably in the case of autoimmunity. However, to what extent these cells can regulate airway inflammation and asthma remains to be elucidated. MATERIALS & METHODS We took advantage of a allergic asthma model in mice induced by percutaneous sensitization and respiratory challenge with an extract of house dust mite. RESULTS In this study, we showed that the induction of allergic asthma alters the homeostasis of IL-10(+) Bregs and favors the production of inflammatory cytokines by B cells. Deeper transcriptomic and phenotypic analysis of Bregs revealed that they were enriched in a CD9(+) B cell subset. In asthmatic mice the adoptive transfer of CD9(+) B cells normalized airway inflammation and lung function by inhibiting TH 2- and TH 17-driven inflammation in an IL-10-dependent manner, restoring a favorable immunological balance in lung tissues. Indeed we further showed that injection of CD9(+) Bregs controls the expansion of lung effector T cells allowing the establishment of a favorable regulatory T cells/effector T cells ratio in lungs. CONCLUSION This finding strengthens the potential for Breg-targeted therapies in allergic asthma.
Collapse
Affiliation(s)
- F. Braza
- INSERM; UMR 1087; l'institut du thorax; Nantes France
- CNRS; UMR 6291; Nantes France
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- CIC biothérapie; Nantes France. Université de Nantes; Nantes France
| | - J. Chesne
- INSERM; UMR 1087; l'institut du thorax; Nantes France
- CNRS; UMR 6291; Nantes France
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- CIC biothérapie; Nantes France. Université de Nantes; Nantes France
| | - M. Durand
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- CIC biothérapie; Nantes France
- Université de Nantes; Nantes France
| | - S. Dirou
- INSERM; UMR 1087; l'institut du thorax; Nantes France
- CNRS; UMR 6291; Nantes France
- CHU Nantes; l'institut du thorax; Service de Pneumologie; Nantes France
| | - C. Brosseau
- INSERM; UMR 1087; l'institut du thorax; Nantes France
- CNRS; UMR 6291; Nantes France
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- CHU Nantes; l'institut du thorax; Service de Pneumologie; Nantes France
| | - G. Mahay
- INSERM; UMR 1087; l'institut du thorax; Nantes France
- CNRS; UMR 6291; Nantes France
| | - M. A. Cheminant
- INSERM; UMR 1087; l'institut du thorax; Nantes France
- CNRS; UMR 6291; Nantes France
| | - A. Magnan
- INSERM; UMR 1087; l'institut du thorax; Nantes France
- CNRS; UMR 6291; Nantes France
- Université de Nantes; Nantes France
- CHU Nantes; l'institut du thorax; Service de Pneumologie; Nantes France
| | - S. Brouard
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- CIC biothérapie; Nantes France
- Université de Nantes; Nantes France
| |
Collapse
|
152
|
Abstract
Over the last decade it has become evident that in addition to producing antibody, B cells activate the immune system by producing cytokines and via antigen presentation. In addition, B cells also exhibit immunosuppressive functions via diverse regulatory mechanisms. This subset of B cells, known as regulatory B cells (Bregs), contributes to the maintenance of tolerance, primarily via the production of IL-10. Studies in experimental animal models, as well as in patients with autoimmune diseases, have identified multiple Breg subsets exhibiting diverse mechanisms of immune suppression. In this review, we describe the different Breg subsets identified in mice and humans, and their diverse mechanisms of suppression in different disease settings.
Collapse
Affiliation(s)
- Claudia Mauri
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| | - Madhvi Menon
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, UK
| |
Collapse
|
153
|
Spontaneous atopic dermatitis is mediated by innate immunity, with the secondary lung inflammation of the atopic march requiring adaptive immunity. J Allergy Clin Immunol 2015; 137:482-91. [PMID: 26299987 PMCID: PMC4735016 DOI: 10.1016/j.jaci.2015.06.045] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/09/2015] [Accepted: 06/15/2015] [Indexed: 12/13/2022]
Abstract
Background Atopic dermatitis (AD) is an inflammatory skin condition that can occur in early life, predisposing to asthma development in a phenomenon known as the atopic march. Although genetic and environmental factors are known to contribute to AD and asthma, the mechanisms underlying the atopic march remain poorly understood. Filaggrin loss-of-function mutations are a major genetic predisposer for the development of AD and progression to AD-associated asthma. Objective We sought to experimentally address whether filaggrin mutations in mice lead to the development of spontaneous eczematous inflammation and address the aberrant immunologic milieu arising in a mouse model of filaggrin deficiency. Methods Filaggrin mutant mice were generated on the proallergic BALB/c background, creating a novel model for the assessment of spontaneous AD-like inflammation. Independently recruited AD case collections were analyzed to define associations between filaggrin mutations and immunologic phenotypes. Results Filaggrin-deficient mice on a BALB/c background had profound spontaneous AD-like inflammation with progression to compromised pulmonary function with age, reflecting the atopic march in patients with AD. Strikingly, skin inflammation occurs independently of adaptive immunity and is associated with cutaneous expansion of IL-5–producing type 2 innate lymphoid cells. Furthermore, subjects with filaggrin mutations have an increased frequency of type 2 innate lymphoid cells in the skin in comparison with control subjects. Conclusion This study provides new insights into our understanding of the atopic march, with innate immunity initiating dermatitis and the adaptive immunity required for subsequent development of compromised lung function.
Collapse
|
154
|
Lykken JM, Candando KM, Tedder TF. Regulatory B10 cell development and function. Int Immunol 2015; 27:471-7. [PMID: 26254185 DOI: 10.1093/intimm/dxv046] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 07/31/2015] [Indexed: 01/06/2023] Open
Abstract
B cells are known to instigate and promulgate immune responses by producing antibodies and presenting antigens to T cells. However, a rare but potent B-cell subset in both humans and mice is capable of inhibiting immune responses through the production of the anti-inflammatory cytokine IL-10. Regulatory B cells do not express any unique combination of surface markers but instead represent a small population of B cells that have acquired the unique ability to produce IL-10. This numerically rare B-cell subset is therefore functionally referred to as 'B10 cells' to reflect both their molecular program and the fact that their anti-inflammatory effects in models of autoimmunity, infection and cancer are solely attributable to IL-10 production. As with most B cells, B10 cell development and function appear to be predominantly, if not exclusively, driven by antigen-receptor signals. Once generated, B10 cells respond to both innate and adaptive immune signals, with a requirement for antigen-specific local interactions with T cells to induce IL-10 production and to provide optimal immune suppression in mouse models of autoimmune disease. B10 cells therefore provide an antigen-specific mechanism for delivering IL-10 locally to sites of immune activation and inflammation. The ability of B10 cells to regulate innate and adaptive immune responses makes them an ideal therapeutic target for the treatment of many immune-related disorders.
Collapse
Affiliation(s)
- Jacquelyn M Lykken
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kathleen M Candando
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas F Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
155
|
Du HQ, Zhang X, An YF, Ding Y, Zhao XD. Effects of Wiskott-Aldrich Syndrome Protein Deficiency on IL-10-Producing Regulatory B Cells in Humans and Mice. Scand J Immunol 2015; 81:483-93. [PMID: 25728049 DOI: 10.1111/sji.12282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 02/12/2015] [Indexed: 12/25/2022]
Abstract
The Wiskott-Aldrich syndrome protein (WASp) is an important regulator of the actin cytoskeleton and is required for immune cell function. WASp deficiency causes a marked reduction in major mature peripheral B cell subsets, particularly marginal zone (MZ) B cells. We hypothesized that WASp deficiency may also lead to a reduction of regulatory B cells (known as B10 cells) belonging to a novel subset of B cells. And in consideration of the key role of B10 cells play in maintaining peripheral tolerance, we conjectured that a deficit of these cells could contribute to the autoimmunity in patients with Wiskott-Aldrich syndrome (WAS). The effects of WASp deficiency on B10 cells have been reported by only one group, which used an antigen-induced arthritis model. To add more information, we measured the percentage of B10 cells, regulatory T cells (Tregs) and Th1 cells in WASp knockout (WASp KO) mice. We also measured the percentage of B10 cells in patients with WAS by flow cytometry. Importantly, we used the non-induced autoimmune WASp KO mouse model to investigate the association between B10 cell frequency and the Treg/Th1 balance. We found that the percentage of B10 cells was reduced in both mice (steady state and inflammatory state) and in humans and that the lower B10 population correlated with an imbalance in the Treg/Th1 ratio in old WASp KO mice with autoimmune colitis. These findings suggest that WASp plays a crucial role in B10 cell development and that WASp-deficient B10 cells may contribute to autoimmunity in WAS.
Collapse
Affiliation(s)
- H-Q Du
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - X Zhang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Y-F An
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Y Ding
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - X-D Zhao
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Division of Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
156
|
Tian F, Hu X, Xian K, Zong D, Liu H, Wei H, Yang W, Qian L. B10 cells induced by Schistosoma japonicum soluble egg antigens modulated regulatory T cells and cytokine production of T cells. Parasitol Res 2015; 114:3827-34. [PMID: 26149531 DOI: 10.1007/s00436-015-4613-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/26/2015] [Indexed: 11/29/2022]
Abstract
A distinct subset of B cells, also known as regulatory B cells, can negatively regulate T cell immune responses, but the role of these cells in schistosomiasis has not been clarified. Soluble egg antigen (SEA) and soluble adult worm antigen preparation (SWAP), which are two important antigen sources during Schistosoma japonicum infection, both can induce Th1, Th2, Th17, and Treg cells and the corresponding cytokines. However, whether they can induce the production of regulatory B cells and the regulatory function of schistosome-induced regulatory B cells remains unclear. In our studies, we first analyzed the production of regulatory B cells stimulated by SEA or SWAP using flow cytometry and enzyme-linked immunosorbent assay, and observed these cells in mice immunized by SEA or SWAP. Then, B10 cells sorted by MicroBeads were co-cultured with CD4(+) T cells, and the proportion of Treg cells were detected. At the same time, the IFN-γ, IL-4, and IL-17 levels in the culture supernatant were measured. The results showed that B10 cells were preferentially induced by SEA in vitro, and B10 could also be induced in mice immunized by SEA. SEA-induced B10 cells promoted the expansion of regulatory T cells and induced IL-4 secretion, but inhibited IL-17 production. These findings reveal that the generation of B10 cells is determined by parasitic antigen, and suggest the function of B10 cell induced by SEA. This study significantly contributes to the understanding of the immune regulatory role in schistosomiasis and may help protect hosts from infection.
Collapse
Affiliation(s)
- Fang Tian
- Department of Pathogen Biology and Immunology, School of Medince, Yangzhou University, Yangzhou, Jiangsu, 225001, China,
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Shen P, Fillatreau S. Antibody-independent functions of B cells: a focus on cytokines. Nat Rev Immunol 2015; 15:441-51. [PMID: 26065586 DOI: 10.1038/nri3857] [Citation(s) in RCA: 366] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cytokine production by B cells is important for multiple aspects of immunity. B cell-derived cytokines, including lymphotoxin, are essential for the ontogenesis, homeostasis and activation of secondary lymphoid organs, as well as for the development of tertiary lymphoid tissues at ectopic sites. Other B cell-derived cytokines, such as interleukin-6 (IL-6), interferon-γ and tumour necrosis factor, influence the development of effector and memory CD4(+) T cell responses. Finally, B cells can regulate inflammatory immune responses, primarily through their provision of IL-10 and IL-35. This Review summarizes these various roles of cytokine-producing B cells in immunity and discusses the rational for targeting these cells in the clinic.
Collapse
Affiliation(s)
- Ping Shen
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Chariteplatz 1, 10117 Berlin, Germany
| | - Simon Fillatreau
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Chariteplatz 1, 10117 Berlin, Germany
| |
Collapse
|
158
|
Shen P, Fillatreau S. Suppressive functions of B cells in infectious diseases. Int Immunol 2015; 27:513-9. [PMID: 26066008 DOI: 10.1093/intimm/dxv037] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 06/08/2015] [Indexed: 12/22/2022] Open
Abstract
B lymphocytes are often essential to successfully control invading pathogens and play a primary role in the protection afforded by successful vaccines through the production of specific antibodies. However, recent studies have highlighted the complex roles of B cells in infectious diseases, showing unexpectedly that some activated B cells limited host defense towards pathogens. This B-cell function involves production of regulatory cytokines including IL-10 and IL-35 and is reminiscent of the regulatory functions of B cells initially defined in autoimmune diseases. It is now known that various types of microbes including bacteria, helminths and viruses can induce IL-10-expressing B cells with inhibitory functions, indicating that this response is a general component of anti-microbial immunity. Interestingly, IL-10-producing B cells induced in the course of some microbial infections can inhibit concurrent immune responses directed towards unrelated antigens in a bystander manner and as a consequence ameliorate the course of autoimmune or allergic diseases. This could explain how some micro-organisms might provide protection from these pathologies, as formulated in the 'hygiene hypothesis'. In this review, we discuss the regulatory functions of B cells in bacterial, parasitic and viral infections, taking into account the phenotype of the B cells implicated, the signals controlling their induction and the cell types targeted by their suppressive activities.
Collapse
Affiliation(s)
- Ping Shen
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Chariteplatz 1, 10117 Berlin, Germany
| | - Simon Fillatreau
- Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Chariteplatz 1, 10117 Berlin, Germany
| |
Collapse
|
159
|
Jeong YI, Hong SH, Cho SH, Lee WJ, Lee SE. Toxoplasma gondii Infection Suppresses House Dust Mite Extract-Induced Atopic Dermatitis in NC/Nga Mice. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2015; 7:557-64. [PMID: 26333702 PMCID: PMC4605928 DOI: 10.4168/aair.2015.7.6.557] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/29/2014] [Accepted: 01/26/2015] [Indexed: 12/16/2022]
Abstract
PURPOSE Toxoplasma gondii (T. gondii) is an obligate intracellular protozoan parasite that infects humans and animals via congenital or postnatal routes, and it is found worldwide. Modulation of the immune system by parasite infection is proposed to suppress allergic inflammation. Growing evidences have shown that interleukin (IL)-10-producing regulatory B cells (B(regs)) and CD4+CD25+FoxP3+ regulatory T cells (T(regs)) induced by parasite infection play a critical role in allergic or autoimmune diseases because these cells regulate negatively cellular immune responses and inflammation. Currently, the role of IL-10-producing regulatory B cells in host immune response during T. gondii infection is unknown. In this study, we investigate whether T. gondii infection can suppress the development of unrelated atopic dermatitis (AD)-like lesions. METHODS AD is a chronically relapsing inflammatory skin disease accompanied by severe itching; for this, we used NC/Nga mice, a well-known experimental model of systemic AD. Repeated exposure to Dermatophagoides farinae crude extract (DfE), known as a major environmental allergen, evokes AD-like skin lesions in NC/Nga mice under specific pathogen-free conditions. NC/Nga mice were intraperitoneally infected with 10 cysts of T. gondii. RESULTS T. gondii infection significantly ameliorated AD-like skin lesions in NC/Nga mice. The subpopulation of B(regs) and T(regs) in the AD mice was expanded in the course of T. gondii infection. In addition, T. gondii infection inhibited Th2 and enhanced Th1 immune response in the DfE-treated AD mice. CONCLUSIONS We have experimentally demonstrated for the first time that T. gondii infection ameliorated AD-like skin lesions in a mouse model of AD. Our study could in part explain the mechanisms of how parasite infection prevents the development of allergic disorder. Therefore, these immunemechanisms induced by T. gondii infection may be beneficial for the host in terms of reduced risk of allergic immune reactions.
Collapse
Affiliation(s)
- Young Il Jeong
- Division of Malaria & Parasitic Disease, Korea National Institute of Health, Cheongwon-gun, Chungbuk, Korea
| | - Sung Hee Hong
- Division of Malaria & Parasitic Disease, Korea National Institute of Health, Cheongwon-gun, Chungbuk, Korea
| | - Shin Hyeong Cho
- Division of Malaria & Parasitic Disease, Korea National Institute of Health, Cheongwon-gun, Chungbuk, Korea
| | - Won Ja Lee
- Division of Malaria & Parasitic Disease, Korea National Institute of Health, Cheongwon-gun, Chungbuk, Korea
| | - Sang Eun Lee
- Division of Malaria & Parasitic Disease, Korea National Institute of Health, Cheongwon-gun, Chungbuk, Korea.
| |
Collapse
|
160
|
Rodgers DT, McGrath MA, Pineda MA, Al-Riyami L, Rzepecka J, Lumb F, Harnett W, Harnett MM. The parasitic worm product ES-62 targets myeloid differentiation factor 88-dependent effector mechanisms to suppress antinuclear antibody production and proteinuria in MRL/lpr mice. Arthritis Rheumatol 2015; 67:1023-35. [PMID: 25546822 PMCID: PMC4409857 DOI: 10.1002/art.39004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/16/2014] [Indexed: 12/30/2022]
Abstract
Objective The hygiene hypothesis suggests that parasitic helminths (worms) protect against the development of autoimmune disease via a serendipitous side effect of worm-derived immunomodulators that concomitantly promote parasite survival and limit host pathology. The aim of this study was to investigate whether ES-62, a phosphorylcholine-containing glycoprotein secreted by the filarial nematode Acanthocheilonema viteae, protects against kidney damage in an MRL/lpr mouse model of systemic lupus erythematosus (SLE). Methods MRL/lpr mice progressively produce high levels of autoantibodies, and the resultant deposition of immune complexes drives kidney pathology. The effects of ES-62 on disease progression were assessed by measurement of proteinuria, assessment of kidney histology, determination of antinuclear antibody (ANA) production and cytokine levels, and flow cytometric analysis of relevant cellular populations. Results ES-62 restored the disrupted balance between effector and regulatory B cells in MRL/lpr mice by inhibiting plasmablast differentiation, with a consequent reduction in ANA production and deposition of immune complexes and C3a in the kidneys. Moreover, by reducing interleukin-22 production, ES-62 may desensitize downstream effector mechanisms in the pathogenesis of kidney disease. Highlighting the therapeutic importance of resetting B cell responses, adoptive transfer of purified splenic B cells from ES-62–treated MRL/lpr mice mimicked the protection afforded by the helminth product. Mechanistically, this reflects down-regulation of myeloid differentiation factor 88 expression by B cells and also kidney cells, resulting in inhibition of pathogenic cross-talk among Toll-like receptor–, C3a-, and immune complex–mediated effector mechanisms. Conclusion This study provides the first demonstration of protection against kidney pathology by a parasitic worm–derived immunomodulator in a model of SLE and suggests therapeutic potential for drugs based on the mechanism of action of ES-62.
Collapse
|
161
|
Miyagaki T, Fujimoto M, Sato S. Regulatory B cells in human inflammatory and autoimmune diseases: from mouse models to clinical research. Int Immunol 2015; 27:495-504. [PMID: 25957264 DOI: 10.1093/intimm/dxv026] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 05/01/2015] [Indexed: 02/06/2023] Open
Abstract
B cells have been generally considered to be positive regulators of immune responses because of their ability to produce antigen-specific antibodies and to activate T cells through antigen presentation. Impairment of B cell development and function may cause inflammatory and autoimmune diseases. Recently, specific B cell subsets that can negatively regulate immune responses have been described in mouse models of a wide variety of inflammatory and autoimmune diseases. The concept of those B cells, termed regulatory B cells, is now recognized as important in the murine immune system. Among several regulatory B cell subsets, IL-10-producing regulatory B cells are the most widely investigated. On the basis of discoveries from studies of such mice, human regulatory B cells that produce IL-10 in most cases are becoming an active area of research. There have been emerging data suggesting the importance of human regulatory B cells in various diseases. Revealing the immune regulation mechanisms of human regulatory B cells in human inflammatory and autoimmune diseases could lead to the development of novel B cell targeted therapies. This review highlights the current knowledge on regulatory B cells, mainly IL-10-producing regulatory B cells, in animal models of inflammatory and autoimmune diseases and in clinical research using human samples.
Collapse
Affiliation(s)
- Tomomitsu Miyagaki
- Department of Dermatology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Manabu Fujimoto
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Shinichi Sato
- Department of Dermatology, Faculty of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| |
Collapse
|
162
|
Baba Y, Matsumoto M, Kurosaki T. Signals controlling the development and activity of regulatory B-lineage cells. Int Immunol 2015; 27:487-93. [PMID: 25957265 DOI: 10.1093/intimm/dxv027] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/01/2015] [Indexed: 12/25/2022] Open
Abstract
The fundamental concepts surrounding B cells with inhibitory function (regulatory B cells) are now being established. In the context of autoimmune and inflammatory animal models, B cells play an immunomodulatory role via IL-10 production and contribute to limitation of the pathogenesis. Recent studies have notably identified the human counterparts of these cells, which have been suggested to be relevant to the pathophysiology of disease. Clear criteria to identify these cell subsets and the key molecular mechanisms underlying their physiological features are required for understanding the big picture of regulatory B cells. Plasmablasts have recently been identified as a major IL-10-producing regulatory B-cell subset and Ca(2+) signaling has furthermore been found to contribute to B-cell IL-10 expression. In this review, the signaling components controlling IL-10-dependent B-cell regulatory function and the development of IL-10-competent/-producing B cells and plasmablasts are discussed.
Collapse
Affiliation(s)
- Yoshihiro Baba
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Masanori Matsumoto
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
163
|
Gong Y, Zhao C, Zhao P, Wang M, Zhou G, Han F, Cui Y, Qian J, Zhang H, Xiong H, Sheng J, Jiang T. Role of IL-10-Producing Regulatory B Cells in Chronic Hepatitis B Virus Infection. Dig Dis Sci 2015; 60:1308-14. [PMID: 25260658 DOI: 10.1007/s10620-014-3358-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 09/06/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND A subset of interleukin (IL)-10-producing regulatory B (Breg) cells that suppress T-cell-mediated immunity was recently identified; however, their role in chronic hepatitis B (CHB) remains elusive. AIM To explore the possible role of Breg in the interaction with Th cells and consequent pathogenesis of CHB. METHODS The prevalence of Breg as well as 3 major effector T-cell subsets--CD4(+)CD25(high)Foxp3(+) regulatory T (Treg) cells, T helper 1 cells (Th1), and T helper 2 cells (Th2)--was assessed in the peripheral blood of 31 patients with CHB, 28 patients with acute hepatitis B (AHB), and 25 healthy controls (HC). RESULTS Compared to patients with AHB and HC, the prevalence of Breg and Treg cells and the concentration of IL-10 in the supernatant of cultured peripheral blood mononuclear cells (PBMCs) were greatly increased in patients with CHB. A significantly decreased proportion of Th1 cells was also observed in patients with CHB and was demonstrated to have a negative correlation with the prevalence of Breg. Furthermore, depletion of Treg cells in the PBMCs of patients with CHB did not alter the frequency of Breg cells or their ability to produce IL-10, indicating little, if any, impact of Treg cells on the generation and maintenance of Breg cells. CONCLUSIONS Our data indicate that increased Breg cells might be a major source of elevated IL-10 in CHB and represent a critical and independent regulatory force in the development of impaired anti-HBV immunity, consequently contributing to the pathogenesis of CHB.
Collapse
Affiliation(s)
- Yanping Gong
- Institution for Laboratory Medicine, Changshu, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Hsu LH, Li KP, Chu KH, Chiang BL. A B-1a cell subset induces Foxp3(-) T cells with regulatory activity through an IL-10-independent pathway. Cell Mol Immunol 2015; 12:354-65. [PMID: 25132452 PMCID: PMC4654317 DOI: 10.1038/cmi.2014.56] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 05/19/2014] [Accepted: 06/09/2014] [Indexed: 01/08/2023] Open
Abstract
Regulatory T (Treg) cells play a critical role in the maintenance of tolerance. B-1a cells belong to a specific and functionally important B-cell subset that exerts its regulatory role through the production of IL-10. While IL-10 has been correlated with the induction of type 1 Treg (Tr1) cells or Tr1-like cells, whether IL-10-producing B-1a cells are able to induce Treg cells, especially the Tr1 lineage, is poorly understood. We have demonstrated that, similar to the reported B-2 cells, B-1a cells are able to convert naïve CD4(+)CD25(-) T cells into a subset of T cells with suppressive function, which we called 'Treg-of-B1a' cells. Treg-of-B1a cells do not express Foxp3, but upregulate the Treg markers OX40, programmed death 1 (PD-1), inducible costimulator (ICOS) and IL-10R. Moreover, Treg-of-B1a cells do not express Foxp3 and produce high levels of IFN-γ and IL-10, but minimal amounts of IL-4; therefore, they resemble Tr1 cells. However, utilizing IL-10(-/-) mice, we showed that IL-10 was not involved in the induction of Treg-of-B1a cells. On the contrary, CD86-mediated costimulation was essential for B-1a cells to drive the induction of Treg-of-B1a cells. Finally, we demonstrated that, in contrast to the Treg cells generated by B-2 cells that mediate contact-dependent suppression, Treg-of-B1a cells suppress through secreting soluble factors. While Tr1 cells mediate suppression mainly through IL-10 or TGF-β secretion, Treg-of-B1a cells mediate suppression through an IL-10- and TGF-β-independent pathway. Together, these findings suggest that B-1a cells induce a functionally and phenotypically distinct Treg population that is dissimilar to the reported Foxp3(+) Treg or Tr1 cells.
Collapse
Affiliation(s)
- Ling-Hui Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, China
| | - Kun-Po Li
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, China
| | - Kuan-Hua Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, China
| | - Bor-Luen Chiang
- 1] Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan, China [2] Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan, China
| |
Collapse
|
165
|
Tedder TF. B10 cells: a functionally defined regulatory B cell subset. THE JOURNAL OF IMMUNOLOGY 2015; 194:1395-401. [PMID: 25663677 DOI: 10.4049/jimmunol.1401329] [Citation(s) in RCA: 237] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
B cells are commonly thought to enhance inflammatory immune responses. However, specific regulatory B cell subsets recently were identified that downregulate adaptive and innate immunity, inflammation, and autoimmunity through diverse molecular mechanisms. In both mice and humans, a rare, but specific, subset of regulatory B cells is functionally characterized by its capacity to produce IL-10, a potent inhibitory cytokine. For clarity, this regulatory B cell subset has been labeled as B10 cells, because their ability to downregulate immune responses and inflammatory disease is fully attributable to IL-10, and their absence or loss exacerbates disease symptoms in mouse models. This review preferentially focuses on what is known about mouse B10 cell development, phenotype, and effector function, as well as on mechanistic studies that demonstrated their functional importance during inflammation, autoimmune disease, and immune responses.
Collapse
Affiliation(s)
- Thomas F Tedder
- Department of Immunology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
166
|
Khan AR, Amu S, Saunders SP, Hams E, Blackshields G, Leonard MO, Weaver CT, Sparwasser T, Sheils O, Fallon PG. Ligation of TLR7 on CD19(+) CD1d(hi) B cells suppresses allergic lung inflammation via regulatory T cells. Eur J Immunol 2015; 45:1842-54. [PMID: 25763771 DOI: 10.1002/eji.201445211] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/27/2015] [Accepted: 03/10/2015] [Indexed: 01/10/2023]
Abstract
B cells have been described as having the capacity to regulate cellular immune responses and suppress inflammatory processes. One such regulatory B-cell population is defined as IL-10-producing CD19(+) CD1d(hi) cells. Previous work has identified an expansion of these cells in mice infected with the helminth, Schistosoma mansoni. Here, microarray analysis of CD19(+) CD1d(hi) B cells from mice infected with S. mansoni demonstrated significantly increased Tlr7 expression, while CD19(+) CD1d(hi) B cells from uninfected mice also demonstrated elevated Tlr7 expression. Using IL-10 reporter, Il10(-/-) and Tlr7(-/-) mice, we formally demonstrate that TLR7 ligation of CD19(+) CD1d(hi) B cells increases their capacity to produce IL-10. In a mouse model of allergic lung inflammation, the adoptive transfer of TLR7-elicited CD19(+) CD1d(hi) B cells reduced airway inflammation and associated airway hyperresponsiveness. Using DEREG mice to deplete FoxP3(+) T regulatory cells in allergen-sensitized mice, we show that that TLR7-elicited CD19(+) CD1d(hi) B cells suppress airway hyperresponsiveness via a T regulatory cell dependent mechanism. These studies identify that TLR7 stimulation leads to the expansion of IL-10-producing CD19(+) CD1d(hi) B cells, which can suppress allergic lung inflammation via T regulatory cells.
Collapse
Affiliation(s)
- Adnan R Khan
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Sylvie Amu
- Institute of Molecular Medicine, School of Medicine, St James's Hospital, Trinity College Dublin, Dublin, Ireland
| | - Sean P Saunders
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Emily Hams
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Gordon Blackshields
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James's Hospital, Dublin, Ireland
| | - Martin O Leonard
- School of Medicine and Medical Sciences, The Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Casey T Weaver
- Department of Pathology, University of Alabama, Birmingham, AL, USA
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hanover, Germany
| | - Orla Sheils
- Department of Histopathology, Trinity College Dublin, Sir Patrick Duns Research Laboratory, St. James's Hospital, Dublin, Ireland
| | - Padraic G Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland.,Institute of Molecular Medicine, School of Medicine, St James's Hospital, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| |
Collapse
|
167
|
Sicard A, Koenig A, Morelon E, Defrance T, Thaunat O. Cell therapy to induce allograft tolerance: time to switch to plan B? Front Immunol 2015; 6:149. [PMID: 25904913 PMCID: PMC4387960 DOI: 10.3389/fimmu.2015.00149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/19/2015] [Indexed: 12/13/2022] Open
Abstract
Organ transplantation is widely acknowledged as the best option for end stage failure of vital organs. Long-term graft survival is however limited by graft rejection, a destructive process resulting from the response of recipient’s immune system against donor-specific alloantigens. Prevention of rejection currently relies exclusively on immunosuppressive drugs that lack antigen specificity and therefore increase the risk for infections and cancers. Induction of donor-specific tolerance would provide indefinite graft survival without morbidity and therefore represents the grail of transplant immunologists. Progresses in the comprehension of immunoregulatory mechanisms over the last decades have paved the way for cell therapies to induce allograft tolerance. The first part of the present article reviews the promising results obtained in experimental models with adoptive transfer of ex vivo-expanded regulatory CD4+ T cells (CD4+ Tregs) and discuss which source and specificity should be preferred for transferred CD4+ Tregs. Interestingly, B cells have recently emerged as potent regulatory cells, able to establish a privileged crosstalk with CD4+ T cells. The second part of the present article reviews the evidences demonstrating the crucial role of regulatory B cells in transplantation tolerance. We propose the possibility to harness B cell regulatory functions to improve cell-based therapies aiming at inducing allograft tolerance.
Collapse
Affiliation(s)
| | - Alice Koenig
- U1111, INSERM , Lyon , France ; Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Transplantation, Néphrologie et Immunologie Clinique , Lyon , France
| | - Emmanuel Morelon
- U1111, INSERM , Lyon , France ; Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Transplantation, Néphrologie et Immunologie Clinique , Lyon , France ; Université de Lyon , Lyon , France
| | | | - Olivier Thaunat
- U1111, INSERM , Lyon , France ; Hospices Civils de Lyon, Hôpital Edouard Herriot, Service de Transplantation, Néphrologie et Immunologie Clinique , Lyon , France ; Université de Lyon , Lyon , France
| |
Collapse
|
168
|
Kim HS, Kim AR, Kim DK, Kim HW, Park YH, Jang GH, Kim B, Park YM, You JS, Kim HS, Beaven MA, Kim YM, Choi WS. Interleukin-10-producing CD5+ B cells inhibit mast cells during immunoglobulin E-mediated allergic responses. Sci Signal 2015; 8:ra28. [PMID: 25783157 DOI: 10.1126/scisignal.2005861] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Subsets of B cells inhibit various immune responses through their production of the cytokine interleukin-10 (IL-10). We found that IL-10-producing CD5(+) B cells suppressed the immunoglobulin E (IgE)- and antigen-mediated activation of mast cells in vitro as well as allergic responses in mice in an IL-10-dependent manner. Furthermore, the suppressive effect of these B cells on mast cells in vitro and in vivo depended on direct cell-to-cell contact through the costimulatory receptor CD40 on CD5(+) B cells and the CD40 ligand on mast cells. This contact enhanced the production of IL-10 by the CD5(+) B cells. Through activation of the Janus-activated kinase-signal transducer and activator of transcription 3 pathway, IL-10 decreased the abundance of the kinases Fyn and Fgr and inhibited the activation of the downstream kinase Syk in mast cells. Together, these findings suggest that an important function of IL-10-producing CD5(+) B cells is inhibiting mast cells and IgE-mediated allergic responses.
Collapse
Affiliation(s)
- Hyuk Soon Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - A-Ram Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Do Kyun Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Hyun Woo Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Young Hwan Park
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Geun Hyo Jang
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Bokyung Kim
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Yeong Min Park
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Jueng Soo You
- School of Medicine, Konkuk University, Chungju 380-701, Korea
| | - Hyung Sik Kim
- College of Pharmacy, Sungkyunkwan University, Suwon 440-746, Korea
| | - Michael A Beaven
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Young Mi Kim
- College of Pharmacy, Duksung Women's University, Seoul 132-714, Korea
| | - Wahn Soo Choi
- School of Medicine, Konkuk University, Chungju 380-701, Korea.
| |
Collapse
|
169
|
Bézie S, Picarda E, Tesson L, Renaudin K, Durand J, Ménoret S, Mérieau E, Chiffoleau E, Guillonneau C, Caron L, Anegon I. Fibrinogen-like protein 2/fibroleukin induces long-term allograft survival in a rat model through regulatory B cells. PLoS One 2015; 10:e0119686. [PMID: 25763980 PMCID: PMC4357433 DOI: 10.1371/journal.pone.0119686] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 01/15/2015] [Indexed: 01/15/2023] Open
Abstract
We previously described that in a rat model of heart transplantation tolerance was dependent on CD8+CD45RClow Tregs that over-expressed fibrinogen-like protein 2 (FGL2)/fibroleukin. Little is known on the immunoregulatory properties of FGL2. Here we analyzed the transplantation tolerance mechanisms that are present in Lewis 1A rats treated with FGL2. Over-expression of FGL2 in vivo through adenovirus associated virus -mediated gene transfer without any further treatment resulted in inhibition of cardiac allograft rejection. Adoptive cell transfer of splenocytes from FGL2-treated rats with long-term graft survival (> 80 days) in animals that were transplanted with cardiac allografts inhibited acute and chronic organ rejection in a donor-specific and transferable tolerance manner, since iterative adoptive transfer up to a sixth consecutive recipient resulted in transplantation tolerance. Adoptive cell transfer also efficiently inhibited anti-donor antibody production. Analysis of all possible cell populations among splenocytes revealed that B lymphocytes were sufficient for this adoptive cell tolerance. These B cells were also capable of inhibiting the proliferation of CD4+ T cells in response to allogeneic stimuli. Moreover, gene transfer of FGL2 in B cell deficient rats did not prolong graft survival. Thus, this is the first description of FGL2 resulting in long-term allograft survival. Furthermore, allograft tolerance was transferable and B cells were the main cells responsible for this effect.
Collapse
Affiliation(s)
- Séverine Bézie
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| | - Elodie Picarda
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| | - Laurent Tesson
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| | - Karine Renaudin
- Centre Hospitalier Universitaire de Nantes, Faculté de Médecine. Nantes, France
| | - Justine Durand
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| | - Séverine Ménoret
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| | - Emmanuel Mérieau
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| | - Elise Chiffoleau
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| | - Carole Guillonneau
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| | - Lise Caron
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| | - Ignacio Anegon
- INSERM UMR 1064-ITUN, Centre Hospitalier Universitaire de Nantes, Faculté de Médecine, Nantes, France
| |
Collapse
|
170
|
Nouël A, Pochard P, Simon Q, Ségalen I, Le Meur Y, Pers JO, Hillion S. B-Cells induce regulatory T cells through TGF-β/IDO production in A CTLA-4 dependent manner. J Autoimmun 2015; 59:53-60. [PMID: 25753821 DOI: 10.1016/j.jaut.2015.02.004] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/11/2015] [Accepted: 02/16/2015] [Indexed: 01/03/2023]
Abstract
A number of studies have suggested that B cell mediated-regulation contributes to the establishment of immunological tolerance. However, the precise mechanisms by which regulatory B cells establish and maintain tolerance in humans remain to be determined. The objective of the current study is to understand the cellular and molecular bases of B-cell regulatory functions in humans. To describe the mechanisms regulating the functional plasticity of regulatory B cells, we used an in vitro co-culture model based on autologous mixed lymphocyte cultures involving freshly isolated B and T cells. The results show that activated B cells regulate T cell proliferation through producing transforming growth factor (TGF)-β and indoleamine 2,3-dioxygenase (IDO). The production of TGF-β and IDO leads to the induction of not only "natural" regulatory T cells but also of TGF-β-producing CD4(+) T cells and IL-10-producing regulatory T cells. Furthermore, we evidenced for the first time that CTLA-4 induces B-cells to produce IDO and to become effective induced regulatory B cells (iBregs). This study emphasizes a novel regulatory axis and open news insights in how to manage regulatory B cell functions in autoimmunity.
Collapse
Affiliation(s)
- A Nouël
- EA2216, INSERM ESPRI, ERI 29, Université de Brest and LabEx IGO, Brest, France
| | - P Pochard
- EA2216, INSERM ESPRI, ERI 29, Université de Brest and LabEx IGO, Brest, France
| | - Q Simon
- EA2216, INSERM ESPRI, ERI 29, Université de Brest and LabEx IGO, Brest, France
| | - I Ségalen
- EA2216, INSERM ESPRI, ERI 29, Université de Brest and LabEx IGO, Brest, France; Department of Nephrology, CHRU Cavale Blanche, Brest, France
| | - Y Le Meur
- EA2216, INSERM ESPRI, ERI 29, Université de Brest and LabEx IGO, Brest, France; Department of Nephrology, CHRU Cavale Blanche, Brest, France
| | - J O Pers
- EA2216, INSERM ESPRI, ERI 29, Université de Brest and LabEx IGO, Brest, France.
| | - S Hillion
- EA2216, INSERM ESPRI, ERI 29, Université de Brest and LabEx IGO, Brest, France
| |
Collapse
|
171
|
Nausch N, Appleby LJ, Sparks AM, Midzi N, Mduluza T, Mutapi F. Group 2 innate lymphoid cell proportions are diminished in young helminth infected children and restored by curative anti-helminthic treatment. PLoS Negl Trop Dis 2015; 9:e0003627. [PMID: 25799270 PMCID: PMC4370749 DOI: 10.1371/journal.pntd.0003627] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 02/19/2015] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Group 2 Innate lymphoid cells (ILC2s) are innate cells that produce the TH2 cytokines IL-5 and IL-13. The importance of these cells has recently been demonstrated in experimental models of parasitic diseases but there is a paucity of data on ILC2s in the context of human parasitic infections and in particular of the blood dwelling parasite Schistosoma haematobium. METHODOLOGY/PRINCIPAL FINDINGS In this case-control study human peripheral blood ILC2s were analysed in relation to infection with the helminth parasite Schistosoma haematobium. Peripheral blood mononuclear cells of 36 S. haematobium infected and 36 age and sex matched uninfected children were analysed for frequencies of ILC2s identified as Lin-CD45+CD127+CD294+CD161+. ILC2s were significantly lower particularly in infected children aged 6-9 years compared to healthy participants. Curative anti-helminthic treatment resulted in an increase in levels of the activating factor TSLP and restoration of ILC2 levels. CONCLUSION This study demonstrates that ILC2s are diminished in young helminth infected children and restored by removal of the parasites by treatment, indicating a previously undescribed association between a human parasitic infection and ILC2s and suggesting a role of ILC2s before the establishment of protective acquired immunity in human schistosomiasis.
Collapse
Affiliation(s)
- Norman Nausch
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Laura J. Appleby
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Alexandra M. Sparks
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| | - Nicholas Midzi
- National Institute of Health Research, Causeway, Harare, Zimbabwe
| | - Takafira Mduluza
- University of Zimbabwe, Department of Biochemistry, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
| | - Francisca Mutapi
- Institute of Immunology and Infection Research, Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, United Kingdom
| |
Collapse
|
172
|
McSorley HJ, Blair NF, Robertson E, Maizels RM. Suppression of OVA-alum induced allergy by Heligmosomoides polygyrus products is MyD88-, TRIF-, regulatory T- and B cell-independent, but is associated with reduced innate lymphoid cell activation. Exp Parasitol 2015; 158:8-17. [PMID: 25728231 DOI: 10.1016/j.exppara.2015.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/09/2015] [Accepted: 02/22/2015] [Indexed: 02/06/2023]
Abstract
The murine intestinal nematode Heligmosomoides polygyrus exerts multiple immunomodulatory effects in the host, including the suppression of allergic inflammation in mice sensitized to allergen presented with alum adjuvant. Similar suppression is attained by co-administration of H. polygyrus excretory/secretory products (HES) with the sensitizing dose of ovalbumin (OVA) in alum. We investigated the mechanism of suppression by HES in this model, and found it was maintained in MyD88xTRIF-deficient mice, implying no role for helminth- or host-derived TLR ligands, or IL-1 family cytokines that signal in a MyD88- or TRIF-dependent manner. We also found suppression was unchanged in µMT mice, which lack B2 B cells, and that suppression was not abrogated when regulatory T cells were depleted in Foxp3.LuciDTR-4 mice. However, reduced IL-5 production was seen in the first 12 h after injection of OVA-alum when HES was co-administered, associated with reduced activation of IL-5(+) and IL-13(+) group 2 innate lymphoid cells. Thus, the suppressive effects of HES on alum-mediated OVA sensitization are reflected in the very earliest innate response to allergen exposure in vivo.
Collapse
Affiliation(s)
- Henry J McSorley
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK; Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | - Natalie F Blair
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Elaine Robertson
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| | - Rick M Maizels
- Institute of Immunology and Infection Research, and Centre for Immunity, Infection and Evolution, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
| |
Collapse
|
173
|
Rahman S, Rehn A, Rahman J, Andersson J, Svensson M, Brighenti S. Pulmonary tuberculosis patients with a vitamin D deficiency demonstrate low local expression of the antimicrobial peptide LL-37 but enhanced FoxP3+ regulatory T cells and IgG-secreting cells. Clin Immunol 2015; 156:85-97. [DOI: 10.1016/j.clim.2014.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 12/16/2022]
|
174
|
Khan AR, Hams E, Floudas A, Sparwasser T, Weaver CT, Fallon PG. PD-L1hi B cells are critical regulators of humoral immunity. Nat Commun 2015; 6:5997. [DOI: 10.1038/ncomms6997] [Citation(s) in RCA: 196] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/01/2014] [Indexed: 01/05/2023] Open
|
175
|
Lin M, Wang Z, Han X. B Cells with Regulatory Function in Animal Models of Autoimmune and Non-Autoimmune Diseases. ACTA ACUST UNITED AC 2015; 5:9-17. [PMID: 26236565 PMCID: PMC4517676 DOI: 10.4236/oji.2015.51002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the identification of B cell subsets with negative regulatory functions and the definition of their mechanisms of action are recent events, the important negative regulatory roles of B cells in immune responses are now broadly recognized. There is an emerging appreciation for the pivotal role played by B cells in several areas of human diseases including autoimmune diseases and non-autoimmune diseases such as parasite infections and cancer. The recent research advancement of regulatory B cells in human disease coincides with the vastly accelerated pace of research on the bridging of innate and adaptive immune system. Current study and our continued research may provide better understanding of the mechanisms that promote regulatory B10 cell function to counteract exaggerated immune activation in autoimmune as well as non-autoimmune conditions. This review is focused on the current knowledge of BREG functions studied in animal models of autoimmune and non-autoimmune diseases.
Collapse
Affiliation(s)
- Mei Lin
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, USA ; Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zuomin Wang
- Department of Stomatology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiaozhe Han
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, USA
| |
Collapse
|
176
|
Xing C, Ma N, Xiao H, Wang X, Zheng M, Han G, Chen G, Hou C, Shen B, Li Y, Wang R. Critical role for thymic CD19+CD5+CD1dhiIL-10+ regulatory B cells in immune homeostasis. J Leukoc Biol 2014; 97:547-56. [PMID: 25516754 DOI: 10.1189/jlb.3a0414-213rr] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This study tested the hypothesis that besides the spleen, LNs, peripheral blood, and thymus contain a regulatory IL-10-producing CD19(+)CD5(+)CD1d(high) B cell subset that may play a critical role in the maintenance of immune homeostasis. Indeed, this population was identified in the murine thymus, and furthermore, when cocultured with CD4(+) T cells, this population of B cells supported the maintenance of CD4(+)Foxp3(+) Tregs in vitro, in part, via the CD5-CD72 interaction. Mice homozygous for Cd19(Cre) (CD19(-/-)) express B cells with impaired signaling and humoral responses. Strikingly, CD19(-/-) mice produce fewer CD4(+)Foxp3(+) Tregs and a greater percentage of CD4(+)CD8(-) and CD4(-)CD8(+) T cells. Consistent with these results, transfer of thymic CD19(+)CD5(+)CD1d(hi) B cells into CD19(-/-) mice resulted in significantly up-regulated numbers of CD4(+)Foxp3(+) Tregs with a concomitant reduction in CD4(+)CD8(-) and CD4(-)CD8(+) T cell populations in the thymus, spleen, and LNs but not in the BM of recipient mice. In addition, thymic CD19(+)CD5(+)CD1d(hi) B cells significantly suppressed autoimmune responses in lupus-like mice via up-regulation of CD4(+)Foxp3(+) Tregs and IL-10-producing Bregs. This study suggests that thymic CD19(+)CD5(+)CD1d(hi)IL-10(+) Bregs play a critical role in the maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Chen Xing
- *Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China; Department of Rheumatology, First Hospital of Jilin University, Changchun, China; Department of Immunology, Medical College of Henan University, Kaifeng, China; and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Ning Ma
- *Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China; Department of Rheumatology, First Hospital of Jilin University, Changchun, China; Department of Immunology, Medical College of Henan University, Kaifeng, China; and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - He Xiao
- *Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China; Department of Rheumatology, First Hospital of Jilin University, Changchun, China; Department of Immunology, Medical College of Henan University, Kaifeng, China; and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Xiaoqian Wang
- *Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China; Department of Rheumatology, First Hospital of Jilin University, Changchun, China; Department of Immunology, Medical College of Henan University, Kaifeng, China; and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Mingke Zheng
- *Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China; Department of Rheumatology, First Hospital of Jilin University, Changchun, China; Department of Immunology, Medical College of Henan University, Kaifeng, China; and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Gencheng Han
- *Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China; Department of Rheumatology, First Hospital of Jilin University, Changchun, China; Department of Immunology, Medical College of Henan University, Kaifeng, China; and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Guojiang Chen
- *Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China; Department of Rheumatology, First Hospital of Jilin University, Changchun, China; Department of Immunology, Medical College of Henan University, Kaifeng, China; and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Chunmei Hou
- *Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China; Department of Rheumatology, First Hospital of Jilin University, Changchun, China; Department of Immunology, Medical College of Henan University, Kaifeng, China; and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Beifen Shen
- *Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China; Department of Rheumatology, First Hospital of Jilin University, Changchun, China; Department of Immunology, Medical College of Henan University, Kaifeng, China; and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Yan Li
- *Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China; Department of Rheumatology, First Hospital of Jilin University, Changchun, China; Department of Immunology, Medical College of Henan University, Kaifeng, China; and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| | - Renxi Wang
- *Laboratory of Immunology, Institute of Basic Medical Sciences, Beijing, China; Department of Rheumatology, First Hospital of Jilin University, Changchun, China; Department of Immunology, Medical College of Henan University, Kaifeng, China; and State Key Laboratory of Toxicology and Medical Countermeasures, Beijing 100850, China
| |
Collapse
|
177
|
Mazer B. Is there a place for B cells as regulators of immune tolerance in allergic diseases? Clin Exp Allergy 2014; 44:469-71. [PMID: 24666519 DOI: 10.1111/cea.12274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- B Mazer
- Meakins Christie Laboratories, The Research Institute of the McGill University Health Center, Montreal, QC, Canada
| |
Collapse
|
178
|
van der Vlugt LEPM, Mlejnek E, Ozir-Fazalalikhan A, Janssen Bonas M, Dijksman TR, Labuda LA, Schot R, Guigas B, Möller GM, Hiemstra PS, Yazdanbakhsh M, Smits HH. CD24(hi)CD27(+) B cells from patients with allergic asthma have impaired regulatory activity in response to lipopolysaccharide. Clin Exp Allergy 2014; 44:517-28. [PMID: 24261983 DOI: 10.1111/cea.12238] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 10/02/2013] [Accepted: 11/15/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND Regulatory B cells have been identified that strongly reduce allergic and auto-immune inflammation in experimental models by producing IL-10. Recently, several human regulatory B-cell subsets with an impaired function in auto-immunity have been described, but there is no information on regulatory B cells in allergic asthma. OBJECTIVE In this study, the frequency and function of IL-10 producing B-cell subsets in allergic asthma were investigated. METHODS Isolated peripheral blood B cells from 13 patients with allergic asthma and matched healthy controls were analyzed for the expression of different regulatory B-cell markers. Next, the B cells were activated by lipopolysaccharide (LPS), CpG or through the B-cell receptor, followed by co-culture with endogenous memory CD4(+) T cells and house dust mite allergen DerP1. RESULTS Lower number of IL-10 producing B cells were found in patients in response to LPS, however, this was not the case when B cells were activated through the B-cell receptor or by CpG. Further dissection showed that only the CD24(hi)CD27(+) B-cell subset was reduced in number and IL-10 production to LPS. In response to DerP1, CD4(+) T cells from patients co-cultured with LPS-primed total B cells produced less IL-10 compared to similar cultures from controls. These results are in line with the finding that sorted CD24(hi)CD27(+) B cells are responsible for the induction of IL-10(+) CD4(+) T cells. CONCLUSIONS Taken together, these data indicate that CD24(hi)CD27(+) B cells from allergic asthma patients produce less IL-10 in response to LPS leading to a weaker IL-10 induction in T cells in response to DerP1, which may play a role in allergic asthma.
Collapse
Affiliation(s)
- L E P M van der Vlugt
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Reyes JL, Wang A, Fernando MR, Graepel R, Leung G, van Rooijen N, Sigvardsson M, McKay DM. Splenic B cells from Hymenolepis diminuta-infected mice ameliorate colitis independent of T cells and via cooperation with macrophages. THE JOURNAL OF IMMUNOLOGY 2014; 194:364-78. [PMID: 25452561 DOI: 10.4049/jimmunol.1400738] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Helminth parasites provoke multicellular immune responses in their hosts that can suppress concomitant disease. The gut lumen-dwelling tapeworm Hymenolepis diminuta, unlike other parasites assessed as helminth therapy, causes no host tissue damage while potently suppressing murine colitis. With the goal of harnessing the immunomodulatory capacity of infection with H. diminuta, we assessed the putative generation of anti-colitic regulatory B cells following H. diminuta infection. Splenic CD19(+) B cells isolated from mice infected 7 [HdBc(7(d))] and 14 d (but not 3 d) previously with H. diminuta and transferred to naive mice significantly reduced the severity of dinitrobenzene sulfonic acid (DNBS)-, oxazolone-, and dextran-sodium sulfate-induced colitis. Mechanistic studies with the DNBS model, revealed the anti-colitic HdBc(7(d)) was within the follicular B cell population and its phenotype was not dependent on IL-4 or IL-10. The HdBc(7(d)) were not characterized by increased expression of CD1d, CD5, CD23, or IL-10 production, but did spontaneously, and upon LPS plus anti-CD40 stimulation, produce more TGF-β than CD19(+) B cells from controls. DNBS-induced colitis in RAG1(-/-) mice was inhibited by administration of HdBc(7(d)), indicating a lack of a requirement for T and B cells in the recipient; however, depletion of macrophages in recipient mice abrogated the anti-colitic effect of HdBc(7(d)). Thus, in response to H. diminuta, a putatively unique splenic CD19(+) B cell with a functional immunoregulatory program is generated that promotes the suppression of colitis dominated by TH1, TH2, or TH1-plus-TH2 events, and may do so via the synthesis of TGF-β and the generation of, or cooperation with, a regulatory macrophage.
Collapse
Affiliation(s)
- José L Reyes
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Arthur Wang
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Maria R Fernando
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Rabea Graepel
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Gabriella Leung
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Nico van Rooijen
- Department of Molecular Cell Biology, Vrije Universiteit Amsterdam, 1081 BT Amsterdam, the Netherlands; and
| | - Mikael Sigvardsson
- Department of Clinical and Experimental Medicine, Faculty of Health Sciences, Linköping University, Linköping 581-85, Sweden
| | - Derek M McKay
- Gastrointestinal Research Group, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada;
| |
Collapse
|
180
|
Rosser EC, Blair PA, Mauri C. Cellular targets of regulatory B cell-mediated suppression. Mol Immunol 2014; 62:296-304. [PMID: 24556109 DOI: 10.1016/j.molimm.2014.01.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 12/13/2022]
Abstract
Regulatory B cells (Bregs) are defined by their ability to restrain inflammatory responses both in vivo and in vitro. Interleukin 10 (IL-10) production by Bregs is thought to be central to their ability to regulate inflammation, largely due to IL-10s' ability to suppress pro-inflammatory cytokine production by effector lymphocytes and to maintain the differentiation of regulatory T cells (Tregs). However, with an increase in available published data, it has become evident that Bregs utilize a number of suppressive mechanisms in order to alter the activation of a variety of different lymphocytes. Here, we summarize the multiplicity of cellular targets of Breg-mediated suppression and describe the mechanisms employed by Bregs to suppress chronic inflammatory responses.
Collapse
Affiliation(s)
- Elizabeth C Rosser
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, United Kingdom
| | - Paul A Blair
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, United Kingdom
| | - Claudia Mauri
- Centre for Rheumatology, Division of Medicine, University College London, 5 University Street, London WC1E 6JF, United Kingdom.
| |
Collapse
|
181
|
Weinstock JV, Elliott DE. Helminth infections decrease host susceptibility to immune-mediated diseases. THE JOURNAL OF IMMUNOLOGY 2014; 193:3239-47. [PMID: 25240019 DOI: 10.4049/jimmunol.1400927] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Helminthic infection has become rare in highly industrialized nations. Concurrent with the decline in helminthic infection has been an increase in the prevalence of inflammatory disease. Removal of helminths from our environment and their powerful effects on host immunity may have contributed to this increase. Several helminth species can abrogate disease in murine models of inflammatory bowel disease, type 1 diabetes, multiple sclerosis, and other conditions. Helminths evoke immune regulatory pathways often involving dendritic cells, regulatory T cells, and macrophages that help to control disease. Cytokines, such as IL-4, IL-10, and TGF-β, have a role. Notable is the helminthic modulatory effect on innate immunity, which impedes development of aberrant adaptive immunity. Investigators are identifying key helminth-derived immune modulatory molecules that may have therapeutic usefulness in the control of inflammatory disease.
Collapse
Affiliation(s)
- Joel V Weinstock
- Division of Gastroenterology, Tufts Medical Center, Boston, MA 02111; and
| | - David E Elliott
- Division of Gastroenterology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
182
|
Rook GAW, Raison CL, Lowry CA. Microbiota, immunoregulatory old friends and psychiatric disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 817:319-56. [PMID: 24997041 DOI: 10.1007/978-1-4939-0897-4_15] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regulation of the immune system is an important function of the gut microbiota. Increasing evidence suggests that modern living conditions cause the gut microbiota to deviate from the form it took during human evolution. Contributing factors include loss of helminth infections, encountering less microbial biodiversity, and modulation of the microbiota composition by diet and antibiotic use. Thus the gut microbiota is a major mediator of the hygiene hypothesis (or as we prefer, "Old Friends" mechanism), which describes the role of organisms with which we co-evolved, and that needed to be tolerated, as crucial inducers of immunoregulation. At least partly as a consequence of reduced exposure to immunoregulatory Old Friends, many but not all of which resided in the gut, high-income countries are undergoing large increases in a wide range of chronic inflammatory disorders including allergies, autoimmunity and inflammatory bowel diseases. Depression, anxiety and reduced stress resilience are comorbid with these conditions, or can occur in individuals with persistently raised circulating levels of biomarkers of inflammation in the absence of clinically apparent peripheral inflammatory disease. Moreover poorly regulated inflammation during pregnancy might contribute to brain developmental abnormalities that underlie some cases of autism spectrum disorders and schizophrenia. In this chapter we explain how the gut microbiota drives immunoregulation, how faulty immunoregulation and inflammation predispose to psychiatric disease, and how psychological stress drives further inflammation via pathways that involve the gut and microbiota. We also outline how this two-way relationship between the brain and inflammation implicates the microbiota, Old Friends and immunoregulation in the control of stress resilience.
Collapse
Affiliation(s)
- Graham A W Rook
- Centre for Clinical Microbiology, UCL (University College London), Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK,
| | | | | |
Collapse
|
183
|
Kaku H, Cheng KF, Al-Abed Y, Rothstein TL. A novel mechanism of B cell-mediated immune suppression through CD73 expression and adenosine production. THE JOURNAL OF IMMUNOLOGY 2014; 193:5904-13. [PMID: 25392527 DOI: 10.4049/jimmunol.1400336] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Immune suppression by regulatory T cells and regulatory B cells is a critical mechanism to limit excess inflammation and autoimmunity. IL-10 is considered the major mediator of B cell-induced immune suppression. We report a novel mechanism for immune suppression through adenosine generation by B cells. We identified a novel population of B cells that expresses CD73 as well as CD39, two ectoenzymes that together catalyze the extracellular dephosphorylation of adenine nucleotides to adenosine. Whereas CD39 expression is common among B cells, CD73 expression is not. Approximately 30-50% of B-1 cells (B220(+)CD23(-)) and IL-10-producing B (B10) cells (B220(+)CD5(+)CD1d(hi)) are CD73(hi), depending on mouse strain, whereas few conventional B-2 cells (B220(+)CD23(+)AA4.1(-)) express CD73. In keeping with expression of both CD73 and CD39, we found that CD73(+) B cells produce adenosine in the presence of substrate, whereas B-2 cells do not. CD73(-/-) mice were more susceptible to dextran sulfate sodium salt (DSS)-induced colitis than wild type (WT) mice were, and transfer of CD73(+) B cells ameliorated the severity of colitis, suggesting that B cell CD73/CD39/adenosine can modulate DSS-induced colitis. IL-10 production by B cells is not affected by CD73 deficiency. Interestingly, adenosine generation by IL-10(-/-) B cells is impaired because of reduced expression of CD73, indicating an unexpected connection between IL-10 and adenosine and suggesting caution in interpreting the results of studies with IL-10(-/-) cells. Our findings demonstrate a novel regulatory role of B cells on colitis through adenosine generation in an IL-10-independent manner.
Collapse
Affiliation(s)
- Hiroaki Kaku
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030; and
| | - Kai Fan Cheng
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Yousef Al-Abed
- Center for Molecular Innovation, The Feinstein Institute for Medical Research, Manhasset, NY 11030
| | - Thomas L Rothstein
- Center for Oncology and Cell Biology, The Feinstein Institute for Medical Research, Manhasset, NY 11030; and
| |
Collapse
|
184
|
Mutnal MB, Hu S, Schachtele SJ, Lokensgard JR. Infiltrating regulatory B cells control neuroinflammation following viral brain infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:6070-80. [PMID: 25385825 DOI: 10.4049/jimmunol.1400654] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previous studies have demonstrated the existence of a subset of B lymphocytes, regulatory B cells (Bregs), which modulate immune function. In this study, in vivo and in vitro experiments were undertaken to elucidate the role of these Bregs in controlling neuroinflammation following viral brain infection. We used multicolor flow cytometry to phenotype lymphocyte subpopulations infiltrating the brain, along with in vitro cocultures to assess their anti-inflammatory and immunoregulatory roles. This distinctive subset of CD19(+)CD1d(hi)CD5(+) B cells was found to infiltrate the brains of chronically infected animals, reaching highest levels at the latest time point tested (30 d postinfection). B cell-deficient Jh(-/-) mice were found to develop exacerbated neuroimmune responses as measured by enhanced accumulation and/or retention of CD8(+) T cells within the brain, as well as increased levels of microglial activation (MHC class II). Conversely, levels of Foxp3(+) regulatory T cells were found to be significantly lower in Jh(-/-) mice when compared with wild-type (Wt) animals. Further experiments showed that in vitro-generated IL-10-secreting Bregs (B10) were able to inhibit cytokine responses from microglia following stimulation with viral Ags. These in vitro-generated B10 cells were also found to promote proliferation of regulatory T cells in coculture studies. Finally, gain-of-function experiments demonstrated that reconstitution of Wt B cells into Jh(-/-) mice restored neuroimmune responses to levels exhibited by infected Wt mice. Taken together, these results demonstrate that Bregs modulate T lymphocyte as well as microglial cell responses within the infected brain and promote CD4(+)Foxp3(+) T cell proliferation in vitro.
Collapse
Affiliation(s)
- Manohar B Mutnal
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Shuxian Hu
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - Scott J Schachtele
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| | - James R Lokensgard
- Neuroimmunology Laboratory, Center for Infectious Diseases and Microbiology Translational Research, Department of Medicine, University of Minnesota, Minneapolis, MN 55455
| |
Collapse
|
185
|
Braza F, Chesne J, Castagnet S, Magnan A, Brouard S. Regulatory functions of B cells in allergic diseases. Allergy 2014; 69:1454-63. [PMID: 25060230 DOI: 10.1111/all.12490] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 12/24/2022]
Abstract
B cells are essentially described for their capacity to produce antibodies ensuring anti-infectious immunity or deleterious responses in the case of autoimmunity or allergy. However, abundant data described their ability to restrain inflammation by diverse mechanisms. In allergy, some regulatory B-cell subsets producing IL-10 have been recently described as potent suppressive cells able to restrain inflammatory responses both in vitro and in vivo by regulatory T-cell differentiation or directly inhibiting T-cell-mediated inflammation. A specific deficit in regulatory B cells participates to more severe allergic inflammation. Induction of allergen tolerance through specific immunotherapy induces a specific expansion of these cells supporting their role in establishment of allergen tolerance. However, the regulatory functions carried out by B cells are not exclusively IL-10 dependent. Indeed, other regulatory mechanisms mediated by B cells are (i) the production of TGF-β, (ii) the promotion of T-cell apoptosis by Fas-Fas ligand or granzyme-B pathways, and (iii) their capacity to produce inhibitory IgG4 and sialylated IgG able to mediate anti-inflammatory mechanisms. This points to Bregs as interesting targets for the development of new therapies to induce allergen tolerance. In this review, we highlight advances in the study of regulatory mechanisms mediated by B cells and outline what is known about their phenotype as well as their suppressive role in allergy from studies in both mice and humans.
Collapse
Affiliation(s)
- F. Braza
- INSERM; UMR 1087; l'institut du Thorax; Nantes France
- CNRS; UMR 6291; Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu; Nantes France
- INSERM; UMR U1064; Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu; Nantes France
- Université de Nantes; Nantes France
| | - J. Chesne
- INSERM; UMR 1087; l'institut du Thorax; Nantes France
- CNRS; UMR 6291; Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu; Nantes France
- INSERM; UMR U1064; Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu; Nantes France
- Université de Nantes; Nantes France
| | - S. Castagnet
- Laboratoire HLA; Établissement Français du Sang; Nantes France
| | - A. Magnan
- INSERM; UMR 1087; l'institut du Thorax; Nantes France
- CNRS; UMR 6291; Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu; Nantes France
- Université de Nantes; Nantes France
- CHU Nantes; l'institut du Thorax; Service de Pneumologie; Nantes France
| | - S. Brouard
- INSERM; UMR U1064; Institut de Transplantation Urologie Néphrologie du Centre Hospitalier Universitaire Hôtel Dieu; Nantes France
- Université de Nantes; Nantes France
| |
Collapse
|
186
|
Ebner F, Hepworth MR, Rausch S, Janek K, Niewienda A, Kühl A, Henklein P, Lucius R, Hamelmann E, Hartmann S. Therapeutic potential of larval excretory/secretory proteins of the pig whipworm Trichuris suis in allergic disease. Allergy 2014; 69:1489-97. [PMID: 25069662 DOI: 10.1111/all.12496] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND Gastrointestinal nematodes are currently being evaluated as a novel therapeutic in the treatment of chronic human inflammatory disorders, due to their unique ability to induce immunoregulatory pathways in their hosts. In particular, administration of ova from the pig whipworm Trichuris suis (T. suis; TSO) has been proposed for the treatment of allergic, inflammatory and autoimmune disorders. Despite these advances, the biological pathways through which TSO therapy modulates the host immune system in the context of human disease remain undefined. METHODS We characterized the dominant proteins present in the excretory/secretory (E/S) products of first-stage (L1) T. suis larvae (Ts E/S) using LC-MS/MS analysis and examined the immunosuppressive properties of whole larval Ts E/S in vitro and in a murine model of allergic airway disease. RESULTS Administration of larval Ts E/S proteins in vivo during the allergen sensitization phase was sufficient to suppress airway hyperreactivity, bronchiolar inflammatory infiltrate and allergen-specific IgE production. Three proteins in larval Ts E/S were unambiguously identified. The immunomodulatory function of larval Ts E/S was found to be partially dependent on the immunoregulatory cytokine IL-10. CONCLUSIONS Taken together, these data demonstrate that the released proteins of larval T. suis have significant immunomodulatory capacities and efficiently dampen allergic airway hyperreactivity. Thus, the therapeutic potential of defined larval E/S proteins should be exploited for the treatment of human allergic disorders.
Collapse
Affiliation(s)
- F. Ebner
- Institute of Immunology; Freie Universität Berlin; Berlin Germany
| | - M. R. Hepworth
- Institute of Immunology; Freie Universität Berlin; Berlin Germany
- Institute for Immunology; Perelman School of Medicine; University of Pennsylvania; Philadelphia PA USA
| | - S. Rausch
- Institute of Immunology; Freie Universität Berlin; Berlin Germany
| | - K. Janek
- Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - A. Niewienda
- Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - A. Kühl
- Department of Pathology/Research Center ImmunoSciences (RCIS); Charité - Universitätsmedizin Berlin; Berlin Germany
| | - P. Henklein
- Institute of Biochemistry; Charité - Universitätsmedizin Berlin; Berlin Germany
| | - R. Lucius
- Department of Molecular Parasitology; Humboldt-Universität; Berlin Germany
| | - E. Hamelmann
- Ev. Hospital Bielefeld (EvKB); Children's Hospital; Bielefeld Germany
| | - S. Hartmann
- Institute of Immunology; Freie Universität Berlin; Berlin Germany
| |
Collapse
|
187
|
Shao Y, Lo CM, Ling CC, Liu XB, Ng KTP, Chu ACY, Ma YY, Li CX, Fan ST, Man K. Regulatory B cells accelerate hepatocellular carcinoma progression via CD40/CD154 signaling pathway. Cancer Lett 2014; 355:264-72. [PMID: 25301451 DOI: 10.1016/j.canlet.2014.09.026] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/15/2014] [Accepted: 09/21/2014] [Indexed: 02/08/2023]
Abstract
Human hepatocellular carcinoma (HCC) is the fifth most common cancer worldwide with a poor prognosis of limited survival. The role of regulatory B cell (Breg), a new important B cell subset, in HCC progression remains unclear. We firstly found that the percentage of B cells at tumor margin was significantly higher than that in tumor and non-tumor regions. Especially, increased intrahepatic B cells at tumor margin were positively associated with tumor invasive features and more tumor recurrence. Besides, HCC patients had a significantly higher percentage of circulating Bregs than healthy people. Increased circulating Bregs were correlated with advanced tumor staging, tumor multiplicity and venous infiltration. Next, we firstly revealed that human Bregs promoted HCC tumor growth independent of Tregs in SCID mice. The migration of Bregs from blood into tumor was also confirmed in mice. Finally, we further explored the molecular mechanism of Bregs promoting proliferation and migration of HCC cells in vitro. Bregs promoted HCC growth and invasiveness by directly interacting with liver cancer cells through the CD40/CD154 signaling pathway.
Collapse
Affiliation(s)
- Yan Shao
- Department of Surgery and Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chung Mau Lo
- Department of Surgery and Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chang Chun Ling
- Department of Surgery and Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Xiao Bing Liu
- Department of Surgery and Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kevin Tak-Pan Ng
- Department of Surgery and Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Andrew Chi Yuen Chu
- Department of Surgery and Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yuen Yuen Ma
- Department of Surgery and Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Chang Xian Li
- Department of Surgery and Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Sheung Tat Fan
- Department of Surgery and Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Kwan Man
- Department of Surgery and Centre for Cancer Research, The University of Hong Kong, Pokfulam, Hong Kong SAR, China.
| |
Collapse
|
188
|
Schabussova I, Wiedermann U. Allergy and worms: let's bring back old friends? Wien Med Wochenschr 2014; 164:382-91. [PMID: 25281198 DOI: 10.1007/s10354-014-0308-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 08/20/2014] [Indexed: 01/15/2023]
Abstract
PURPOSE OF REVIEW In order to survive in their host, parasitic worms (helminths) have evolved cunning strategies to manipulate the host immune system, some of which may lead to protection from immune dysregulatory diseases such as allergy. Thus, loss of exposure to helminths due to a highly hygienic life style might have contributed to the fact that living in an industrialized country is being associated with an increased prevalence of allergic diseases. However, it must be pointed out that certain helminth infections can in fact induce an allergic phenotype. Factors such as different parasite species, timing of infection in relation to allergic sensitization, or duration and intensity of infection may influence the association between helminth infections and the development or clinical course of allergic disease. In the present article, we review studies that have explored the interaction between helminth infections and allergy in epidemiological and experimental studies. Furthermore, the possibility of using helminths or helminth-derived molecules for the treatment of allergic diseases is discussed with a focus on evidence from clinical trials. RECENT FINDINGS During the past 10 years, many exciting and important studies have found that certain helminth infections protect against the development of allergic diseases. Not surprisingly, several clinical trials investigated the effects of deliberate exposure to parasites like porcine whipworm (Trichuris suis) or hookworm (Necator americanus) to develop "helminth therapies". Although they proved to be a safe option to control aberrant inflammation, the final goal is to identify the parasite-derived immunnomodulatory molecules responsible for protective effects.
Collapse
Affiliation(s)
- Irma Schabussova
- Institut für Spezifische Prophylaxe und Tropenmedizin, Medizinische Universität Wien, Kinderspitalgasse 15, 1090, Vienna, Austria,
| | | |
Collapse
|
189
|
IL-10-overexpressing B cells regulate innate and adaptive immune responses. J Allergy Clin Immunol 2014; 135:771-80.e8. [PMID: 25240783 DOI: 10.1016/j.jaci.2014.07.041] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 07/18/2014] [Accepted: 07/25/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Distinct human IL-10-producing B-cell subsets with immunoregulatory properties have been described. However, the broader spectrum of their direct cellular targets and suppressive mechanisms has not been extensively studied, particularly in relation to direct and indirect IL-10-mediated functions. OBJECTIVE The aim of the study was to investigate the effects of IL-10 overexpression on the phenotype and immunoregulatory capacity of B cells. METHODS Primary human B cells were transfected with hIL-10, and IL-10-overexpressing B cells were characterized for cytokine and immunoglobulin production by means of specific ELISA and bead-based assays. Antigen presentation, costimulation capacity, and transcription factor signatures were analyzed by means of flow cytometry and quantitative RT-PCR. Effects of IL-10-overexpresing B cells on Toll-like receptor-triggered cytokine release from PBMCs, LPS-triggered maturation of monocyte-derived dendritic cells, and tetanus toxoid-induced PBMC proliferation were assessed in autologous cocultures. RESULTS IL-10-overexpressing B cells acquired a prominent immunoregulatory profile comprising upregulation of suppressor of cytokine signaling 3 (SOCS3), glycoprotein A repetitions predominant (GARP), the IL-2 receptor α chain (CD25), and programmed cell death 1 ligand 1 (PD-L1). Concurrently, their secretion profile was characterized by a significant reduction in levels of proinflammatory cytokines (TNF-α, IL-8, and macrophage inflammatory protein 1α) and augmented production of anti-inflammatory IL-1 receptor antagonist and vascular endothelial growth factor. Furthermore, IL-10 overexpression was associated with a decrease in costimulatory potential. IL-10-overexpressing B cells secreted less IgE and potently suppressed proinflammatory cytokines in PBMCs, maturation of monocyte-derived dendritic cells (rendering their profile to regulatory phenotype), and antigen-specific proliferation in vitro. CONCLUSION Our data demonstrate an essential role for IL-10 in inducing an immunoregulatory phenotype in B cells that exerts substantial anti-inflammatory and immunosuppressive functions.
Collapse
|
190
|
Evans H, Mitre E. Worms as therapeutic agents for allergy and asthma: understanding why benefits in animal studies have not translated into clinical success. J Allergy Clin Immunol 2014; 135:343-53. [PMID: 25174866 DOI: 10.1016/j.jaci.2014.07.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 06/04/2014] [Accepted: 07/08/2014] [Indexed: 12/26/2022]
Abstract
Helminth infections are associated with decreased rates of autoimmunity and allergy, and several clinical studies have demonstrated that intentional infection with helminths can reduce symptoms of autoimmune diseases. In contrast, though numerous animal studies have demonstrated that helminth infections ameliorate allergic diseases, clinical trials in humans have not shown benefit. In this article, we review in detail the 2 human studies that have prospectively tested whether helminth infections protect against allergy. We next review the research designs and results obtained from animal studies, and compare these to the human trials. We then postulate possible reasons for the lack of efficacy observed in clinical trials to date and discuss potential future areas of research in this field.
Collapse
Affiliation(s)
- Holly Evans
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Md.
| |
Collapse
|
191
|
Obieglo K, van Wijck Y, de Kleijn S, Smits HH, Taube C. Microorganism-induced suppression of allergic airway disease: novel therapies on the horizon? Expert Rev Respir Med 2014; 8:717-30. [PMID: 25138640 DOI: 10.1586/17476348.2014.949244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Allergic airway disease is a major global health burden, and novel treatment options are urgently needed. Numerous epidemiological and experimental studies suggest that certain helminths and bacteria protect against respiratory allergies. These microorganisms are strong regulators of the immune system, and various potential regulatory mechanisms by which they protect against allergic airway inflammation have been proposed. Whereas early studies addressed the beneficial effect of natural infections, the focus now shifts toward identifying the dominant protective molecules and exploring their efficacy in models of allergic airway disease. In this article, we will review the evidence for microbe-mediated protection from allergic airway disease, the potential modes of action involved and discuss advances as well as limitations in the translation of this knowledge into novel treatment strategies against allergic airway disease.
Collapse
Affiliation(s)
- Katja Obieglo
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
192
|
Sheng JR, Quan S, Soliven B. CD1d(hi)CD5+ B cells expanded by GM-CSF in vivo suppress experimental autoimmune myasthenia gravis. THE JOURNAL OF IMMUNOLOGY 2014; 193:2669-77. [PMID: 25135828 DOI: 10.4049/jimmunol.1303397] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IL-10-competent subset within CD1d(hi)CD5(+) B cells, also known as B10 cells, has been shown to regulate autoimmune diseases. Whether B10 cells can prevent or suppress the development of experimental autoimmune myasthenia gravis (EAMG) has not been studied. In this study, we investigated whether low-dose GM-CSF, which suppresses EAMG, can expand B10 cells in vivo, and whether adoptive transfer of CD1d(hi)CD5(+) B cells would prevent or suppress EAMG. We found that treatment of EAMG mice with low-dose GM-CSF increased the proportion of CD1d(hi)CD5(+) B cells and B10 cells. In vitro coculture studies revealed that CD1d(hi)CD5(+) B cells altered T cell cytokine profile but did not directly inhibit T cell proliferation. In contrast, CD1d(hi)CD5(+) B cells inhibited B cell proliferation and its autoantibody production in an IL-10-dependent manner. Adoptive transfer of CD1d(hi)CD5(+) B cells to mice could prevent disease, as well as suppress EAMG after disease onset. This was associated with downregulation of mature dendritic cell markers and expansion of regulatory T cells resulting in the suppression of acetylcholine receptor-specific T cell and B cell responses. Thus, our data have provided significant insight into the mechanisms underlying the tolerogenic effects of B10 cells in EAMG. These observations suggest that in vivo or in vitro expansion of CD1d(hi)CD5(+) B cells or B10 cells may represent an effective strategy in the treatment of human myasthenia gravis.
Collapse
Affiliation(s)
- Jian Rong Sheng
- Department of Neurology, University of Chicago, Chicago, IL 60637
| | - Songhua Quan
- Department of Neurology, University of Chicago, Chicago, IL 60637
| | - Betty Soliven
- Department of Neurology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
193
|
Lessons learned from mice and man: mimicking human allergy through mouse models. Clin Immunol 2014; 155:1-16. [PMID: 25131136 DOI: 10.1016/j.clim.2014.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 01/06/2023]
Abstract
The relevance of using mouse models to represent human allergic pathologies is still unclear. Recent studies suggest the limitations of using models as a standard for assessing immune response and tolerance mechanisms, as mouse models often do not sufficiently depict human atopic conditions. Allergy is a combination of aberrant responses to innocuous environmental agents and the subsequent TH2-mediated inflammatory responses. In this review, we will discuss current paradigms of allergy - specifically, TH2-mediated and IgE-associated immune responses - and current mouse models used to recreate these TH2-mediated pathologies. Our overall goal is to highlight discrepancies that exist between mice and men by examining the advantages and disadvantages of allergic mouse models with respect to the human allergic condition.
Collapse
|
194
|
Mann ER, Li X. Intestinal antigen-presenting cells in mucosal immune homeostasis: Crosstalk between dendritic cells, macrophages and B-cells. World J Gastroenterol 2014; 20:9653-9664. [PMID: 25110405 PMCID: PMC4123356 DOI: 10.3748/wjg.v20.i29.9653] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 02/26/2014] [Accepted: 04/29/2014] [Indexed: 02/06/2023] Open
Abstract
The intestinal immune system maintains a delicate balance between immunogenicity against invading pathogens and tolerance of the commensal microbiota. Inflammatory bowel disease (IBD) involves a breakdown in tolerance towards the microbiota. Dendritic cells (DC), macrophages (MΦ) and B-cells are known as professional antigen-presenting cells (APC) due to their specialization in presenting processed antigen to T-cells, and in turn shaping types of T-cell responses generated. Intestinal DC are migratory cells, unique in their ability to generate primary T-cell responses in mesenteric lymph nodes or Peyer’s patches, whilst MΦ and B-cells contribute to polarization and differentiation of secondary T-cell responses in the gut lamina propria. The antigen-sampling function of gut DC and MΦ enables them to sample bacterial antigens from the gut lumen to determine types of T-cell responses generated. The primary function of intestinal B-cells involves their secretion of large amounts of immunoglobulin A, which in turn contributes to epithelial barrier function and limits immune responses towards to microbiota. Here, we review the role of all three types of APC in intestinal immunity, both in the steady state and in inflammation, and how these cells interact with one another, as well as with the intestinal microenvironment, to shape mucosal immune responses. We describe mechanisms of maintaining intestinal immune tolerance in the steady state but also inappropriate responses of APC to components of the gut microbiota that contribute to pathology in IBD.
Collapse
|
195
|
Bouma G, Carter NA, Recher M, Malinova D, Adriani M, Notarangelo LD, Burns SO, Mauri C, Thrasher AJ. Exacerbated experimental arthritis in Wiskott-Aldrich syndrome protein deficiency: modulatory role of regulatory B cells. Eur J Immunol 2014; 44:2692-702. [PMID: 24945741 PMCID: PMC4209796 DOI: 10.1002/eji.201344245] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 04/27/2014] [Accepted: 06/11/2014] [Indexed: 12/19/2022]
Abstract
Patients deficient in the cytoskeletal regulator Wiskott–Aldrich syndrome protein (WASp) are predisposed to varied autoimmunity, suggesting it has an important controlling role in participating cells. IL-10-producing regulatory B (Breg) cells are emerging as important mediators of immunosuppressive activity. In experimental, antigen-induced arthritis WASp-deficient (WASp knockout [WAS KO]) mice developed exacerbated disease associated with decreased Breg cells and regulatory T (Treg) cells, but increased Th17 cells in knee-draining LNs. Arthritic WAS KO mice showed increased serum levels of B-cell-activating factor, while their B cells were unresponsive in terms of B-cell-activating factor induced survival and IL-10 production. Adoptive transfer of WT Breg cells ameliorated arthritis in WAS KO recipients and restored a normal balance of Treg and Th17 cells. Mice with B-cell-restricted WASp deficiency, however, did not develop exacerbated arthritis, despite exhibiting reduced Breg- and Treg-cell numbers during active disease, and Th17 cells were not increased over equivalent WT levels. These findings support a contributory role for defective Breg cells in the development of WAS-related autoimmunity, but demonstrate that functional competence in other regulatory populations can be compensatory. A properly regulated cytoskeleton is therefore important for normal Breg-cell activity and complementation of defects in this lineage is likely to have important therapeutic benefits.
Collapse
Affiliation(s)
- Gerben Bouma
- Molecular Immunology Unit, UCL Institute of Child Health, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Chalasani G, Rothstein D. Non-Antibody Mediated Roles of B Cells in Allograft Survival. CURRENT TRANSPLANTATION REPORTS 2014. [DOI: 10.1007/s40472-014-0020-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
197
|
Influence of maternal immunization with allergens on the thymic maturation of lymphocytes with regulatory potential in children: a broad field for further exploration. J Immunol Res 2014; 2014:780386. [PMID: 25009823 PMCID: PMC4070472 DOI: 10.1155/2014/780386] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 05/30/2014] [Indexed: 11/26/2022] Open
Abstract
A variety of mechanisms are involved in the regulation of offspring allergy development through maternal immunization with allergens. The passive transfer of antigens, antibodies, and cytokines, the induction of phenotypic alterations in offspring lymphocytes, and the induction of regulatory populations in offspring have been proposed, but these mechanisms remain incompletely understood. It is likely that maternal immunization could affect the intrathymic maturation of offspring TCD4+, TCD8+, γδT, nTreg, iNKT, and B lymphocytes, although there are currently no human maternal immunization protocols for the regulation of allergic responses in children. Some studies have suggested a direct interaction between the maternal immune status and the offspring intrathymic microenvironment; this interaction could influence the maturation of offspring regulatory cells and must be explored for the development of therapies to control allergy development in children.
Collapse
|
198
|
The roles of regulatory B cells in cancer. J Immunol Res 2014; 2014:215471. [PMID: 24991577 PMCID: PMC4060293 DOI: 10.1155/2014/215471] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/28/2014] [Accepted: 05/12/2014] [Indexed: 12/21/2022] Open
Abstract
Regulatory B cells (Bregs), a newly described subset of B cells, have been proved to play a suppressive role in immune system. Bregs can inhibit other immune cells through cytokines secretion and antigen presentation, which give them the role in the pathogenesis of autoimmune diseases and cancers. There are no clear criteria to identify Bregs; different markers were used in the different experimental conditions. Massive researches had described the functions of immune cells such as regulatory T cells (Tregs), dendritic cells (DCs), and B cells in the autoimmune disorder diseases and cancers. More and more researches focused on the roles of Bregs and the cytokines such as Interleukin-10 (IL-10) and transforming growth factor beta (TGF-β) secreted by Bregs. The aim of this review is to summarize the characteristics of Bregs and the roles of Bregs in cancer.
Collapse
|
199
|
Abstract
Immune thrombocytopenia (ITP) is a bleeding disorder characterized by low platelet counts due to decreased platelet production as well as increased platelet destruction by autoimmune mechanisms. A shift toward Th1 and possibly Th17 cells together with impaired regulatory compartment, including T-regulatory (Tregs) and B-regulatory (Bregs) cells, have been reported, suggesting a generalized immune dysregulation in ITP. Interestingly, several treatments including the use of thrombopoietic agents appear to be associated with improvement in the regulatory compartment. Understanding how Th1/Th17/Treg differentiation and expansion are controlled is central to uncovering how autoimmunity may be sustained in chronic ITP and reversed following response to therapy. In this review, we will summarize the recent findings on the state of the Breg and Treg compartments in ITP, the role of monocyte subsets in the control of Th/Treg expansion, and our working model of how the regulatory compartment may impact response to treatment and the means by which this information may guide therapy in ITP patients in the future.
Collapse
Affiliation(s)
- Karina Yazdanbakhsh
- Laboratory of Complement Biology, New York Blood Center, New York, NY 10065, USA.
| | | | | |
Collapse
|
200
|
Wei L, Wang J, Liu Y. Prior to Foxp3+regulatory T-cell induction, interleukin-10-producing B cells expand afterHelicobacter pyloriinfection. Pathog Dis 2014; 72:45-54. [PMID: 24753328 DOI: 10.1111/2049-632x.12182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/31/2014] [Accepted: 04/07/2014] [Indexed: 12/24/2022] Open
Affiliation(s)
- Lumin Wei
- Department of Gastroenterology; Peking University People's Hospital; Beijing China
| | - Jingtong Wang
- Department of Gastroenterology; Peking University People's Hospital; Beijing China
| | - Yulan Liu
- Department of Gastroenterology; Peking University People's Hospital; Beijing China
| |
Collapse
|