151
|
|
152
|
Du W, Huang J, Cui B, Guo Y, Wang L, Liang C. Efficient biodegradation of nitriles by a novel nitrile hydratase derived from Rhodococcus erythropolis CCM2595. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2021.1941253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Wenjing Du
- Lab of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, PR China
| | - Jiao Huang
- Lab of Biocalyalysis and Transformation, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, Liaoning, PR China
| | - Baocheng Cui
- Lab of Biocalyalysis and Transformation, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, Liaoning, PR China
| | - Yi Guo
- Lab of Biocalyalysis and Transformation, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, Liaoning, PR China
| | - Li Wang
- Lab of Biocalyalysis and Transformation, School of Life and Pharmaceutical Sciences, Dalian University of Technology, Panjin, Liaoning, PR China
| | - Changhai Liang
- Lab of Advanced Materials and Catalytic Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, PR China
| |
Collapse
|
153
|
Chaturvedi A, Rai BN, Singh RS, Jaiswal RP. A comprehensive review on the integration of advanced oxidation processes with biodegradation for the treatment of textile wastewater containing azo dyes. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0010] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
The threat of dye contamination has achieved an unsurpassed abnormal state lately due to their massive consumption in several enterprises including textile, leather, cosmetic, plastic, and paper industries. This review focuses on the integrations of various advanced oxidation processes (AOPs), such as Fenton, photocatalysis, and ozonation, with biodegradation for the treatment of textile azo dyes. Such integrations have been explored lately by researchers to bring down the processing cost and improve the degree of mineralization of the treated dyeing wastewater. The review refers to the basic mechanisms, the influence of various process parameters, outcomes of recent works, and future research directions. All the three AOPs, independently, demonstrated substantial color reduction of 54–100%. The ozonation process, stand-alone, showed the most efficient decolorization (of 88–100%) consistently in all reviewed research works. In contrast, all three AOPs independently offered varied and inadequate COD reduction in the range of 16–80%. The AOPs, after getting integrated with biodegradation, yielded an additional reduction (of 11–70%) in the COD-levels and (of 16–80%) in the TOC-levels. Further, the integration of AOPs with biodegradation has potential to significantly reduce the treatment costs. The review suggests further research efforts in the direction of sequencing chemical and biological routes such that their synergistic utilization yield complete detoxification of the textile azo dyes economically at large-scale.
Collapse
Affiliation(s)
- Anuj Chaturvedi
- Department of Chemical Engineering and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi , Uttar Pradesh 221005 , India
| | - Birendra Nath Rai
- Department of Chemical Engineering and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi , Uttar Pradesh 221005 , India
| | - Ram Saran Singh
- Department of Chemical Engineering and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi , Uttar Pradesh 221005 , India
| | - Ravi Prakash Jaiswal
- Department of Chemical Engineering and Technology , Indian Institute of Technology (Banaras Hindu University) , Varanasi , Uttar Pradesh 221005 , India
| |
Collapse
|
154
|
Shindhal T, Rakholiya P, Varjani S, Pandey A, Ngo HH, Guo W, Ng HY, Taherzadeh MJ. A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater. Bioengineered 2020; 12:70-87. [PMID: 33356799 PMCID: PMC8806354 DOI: 10.1080/21655979.2020.1863034] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Rapid industrialization has provided comforts to mankind but has also impacted the environment harmfully. There has been severe increase in the pollution due to several industries, in particular due to dye industry, which generate huge quantities of wastewater containing hazardous chemicals. Although tremendous developments have taken place for the treatment and management of such wastewater through chemical or biological processes, there is an emerging shift in the approach, with focus shifting on resource recovery from such wastewater and also their management in sustainable manner. This review article aims to present and discuss the most advanced and state-of-art technical and scientific developments about the treatment of dye industry wastewater, which include advanced oxidation process, membrane filtration technique, microbial technologies, bio-electrochemical degradation, photocatalytic degradation, etc. Among these technologies, microbial degradation seems highly promising for resource recovery and sustainability and has been discussed in detail as a promising approach. This paper also covers the challenges and future perspectives in this field.
Collapse
Affiliation(s)
- Toral Shindhal
- Paryavaran Bhavan, Gujarat Pollution Control Board , Gandhinagar, India.,Biotechnology Department, Kadi Sarva Vishwavidyalaya , Gandhinagar, India
| | - Parita Rakholiya
- Paryavaran Bhavan, Gujarat Pollution Control Board , Gandhinagar, India.,Biotechnology Department, Kadi Sarva Vishwavidyalaya , Gandhinagar, India
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board , Gandhinagar, India
| | - Ashok Pandey
- Centre of Innovation and Translation Research, CSIR-Indian Institute of Toxicology Research , Lucknow, India
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney , Sydney, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney , Sydney, Australia
| | - How Yong Ng
- Department of Civil & Environmental Engineering, National University of Singapore, Environmental Research Institute , Singapore, Singapore
| | | |
Collapse
|
155
|
Jin S, Liu L, Fan M, Jia Y, Zhou P. A Facile Strategy for Immobilizing GOD and HRP onto Pollen Grain and Its Application to Visual Detection of Glucose. Int J Mol Sci 2020; 21:ijms21249529. [PMID: 33333754 PMCID: PMC7765182 DOI: 10.3390/ijms21249529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 01/07/2023] Open
Abstract
Pollen grain was explored as a new carrier for enzyme immobilization. After being modified with boric acid-functionalized titania, the pollen grain was able to covalently immobilize glycosylated enzymes by boronate affinity interaction under very mild experimental conditions (e.g., pH 7.0, ambient temperature and free of organic solvent). The glucose oxidase and horse radish peroxidase-immobilized pollen grain became a bienzyme system. The pollen grain also worked as an indicator of the cascade reaction by changing its color. A rapid, simple and cost-effective approach for the visual detection of glucose was then developed. When the glucose concentration exceeded 0.5 mM, the color change was observable by the naked eye. The assay of glucose in body fluid samples exhibited its great potential for practical application.
Collapse
Affiliation(s)
- Shanxia Jin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
| | - Liping Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
| | - Mengying Fan
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
| | - Yaru Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
| | - Ping Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; (L.L.); (M.F.); (Y.J.)
- Correspondence:
| |
Collapse
|
156
|
Sharma B, Shukla P. Futuristic avenues of metabolic engineering techniques in bioremediation. Biotechnol Appl Biochem 2020; 69:51-60. [PMID: 33242354 DOI: 10.1002/bab.2080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 11/22/2020] [Indexed: 12/15/2022]
Abstract
Bioremediation is a promising technology for the treatment of environmental contaminants and paving new avenues for the betterment of the environment. Over the last some years, several approaches have been employed to optimize the genetic machinery of microorganisms relevant to bioremediation. Metabolic engineering is one of them that provides a new insight for bioremediation. This review envisages the critical role of these techniques toward exploring the possibilities of the creation of a new pathway, leading to pathway expansion to new substrates by assembling of catabolic modules from different origins in the same microbial cell. The recombinant DNA technology and gene editing tools were also explored for the construction of metabolically engineered microbial strains for the degradation of complex pollutants. Moreover, the importance of CRISPR-Cas system for knock-in and knock-out of genes was described by using recent studies. Further, the idea of the cocultivation of more than one metabolic engineered microbial communities is also discussed, which can be crucial in the bioremediation of multiple and complex pollutants. Finally, this review also elucidates the effective application of metabolic engineering in bioremediation through these techniques and tools.
Collapse
Affiliation(s)
- Babita Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, Haryana, India
| |
Collapse
|
157
|
Carr CM, Clarke DJ, Dobson ADW. Microbial Polyethylene Terephthalate Hydrolases: Current and Future Perspectives. Front Microbiol 2020; 11:571265. [PMID: 33262744 PMCID: PMC7686037 DOI: 10.3389/fmicb.2020.571265] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
Plastic has rapidly transformed our world, with many aspects of human life now relying on a variety of plastic materials. Biological plastic degradation, which employs microorganisms and their degradative enzymes, has emerged as one way to address the unforeseen consequences of the waste streams that have resulted from mass plastic production. The focus of this review is microbial hydrolase enzymes which have been found to act on polyethylene terephthalate (PET) plastic. The best characterized examples are discussed together with the use of genomic and protein engineering technologies to obtain PET hydrolase enzymes for different applications. In addition, the obstacles which are currently limiting the development of efficient PET bioprocessing are presented. By continuing to study the possible mechanisms and the structural elements of key enzymes involved in microbial PET hydrolysis, and by assessing the ability of PET hydrolase enzymes to work under practical conditions, this research will help inform large-scale waste management operations. Finally, the contribution of microbial PET hydrolases in creating a potential circular PET economy will be explored. This review combines the current knowledge on enzymatic PET processing with proposed strategies for optimization and use, to help clarify the next steps in addressing pollution by PET and other plastics.
Collapse
Affiliation(s)
- Clodagh M. Carr
- School of Microbiology, University College Cork, Cork, Ireland
| | - David J. Clarke
- School of Microbiology, University College Cork, Cork, Ireland
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland
- SSPC-SFI Research Centre for Pharmaceuticals, University College Cork, Cork, Ireland
| |
Collapse
|
158
|
Pei Y, Tao C, Ling Z, Yu Z, Ji J, Khan A, Mamtimin T, Liu P, Li X. Exploring novel Cr(VI) remediation genes for Cr(VI)-contaminated industrial wastewater treatment by comparative metatranscriptomics and metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140435. [PMID: 32623159 DOI: 10.1016/j.scitotenv.2020.140435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
Microbial remediation is a promising method to treat Cr(VI) in industrial wastewater. The remediation efficiency and stress-resistance ability of Cr(VI) remediation genes in microbes are the limiting factors for their application in industrial wastewater treatment. To screen novel highly efficient Cr(VI) remediation genes, comparative metatranscriptomic and metagenomic analyses were performed on long-term Cr(VI)-contaminated riparian soil with/without additional Cr(VI) treatment. The most suitable Cr(VI) treatment time was determined to be 30 min according to the high quality RNA yield and fold changes in gene expression. Six novel genes, which had complete open reading frames (ORFs) in metagenomic libraries, were identified from unculturable microbes. In the phenotypic functional assay, all novel genes enhanced the Cr(VI) resistance/reduction ability of E. coli. In the industrial wastewater treatment, E-mcr and E-gsr presented at least 50% Cr(VI) removal efficiencies in the presence of 200-600 μM of Cr(VI), without a decrease in efficiency over 17 days. The stress resistance assay showed that gsr increased the growth rate of E. coli by at least 30% under different extreme conditions, and thus, gsr was identified as a general stress-response gene. In the Cr valence distribution assay, E-mcr presented ~40 μM higher extracellular Cr (III) compared to E-yieF. Additionally, transmission electron microscopy (TEM) of E-mcr showed bulk black agglomerates on the cell surface. Thus, mcr was identified as a membrane chromate reductase gene. This research provides a new idea for studying novel highly efficient contaminant remediation genes from unculturable microbes.
Collapse
Affiliation(s)
- Yaxin Pei
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China
| | - Chen Tao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqinglu #18, Beijing 100085, China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China
| | - Zhengsheng Yu
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China
| | - Jing Ji
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China
| | - Aman Khan
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China
| | - Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China; Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou 730000, Gansu, China.
| |
Collapse
|
159
|
Lau YJ, Karri RR, Mubarak NM, Lau SY, Chua HB, Khalid M, Jagadish P, Abdullah EC. Removal of dye using peroxidase-immobilized Buckypaper/polyvinyl alcohol membrane in a multi-stage filtration column via RSM and ANFIS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:40121-40134. [PMID: 32656753 DOI: 10.1007/s11356-020-10045-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
The feasibility and performance of Jicama peroxidase (JP) immobilized Buckypaper/polyvinyl alcohol (BP/PVA) membrane for methylene blue (MB) dye removal was investigated in a customized multi-stage filtration column under batch recycle mode. The effect of independent variables, such as influent flow rate, ratio of H2O2/MB dye concentration, and contact time on the dye removal efficiency, were investigated using response surface methodology (RSM). To capture the inherent characteristics and better predict the removal efficiency, a data-driven adaptive neuro-fuzzy inference system (ANFIS) is implemented. Results indicated that the optimum dye removal efficiency of 99.7% was achieved at a flow rate of 2 mL/min, 75:1 ratio of H2O2/dye concentration with contact time of 183 min. The model predictions of ANFIS are significantly good compared with RSM, thus resulting in R2 values of 0.9912 and 0.9775, respectively. The enzymatic kinetic parameters, Km and Vmax, were evaluated, which are 1.98 mg/L and 0.0219 mg/L/min, respectively. Results showed that JP-immobilized BP/PVA nanocomposite membrane can be promising and cost-effective biotechnology for the practical application in the treatment of industrial dye effluents.
Collapse
Affiliation(s)
- Yien Jun Lau
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Rama Rao Karri
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei (UTB), Gadong, Brunei Darussalam
| | - Nabisab Mujawar Mubarak
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia.
| | - Sie Yon Lau
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Han Bing Chua
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri, Sarawak, Malaysia
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Priyanka Jagadish
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Science and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | - Ezzat Chan Abdullah
- Department of Chemical Process Engineering, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia (UTM), Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
| |
Collapse
|
160
|
Morsy SAGZ, Ahmad Tajudin A, Ali MSM, Shariff FM. Current Development in Decolorization of Synthetic Dyes by Immobilized Laccases. Front Microbiol 2020; 11:572309. [PMID: 33101245 PMCID: PMC7554347 DOI: 10.3389/fmicb.2020.572309] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 09/01/2020] [Indexed: 12/29/2022] Open
Abstract
The world today is in a quest for new means of environmental remediation as the methods currently used are not sufficient to halt the damage. Mostly, a global direction is headed toward a shift from traditional chemical-based methods to a more ecofriendly alternative. In this context, biocatalysis is seen as a cost-effective, energy saving, and clean alternative. It is meant to catalyze degradation of recalcitrant chemicals in an easy, rapid, green, and sustainable manner. One already established application of biocatalysis is the removal of dyes from natural water bodies using enzymes, notably oxidoreductases like laccases, due to their wide range of substrate specificity. In order to boost their catalytic activity, various methods of enhancements have been pursued including immobilization of the enzyme on different support materials. Aside from increased catalysis, immobilized laccases have the advantages of higher stability, better durability against harsh environment conditions, longer half-lives, resistance against protease enzymes, and the ability to be recovered for reuse. This review briefly outlines the current methods used for detoxification and decolorization of dye effluents stressing on the importance of laccases as a revolutionary biocatalytic solution to this environmental problem. This work highlights the significance of laccase immobilization and also points out some of the challenges and opportunities of this technology.
Collapse
Affiliation(s)
- Sherine Ahmed Gamal Zakaria Morsy
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Asilah Ahmad Tajudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
161
|
Lignocellulolytic Enzymes in Biotechnological and Industrial Processes: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12187282] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tons of anthropological activities contribute daily to the massive amount of lignocellulosic wastes produced annually. Unfortunately, their full potential usually is underutilized, and most of the biomass ends up in landfills. Lignocellulolytic enzymes are vital and central to developing an economical, environmentally friendly, and sustainable biological method for pre-treatment and degradation of lignocellulosic biomass which can lead to the release of essential end products such as enzymes, organic acids, chemicals, feed, and biofuel. Sustainable degradation of lignocellulosic biomass via hydrolysis is achievable by lignocellulolytic enzymes, which can be used in various applications, including but not limited to biofuel production, the textile industry, waste treatment, the food and drink industry, personal care industry, health and pharmaceutical industries. Nevertheless, for this to materialize, feasible steps to overcome the high cost of pre-treatment and lower operational costs such as handling, storage, and transportation of lignocellulose waste need to be deployed. Insight on lignocellulolytic enzymes and how they can be exploited industrially will help develop novel processes that will reduce cost and improve the adoption of biomass, which is more advantageous. This review focuses on lignocellulases, their use in the sustainable conversion of waste biomass to produce valued-end products, and challenges impeding their adoption.
Collapse
|
162
|
Sharma B, Shukla P. Designing synthetic microbial communities for effectual bioremediation: A review. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1813727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Babita Sharma
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Haryana, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Haryana, India
| |
Collapse
|
163
|
Liu S, Xu X, Kang Y, Xiao Y, Liu H. Degradation and detoxification of azo dyes with recombinant ligninolytic enzymes from Aspergillus sp. with secretory overexpression in Pichia pastoris. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200688. [PMID: 33047030 PMCID: PMC7540776 DOI: 10.1098/rsos.200688] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/10/2020] [Indexed: 05/24/2023]
Abstract
Ligninolytic enzymes, including laccase (Lac), manganese peroxidase (MnP) and lignin peroxidase (LiP), have attracted much attention in the degradation of contaminants. Genes of Lac (1827 bp), MnP (1134 bp) and LiP (1119 bp) were cloned from Aspergillus sp. TS-A, and the recombinant Lac (69 kDa), MnP (45 kDa) and LiP (35 kDa) were secretory expressed in Pichia pastoris GS115, with enzyme activities of 34, 135.12 and 103.13 U l-1, respectively. Dyes of different structures were treated via the recombinant ligninolytic enzymes under the optimal degradation conditions, and the result showed that the decolourization rate of Lac on Congo red (CR) in 5 s was 45.5%. Fourier-transform infrared spectroscopy, gas chromatography-mass spectrometry analysis and toxicity tests further proved that the ligninolytic enzymes could destroy the dyes, both those with one or more azo bonds, and the degradation products were non-toxic. Moreover, the combined ligninolytic enzymes could degrade CR more completely compared with the individual enzyme. Remarkably, besides azo dyes, ligninolytic enzymes could also degrade triphenylmethane and anthracene dyes. This suggests that ligninolytic enzymes from Aspergillus sp. TS-A have the potential for application in the treatment of contaminants.
Collapse
Affiliation(s)
| | - Xiaolin Xu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, People's Republic of China
| | | | | | | |
Collapse
|
164
|
A Bacillus Spore-Based Display System for Bioremediation of Atrazine. Appl Environ Microbiol 2020; 86:AEM.01230-20. [PMID: 32680864 DOI: 10.1128/aem.01230-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/10/2020] [Indexed: 11/20/2022] Open
Abstract
Owing to human activities, a large number of organic chemicals, including petroleum products, industrial solvents, pesticides, herbicides (including atrazine [ATR]), and pharmaceuticals, contaminate soil and aquatic environments. Remediation of these pollutants by conventional approaches is both technically and economically challenging. Bacillus endospores are highly resistant to most physical assaults and are capable of long-term persistence in soil. Spores can be engineered to express, on their surface, important enzymes for bioremediation purposes. We have developed a Bacillus thuringiensis spore platform system that can display a high density of proteins on the spore surface. The spore surface-tethered enzymes exhibit enhanced activity and stability relative to free enzymes in soil and water environments. In this study, we evaluated a B. thuringiensis spore display platform as a bioremediation tool against ATR. The Pseudomonas sp. strain ADP atzA determinant, an ATR chlorohydrolase important to the detoxification of ATR, was expressed as a fusion protein linked to the attachment domain of the BclA spore surface nap layer protein and expressed in B. thuringiensis Spores from this strain are decorated with AtzA N-terminally linked on the surface of the spores. The recombinant spores were assayed for ATR detoxification in liquid and soil environments, and enzyme kinetics and stability were assessed. We successfully demonstrated the utility of this spore-based enzyme display system to detoxify ATR in water and laboratory soil samples.IMPORTANCE Atrazine is one of the most widely applied herbicides in the U.S. midwestern states. The long environmental half-life of atrazine has contributed to the contamination of surface water and groundwater by atrazine and its chlorinated metabolites. The toxic properties of ATR have raised public health and ecological concerns. However, remediation of ATR by conventional approaches has proven to be costly and inefficient. We developed a novel B. thuringiensis spore platform system that is capable of long-term persistence in soil and can be engineered to surface express a high density of enzymes useful for bioremediation purposes. The enzymes are stably attached to the surface of the spore exosporium layer. The spore-based system will likely prove useful for remediation of other environmental pollutants as well.
Collapse
|
165
|
Cauduro GP, Leal AL, Lopes TF, Marmitt M, Valiati VH. Differential Expression and PAH Degradation: What Burkholderia vietnamiensis G4 Can Tell Us? Int J Microbiol 2020; 2020:8831331. [PMID: 32908529 PMCID: PMC7474390 DOI: 10.1155/2020/8831331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/04/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022] Open
Abstract
Petroleum is the major energy matrix in the world whose refining generates chemical byproducts that may damage the environment. Among such waste, polycyclic aromatic hydrocarbons (PAH) are considered persistent pollutants. Sixteen of these are considered priority for remediation, and among them is benzo(a)pyrene. Amid remediation techniques, bioremediation stands out. The genus Burkholderia is amongst the microorganisms known for being capable of degrading persistent compounds; its strains are used as models to study such ability. High-throughput sequencing allows researchers to reach a wider knowledge about biodegradation by bacteria. Using transcripts and mRNA analysis, the genomic regions involved in this aptitude can be detected. To unravel these processes, we used the model B. vietnamiensis strain G4 in two experimental groups: one was exposed to benzo(a)pyrene and the other one (control) was not. Six transcriptomes were generated from each group aiming to compare gene expression and infer which genes are involved in degradation pathways. One hundred fifty-six genes were differentially expressed in the benzo(a)pyrene exposed group, from which 33% are involved in catalytic activity. Among these, the most significant genomic regions were phenylacetic acid degradation protein paaN, involved in the degradation of organic compounds to obtain energy; oxidoreductase FAD-binding subunit, related to the regulation of electrons within groups of dioxygenase enzymes with potential to cleave benzene rings; and dehydrogenase, described as accountable for phenol degradation. These data provide the basis for understanding the bioremediation of benzo(a)pyrene and the possible applications of this strain in polluted environments.
Collapse
Affiliation(s)
| | - Ana Lusia Leal
- Companhia Riograndense de Saneamento, Biology Laboratory, Triunfo, RS, Brazil
| | - Tiago Falcón Lopes
- Centro de Terapia Gênica, Centro de Pesquisa Experimental, Hospital de Clínicas, Porto Alegre, RS, Brazil
| | - Marcela Marmitt
- Universidade do Vale do Rio dos Sinos, Biology Graduate Program, São Leopoldo, RS, Brazil
| | - Victor Hugo Valiati
- Universidade do Vale do Rio dos Sinos, Biology Graduate Program, São Leopoldo, RS, Brazil
| |
Collapse
|
166
|
Ide-Pérez MR, Fernández-López MG, Sánchez-Reyes A, Leija A, Batista-García RA, Folch-Mallol JL, Sánchez-Carbente MDR. Aromatic Hydrocarbon Removal by Novel Extremotolerant Exophiala and Rhodotorula Spp. from an Oil Polluted Site in Mexico. J Fungi (Basel) 2020; 6:E135. [PMID: 32823980 PMCID: PMC7559356 DOI: 10.3390/jof6030135] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023] Open
Abstract
Since Aromatic hydrocarbons are recalcitrant and toxic, strategies to remove them are needed. The aim of this work was to isolate fungi capable of using aromatic hydrocarbons as carbon sources. Two isolates from an oil polluted site in Mexico were identified through morphological and molecular markers as a novel Rhodotorula sp. and an Exophiala sp. Both strains were able to grow in a wide range of pH media, from 4 to 12, showing their optimal growth at alkaline pH's and are both halotolerant. The Exophiala strain switched from hyphae to yeast morphotype in high salinity conditions. To the best of our knowledge, this is the first report of salt triggering dimorphism. The Rhodotorula strain, which is likely a new undescribed species, was capable of removing singled ringed aromatic compounds such as benzene, xylene, and toluene, but could not remove benzo[a] pyrene nor phenanthrene. Nevertheless, these hydrocarbons did not impair its growth. The Exophiala strain showed a different removal capacity. It could remove the polyaromatic hydrocarbons but performed poorly at removing toluene and xylene. Nevertheless, it still could grow well in the presence of the aromatic compounds. These strains could have a potential for aromatic compounds removal.
Collapse
Affiliation(s)
- Martín R. Ide-Pérez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Maikel Gilberto Fernández-López
- Centro de Investigación en Dinámica Celular-Instituto de Investigaciones Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (M.G.F.-L.); (R.A.B.-G.)
| | - Ayixon Sánchez-Reyes
- Cátedras Conacyt-Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62209, Mexico;
| | - Alfonso Leija
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca 62209, Mexico;
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular-Instituto de Investigaciones Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico; (M.G.F.-L.); (R.A.B.-G.)
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | | |
Collapse
|
167
|
Microbial biofilm ecology, in silico study of quorum sensing receptor-ligand interactions and biofilm mediated bioremediation. Arch Microbiol 2020; 203:13-30. [PMID: 32785735 DOI: 10.1007/s00203-020-02012-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 07/17/2020] [Accepted: 08/04/2020] [Indexed: 12/15/2022]
Abstract
Biofilms are structured microbial communities of single or multiple populations in which microbial cells adhere to a surface and get embedded in extracellular polymeric substances (EPS). This review attempts to explain biofilm architecture, development phases, and forces that drive bacteria to promote biofilm mode of growth. Bacterial chemical communication, also known as Quorum sensing (QS), which involves the production, detection, and response to small molecules called autoinducers, is highlighted. The review also provides a brief outline of interspecies and intraspecies cell-cell communication. Additionally, we have performed docking studies using Discovery Studio 4.0, which has enabled our understanding of the prominent interactions between autoinducers and their receptors in different bacterial species while also scoring their interaction energies. Receptors, such as LuxN (Phosphoreceiver domain and RecA domain), LuxP, and LuxR, interacted with their ligands (AI-1, AI-2, and AHL) with a CDocker interaction energy of - 31.6083 kcal/mole; - 34.5821 kcal/mole, - 48.2226 kcal/mole and - 41.5885 kcal/mole, respectively. Since biofilms are ideal for the remediation of contaminants due to their high microbial biomass and their potential to immobilize pollutants, this article also provides an overview of biofilm-mediated bioremediation.
Collapse
|
168
|
Dai X, Lv J, Yan G, Chen C, Guo S, Fu P. Bioremediation of intertidal zones polluted by heavy oil spilling using immobilized laccase-bacteria consortium. BIORESOURCE TECHNOLOGY 2020; 309:123305. [PMID: 32325376 DOI: 10.1016/j.biortech.2020.123305] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Heavy oil pollution in the intertidal zones has become a worldwide environmental problem. In this study, bioremediation on heavy oil pollutants in the intertidal zones using an immobilized laccase-bacteria consortium system was evaluated with the aid of intertidal experimental pools built in the coastal area. It is found that degradation efficiency of the immobilized laccase-bacteria consortium for heavy oil was 66.5% after 100 days remediation, with the reaction rate constant of 0.018 d-1. Gas Chromatograph-Mass Spectrometer analysis shows that degradation efficiency of saturated hydrocarbons and aromatic hydrocarbons were 79.2% and 78.7%, which were 64.9% and 65.1% higher than control. It is further seen that degradation of long-chain n-alkanes of C26-C35 and polycyclic aromatic hydrocarbons with more than three rings were significant. Metagenomic analysis indicates that the immobilized laccase-bacterial consortium has not only increased the biodiversity of heavy oil degrading bacteria, but also accelerated the degradation of heavy oil.
Collapse
Affiliation(s)
- Xiaoli Dai
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum, Beijing 102249, China; Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Environmental Protection Research Institute of Light Industry, Beijing 10089, China
| | - Jing Lv
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum, Beijing 102249, China
| | - Guangxu Yan
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum, Beijing 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum, Beijing 102249, China
| | - Shaohui Guo
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil and Gas Pollution Control, China University of Petroleum, Beijing 102249, China.
| | - Pengcheng Fu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Hainan 570228, China.
| |
Collapse
|
169
|
Sun K, Liu Q, Li S, Qi Y, Si Y. MnO 2 nanozyme-driven polymerization and decomposition mechanisms of 17β-estradiol: Influence of humic acid. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122393. [PMID: 32120219 DOI: 10.1016/j.jhazmat.2020.122393] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/22/2020] [Accepted: 02/22/2020] [Indexed: 06/10/2023]
Abstract
Nanozymes, which display the bifunctional properties of nanomaterials and natural enzymes, are useful tools for environmental remediation. In this research, nano-MnO2 was selected for its intrinsic enzyme-like activity to remove 17β-estradiol (E2). Results indicated that nano-MnO2 exhibited laccase-like activity (7.22 U·mg-1) and removed 97.3 % of E2 at pH 6. Humic acid (HA) impeded E2 removal (only 72.4 %) by competing with E2 for the catalytic sites of the MnO2 nanozyme surface, and there was a good linear correlation between the kinetic constants and HA concentrations (R2 = 0.9489). Notably, the phenolic -OH of E2 interacted with HA to yield various polymeric products via radical-driven covalent coupling, resulting in ablation of phenolic -OH but increase of ether groups in the polymeric structure. Intermediate products, including estrone, E2 homo-/hetero-oligomers, E2 hydroxylated and quinone-like products, as well as aromatic ring-opening species, were identified. Interestingly, HA hindered the extent of E2 oxidation, homo-coupling, and decomposition but accelerated E2 and HA hetero-coupling. A reasonable catalytic pathway of E2 and HA involving MnO2 nanozyme was proposed. These findings provide novel insights into the influence of HA on MnO2 nanozyme-driven E2 radical polymerization and decomposition, consequently favoring the ecological water restoration and the global carbon cycle.
Collapse
Affiliation(s)
- Kai Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | - Qingzhu Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Shunyao Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yongbo Qi
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| |
Collapse
|
170
|
Purification, Biochemical Characterization, and Facile Immobilization of Laccase from Sphingobacterium ksn-11 and its Application in Transformation of Diclofenac. Appl Biochem Biotechnol 2020; 192:831-844. [PMID: 32601857 DOI: 10.1007/s12010-020-03371-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
An extracellular laccase enzyme secreted from Sphingobacterium ksn-11 was purified to electrophoretic homogeneity, showing a molecular weight of 90 kDa. The purified enzyme was monomeric in nature confirmed by sodium dodecyl gel electrophoresis. The optimum temperature and pH were found to be 40 °C and 4.5 respectively. The enzyme showed highest substrate specificity for 2,2 azino-bis (ethylthiozoline-6-sulfonate) (ABTS), followed by syringaldazine. The Km value for ABTS was 2.12 mM with a Vmax value of 33.33 U/mg which was higher when compared with syringaldazine and guaiacol substrates. Sodium azide and EDTA inhibited the activity by 30%, whereas presence of Ca2+ and iron increased activity by 50%. The purified enzyme was immobilized in sodium alginate-silicon dioxide-polyvinyl alcohol beads and evaluated for diclofenac transformation studies. LC-MS analysis confirmed that immobilized laccase transformed diclofenac to 4-OH diclofenac after 4 h of incubation. 45 % of diclofenac was able to transform even at 3rd cycle of immobilized laccase use. Therefore, immobilized laccase can be used to transform or degrade several recalcitrant compounds from industrial effluents.
Collapse
|
171
|
Wang Z, Ren D, Kang C, Zhang S, Zhang X, Deng Z, Huang C, Guo H. Migration of heavy metals and migration-degradation of phenanthrene in soil using electro kinetic-laccase combined remediation system. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2020; 55:704-711. [PMID: 32500809 DOI: 10.1080/03601234.2020.1773719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In order to solve the problem of heavy metal-organic compound soil pollution, in this paper, we developed a highly efficient electro kinetic-laccase combined remediation (EKLCR) system. The results showed that the EKLCR system had an obvious migration effect on heavy metals (copper and cadmium) and good migration-degradation effect on phenanthrene. The migration rates of copper and cadmium were 48.3% and 40.3%, respectively. Especially, with the presence of laccase, the removal rate of phenanthrene on Cu2+-contaminated soil was higher than that of Cd2+-contaminated soil due to the significant effect of heavy metals on the enzymatic activity of laccase. The average migration-degradation rate of phenanthrene by EKLCR system was 45.4%. Finally, gas chromatography-mass spectrometry (GC/MS) was used to analyze the degradation intermediates of phenanthrene in the soil, which included 9,10-Phenanthrenequinone, phthalic acid, and 2,2-Biphenyldicarboxylic Acid. In addition, we give the possible degradation pathways of phenanthrene, 2,2-Biphenyldicarboxylic Acid is further degraded to produce phthalic acid. The products of the phthalic acid metabolic pathway are protocatechuic acid, pyruvic acid or succinic acid, the final products of these organic acids are carbon dioxide and water.
Collapse
Affiliation(s)
- Zhaobo Wang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
| | - Dajun Ren
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
| | - Chen Kang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
| | - Shuqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaoqin Zhang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
| | - Zhiqun Deng
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
| | - Chaofan Huang
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
| | - Huiwen Guo
- College of Resource and Environmental Engineering, Wuhan University of Science and Technology, Wuhan, China
- Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
172
|
Jaiswal S, Shukla P. Alternative Strategies for Microbial Remediation of Pollutants via Synthetic Biology. Front Microbiol 2020; 11:808. [PMID: 32508759 PMCID: PMC7249858 DOI: 10.3389/fmicb.2020.00808] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Continuous contamination of the environment with xenobiotics and related recalcitrant compounds has emerged as a serious pollution threat. Bioremediation is the key to eliminating persistent contaminants from the environment. Traditional bioremediation processes show limitations, therefore it is necessary to discover new bioremediation technologies for better results. In this review we provide an outlook of alternative strategies for bioremediation via synthetic biology, including exploring the prerequisites for analysis of research data for developing synthetic biological models of microbial bioremediation. Moreover, cell coordination in synthetic microbial community, cell signaling, and quorum sensing as engineered for enhanced bioremediation strategies are described, along with promising gene editing tools for obtaining the host with target gene sequences responsible for the degradation of recalcitrant compounds. The synthetic genetic circuit and two-component regulatory system (TCRS)-based microbial biosensors for detection and bioremediation are also briefly explained. These developments are expected to increase the efficiency of bioremediation strategies for best results.
Collapse
|
173
|
Waste Management by Biological Approach Employing Natural Substrates and Microbial Agents for the Remediation of Dyes’ Wastewater. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10082958] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This article aims to provide information on two aspects: firstly, waste management of residual biological agro-industrial materials generated from agriculture, and secondly, for the sustainable remediation of textile wastewater. Annually, huge amounts of solid renewable biomass materials are generated worldwide from agricultural and farming sectors. The generation of these vast amounts of solid wastes could be utilised as a valuable and renewable natural resource for various applications. The goal of promoting sustainable development has increased the interest in recycling wastes economically and in an eco-friendly way. This article reviews the published research on this topic and discusses the usage of these solid substrates in the remediation of a major environmental component, textile dye-contaminated water. The purpose of this article is to discuss an integrated and cross-disciplinary approach to sustainable solid and liquid waste management and remediation of environmental components and to report the biological approaches and their efficiency in a chemical-free and economically viable bioremediation process for large volumes of dye-contaminated water resources.
Collapse
|
174
|
Feng Y, Huang Y, Zhan H, Bhatt P, Chen S. An Overview of Strobilurin Fungicide Degradation:Current Status and Future Perspective. Front Microbiol 2020; 11:389. [PMID: 32226423 PMCID: PMC7081128 DOI: 10.3389/fmicb.2020.00389] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 02/25/2020] [Indexed: 01/24/2023] Open
Abstract
Strobilurin fungicides have been widely used in agricultural fields for decades. These pesticides are designed to manage fungal pathogens, although their broad-spectrum mode of action also produces non-target impacts. Therefore, the removal of strobilurins from ecosystems has received much attention. Different remediation technologies have been developed to eliminate pesticide residues from soil/water environments, such as photodecomposition, ozonation, adsorption, incineration, and biodegradation. Compared with conventional methods, bioremediation is considered a cost-effective and ecofriendly approach for the removal of pesticide residues. Several strobilurin-degrading microbes and microbial communities have been reported to effectively utilize pesticide residues as a carbon and nitrogen source. The degradation pathways of strobilurins and the fate of several metabolites have been reported. Further in-depth studies based on molecular biology and genetics are needed to elaborate their role in the evolution of novel catabolic pathways and the microbial degradation of strobilurins. The present review summarizes recent progress in strobilurin degradation and comprehensively discusses the potential of strobilurin-degrading microorganisms in the bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Yanmei Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| | - Hui Zhan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| |
Collapse
|
175
|
Wong JX, Ogura K, Chen S, Rehm BHA. Bioengineered Polyhydroxyalkanoates as Immobilized Enzyme Scaffolds for Industrial Applications. Front Bioeng Biotechnol 2020; 8:156. [PMID: 32195237 PMCID: PMC7064635 DOI: 10.3389/fbioe.2020.00156] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/14/2020] [Indexed: 12/11/2022] Open
Abstract
Enzymes function as biocatalysts and are extensively exploited in industrial applications. Immobilization of enzymes using support materials has been shown to improve enzyme properties, including stability and functionality in extreme conditions and recyclability in biocatalytic processing. This review focuses on the recent advances utilizing the design space of in vivo self-assembled polyhydroxyalkanoate (PHA) particles as biocatalyst immobilization scaffolds. Self-assembly of biologically active enzyme-coated PHA particles is a one-step in vivo production process, which avoids the costly and laborious in vitro chemical cross-linking of purified enzymes to separately produced support materials. The homogeneous orientation of enzymes densely coating PHA particles enhances the accessibility of catalytic sites, improving enzyme function. The PHA particle technology has been developed into a remarkable scaffolding platform for the design of cost-effective designer biocatalysts amenable toward robust industrial bioprocessing. In this review, the PHA particle technology will be compared to other biological supramolecular assembly-based technologies suitable for in vivo enzyme immobilization. Recent progress in the fabrication of biological particulate scaffolds using enzymes of industrial interest will be summarized. Additionally, we outline innovative approaches to overcome limitations of in vivo assembled PHA particles to enable fine-tuned immobilization of multiple enzymes to enhance performance in multi-step cascade reactions, such as those used in continuous flow bioprocessing.
Collapse
Affiliation(s)
- Jin Xiang Wong
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- MacDiarmid Institute of Advanced Materials and Nanotechnology, Victoria University of Wellington, Wellington, New Zealand
| | - Kampachiro Ogura
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast Campus, Southport, QLD, Australia
| |
Collapse
|
176
|
Spoof L, Jaakkola S, Važić T, Häggqvist K, Kirkkala T, Ventelä AM, Kirkkala T, Svirčev Z, Meriluoto J. Elimination of cyanobacteria and microcystins in irrigation water-effects of hydrogen peroxide treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8638-8652. [PMID: 31907814 PMCID: PMC7048868 DOI: 10.1007/s11356-019-07476-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Cyanobacterial blooms pose a risk to wild and domestic animals as well as humans due to the toxins they may produce. Humans may be subjected to cyanobacterial toxins through many routes, e.g., by consuming contaminated drinking water, fish, and crop plants or through recreational activities. In earlier studies, cyanobacterial cells have been shown to accumulate on leafy plants after spray irrigation with cyanobacteria-containing water, and microcystin (MC) has been detected in the plant root system after irrigation with MC-containing water. This paper reports a series of experiments where lysis of cyanobacteria in abstracted lake water was induced by the use of hydrogen peroxide and the fate of released MCs was followed. The hydrogen peroxide-treated water was then used for spray irrigation of cultivated spinach and possible toxin accumulation in the plants was monitored. The water abstracted from Lake Köyliönjärvi, SW Finland, contained fairly low concentrations of intracellular MC prior to the hydrogen peroxide treatment (0.04 μg L-1 in July to 2.4 μg L-1 in September 2014). Hydrogen peroxide at sufficient doses was able to lyse cyanobacteria efficiently but released MCs were still present even after the application of the highest hydrogen peroxide dose of 20 mg L-1. No traces of MC were detected in the spinach leaves. The viability of moving phytoplankton and zooplankton was also monitored after the application of hydrogen peroxide. Hydrogen peroxide at 10 mg L-1 or higher had a detrimental effect on the moving phytoplankton and zooplankton.
Collapse
Affiliation(s)
- Lisa Spoof
- Åbo Akademi University, Faculty of Science and Engineering, Biochemistry, Tykistökatu 6A, 20520, Turku, Finland
| | - Sauli Jaakkola
- Pyhäjärvi Institute, Sepäntie 7, 27500, Kauttua, Finland
| | - Tamara Važić
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia
| | - Kerstin Häggqvist
- Åbo Akademi University, Faculty of Science and Engineering, Biochemistry, Tykistökatu 6A, 20520, Turku, Finland
| | - Terhi Kirkkala
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland
| | | | - Teija Kirkkala
- Pyhäjärvi Institute, Sepäntie 7, 27500, Kauttua, Finland
| | - Zorica Svirčev
- Åbo Akademi University, Faculty of Science and Engineering, Biochemistry, Tykistökatu 6A, 20520, Turku, Finland
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia
| | - Jussi Meriluoto
- Åbo Akademi University, Faculty of Science and Engineering, Biochemistry, Tykistökatu 6A, 20520, Turku, Finland.
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia.
| |
Collapse
|
177
|
Bento RM, Almeida MR, Bharmoria P, Freire MG, Tavares AP. Improvements in the enzymatic degradation of textile dyes using ionic-liquid-based surfactants. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116191] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
178
|
Wastewater Treatment by Novel Polyamide/Polyethylenimine Nanofibers with Immobilized Laccase. WATER 2020. [DOI: 10.3390/w12020588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Endocrine-disrupting chemicals are highly resistant organic compounds, commonly occurring in the aquatic environment, that can interfere with the endocrine system of animals and humans, causing serious chronic diseases. In recent decades, enzymes from oxidoreductases have been studied for their potential to degrade these compounds effectively. In order to use such enzymes repeatedly, it is necessary to ensure their insolubility in water, a method termed enzyme immobilization. We developed novel polyamide/polyethylenimine (PA/PEI) nanofibers as a promising support material for the immobilization of various biomolecules. Our nanofibers are highly suitable due to a unique combination of mechanical endurance provided by polyamide 6 and their affinity toward biomolecules, ensured by numerous PEI amino groups. Enzyme laccase was successfully immobilized onto PA/PEI nanofibers using a simple and fast method, providing exceptional activity and stability of the attached enzyme. We then tested the degradation ability of the PA/PEI-laccase samples on a highly concentrated mixture of endocrine-disrupting chemicals in real wastewater with adjusted pH. The results indicate that the samples were a suitable material for wastewater treatment by degrading a highly concentrated mixture of bisphenol A, 17α-ethinylestradiol, triclosan, and diclofenac, in real wastewater effluent.
Collapse
|
179
|
Omics Approaches to Pesticide Biodegradation. Curr Microbiol 2020; 77:545-563. [DOI: 10.1007/s00284-020-01916-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/08/2020] [Indexed: 02/08/2023]
|
180
|
Martínez-Gallardo MR, López MJ, Jurado MM, Suárez-Estrella F, López-González JA, Sáez JA, Moral R, Moreno J. Bioremediation of Olive Mill Wastewater sediments in evaporation ponds through in situ composting assisted by bioaugmentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:135537. [PMID: 31761371 DOI: 10.1016/j.scitotenv.2019.135537] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
The common method for the disposal of olive oil mill wastewater (OMW) has been its accumulation in evaporation ponds where OMW sediments concentrate. Due to the phytotoxic and antimicrobial effect of OMW, leaks from ponds can pollute soils and water bodies. This work focuses on the search for microorganisms that can be used as inocula for bioremediation of polluted matrices in OMW ponds by means of in situ composting. Two fungi isolated from OMW sediments, Aspergillus ochraceus H2 and Scedosporium apiospermum H16, presented suitable capabilities for this use as a consortium. Composting eliminated the phyto- and ecotoxicity of OMW sediments by depleting their main toxic components. Inoculation with the fungal consortium improved the bioremediation efficacy of the technique by hastening the decrease of phytotoxicity and ecotoxicity and enhancing phytostimulant property of compost produced. This procedure constitutes a promising strategy for bioremediation of OMW polluted sites.
Collapse
Affiliation(s)
- Maria R Martínez-Gallardo
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3; CIAMBITAL, University of Almeria, 04120 Almeria, Spain
| | - María J López
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3; CIAMBITAL, University of Almeria, 04120 Almeria, Spain.
| | - Macarena M Jurado
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3; CIAMBITAL, University of Almeria, 04120 Almeria, Spain
| | - Francisca Suárez-Estrella
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3; CIAMBITAL, University of Almeria, 04120 Almeria, Spain
| | - Juan A López-González
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3; CIAMBITAL, University of Almeria, 04120 Almeria, Spain
| | - José A Sáez
- Department of Agrochemistry and Environment, Miguel Hernández University, EPS-Orihuela, Ctra. Beniel Km 3.2, 03312 Orihuela (Alicante), Spain
| | - Raúl Moral
- Department of Agrochemistry and Environment, Miguel Hernández University, EPS-Orihuela, Ctra. Beniel Km 3.2, 03312 Orihuela (Alicante), Spain
| | - Joaquín Moreno
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excellence ceiA3; CIAMBITAL, University of Almeria, 04120 Almeria, Spain
| |
Collapse
|
181
|
Vera M, Nyanhongo GS, Guebitz GM, Rivas BL. Polymeric microspheres as support to co-immobilized Agaricus bisporus and Trametes versicolor laccases and their application in diazinon degradation. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
182
|
Urbano BF, Bustamante S, Palacio DA, Vera M, Rivas BL. Polymer supports for the removal and degradation of hazardous organic pollutants: an overview. POLYM INT 2020. [DOI: 10.1002/pi.5961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Bruno F Urbano
- Departamento de Polímeros, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| | - Saúl Bustamante
- Departamento de Polímeros, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| | - Daniel A Palacio
- Departamento de Polímeros, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| | - Myleidi Vera
- Departamento de Polímeros, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| | - Bernabé L Rivas
- Departamento de Polímeros, Facultad de Ciencias QuímicasUniversidad de Concepción Concepción Chile
| |
Collapse
|
183
|
Pimviriyakul P, Wongnate T, Tinikul R, Chaiyen P. Microbial degradation of halogenated aromatics: molecular mechanisms and enzymatic reactions. Microb Biotechnol 2020; 13:67-86. [PMID: 31565852 PMCID: PMC6922536 DOI: 10.1111/1751-7915.13488] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/01/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022] Open
Abstract
Halogenated aromatics are used widely in various industrial, agricultural and household applications. However, due to their stability, most of these compounds persist for a long time, leading to accumulation in the environment. Biological degradation of halogenated aromatics provides sustainable, low-cost and environmentally friendly technologies for removing these toxicants from the environment. This minireview discusses the molecular mechanisms of the enzymatic reactions for degrading halogenated aromatics which naturally occur in various microorganisms. In general, the biodegradation process (especially for aerobic degradation) can be divided into three main steps: upper, middle and lower metabolic pathways which successively convert the toxic halogenated aromatics to common metabolites in cells. The most difficult step in the degradation of halogenated aromatics is the dehalogenation step in the middle pathway. Although a variety of enzymes are involved in the degradation of halogenated aromatics, these various pathways all share the common feature of eventually generating metabolites for utilizing in the energy-producing metabolic pathways in cells. An in-depth understanding of how microbes employ various enzymes in biodegradation can lead to the development of new biotechnologies via enzyme/cell/metabolic engineering or synthetic biology for sustainable biodegradation processes.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- Department of BiotechnologyFaculty of Engineering and Industrial TechnologySilpakorn UniversityNakhon Pathom73000Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Wangchan ValleyRayong21210Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme TechnologyFaculty of ScienceMahidol UniversityBangkok10400Thailand
| | - Pimchai Chaiyen
- School of Biomolecular Science and EngineeringVidyasirimedhi Institute of Science and Technology (VISTEC)Wangchan ValleyRayong21210Thailand
| |
Collapse
|
184
|
Mehandia S, Sharma S, Arya SK. Isolation and characterization of an alkali and thermostable laccase from a novel Alcaligenes faecalis and its application in decolorization of synthetic dyes. ACTA ACUST UNITED AC 2019; 25:e00413. [PMID: 31890646 PMCID: PMC6933146 DOI: 10.1016/j.btre.2019.e00413] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 12/23/2022]
Abstract
Production and purification of laccase from Alcaligenes faecalis. Purified laccase from Alcaligenes faecalis active & stable at high temperature and pH. Laccase had remarkable specificity to an extensive range of probable substrate and tolerant to various metal ions. Efficiently decolorization of different synthetic dyes by laccase.
A laccase producing new bacterial strain (Alcaligenes faecalis XF1) was isolated from green site of Chandigarh (India) by standard screening method. Nutrient broth medium containing 0.2 mM CuSO4 was used for the production of laccase. Maximum production (110 U/ml) was achieved after four days of incubation. The extracellular laccase from the medium was purified by simple salt precipitation and ion exchange technique to get 3.8 fold purified protein with 1637.8 U/mg specific activity. Purified laccase (named as LAC1*) revealed its optimum activity at pH 8.0 and 80 °C temperature, and displayed remarkable stability in the range of 70–90 °C and in the pH range (pH 7.0–9.0). The single bands on SDS-PAGE represents the purity of LAC1* with molecular weight of ∼71 kDa. The kinetic parameters for 2,6-DMP oxidation was Km, Vmax and kcat were 480 μM, 110 U/mL and 1375 s−1. Enzyme activity of the LAC1* was significantly enhanced by Cu2+, Mg2+, Mn2+, SDS and NaCl, and was slightly inhibited in the presence of conventional inhibitors like cysteine, EDTA and sodium azide. Extracellular nature and significant stability of LAC1* under extreme conditions of temperature, pH, heavy metals, halides and detergents confined its suitability for various biotechnological and industrial applications which required these qualities of laccase. So after recognizing all these properties the purified laccase was studied for its application in decolorization of industrial dyes.
Collapse
Affiliation(s)
- Seema Mehandia
- Department of Biochemistry, Panjab University Chandigarh, India
- Department of Biotecnology, UIET, Panjab University Chandigarh, India
| | - S.C. Sharma
- Department of Biochemistry, Panjab University Chandigarh, India
| | - Shailendra Kumar Arya
- Department of Biotecnology, UIET, Panjab University Chandigarh, India
- Corresponding author.
| |
Collapse
|
185
|
The Effect of a Combined Hydrogen Peroxide-MlrA Treatment on the Phytoplankton Community and Microcystin Concentrations in a Mesocosm Experiment in Lake Ludoš. Toxins (Basel) 2019; 11:toxins11120725. [PMID: 31835838 PMCID: PMC6950535 DOI: 10.3390/toxins11120725] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 01/04/2023] Open
Abstract
Harmful cyanobacteria and their toxic metabolites constitute a big challenge for the production of safe drinking water. Microcystins (MC), chemically stable hepatotoxic heptapeptides, have often been involved in cyanobacterial poisoning incidents. A desirable solution for cyanobacterial management in lakes and ponds would eliminate both excess cyanobacteria and the MC that they potentially produce and release upon lysis. Hydrogen peroxide (H2O2) has recently been advocated as an efficient means of lysing cyanobacteria in lakes and ponds, however H2O2 (at least when used at typical concentrations) cannot degrade MC in environmental waters. Therefore, mesocosm experiments combining the cyanobacteria-lysing effect of H2O2 and the MC-degrading capacity of the enzyme MlrA were set up in the highly eutrophic Lake Ludoš (Serbia). The H2O2 treatment decreased the abundance of the dominant cyanobacterial taxa Limnothrix sp., Aphanizomenon flos-aquae, and Planktothrix agardhii. The intracellular concentration of MC was reduced/eliminated by H2O2, yet the reduction of the extracellular MC could only be accomplished by supplementation with MlrA. However, as H2O2 was found to induce the expression of mcyB and mcyE genes, which are involved in MC biosynthesis, the use of H2O2 as a safe cyanobacteriocide still requires further investigation. In conclusion, the experiments showed that the combined use of H2O2 and MlrA is promising in the elimination of both excess cyanobacteria and their MC in environmental waters.
Collapse
|
186
|
Yousefinejad A, Zamir SM, Nosrati M. Fungal elimination of toluene vapor in one- and two-liquid phase biotrickling filters: Effects of inlet concentration, operating temperature, and peroxidase enzyme activity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109554. [PMID: 31541847 DOI: 10.1016/j.jenvman.2019.109554] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/30/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
In this study, performance of biotrickling filters (BTFs) inoculated with fungus Phanerochaete chrysosporium at 30 °C and 40 °C in the absence and presence of silicone oil (10% v/v) was investigated. Removal of toluene was carried out at empty bed residence time (EBRT) of 1 min and at inlet concentrations of 0.5-4.4 g m-3 and 0.5-24.7 g m-3 for one-liquid phase (OLP-BTF) and two-liquid phase BTF (TLP-BTF), respectively. In general, at 40 °C, removal efficiencies (REs) > 80% were obtained in OLP-BTF for the inlet toluene concentrations < 2.5 g m-3, and REs > 70% were obtained for concentrations < 18 g m-3 in TLP-BTF. Based on the balanced equation for biodegradation, fungal respiration produced more CO2 in OLP-BTF (1.38 mol CO2/mole toluene) in comparison to TLP-BTF (0.67 mol CO2/mole toluene). In other words, the presence of oil enhanced microbial growth due to the increase of hydrophobic substrate bioavailability. The activity of extracellular ligninolytic manganese peroxidase (MnP) enzyme produced by the fungal culture was detected in the range of 27.6-71.6 U L-1 (μmol min-1 L-1) at 40 °C in TLP-BTF, while no enzymatic activity was detected in OLP-BTF.
Collapse
Affiliation(s)
- Ali Yousefinejad
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University (TMU), PO Box: 14115-143, Iran
| | - Seyed Morteza Zamir
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University (TMU), PO Box: 14115-143, Iran.
| | - Mohsen Nosrati
- Biotechnology Group, Faculty of Chemical Engineering, Tarbiat Modares University (TMU), PO Box: 14115-143, Iran
| |
Collapse
|
187
|
Potential of enzymatic process as an innovative technology to remove anticancer drugs in wastewater. Appl Microbiol Biotechnol 2019; 104:23-31. [DOI: 10.1007/s00253-019-10229-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/23/2019] [Accepted: 10/30/2019] [Indexed: 12/16/2022]
|
188
|
Kumari N, Rana A, Jagadevan S. Arsenite biotransformation by Rhodococcus sp.: Characterization, optimization using response surface methodology and mechanistic studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:577-589. [PMID: 31216511 DOI: 10.1016/j.scitotenv.2019.06.077] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/11/2019] [Accepted: 06/05/2019] [Indexed: 06/09/2023]
Abstract
A large population of the world is under increased health risk due to consumption of arsenic contaminated groundwater. The present study investigates the arsenic resistance and arsenic biotransforming ability in three bacterial species, namely Bacillus arsenicus, Rhodococcus sp. and Alcaligenes faecalis for employing them in potential groundwater bioremediation programmes. The tolerance to pH levels for the 3 organisms are 6-9 for A. faecalis, 5-10 for Rhodococcus and 5-9 for B. arsenicus. The arsenic bio-oxidation capacity was qualitatively confirmed by using the silver nitrate method and all three bacteria were able to convert arsenite to arsenate. The arsenite tolerance capacity (MIC values) were found to be 3 mM, 7 mM and 12 mM for B. arsenicus, A. faecalis and Rhodococcus sp. respectively. The changes in cellular morphology of these strains under various arsenic stress conditions were studied using advanced cell imaging techniques such as scanning electron microscopy and Atomic Force Microscopy. Rhodococcus sp. emerged as a potential candidate for bioremediation application. A response surface methodology was employed to optimize key parameters affecting arsenic removal (pH, Iron (II) soluble, concentration of humic acid and initial arsenic concentration) and at optimized conditions, experimental runs demonstrated 48.34% removal of As (III) (initial concentration = 500 μg/L) in a duration of 6 h, with complete removal after 48 h. Evidences from this work indicate that arsenic removal occurs through bioaccumulation, biotransformation and biosorption. The present study makes the first attempt to investigate the arsenic removal capability of Rhodococcus sp. in synthetic groundwater by employing bacterial whole cell assays. This study also sheds light on the arsenic tolerance and detoxification mechanisms employed by these bacteria, knowledge of which could be crucial in the successful implementation of in-situ bioremediation programmes.
Collapse
Affiliation(s)
- Nisha Kumari
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Anu Rana
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India
| | - Sheeja Jagadevan
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand 826004, India.
| |
Collapse
|
189
|
Wang J, Yu S, Feng F, Lu L. Simultaneous purification and immobilization of laccase on magnetic zeolitic imidazolate frameworks: Recyclable biocatalysts with enhanced stability for dye decolorization. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107285] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
190
|
Kumar SS, Ghosh P, Malyan SK, Sharma J, Kumar V. A comprehensive review on enzymatic degradation of the organophosphate pesticide malathion in the environment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:288-329. [PMID: 31566482 DOI: 10.1080/10590501.2019.1654809] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A comprehensive review of available bioremediation technologies for the pesticide malathion is presented. This review article describes the usage and consequences of malathion in the environment, along with a critical discussion on modes of metabolism of malathion as a sole source of carbon, phosphorus, and sulfur for bacteria, and fungi along with the biochemical and molecular aspects involved in its biodegradation. Additionally, the recent approaches of genetic engineering are discussed for the manipulation of important enzymes and microorganisms for enhanced malathion degradation along with the challenges that lie ahead.
Collapse
Affiliation(s)
- Smita S Kumar
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Pooja Ghosh
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Sandeep K Malyan
- Institute of Soil, Water, and Environmental Sciences, Agricultural Research Organization (ARO), Volcani Research Centre, Bet Dagan, Israel
| | - Jyoti Sharma
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Vivek Kumar
- Centre for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| |
Collapse
|
191
|
Huang Y, Li J, Yang Y, Yuan H, Wei Q, Liu X, Zhao Y, Ni C. Characterization of enzyme-immobilized catalytic support and its exploitation for the degradation of methoxychlor in simulated polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28328-28340. [PMID: 31372950 DOI: 10.1007/s11356-019-05937-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Chiral mesoporous silica (SiO2) with helical structure was synthesized by using anionic surfactants as template. Pre-prepared graphene oxide (GO) was then loaded onto SiO2 to synthesize composite carrier chial-meso-SiO2@GO for the immobilization of laccase. The enzyme activity, thermostability, acid stability, and repeatability of the immobilized enzyme were significantly improved after immobilization. The chial-meso-SiO2@GO-immobilized laccase was then used for the degradation of MXC in aqueous phase. The degradation conditions, including temperature, time, pH, MXC concentration, and the dose of immobilized enzyme for cellulosic hydrolysis, were optimized. The optimum conditions for degradation of methoxychlor were selected as pH 4.5, MXC concentration 30 mg/L, immobilized enzyme dose 0.1 g, the maximum MXC removal of over 85% and the maximum degradation rate of 50.75% were achieved after degradation time of six h at temperature of 45 °C. In addition, the immobilized cellulase was added into the immobilized laccase system to form chial-meso-SiO2@GO-immobilized compound enzyme with the maximum MXC degradation rate of 59.58%, higher than that of 50.75% by immobilized laccase. An assessment was made for the effect of chial-meso-SiO2@GO-immobilized compound enzyme on the degradation of MXC in soil phase. For three contaminated soils with MXC concentration of 25 mg/kg, 50 mg/kg, and 100 mg/kg, the MXC removals were 93.0%, 85.8%, and 65.1%, respectively. According to the GC-MS analyses, it was inferred that chial-meso-SiO2@GO-immobilized compound enzyme had a different degradation route with that of chial-meso-SiO2@GO-immobilized laccase. The hydrolysis by immobilized cellulase might attack at a weak location of the MXC molecule with its free radical OH and ultimately removed three chlorine atoms from MXC molecule, leading to generating small molecular amount of degradation product.
Collapse
Affiliation(s)
- Yan Huang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Jie Li
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Yuxiang Yang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China.
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
| | - Hongming Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Qinmei Wei
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Xiangnong Liu
- Analysis Test Center, Yangzhou University, Yangzhou, 225009, China
| | - Yi Zhao
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai, 200237, China
| | - Chaoying Ni
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
192
|
Vingiani GM, De Luca P, Ianora A, Dobson ADW, Lauritano C. Microalgal Enzymes with Biotechnological Applications. Mar Drugs 2019; 17:md17080459. [PMID: 31387272 PMCID: PMC6723882 DOI: 10.3390/md17080459] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/26/2022] Open
Abstract
Enzymes are essential components of biological reactions and play important roles in the scaling and optimization of many industrial processes. Due to the growing commercial demand for new and more efficient enzymes to help further optimize these processes, many studies are now focusing their attention on more renewable and environmentally sustainable sources for the production of these enzymes. Microalgae are very promising from this perspective since they can be cultivated in photobioreactors, allowing the production of high biomass levels in a cost-efficient manner. This is reflected in the increased number of publications in this area, especially in the use of microalgae as a source of novel enzymes. In particular, various microalgal enzymes with different industrial applications (e.g., lipids and biofuel production, healthcare, and bioremediation) have been studied to date, and the modification of enzymatic sequences involved in lipid and carotenoid production has resulted in promising results. However, the entire biosynthetic pathways/systems leading to synthesis of potentially important bioactive compounds have in many cases yet to be fully characterized (e.g., for the synthesis of polyketides). Nonetheless, with recent advances in microalgal genomics and transcriptomic approaches, it is becoming easier to identify sequences encoding targeted enzymes, increasing the likelihood of the identification, heterologous expression, and characterization of these enzymes of interest. This review provides an overview of the state of the art in marine and freshwater microalgal enzymes with potential biotechnological applications and provides future perspectives for this field.
Collapse
Affiliation(s)
- Giorgio Maria Vingiani
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP80121 (NA) Villa Comunale, Italy
| | - Pasquale De Luca
- Research Infrastructure for Marine Biological Resources Department, Stazione Zoologica Anton Dohrn, CAP80121 (NA) Villa Comunale, Italy
| | - Adrianna Ianora
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP80121 (NA) Villa Comunale, Italy
| | - Alan D W Dobson
- School of Microbiology, University College Cork, College Road, T12 YN60 Cork, Ireland
- Environmental Research Institute, University College Cork, Lee Road, T23XE10 Cork, Ireland
| | - Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, CAP80121 (NA) Villa Comunale, Italy.
| |
Collapse
|
193
|
Biotransformation of phenolic compounds by Bacillus aryabhattai. Bioprocess Biosyst Eng 2019; 42:1671-1679. [DOI: 10.1007/s00449-019-02163-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022]
|
194
|
Lellis B, Fávaro-Polonio CZ, Pamphile JA, Polonio JC. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.biori.2019.09.001] [Citation(s) in RCA: 704] [Impact Index Per Article: 117.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
195
|
Zhu B, Chen Y, Wei N. Engineering Biocatalytic and Biosorptive Materials for Environmental Applications. Trends Biotechnol 2019; 37:661-676. [DOI: 10.1016/j.tibtech.2018.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 10/27/2022]
|
196
|
Alves D, Villar I, Mato S. Thermophilic composting of hydrocarbon residue with sewage sludge and fish sludge as cosubstrates: Microbial changes and TPH reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 239:30-37. [PMID: 30878872 DOI: 10.1016/j.jenvman.2019.03.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
The hydrocarbon residue in petroleum product storage tanks is waste generated in large quantities that must be properly managed to reduce its risk to the environment. By comparing the effect of two organic cosubstrates, the aim of our research is to determine the feasibility of composting as a bioremediation method for the treatment of the solid phase of the hydrocarbon residue. For this purpose, four treatments of the pollutant waste were established in triplicate: waste only; waste with bulking agent (1:2); waste with fish sludge and bulking agent (1:2:6); and waste with municipal sewage sludge and bulking agent (1:2:6). The composting system consisted of 12 reactors with a capacity of 30 L, each equipped with aeration and temperature control. Both at the beginning and the end of the experiment (20 days), we evaluated the physicochemical parameters, the structure of the microbial community through phospholipid fatty acid analysis, and the total petroleum hydrocarbon content (TPH). Treatments with cosubstrates maintained thermophilic temperatures, during 14 and 8 days in fish and municipal sludge respectively, while in the controls mesophilic conditions were maintained. The incorporation of fish sludge decreased TPH present in the initial mixture by 39.5%. The municipal sludge treatment resulted in a lower of temperatures and a TPH decrease close to 23.9%. In the control treatments, there was a slight TPH decrease, mainly due to the forced ventilation. Although, both composting treatments with cosubstrates proved adequate for the bioremediation of residue from hydrocarbon storage tanks, fish sludge presented best bioremediation conditions. Municipal sewage sludge provided a bioaugmentation effect due to its rich diversity and microbial biomass. Fish sludge could have biostimulant and surfactant effect producing an aliphatic mixture of pollutant waste with the nutritional requirements to promote the development of fungal communities.
Collapse
Affiliation(s)
- David Alves
- Department of Ecology and Animal Biology, University of Vigo, 36310, Vigo, Spain
| | - Iria Villar
- Department of Ecology and Animal Biology, University of Vigo, 36310, Vigo, Spain.
| | - Salustiano Mato
- Department of Ecology and Animal Biology, University of Vigo, 36310, Vigo, Spain
| |
Collapse
|
197
|
Perez-Silva L, Sanchez-Vicente L, Molina-Alcaide E, Marin JJ, Herraez E. Evaluation of the promiscuous component of several bacterial export pumps TolC as a biomarker for toxic pollutants in feedstuffs. Chem Biol Interact 2019; 305:195-202. [DOI: 10.1016/j.cbi.2019.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/31/2019] [Accepted: 03/26/2019] [Indexed: 11/29/2022]
|
198
|
Wang M, Mohanty SK, Mahendra S. Nanomaterial-Supported Enzymes for Water Purification and Monitoring in Point-of-Use Water Supply Systems. Acc Chem Res 2019; 52:876-885. [PMID: 30901193 DOI: 10.1021/acs.accounts.8b00613] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Increasing pollution of global water sources and challenges in rapid detection and treatment of the wide range of contaminants pose considerable burdens on public health. The issue is particularly critical in rural areas, where building of centralized water treatment systems and pipe infrastructure to connect dispersed populations is not always practical. Point-of-use (POU) water supply systems provide cost-effective and energy-efficient approaches to store, treat, and monitor the quality of water. Currently available POU systems have limited success in dealing with the portfolio of emerging contaminants, particularly those present at trace concentrations. A site-to-site variation in contaminant species and concentrations also requires versatile POU systems to detect and treat contaminants and provide on-demand clean water. Among different technologies for developing rapid and sensitive water purification processes and sensors, enzymes offer one of the potential solutions because of their strong activity and selectivity toward chemical substrates. Many enzyme-nanomaterial composites have recently been developed that enhance enzymes' stability and activity and expand their functionality, thus facilitating the application of nanosupported enzymes in advanced POU systems. In this Account, we highlight the strengths and limitations of nanosupported enzymes for their potential applications in POU systems for water treatment as well as detection of contaminants, even at trace levels. We first summarize the mechanisms by which silica, carbon, and metallic nanosupports improve enzyme stability, selectivity, and catalysis. The unique immobilization properties and potential advantages of novel bioderived nanosupports over non-bioderived nanomaterials are emphasized. We illustrate prospective applications of nanosupported enzymes in POU systems with different roles: water purification, disinfection, and contaminant sensing. For each type of application, nanosupported enzymes offer higher performance than free enzymes. Nanosupports prolong enzymes' lifetimes and improve the rates of contaminant removal by concentrating contaminants near the enzymes. Nanosupports also stabilize antimicrobial enzymes while facilitating their attachment to bacterial surfaces, thereby increasing their potential uses for disinfection and prevention of biofouling in water purification and storage devices. As enzyme-based electrochemical sensors rely on electrochemical reactions of enzymatically generated species, the ability of conductive nanosupports to enhance enzyme activity and stability and to promote transfer of electrons onto the electrode greatly improves the sensitivity and durability of electroenzymatic contaminant sensors. Despite the promising results in laboratory settings, the application of nanosupported enzymes in real-world POU systems requires the implementation of multiple enzyme combinations and strategies for minimizing health risks associated with unintended releases of nanomaterials. Finally, we identify multidisciplinary research gaps in the development of nanosupported enzyme treatment systems and provide frameworks for the early adopters to make informed decisions on whether and how to use such POU systems.
Collapse
Affiliation(s)
- Meng Wang
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | - Sanjay K. Mohanty
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
199
|
Thakrar FJ, Singh SP. Catalytic, thermodynamic and structural properties of an immobilized and highly thermostable alkaline protease from a haloalkaliphilic actinobacteria, Nocardiopsis alba TATA-5. BIORESOURCE TECHNOLOGY 2019; 278:150-158. [PMID: 30685619 DOI: 10.1016/j.biortech.2019.01.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
A highly thermostable protease from a haloalkaliphilic actinobacteria was immobilized employing 5 different approaches on 24 carriers. On immobilization, the activation energy and deactivation rate constant decreased, which makes the immobilized protease favourable for applications. Similarly, pH and temperature stability was enhanced, while the Vmax and Km changed upon immobilization. The immobilized enzyme had greater stability in various metal ions and detergents. The structural topography of the immobilized enzyme elucidated by the FTIR suggested the function of aliphatic amines, alkenes and esters since amide I and II bands were affected. Noticeable decrease in the Amide A band suggests interaction between the immobilization carriers and -NH groups of the protease molecule. The suitability of the immobilized protease was established by designing a continuous flow enzyme bioreactor, displaying the enzyme half-life of 916.15 min at 60 °C. The enzyme reactor was highly efficient in the treatment of the municipal and dairy wastewater.
Collapse
Affiliation(s)
- Foram J Thakrar
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India.
| |
Collapse
|
200
|
Kumar S, Dangi AK, Shukla P, Baishya D, Khare SK. Thermozymes: Adaptive strategies and tools for their biotechnological applications. BIORESOURCE TECHNOLOGY 2019; 278:372-382. [PMID: 30709766 DOI: 10.1016/j.biortech.2019.01.088] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 01/19/2019] [Accepted: 01/21/2019] [Indexed: 05/10/2023]
Abstract
In today's scenario of global climate change, there is a colossal demand for sustainable industrial processes and enzymes from thermophiles. Plausibly, thermozymes are an important toolkit, as they are known to be polyextremophilic in nature. Small genome size and diverse molecular conformational modifications have been implicated in devising adaptive strategies. Besides, the utilization of chemical technology and gene editing attributions according to mechanical necessities are the additional key factor for efficacious bioprocess development. Microbial thermozymes have been extensively used in waste management, biofuel, food, paper, detergent, medicinal and pharmaceutical industries. To understand the strength of enzymes at higher temperatures different models utilize X-ray structures of thermostable proteins, machine learning calculations, neural networks, but unified adaptive measures are yet to be totally comprehended. The present review provides a recent updates on thermozymes and various interdisciplinary applications including the aspects of thermophiles bioengineering utilizing synthetic biology and gene editing tools.
Collapse
Affiliation(s)
- Sumit Kumar
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Arun K Dangi
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Debabrat Baishya
- Department of Bioengineering and Technology, Institute of Science and Technology, Gauhati University, Guwahati 781014, Assam, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|