151
|
Teo JY, Kng J, Periaswamy B, Liu S, Lim P, Lee CE, Tan BH, Loh XJ, Ni X, Tiang D, Yi G, Ong YY, Ling ML, Wan WY, Wong HM, How M, Xin X, Zhang Y, Yang YY. Exploring Reusability of Disposable Face Masks: Effects of Disinfection Methods on Filtration Efficiency, Breathability, and Fluid Resistance. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2100030. [PMID: 34754506 PMCID: PMC8562064 DOI: 10.1002/gch2.202100030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/12/2021] [Indexed: 06/13/2023]
Abstract
To curb the spread of the COVID-19 virus, the use of face masks such as disposable surgical masks and N95 respirators is being encouraged and even enforced in some countries. The widespread use of masks has resulted in global shortages and individuals are reusing them. This calls for proper disinfection of the masks while retaining their protective capability. In this study, the killing efficiency of ultraviolet-C (UV-C) irradiation, dry heat, and steam sterilization against bacteria (Staphylococcus aureus), fungi (Candida albicans), and nonpathogenic virus (Salmonella virus P22) is investigated. UV-C irradiation for 10 min in a commercial UV sterilizer effectively disinfects surgical masks. N95 respirators require dry heat at 100 °C for hours while steam treatment works within 5 min. To address the question on safe reuse of the disinfected masks, their bacteria filtration efficiency, particle filtration efficiency, breathability, and fluid resistance are assessed. These performance factors are unaffected after 5 cycles of steam (10 min per cycle) and 10 cycles of dry heat at 100 °C (40 min per cycle) for N95 respirators, and 10 cycles of UV-C irradiation for surgical masks (10 min per side per cycle). These findings provide insights into formulating the standard procedures for reusing masks without compromising their protective ability.
Collapse
Affiliation(s)
- Jye Yng Teo
- Institute of Bioengineering and Bioimaging31 Biopolis Way, The Nanos #07‐01Singapore138669Singapore
| | - Jessica Kng
- Institute of Bioengineering and Bioimaging31 Biopolis Way, The Nanos #07‐01Singapore138669Singapore
| | - Balamurugan Periaswamy
- Institute of Bioengineering and Bioimaging31 Biopolis Way, The Nanos #07‐01Singapore138669Singapore
| | - Songlin Liu
- Institute of Materials Research and Engineering2 Fusionopolis Way, Innovis, #08‐03Singapore138634Singapore
| | - Poh‐Chong Lim
- Institute of Materials Research and Engineering2 Fusionopolis Way, Innovis, #08‐03Singapore138634Singapore
| | - Chen Ee Lee
- Singapore Health Services Pte Ltd10 Hospital Boulevard, Level 19 SingHealth TowerSingapore168582Singapore
| | - Ban Hock Tan
- Infectious DiseasesSingapore General HospitalOutram RoadSingapore169608Singapore
- Infection Prevention & EpidemiologySingapore General HospitalOutram RoadSingapore169608Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering2 Fusionopolis Way, Innovis, #08‐03Singapore138634Singapore
| | - Xiping Ni
- Institute of Materials Research and Engineering2 Fusionopolis Way, Innovis, #08‐03Singapore138634Singapore
| | - Daniel Tiang
- Singapore Health Services Pte Ltd10 Hospital Boulevard, Level 19 SingHealth TowerSingapore168582Singapore
| | - Guangshun Yi
- Institute of Bioengineering and Bioimaging31 Biopolis Way, The Nanos #07‐01Singapore138669Singapore
| | - Yee Yian Ong
- Singapore Health Services Pte Ltd10 Hospital Boulevard, Level 19 SingHealth TowerSingapore168582Singapore
| | - Moi Lin Ling
- Infection Prevention & EpidemiologySingapore General HospitalOutram RoadSingapore169608Singapore
| | - Wei Yee Wan
- Singapore Health Services Pte Ltd10 Hospital Boulevard, Level 19 SingHealth TowerSingapore168582Singapore
| | - Hei Man Wong
- Infectious DiseasesSingapore General HospitalOutram RoadSingapore169608Singapore
- Infection Prevention & EpidemiologySingapore General HospitalOutram RoadSingapore169608Singapore
| | - Molly How
- Singapore Health Services Pte Ltd10 Hospital Boulevard, Level 19 SingHealth TowerSingapore168582Singapore
| | - Xiaohui Xin
- Singapore Health Services Pte Ltd10 Hospital Boulevard, Level 19 SingHealth TowerSingapore168582Singapore
| | - Yugen Zhang
- Institute of Bioengineering and Bioimaging31 Biopolis Way, The Nanos #07‐01Singapore138669Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging31 Biopolis Way, The Nanos #07‐01Singapore138669Singapore
| |
Collapse
|
152
|
Synthesis, Characterization and Application of Polypyrrole Functionalized Nanocellulose for the Removal of Cr(VI) from Aqueous Solution. Polymers (Basel) 2021; 13:polym13213691. [PMID: 34771248 PMCID: PMC8587301 DOI: 10.3390/polym13213691] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 01/24/2023] Open
Abstract
Heavy metals are toxic substances that pose a real danger to humans and organisms, even at low concentration. Therefore, there is an urgent need to remove heavy metals. Herein, the nanocellulose (NC) was synthesized by the hydrolysis of cellulose using sulfuric acid, and then functionalized using polypyrrole (ppy) through a polymerization reaction to produce polypyrrole/nanocellulose (ppy/NC) nanocomposite. The synthesized nanocomposite was characterized using familiar techniques including XRD, FT-IR, SEM, TEM, and TGA. The obtained results showed a well-constructed nanocomposite with excellent thermal stability in the nano-sized scale. The adsorption experiments showed that the ppy/NC nanocomposite was able to adsorb hexavalent chromium (Cr(VI)). The optimum pH for the removal of the heavy metal was pH 2. The interfering ions showed minor effect on the adsorption of Cr(VI) resulted from the competition between ions for the adsorption sites. The adsorption kinetics were studied using pseudo 1st order and pseudo 2nd order models indicating that the pseudo second order model showed the best fit to the experimental data, signifying that the adsorption process is controlled by the chemisorption mechanism. Additionally, the nanocomposite showed a maximum adsorption capacity of 560 mg/g according to Langmuir isotherm. The study of the removal mechanism showed that Cr(VI) ions were removed via the reduction of high toxic Cr(VI) to lower toxic Cr(III) and the electrostatic attraction between protonated ppy and Cr(VI). Interestingly, the ppy/NC nanocomposite was reused for Cr(VI) uptake up to six cycles showing excellent regeneration results. Subsequently, Cr(VI) ions can be effectively removed from aqueous solution using the synthesized nanocomposite as reusable and cost-effective adsorbent.
Collapse
|
153
|
Li Z, Wang J, Xu Y, Shen M, Duan C, Dai L, Ni Y. Green and sustainable cellulose-derived humidity sensors: A review. Carbohydr Polym 2021; 270:118385. [PMID: 34364627 DOI: 10.1016/j.carbpol.2021.118385] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 12/23/2022]
Abstract
Cellulose, as the most abundant natural polysaccharide, is an excellent material for developing green humidity sensors, especially due to its humidity responsiveness as a result of its rich hydrophilic groups. In combination with other components including carbon materials and polymers, cellulose and its derivatives can be used to design high-performance humidity sensors that meet various application requirements. This review summarizes the recent advances in the field of various cellulose-derived humidity sensors, with particular attention paid to different sensing mechanisms including resistance, capacitance, colorimetry and gravity, and so on. Furthermore, the roles of cellulose and its derivatives are highlighted. This work may promote the development of cellulose-derived humidity sensors, as well as other cellulose-based intelligent materials.
Collapse
Affiliation(s)
- Zixiu Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Jian Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Yongjian Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Mengxia Shen
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Chao Duan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Lei Dai
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| |
Collapse
|
154
|
Sorriaux M, Sorieul M, Chen Y. Bio-Based and Robust Polydopamine Coated Nanocellulose/Amyloid Composite Aerogel for Fast and Wide-Spectrum Water Purification. Polymers (Basel) 2021; 13:3442. [PMID: 34641257 PMCID: PMC8512863 DOI: 10.3390/polym13193442] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/22/2022] Open
Abstract
Water contamination resulting from human activities leads to the deterioration of aquatic ecosystems. This restrains the access to fresh water, which is the leading cause of mortality worldwide. In this work, we developed a bio-based and water-resistant composite aerogel from renewable nanofibrils for water remediation application. The composite aerogel consists of two types of cross-linked nanofibrils. Poly(dopamine)-coated cellulose nanofibrils and amyloid protein nanofibrils are forming a double networked crosslinked via periodate oxidation. The resulting aerogel exhibits good mechanical strength and high pollutants adsorption capability. Removal of dyes (rhodamine blue, acriflavine, crystal violet, malachite green, acid fuchsin and methyl orange), organic traces (atrazine, bisphenol A, and ibuprofen) and heavy metal ions (Pb(II) and Cu(II)) from water was successfully demonstrated with the composite aerogel. More specifically, the bio-based aerogel demonstrated good adsorption efficiencies for crystal violet (93.1% in 30 min), bisphenol A (91.7% in 5 min) and Pb(II) ions (94.7% in 5 min), respectively. Furthermore, the adsorption-desorption performance of aerogel for Pb(II) ions demonstrates that the aerogel has a high reusability as maintains satisfactory removal performances. The results suggest that this type of robust and bio-based composite aerogel is a promising adsorbent to decontaminate water from a wide range of pollutants in a sustainable and efficient way.
Collapse
Affiliation(s)
- Maxime Sorriaux
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand; (M.S.); (M.S.)
- Physico-Chimie des Electrolytes et Nanosystèmes InterfaciauX (PHENIX), Sorbonne Université, CNRS, 75005 Paris, France
| | - Mathias Sorieul
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand; (M.S.); (M.S.)
| | - Yi Chen
- Scion, 49 Sala Street, Private Bag 3020, Rotorua 3046, New Zealand; (M.S.); (M.S.)
| |
Collapse
|
155
|
Han X, Wang Z, Ding L, Chen L, Wang F, Pu J, Jiang S. Water molecule-induced hydrogen bonding between cellulose nanofibers toward highly strong and tough materials from wood aerogel. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
156
|
Electrospun nanofibers as food freshness and time-temperature indicators: A new approach in food intelligent packaging. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102804] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
157
|
Hou X, Pan Y, Miraftab R, Huang Z, Xiao H. Redox- and Enzyme-Responsive Macrospheres Gatekept by Polysaccharides for Controlled Release of Agrochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:11163-11170. [PMID: 34546756 DOI: 10.1021/acs.jafc.1c01304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Stimuli-responsive materials afford researchers an opportunity to synthesize controlled-release carriers with various potential applications, especially for reducing the abuse of chemical reagents in farmland soil. To enhance the efficiency of agrochemical utilization, redox- and enzyme-responsive macrospheres were prepared by self-assembling β-cyclodextrin-modified zeolite and ferrocenecarboxylic acid (FcA)-grafted carboxymethyl cellulose (CMC). Scanning electron microscopy and Brunauer-Emmett-Teller analysis revealed that pores of zeolite were sealed by the surface coupling of FcA-modified CMC via the formation of an inclusion complex. Salicylic acid (SA) was loaded as a model agrochemical. The release of SA from macrospheres could be triggered in the presence of hydrogen peroxide (oxidant) and cellulase (enzyme); and the corresponding release percentages, 85.2 and 80.4%, were much higher than those of the control sample without responsive groups in water (12.6%) after 12 h. A release kinetic study showed that cellulase could promote carrier dissolution more effectively than the oxidant. The results demonstrate that the dual-responsive macrospheres are promising as a smart and effective carrier for the controlled release of agrochemicals.
Collapse
Affiliation(s)
- Xiaobang Hou
- Power Technology Center, State Grid Shandong Electric Power Research Institute, 2000 Wangyue Road, Jinan 250000, Shandong, China
- Department of Chemical Engineering, University of New Brunswick, 15 Dineen Dr., Fredericton E3B 5A3, Canada
| | - Yuanfeng Pan
- Guangxi Key Lab of Petrochem. Resource Proc. & Process Intensification Tech., School of Chemistry and Chemical Engineering Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Roshanak Miraftab
- Department of Chemical Engineering, University of New Brunswick, 15 Dineen Dr., Fredericton E3B 5A3, Canada
| | - Zhihong Huang
- Sheng Qing Environmental Protection Technology Co., Ltd, Kunming, Yunnan 650093, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, 15 Dineen Dr., Fredericton E3B 5A3, Canada
| |
Collapse
|
158
|
Hydrogen-Bonding-Aided Fabrication of Wood Derived Cellulose Scaffold/Aramid Nanofiber into High-Performance Bulk Material. MATERIALS 2021; 14:ma14185444. [PMID: 34576668 PMCID: PMC8469447 DOI: 10.3390/ma14185444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/25/2022]
Abstract
Preparing a lightweight yet high-strength bio-based structural material with sustainability and recyclability is highly desirable in advanced applications for architecture, new energy vehicles and spacecraft. In this study, we combined cellulose scaffold and aramid nanofiber (ANF) into a high-performance bulk material. Densification of cellulose microfibers containing ANF and hydrogen bonding between cellulose microfibers and ANF played a crucial role in enhanced physical and mechanical properties of the hybrid material. The prepared material showed excellent tensile strength (341.7 MPa vs. 57.0 MPa for natural wood), toughness (4.4 MJ/m3 vs. 0.4 MJ/m3 for natural wood) and Young’s modulus (24.7 GPa vs. 7.2 GPa for natural wood). Furthermore, due to low density, this material exhibited a superior specific strength of 285 MPa·cm3·g−1, which is remarkably higher than some traditional building materials, such as concrete, alloys. In addition, the cellulose scaffold was infiltrated with ANFs, which also improved the thermal stability of the hybrid material. The facile and top-down process is effective and scalable, and also allows one to fully utilize cellulose scaffolds to fabricate all kinds of advanced bio-based materials.
Collapse
|
159
|
Lozano-Montante J, Garza-Hernández R, Sánchez M, Moran-Palacio E, Niño-Medina G, Almada M, Hernández-García L. Chitosan Functionalized with 2-Methylpyridine Cross-Linker Cellulose to Adsorb Pb(II) from Water. Polymers (Basel) 2021; 13:3166. [PMID: 34578073 PMCID: PMC8469900 DOI: 10.3390/polym13183166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
In this study, chitosan was chemically modified with 2-methylpyridine. Subsequently, the modified chitosan was cross-linked to cellulose using succinic anhydride. Additionally, the capacity of cellulose derivatives to adsorb Pb(II) ions in an aqueous solution was studied through the determination of Pb(II) ions concentration in water, using microwave plasma atomic emission spectroscopy (MP-AES). A maximum adsorption capacity of 6.62, 43.14, 60.6, and 80.26 mg/g was found for cellulose, cellulose-succinic acid, cellulose-chitosan, and cellulose-chitosan-pyridine, respectively. The kinetic data analysis of the adsorption process showed a pseudo-second-order behavior. The increase in metal removal from water is possibly due to metal chelation with the carbonyl group of succinic acid, and the pyridine groups incorporated into chitosan.
Collapse
Affiliation(s)
- Jorge Lozano-Montante
- Centro de Investigación e Innovación Tecnológica, Tecnológico Nacional de México/IT Nuevo León, Av. de la Alianza No. 507, PIIT, Carretera Monterrey-Aeropuerto Km. 10, Apodaca 66628, Nuevo León, Mexico;
| | - Raquel Garza-Hernández
- Centro de Investigación en Materiales Avanzados, Alianza Norte 202, Parque de Investigación e Innovación Tecnológica, Apodaca 66628, Nuevo León, Mexico; (R.G.-H.); (M.S.)
| | - Mario Sánchez
- Centro de Investigación en Materiales Avanzados, Alianza Norte 202, Parque de Investigación e Innovación Tecnológica, Apodaca 66628, Nuevo León, Mexico; (R.G.-H.); (M.S.)
| | - Edgar Moran-Palacio
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas 100, Colonia Francisco Villa, Navojoa 85880, Sonora, Mexico;
| | - Guillermo Niño-Medina
- Laboratorio de Química y Bioquímica, Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa S/N, Col. Ex-Hacienda El Canadá, General Escobedo 66050, Nuevo León, Mexico;
| | - Mario Almada
- Departamento de Ciencias Químico-Biológicas y Agropecuarias, Universidad de Sonora, Lázaro Cárdenas 100, Colonia Francisco Villa, Navojoa 85880, Sonora, Mexico;
| | - Luis Hernández-García
- Centro de Investigación e Innovación Tecnológica, Tecnológico Nacional de México/IT Nuevo León, Av. de la Alianza No. 507, PIIT, Carretera Monterrey-Aeropuerto Km. 10, Apodaca 66628, Nuevo León, Mexico;
| |
Collapse
|
160
|
Abstract
Abstract
Recently, bicomponent fibers have been attracting much attention due to their unique structural characteristics and properties. A common concern was how to characterize a bicomponent fiber. In this review, we generally summarized the classification, structural characteristics, preparation methods of the bicomponent fibers, and focused on the experimental evidence for the identification of bicomponent fibers. Finally, the main challenges and future perspectives of bicomponent fibers and their characterization are provided. We hope that this review will provide readers with a comprehensive understanding of the design and characterization of bicomponent fibers.
Collapse
Affiliation(s)
- Shufang Zhu
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles and Clothing, Qingdao University , Qingdao 266071 , China
| | - Xin Meng
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles and Clothing, Qingdao University , Qingdao 266071 , China
| | - Xu Yan
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles and Clothing, Qingdao University , Qingdao 266071 , China
- Collaborative Innovation Center for Eco-Textiles of Shandong Province, Qingdao University , Qingdao 266071 , China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University , Qingdao 266071 , China
| | - Shaojuan Chen
- Industrial Research Institute of Nonwovens and Technical Textiles, Shandong Center for Engineered Nonwovens, College of Textiles and Clothing, Qingdao University , Qingdao 266071 , China
| |
Collapse
|
161
|
Yuan MJ, Hu ZY, Fang H, Li SJ, Guo HT, Hu RB, Jiang SH, Liu KM, Hou HQ. High Performance Electrospun Polynaphthalimide Nanofibrous Membranes with Excellent Resistance to Chemically Harsh Conditions. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2634-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
162
|
Cindradewi AW, Bandi R, Park CW, Park JS, Lee EA, Kim JK, Kwon GJ, Han SY, Lee SH. Preparation and Characterization of Cellulose Acetate Film Reinforced with Cellulose Nanofibril. Polymers (Basel) 2021; 13:polym13172990. [PMID: 34503030 PMCID: PMC8434040 DOI: 10.3390/polym13172990] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/27/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, cellulose acetate (CA)/cellulose nanofibril (CNF) film was prepared via solvent casting. CNF was used as reinforcement to increase tensile properties of CA film. CNF ratio was varied into 3, 5, and 10 phr (parts per hundred rubbers). Triacetin (TA) and triethyl citrate (TC) were used as two different eco-friendly plasticizers. Two different types of solvent, which are acetone and N-methyl-2-pyrrolidone (NMP), were also used. CA/CNF film was prepared by mixing CA and CNF in acetone or NMP with 10% concentration and stirred for 24 h. Then, the solution was cast in a polytetrafluoroethylene (PTFE) dish followed by solvent evaporation for 12 h at room temperature for acetone and 24 h at 80 °C in an oven dryer for NMP. The effect of solvent type, plasticizers type, and CNF amount on film properties was studied. Good dispersion in NMP was evident from the morphological study of fractured surface and visible light transmittance. The results showed that CNF has a better dispersion in NMP which leads to a significant increase in tensile strength and elastic modulus up to 38% and 65%, respectively, compared with those of neat CA. CNF addition up to 5 phr loading increased the mechanical properties of the film composites.
Collapse
Affiliation(s)
- Azelia Wulan Cindradewi
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
| | - Chan-Woo Park
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
| | - Ji-Soo Park
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
- National Institute of Forest Science, Seoul 02455, Korea
| | - Eun-Ah Lee
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
| | - Jeong-Ki Kim
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
| | - Gu-Joong Kwon
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
- Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Korea
| | - Song-Yi Han
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
| | - Seung-Hwan Lee
- Department of Forest Biomaterials Engineering, Kangwon National University, Chuncheon 24341, Korea; (A.W.C.); (J.-S.P.); (E.-A.L.); (J.-K.K.)
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Korea; (R.B.); (C.-W.P.); (G.-J.K.); (S.-Y.H.)
- Correspondence: ; Tel.: +82-33-250-8323
| |
Collapse
|
163
|
Hormaiztegui MEV, Marin D, Gañán P, Stefani PM, Mucci V, Aranguren MI. Nanocelluloses Reinforced Bio-Waterborne Polyurethane. Polymers (Basel) 2021; 13:polym13172853. [PMID: 34502892 PMCID: PMC8434354 DOI: 10.3390/polym13172853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/19/2021] [Accepted: 08/21/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of this work was to evaluate the influence of two kinds of bio- nano-reinforcements, cellulose nanocrystals (CNCs) and bacterial cellulose (BC), on the properties of castor oil-based waterborne polyurethane (WBPU) films. CNCs were obtained by the acidolysis of microcrystalline cellulose, while BC was produced from Komagataeibacter medellinensis. A WBPU/BC composite was prepared by the impregnation of a wet BC membrane and further drying, while the WBPU/CNC composite was obtained by casting. The nanoreinforcement was adequately dispersed in the polymer using any of the preparation methods, obtaining optically transparent compounds. Thermal gravimetric analysis, Fourier-transform infrared spectroscopy, field emission scanning electron microscopy, dynamical mechanical analysis, differential scanning calorimetry, contact angle, and water absorption tests were carried out to analyze the chemical, physical, and thermal properties, as well as the morphology of nanocelluloses and composites. The incorporation of nanoreinforcements into the formulation increased the storage modulus above the glass transition temperature of the polymer. The thermal stability of the BC-reinforced composites was slightly higher than that of the CNC composites. In addition, BC allowed maintaining the structural integrity of the composites films, when they were immersed in water. The results were related to the relatively high thermal stability and the particular three-dimensional interconnected reticular morphology of BC.
Collapse
Affiliation(s)
- M. E. Victoria Hormaiztegui
- Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMDP, CONICET, Av. Juan B Justo 4302, Mar del Plata 7600, Argentina; (M.E.V.H.); (D.M.); (P.M.S.); (V.M.)
- Centro de Investigación y Desarrollo en Ciencia y Tecnología de Materiales (CITEMA), Facultad Regional La Plata, Universidad Tecnológica Nacional (UTN)-Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), Av. 60 y 124, Berisso 1923, Argentina
| | - Diana Marin
- Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMDP, CONICET, Av. Juan B Justo 4302, Mar del Plata 7600, Argentina; (M.E.V.H.); (D.M.); (P.M.S.); (V.M.)
| | - Piedad Gañán
- Facultad de Ingeniería Química, Universidad Pontificia Bolivariana (UPB), Circular 1, No 70-01, Medellín 050031, Colombia;
| | - Pablo Marcelo Stefani
- Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMDP, CONICET, Av. Juan B Justo 4302, Mar del Plata 7600, Argentina; (M.E.V.H.); (D.M.); (P.M.S.); (V.M.)
| | - Verónica Mucci
- Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMDP, CONICET, Av. Juan B Justo 4302, Mar del Plata 7600, Argentina; (M.E.V.H.); (D.M.); (P.M.S.); (V.M.)
| | - Mirta I. Aranguren
- Facultad de Ingeniería, Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), UNMDP, CONICET, Av. Juan B Justo 4302, Mar del Plata 7600, Argentina; (M.E.V.H.); (D.M.); (P.M.S.); (V.M.)
- Correspondence:
| |
Collapse
|
164
|
Current Status of Cellulosic and Nanocellulosic Materials for Oil Spill Cleanup. Polymers (Basel) 2021; 13:polym13162739. [PMID: 34451277 PMCID: PMC8400096 DOI: 10.3390/polym13162739] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/05/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022] Open
Abstract
Recent developments in the application of lignocellulosic materials for oil spill removal are discussed in this review article. The types of lignocellulosic substrate material and their different chemical and physical modification strategies and basic preparation techniques are presented. The morphological features and the related separation mechanisms of the materials are summarized. The material types were classified into 3D-materials such as hydrophobic and oleophobic sponges and aerogels, or 2D-materials such as membranes, fabrics, films, and meshes. It was found that, particularly for 3D-materials, there is a clear correlation between the material properties, mainly porosity and density, and their absorption performance. Furthermore, it was shown that nanocellulosic precursors are not exclusively suitable to achieve competitive porosity and therefore absorption performance, but also bulk cellulose materials. This finding could lead to developments in cost- and energy-efficient production processes of future lignocellulosic oil spillage removal materials.
Collapse
|
165
|
Huang X, Sun X, Wang W, Shen Q, Shen Q, Tang X, Shao J. Nanoscale metal-organic frameworks for tumor phototherapy. J Mater Chem B 2021; 9:3756-3777. [PMID: 33870980 DOI: 10.1039/d1tb00349f] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal-Organic Frameworks (MOFs) are constructed from metal ions/cluster nodes and functional organic ligands through coordination bonds. Owing to the advantages of diverse synthetic methods, easy modification after synthesis, large adsorption capacity for heavy metals, and short equilibrium time, considerable attention has recently been paid to MOFs for tumor phototherapy. Through rational tuning of metal ions and ligands, MOFs present abundant properties for various applications. Light-triggered phototherapy, including photodynamic therapy (PDT) and photothermal therapy (PTT), is an emerging cancer treatment approach. Nanosized MOFs can be applied as phototherapeutic agents to accomplish phototherapy with excellent phototherapeutic efficacy. This review outlines the latest advances in the field of phototherapy with various metal ion-based MOFs.
Collapse
Affiliation(s)
- Xuan Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, P. R. China.
| | - Xu Sun
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, P. R. China.
| | - Weili Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, P. R. China.
| | - Qing Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, P. R. China.
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, P. R. China.
| | - Xuna Tang
- Department of Endodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang, Nanjing 210008, P. R. China.
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 210009, P. R. China.
| |
Collapse
|
166
|
Stepczyńska M, Pawłowska A, Moraczewski K, Rytlewski P, Trafarski A, Olkiewicz D, Walczak M. Evaluation of the Mechanical and Biocidal Properties of Lapacho from Tabebuia Plant as a Biocomposite Material. MATERIALS 2021; 14:ma14154241. [PMID: 34361435 PMCID: PMC8348763 DOI: 10.3390/ma14154241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
The aim of this article is to discuss in detail the physicochemical properties of polylactide (PLA) reinforced by cortex fibers, which may cause bacterial mortality and increased biodegradation rates. PLA biocomposites containing cortex Lapacho fibers from Tabebuia (1-10 wt%) were prepared by extrusion and injection moulding processes. The effects of Lapacho on the mechanical and biocidal properties of the biocomposites were studied using tensile and impact tests, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), thermogravimetry (TG), and the method of evaluating the antibacterial activity of antibacterial treated according to the standard ISO 22196:2011. It also presented the effects of Lapacho on the structural properties and biodegradation rates of biocomposites. This research study provides very important results complementing the current state of knowledge about the biocidal properties of Lapacho from Tabebuia plants and about cortex-reinforced biocomposites.
Collapse
Affiliation(s)
- Magdalena Stepczyńska
- Department of Materials Engineering, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (A.P.); (K.M.); (P.R.); (A.T.)
- Correspondence:
| | - Alona Pawłowska
- Department of Materials Engineering, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (A.P.); (K.M.); (P.R.); (A.T.)
| | - Krzysztof Moraczewski
- Department of Materials Engineering, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (A.P.); (K.M.); (P.R.); (A.T.)
| | - Piotr Rytlewski
- Department of Materials Engineering, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (A.P.); (K.M.); (P.R.); (A.T.)
| | - Andrzej Trafarski
- Department of Materials Engineering, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (A.P.); (K.M.); (P.R.); (A.T.)
| | - Daria Olkiewicz
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (D.O.); (M.W.)
| | - Maciej Walczak
- Department of Environmental Microbiology and Biotechnology, Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland; (D.O.); (M.W.)
| |
Collapse
|
167
|
Wang L, Li Y, Xu M, Deng Z, Zhao Y, Yang M, Liu Y, Yuan R, Sun Y, Zhang H, Wang H, Qian Z, Kang H. Regulation of Inflammatory Cytokine Storms by Mesenchymal Stem Cells. Front Immunol 2021; 12:726909. [PMID: 34394132 PMCID: PMC8358430 DOI: 10.3389/fimmu.2021.726909] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/14/2021] [Indexed: 12/20/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely used in preclinical and clinical trials for various diseases and have shown great potential in the treatment of sepsis and coronavirus disease (COVID-19). Inflammatory factors play vital roles in the pathogenesis of diseases. The interaction between inflammatory factors is extremely complex. Once the dynamics of inflammatory factors are unbalanced, inflammatory responses and cytokine storm syndrome develop, leading to disease exacerbation and even death. Stem cells have become ideal candidates for the treatment of such diseases due to their immunosuppressive and anti-inflammatory properties. However, the mechanisms by which stem cells affect inflammation and immune regulation are still unclear. This article discusses the therapeutic mechanism and potential value of MSCs in the treatment of sepsis and the novel COVID-19, outlines how MSCs mediate innate and acquired immunity at both the cellular and molecular levels, and described the anti-inflammatory mechanisms and related molecular pathways. Finally, we review the safety and efficacy of stem cell therapy in these two diseases at the preclinical and clinical levels.
Collapse
Affiliation(s)
- Lu Wang
- Medical School of Chinese PLA, Beijing, China.,Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yun Li
- Medical School of Chinese PLA, Beijing, China.,Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Moyan Xu
- Health Care Office, Chinese PLA General Hospital, Beijing, China
| | - Zihui Deng
- Department of Basic Medicine, Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Yan Zhao
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mengmeng Yang
- Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yuyan Liu
- Medical School of Chinese PLA, Beijing, China.,Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Rui Yuan
- Medical School of Chinese PLA, Beijing, China.,Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yan Sun
- School of Public Health, Capital Medical University, Beijing, China
| | - Hao Zhang
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Heming Wang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhirong Qian
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hongjun Kang
- Medical School of Chinese PLA, Beijing, China.,Department of Critical Care Medicine, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
168
|
Liu Y, Hu Q, Huang C, Cao Y. Comparison of multi-walled carbon nanotubes and halloysite nanotubes on lipid profiles in human umbilical vein endothelial cells. NANOIMPACT 2021; 23:100333. [PMID: 35559834 DOI: 10.1016/j.impact.2021.100333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 06/15/2023]
Abstract
Tubular nanomaterials (NMs), such as multi-walled carbon nanotubes (MWCNTs) and halloysite nanotubes (HNTs), may be used in biomedicine, but previous studies showed that MWCNTs induced toxicity to endothelial cells (ECs). However, the influence of tubular NMs on EC lipid profiles has gained little attention, probably because ECs are not traditionally considered to be involved in regulating lipid homeostasis. This study compared the different effects of MWCNTs and HNTs on lipid profile changes in human umbilical vein ECs (HUVECs). The results showed that MWCNTs but not HNTs of the same mass concentrations induced cytotoxicity, ultrastuctural changes and intracellular thiol depletion. Meanwhile, only MWCNTs promoted lipid accumulation due to the induction of ER stress leading to up-regulation of fatty acid synthase (FASN). Interestingly, lipidomics results showed that the main lipid classes induced by MWCNTs but not HNTs were ceramide (Cer) and phosphatidylinositol (PI), with most of the lipid classes unaltered or even decreased after NM exposure. Then, extra Cer and PI were added to explore the implications of increase of these lipids. Adding Cer promoted the cytotoxicity of MWCNTs to HUVECs, indicating the lipotoxic role of Cer. Whereas adding PI partially increased intracellular NO and decreased interleukin-6 (IL-6) release due to MWCNT exposure, indicating the signaling role of PI. These results indicated novel roles of lipid dysfunction in NM-induced toxicity to ECs, even though ECs are not the professional cells for controlling lipid homeostasis.
Collapse
Affiliation(s)
- Yanan Liu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Qilan Hu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Chaobo Huang
- College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang 421001, China; Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
169
|
Roszowska-Jarosz M, Masiewicz J, Kostrzewa M, Kucharczyk W, Żurowski W, Kucińska-Lipka J, Przybyłek P. Mechanical Properties of Bio-Composites Based on Epoxy Resin and Nanocellulose Fibres. MATERIALS 2021; 14:ma14133576. [PMID: 34206754 PMCID: PMC8269635 DOI: 10.3390/ma14133576] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022]
Abstract
The aim of our research was to investigate the effect of a small nanocellulose (NC) addition on an improvement of the mechanical properties of epoxy composites. A procedure of chemical extraction from pressed lignin was used to obtain nanocellulose fibers. The presence of nanoparticles in the cellulose pulp was confirmed by FTIR/ATR spectra as well as measurement of nanocellulose particle size using a Zetasizer analyzer. Epoxy composites with NC contents from 0.5% to 1.5% w/w were prepared. The obtained composites were subjected to strength tests, such as impact strength (IS) and resistance to three-point bending with a determination of critical stress intensity factor (Kc). The impact strength of nanocellulose composites doubled in comparison to the unmodified epoxy resin (EP 0). Moreover, Kc was increased by approximately 50% and 70% for the 1.5 and 0.5% w/w NC, respectively. The maximum value of stress at break was achieved at 1% NC concentration in EP and it was 15% higher than that for unmodified epoxy resin. The highest value of destruction energy was characterized by the composition with 0.5% NC and corresponds to the increase of 102% in comparison with EP 0. Based on the analysis of the results it was noted that satisfactory improvement of the mechanical properties of the composite was achieved with a very small addition of nanofiller while other research indicates the need to add much more nanocellulose. It is also expected that this kind of use of raw materials will allow increasing the economic efficiency of the nanocomposite preparation process. Moreover, nanocomposites obtained in this way can be applied as elements of machines or as a modified epoxy matrix for sandwich composites, enabling production of the structure material with reduced weight but improved mechanical properties.
Collapse
Affiliation(s)
- Martyna Roszowska-Jarosz
- Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, E. Stasieckiego 54B Str., 26-600 Radom, Poland; (M.R.-J.); (W.K.); (W.Ż.)
| | - Joanna Masiewicz
- Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, E. Stasieckiego 54B Str., 26-600 Radom, Poland; (M.R.-J.); (W.K.); (W.Ż.)
- Correspondence:
| | - Marcin Kostrzewa
- Faculty of Chemical Engineering and Commodity Science, Kazimierz Pulaski University of Technology and Humanities in Radom, B. Chrobrego 27 Str., 26-600 Radom, Poland;
| | - Wojciech Kucharczyk
- Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, E. Stasieckiego 54B Str., 26-600 Radom, Poland; (M.R.-J.); (W.K.); (W.Ż.)
| | - Wojciech Żurowski
- Faculty of Mechanical Engineering, Kazimierz Pulaski University of Technology and Humanities in Radom, E. Stasieckiego 54B Str., 26-600 Radom, Poland; (M.R.-J.); (W.K.); (W.Ż.)
| | - Justyna Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdansk University of Technology, G. Narutowicza 11/12, 80-233 Gdansk, Poland;
| | - Paweł Przybyłek
- Faculty of Aviation, Military University of Aviation, Dywizjonu 303/35 Str., 08-521 Dęblin, Poland;
| |
Collapse
|
170
|
Yu Q, Huang X, Zhang T, Wang W, Yang D, Shao J, Dong X. Near-infrared Aza-BODIPY Dyes Through Molecular Surgery for Enhanced Photothermal and Photodynamic Antibacterial Therapy. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1190-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
171
|
The antibacterial and antifungal properties of neutral, octacationic and hexadecacationic Zn phthalocyanines when conjugated to silver nanoparticles. Photodiagnosis Photodyn Ther 2021; 35:102361. [PMID: 34052420 DOI: 10.1016/j.pdpdt.2021.102361] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/18/2021] [Accepted: 05/21/2021] [Indexed: 11/27/2022]
Abstract
The syntheses and characterization of novel octacationic and hexadecacationic Pcs is reported. With the aim of enhancing singlet oxygen generation efficiencies and hence antimicrobial activities, these Pcs (including their neutral counterpart) are conjugated to Ag nanoparticles (AgNPs). The obtained results show that the conjugate composed of the neutral Pc has a higher loading of Pcs as well as a greater singlet oxygen quantum yield enhancement (in the presence of AgNPs) in DMSO. The antimicrobial efficiencies of the Pcs and their conjugates were evaluated and compared on S. aureus, E. coli and C. albicans. The cationic Pcs possess better activity than the neutral Pc against all the microorganisms with the hexadecacationic Pc being the best. This work therefore demonstrates that increase in the number of cationic charges on the reported Pcs results in enhanced antimicrobial activities, which is maintained even when conjugated to Ag nanoparticles. The high activity and lack of selectivity of the cationic Pcs when conjugated to Ag NPs against different microorganisms make them good candidates for real life antimicrobial treatments.
Collapse
|
172
|
Lu T, Deng Y, Cui J, Cao W, Qu Q, Wang Y, Xiong R, Ma W, Lei J, Huang C. Multifunctional Applications of Blow-Spinning Setaria viridis Structured Fibrous Membranes in Water Purification. ACS APPLIED MATERIALS & INTERFACES 2021; 13:22874-22883. [PMID: 33944545 DOI: 10.1021/acsami.1c05667] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
With increasing water pollution and human health problems caused by oily wastewater, the fabrication of oil-water separation materials has become an urgent task. However, most of the reported materials have a single function and poor performance. In this paper, a multifunctional zinc oxide/polyaniline/polyacrylonitrile (ZnO/PANI/PAN) nanofibrous membrane with needle-like ZnO nanorods was prepared by in situ synthesis of PANI and a hydrothermal reaction on a highly stable self-standing PAN blow-spinning fibrous membrane. Due to the electronic synergistic effect of ZnO and PANI, the fibrous membrane exhibits excellent antibacterial activity and visible-light degradation ability of organic dyes. Moreover, the micro-/nanosized pores of the ZnO/PANI/PAN fibrous membranes also guarantee its excellent emulsion separation performance, including an ultrahigh surfactant-free emulsion permeate flux (∼8597.40 L/(m2 h)), ultrahigh surfactant-stabilized emulsion permeate flux (∼2253.50 L/(m2 h)), and excellent separation efficiency (above 99%). Furthermore, the composite membrane maintains stable underwater superoleophobicity and hydrophilicity under adverse conditions, shows good biological safety, and is harmless to the water environment. These excellent properties endow the ZnO/PANI/PAN nanofibrous membranes with great potential in treating oily wastewater.
Collapse
Affiliation(s)
- Tao Lu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yankang Deng
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jiaxin Cui
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Wenxuan Cao
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Qingli Qu
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yulin Wang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Ranhua Xiong
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Wenjing Ma
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, and MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing 100083, P. R. China
| | - Chaobo Huang
- Joint Laboratory of Advanced Biomedical Materials (NFU-UGent), Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, P. R. China
| |
Collapse
|
173
|
Highly Hydrophobic Organosilane-Functionalized Cellulose: A Promising Filler for Thermoplastic Composites. MATERIALS 2021; 14:ma14082005. [PMID: 33923655 PMCID: PMC8073848 DOI: 10.3390/ma14082005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022]
Abstract
The aim of this work is to design and optimize the process of functionalization of cellulose fibers by organosilane functional groups using low-pressure microwave plasma discharge with hexamethyldisiloxane (HMDSO) precursor in order to prepare a compatible hydrophobic filler for composites with nonpolar thermoplastic matrices. Particular attention was paid to the study of agglomeration of cellulose fibers in the mixture with polypropylene. In our contribution, the dependence of the surface wettability on used process gas and treatment time was investigated. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses were applied to characterize the surface morphology and chemical composition of the cellulose fibers. It was observed that the plasma treatment in oxygen process gas led to the functionalization of cellulose fibers by organosilane functional groups without degradation. In addition, the treated cellulose was highly hydrophobic with water contact angle up to 143°. The use of treated cellulose allowed to obtain a homogeneous mixture with polypropylene powder due to the significantly lower tendency of the functionalized cellulose fibers to agglomerate.
Collapse
|
174
|
Zhan Y, Hao X, Wang L, Jiang X, Cheng Y, Wang C, Meng Y, Xia H, Chen Z. Superhydrophobic and Flexible Silver Nanowire-Coated Cellulose Filter Papers with Sputter-Deposited Nickel Nanoparticles for Ultrahigh Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14623-14633. [PMID: 33733743 DOI: 10.1021/acsami.1c03692] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Superhydrophobic, flexible, and ultrahigh-performance electromagnetic interference (EMI) shielding papers are of paramount importance to safety and long-term service under external mechanical deformations or other harsh service environments because they fulfill the growing demand for multipurpose materials. Herein, we fabricated multifunctional papers by incorporating sputter-deposited nickel nanoparticles (NiNPs) and a fluorine-containing coating onto cellulose filter papers coated with silver nanowires (AgNWs). AgNW networks with sputter-deposited NiNPs provide outstanding magnetic properties, electrical conductivity, and EMI shielding performance. At an AgNW content of 0.109 vol % and a NiNP content of 0.013 mg/cm2, the resultant papers exhibit a superior EMI shielding effectiveness (SE) of 88.4 dB. Additionally, the fluorine-containing coating endows the resultant papers with a high contact angle of 149.7°. Remarkably, the obtained papers still maintain a high EMI SE even after 1500 bending cycles or immersion in water, salt, or strong alkaline solutions for 2 h, indicating their outstanding mechanical robustness and chemical durability. This work opens a new window for designing and implementing ultrahigh-performance EMI shielding materials.
Collapse
Affiliation(s)
- Yanhu Zhan
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, China
| | - Xuehui Hao
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Licui Wang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Xiancai Jiang
- College of Chemical Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yu Cheng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Changzheng Wang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Yanyan Meng
- School of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Zhenming Chen
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, Hezhou University, Hezhou 542899, China
| |
Collapse
|
175
|
Zou Y, Zhao J, Zhu J, Guo X, Chen P, Duan G, Liu X, Li Y. A Mussel-Inspired Polydopamine-Filled Cellulose Aerogel for Solar-Enabled Water Remediation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7617-7624. [PMID: 33538165 DOI: 10.1021/acsami.0c22584] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A solar steam generation method has been widely investigated as a sustainable method to achieve seawater desalination and sewage treatment. However, oil pollutants are usually emitted in real seawater or wastewaters, which can cause serious fouling problems to disturb the solar evaporation performance. In this work, a mussel-inspired, low-cost, polydopamine-filled cellulose aerogel (PDA-CA) has been rationally designed and fabricated with both superhydrophilicity and underwater superoleophobicity. The resulting PDA-CA device could also achieve a high solar evaporation rate of 1.36 kg m-1 h-1 with an 86% solar energy utilize efficiency under 1 sun illumination. In addition, the PDA-CA not only exhibited promising antifouling capacity for long-term water evaporation but also engaged in the effective adsorption of organic dye contaminants. These promising features of PDA-CA may offer new opportunities for developing multifunctional photothermal devices for solar-driven water remediation.
Collapse
Affiliation(s)
- Yuan Zou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Junyi Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jinyao Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyu Guo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Peng Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Gaigai Duan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xianhu Liu
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Yiwen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
176
|
Jose C, Chan CH, Winie T, Joseph B, Tharayil A, Maria HJ, Volova T, La Mantia FP, Rouxel D, Morreale M, Laroze D, Mathew L, Thomas S. Thermomechanical Analysis of Isora Nanofibril Incorporated Polyethylene Nanocomposites. Polymers (Basel) 2021; 13:polym13020299. [PMID: 33477798 PMCID: PMC7832293 DOI: 10.3390/polym13020299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 11/30/2022] Open
Abstract
The research on cellulose fiber-reinforced nanocomposites has increased by an unprecedented magnitude over the past few years due to its wide application range and low production cost. However, the incompatibility between cellulose and most thermoplastics has raised significant challenges in composite fabrication. This paper addresses the behavior of plasma-modified polyethylene (PE) reinforced with cellulose nanofibers extracted from isora plants (i.e., isora nanofibrils (INFs)). The crystallization kinetics of PE–INF composites were explained using the Avrami model. The effect of cellulose nanofillers on tuning the physiochemical properties of the nanocomposite was also explored in this work. The increase in mechanical properties was due to the uniform dispersion of fillers in the PE. The investigation on viscoelastic properties confirmed good filler–matrix interactions, facilitating the stress transfer.
Collapse
Affiliation(s)
- Cintil Jose
- Newman College, Thodupuzha, Kerala 685585, India; (C.J.); (L.M.)
| | - Chin Han Chan
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (C.H.C.); (T.W.)
| | - Tan Winie
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam 40450, Malaysia; (C.H.C.); (T.W.)
| | - Blessy Joseph
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India;
| | - Abhimanyu Tharayil
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India;
| | - Hanna J Maria
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India;
| | - Tatiana Volova
- Institute of Biophysics of the Siberian Branch of the Russian Academy of Sciences, Siberian Federal University, 79 Svobodnyi Av., 660041 Krasnoyarsk, Russia;
| | - Francesco Paolo La Mantia
- Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, 90128 Palermo, Italy
- Consorzio INSTM, 50121 Firenze, Italy
- Correspondence: (F.P.L.M.); (S.T.)
| | - Didier Rouxel
- Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, F-54500 Vandoeuvre-lès-Nancy, France;
| | - Marco Morreale
- Facoltà di Ingegneria, Università degli Studi di Enna “Kore”, Cittadella Universitaria, 94100 Enna, Italy;
| | - David Laroze
- Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica 1000000, Chile;
| | - Lovely Mathew
- Newman College, Thodupuzha, Kerala 685585, India; (C.J.); (L.M.)
| | - Sabu Thomas
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686560, India;
- School of Energy Materials, Mahatma Gandhi University, Kottayam, Kerala 686560, India;
- School of Chemical Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India;
- Correspondence: (F.P.L.M.); (S.T.)
| |
Collapse
|
177
|
Lei J, Guo Z, Liu W. Cellulose acetate/fiber paper composite membrane for separation of an oil-in-water emulsion. NEW J CHEM 2021. [DOI: 10.1039/d1nj02236a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The cellulose composite membrane combines the advantages of cellulose acetate and cellulose filter paper with good antifouling performance and excellent mechanical properties.
Collapse
Affiliation(s)
- Jun Lei
- Ministry of Education
- Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- People's Republic of China
| | - Zhiguang Guo
- Ministry of Education
- Key Laboratory for the Green Preparation and Application of Functional Materials
- Hubei University
- Wuhan 430062
- People's Republic of China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- People's Republic of China
| |
Collapse
|
178
|
Xue K, Lv S, Zhu C. Bringing naturally-occurring saturated fatty acids into biomedical research. J Mater Chem B 2021; 9:6973-6987. [DOI: 10.1039/d1tb00843a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review introduces naturally-occurring saturated fatty acids (NSFAs) and their biomedical applications, including controlled drug release, targeted drug delivery, cancer therapy, antibacterial treatment, and tissue engineering.
Collapse
Affiliation(s)
- Ke Xue
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Shuyi Lv
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Chunlei Zhu
- Key Laboratory of Functional Polymer Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|