151
|
|
152
|
Elkady M, Salama E, Amer WA, Ebeid EZM, Ayad MM, Shokry H. Novel eco-friendly electrospun nanomagnetic zinc oxide hybridized PVA/alginate/chitosan nanofibers for enhanced phenol decontamination. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43077-43092. [PMID: 32729039 DOI: 10.1007/s11356-020-10247-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
In the current study, poly(vinyl alcohol)/alginate/chitosan (PVA/Alg/CS) composite nanofiber was immobilized with six different ratios of nanomagnetic zinc oxide (M-ZnO) (0 wt%, 0.2 wt%, 0.4 wt%, 0.6 wt%, 0.8 wt%, and 1 wt%) via the electrospinning technique. The various fabricated composite (M-6) nanofibers were characterized using Fourier transform infrared (FTIR), X-ray diffractometer (XRD), vibrating sample magnetometer (VSM), scanning electron microscope (SEM), atomic force microscope (AFM), thermogravimetric analysis (TGA), mechanical testing machine, and optical contact angle measurement. The fabricated composite nanofibers were applied for the adsorption of phenol from aqueous solutions. The 1.0 wt% M-ZnO/PVA/Alg/CS composite nanofibers were selected as the best phenol adsorbent with removal percentage of 84.22%. The influence of different processing parameter such as contact time, composite nanofiber dosage, pH, initial pollutant concentration, and temperature were examined. Increasing nanofiber dosage and the solution temperature was found to enhance the phenol adsorption onto the prepared nanocomposites. The maximum percentage of phenol removal was achieved at 84.22% after 90 min. Meanwhile, the maximum monolayer adsorption capacity (at pH = 5.0) was estimated to be 10.03 mg g-1 at 25 °C. Kinetic, isotherm, and thermodynamic studies were designated to proof the endothermic, spontaneous, and thermodynamically nature of the phenol adsorption process. These outcomes indicate the effectiveness of the fabricated M-ZnO/PVA/Alg/CS nanofibers as adsorbent materials for phenol from aqueous solutions.
Collapse
Affiliation(s)
- Marwa Elkady
- Fabrication Technology Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
- Chemical and Petrochemical Engineering Department, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Eslam Salama
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Environment and Natural Materials Research Institute (ENMRI), City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Wael A Amer
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - El-Zeiny M Ebeid
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohamad M Ayad
- Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Hassan Shokry
- Electronic Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
- Environmental Engineering Department, Egypt-Japan University of Science and Technology, New Borg El-Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
153
|
Mermigkis PG, Mavrantzas VG. Geometric Analysis of Clusters of Free Volume Accessible to Small Penetrants and Their Connectivity in Polymer Nanocomposites Containing Carbon Nanotubes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Panagiotis G. Mermigkis
- Department of Chemical Engineering, University of Patras & FORTH/ICE-HT, Patras GR 26504, Greece
| | - Vlasis G. Mavrantzas
- Department of Chemical Engineering, University of Patras & FORTH/ICE-HT, Patras GR 26504, Greece
- Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, CH-8092 Zürich, Switzerland
| |
Collapse
|
154
|
The fabrication of a high performance enzymatic hybrid membrane reactor (EHMR) containing immobilized Candida rugosa lipase (CRL) onto graphene oxide nanosheets-blended polyethersulfone membrane. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
155
|
Liao J, Zhang Y, Yang H. Hybrid membrane with controllable surface microroughness by micro-nano structure processing for diluted PM 2.5 capture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115249. [PMID: 32738727 DOI: 10.1016/j.envpol.2020.115249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/04/2020] [Accepted: 07/12/2020] [Indexed: 06/11/2023]
Abstract
Tremendous efforts have been devoted by researchers on air particulate matter pollution for the increasing harm, however, the Air Pollution Index (API) from "good" to "excellent" is something hard to achieve. Here, halloysite nanotubes/polyvinyl alcohol (HNTs/PVA) hybrid membrane with surface micro-nano structure processing using a one-step method for efficient PM2.5 capture was prepared. The filtration efficiency is 45.35% and the pressure drop is 41.57 Pa of composite membrane with a 60 wt% halloysite dosage. Specially, it resulted in a relatively safer PM index value of about 16.54, which tends to be more stringent than the restriction by Government of China (PM2.5 < 35 μg/m3). The filtration performance was mainly attributed to the controllable microroughness surface as well as the hierarchical structure constructed by one-step method, which has a functional role in obstruction and adsorption for diluted PM2.5. The methodology can employ halloysite onto various polymers, like polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), polyacrylonitrile (PAN) and also polycaprolactone (PCL) to yield hybrid membranes with the similar modification of surface and structure. Such versatile membrane filters can be purposely designed and scaled up, which endows the existing hybrid membrane with great potentials in both residential and public areas pollution control to achieve a healthier living environment.
Collapse
Affiliation(s)
- Juan Liao
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha, 410083, China; School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Yi Zhang
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha, 410083, China; School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| | - Huaming Yang
- Hunan Key Lab of Mineral Materials and Application, Central South University, Changsha, 410083, China; School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
156
|
Goh PS, Wong KC, Ismail AF. Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions. MEMBRANES 2020; 10:E297. [PMID: 33096685 PMCID: PMC7589584 DOI: 10.3390/membranes10100297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
One of the critical aspects in the design of nanocomposite membrane is the selection of a well-matched pair of nanomaterials and a polymer matrix that suits their intended application. By making use of the fascinating flexibility of nanoscale materials, the functionalities of the resultant nanocomposite membranes can be tailored. The unique features demonstrated by nanomaterials are closely related to their dimensions, hence a greater attention is deserved for this critical aspect. Recognizing the impressive research efforts devoted to fine-tuning the nanocomposite membranes for a broad range of applications including gas and liquid separation, this review intends to discuss the selection criteria of nanostructured materials from the perspective of their dimensions for the production of high-performing nanocomposite membranes. Based on their dimension classifications, an overview of the characteristics of nanomaterials used for the development of nanocomposite membranes is presented. The advantages and roles of these nanomaterials in advancing the performance of the resultant nanocomposite membranes for gas and liquid separation are reviewed. By highlighting the importance of dimensions of nanomaterials that account for their intriguing structural and physical properties, the potential of these nanomaterials in the development of nanocomposite membranes can be fully harnessed.
Collapse
Affiliation(s)
- Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (K.C.W.); (A.F.I.)
| | | | | |
Collapse
|
157
|
Wei X, Cao S, Hu J, Chen Y, Yang R, Huang J, Wang Z, Zhou Q, Chen J. Graphene oxide/multi‐walled carbon nanotubes nanocompsite polyamide nanofiltration membrane for dyeing‐printing wastewater treatment. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Xiuzhen Wei
- College of Environment Zhejiang University of Technology Hangzhou Zhejiang China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province Zhejiang University of Technology Hangzhou Zhejiang China
| | - Shiyu Cao
- College of Environment Zhejiang University of Technology Hangzhou Zhejiang China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province Zhejiang University of Technology Hangzhou Zhejiang China
| | - Jiayao Hu
- College of Environment Zhejiang University of Technology Hangzhou Zhejiang China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province Zhejiang University of Technology Hangzhou Zhejiang China
| | - Yi Chen
- College of Environment Zhejiang University of Technology Hangzhou Zhejiang China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province Zhejiang University of Technology Hangzhou Zhejiang China
| | - Ruiyuan Yang
- College of Environment Zhejiang University of Technology Hangzhou Zhejiang China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province Zhejiang University of Technology Hangzhou Zhejiang China
| | - Jiahao Huang
- College of Environment Zhejiang University of Technology Hangzhou Zhejiang China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province Zhejiang University of Technology Hangzhou Zhejiang China
| | - Ze Wang
- College of Environment Zhejiang University of Technology Hangzhou Zhejiang China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province Zhejiang University of Technology Hangzhou Zhejiang China
| | - Qinghua Zhou
- College of Environment Zhejiang University of Technology Hangzhou Zhejiang China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province Zhejiang University of Technology Hangzhou Zhejiang China
| | - Jinyuan Chen
- College of Environment Zhejiang University of Technology Hangzhou Zhejiang China
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province Zhejiang University of Technology Hangzhou Zhejiang China
| |
Collapse
|
158
|
Ayyaru S, Ahn YH. Fabrication of a Novel Nanocomposite Ultrafiltration Membrane with Improved Antifouling Properties Using Functionalized HfO2 and Polyvinylidene Fluoride for Organic Foulant Mitigation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sivasankaran Ayyaru
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| | - Young-Ho Ahn
- Department of Civil Engineering, Yeungnam University, Gyeongsan 38541, South Korea
| |
Collapse
|
159
|
Loske L, Nakagawa K, Yoshioka T, Matsuyama H. 2D Nanocomposite Membranes: Water Purification and Fouling Mitigation. MEMBRANES 2020; 10:E295. [PMID: 33092187 PMCID: PMC7589742 DOI: 10.3390/membranes10100295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022]
Abstract
In this study, the characteristics of different types of nanosheet membranes were reviewed in order to determine which possessed the optimum propensity for antifouling during water purification. Despite the tremendous amount of attention that nanosheets have received in recent years, their use to render membranes that are resistant to fouling has seldom been investigated. This work is the first to summarize the abilities of nanosheet membranes to alleviate the effect of organic and inorganic foulants during water treatment. In contrast to other publications, single nanosheets, or in combination with other nanomaterials, were considered to be nanostructures. Herein, a broad range of materials beyond graphene-based nanomaterials is discussed. The types of nanohybrid membranes considered in the present work include conventional mixed matrix membranes, stacked membranes, and thin-film nanocomposite membranes. These membranes combine the benefits of both inorganic and organic materials, and their respective drawbacks are addressed herein. The antifouling strategies of nanohybrid membranes were divided into passive and active categories. Nanosheets were employed in order to induce fouling resistance via increased hydrophilicity and photocatalysis. The antifouling properties that are displayed by two-dimensional (2D) nanocomposite membranes also are examined.
Collapse
Affiliation(s)
- Lara Loske
- Department of Environmental, Process & Energy Engineering, Management Center Innsbruck (MCI)—The Entrepreneurial School, Maximilianstrasse 2, 6020 Innsbruck, Austria;
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Keizo Nakagawa
- Research Center for Membrane and Film Technology, Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan;
| | - Tomohisa Yoshioka
- Research Center for Membrane and Film Technology, Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan;
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
- Research Center for Membrane and Film Technology, Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan;
| |
Collapse
|
160
|
Yang J, Chen Y, Jia X, Li Y, Wang S, Song H. Wood-Based Solar Interface Evaporation Device with Self-Desalting and High Antibacterial Activity for Efficient Solar Steam Generation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:47029-47037. [PMID: 32960557 DOI: 10.1021/acsami.0c14068] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The main challenges of a solar steam generation device based on biomass materials are complicated processing techniques and relatively low efficiency. To solve these problems, we reported a simple immersion treatment method by depositing polydopamine (PDA) and silver nanoparticles (AgNPs) on natural wood to prepare a novel solar interface evaporation device. Ag-PDA@wood exhibits a unique bilayer structure. The absorbance of the top light absorption layer is higher than 96% in a wide wavelength range (300-2500 nm). Owing to the synergistic photothermal effect between PDA and AgNPs, Ag-PDA@wood has ultrafast solar-thermal response (a temperature increase of 42.5 °C within 5 min under 1 sun), and more heat is located at the steam generation interface (the surface temperature is 45.1 °C). The natural wood layer at the bottom with low thermal conductivity provides sufficient water supply and reduces the bulk heat loss. A high evaporation rate of 1.58 kg m-2 h-1 is achieved using Ag-PDA@wood under 1 sun (1 kW m-2). Its evaporation efficiency reaches 88.6%. The results upon sewage treatment and seawater desalination indicate that Ag-PDA@wood has an excellent purification ability and self-desalting capacity. More importantly, when compared to traditional solar evaporators, Ag-PDA@wood exhibits high antibacterial activity. The result of this antibacterial experiment shows that this material almost completely kills harmful bacteria. Therefore, Ag-PDA@wood has a high application potential in seawater desalination and sewage purification, providing a significant incentive to solve the problem of insufficient freshwater supply.
Collapse
Affiliation(s)
- Jin Yang
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Yu Chen
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Xiaohua Jia
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Yong Li
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Sizhe Wang
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| | - Haojie Song
- School of Materials Science & Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, P. R. China
| |
Collapse
|
161
|
Structure and properties of lipase activated by cellulose-silica polyethersulfone membrane for production of pentyl valerate. Carbohydr Polym 2020; 245:116549. [DOI: 10.1016/j.carbpol.2020.116549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/18/2022]
|
162
|
Wang R, Low ZX, Liu S, Wang Y, Murthy S, Shen W, Wang H. Thin-film composite polyamide membrane modified by embedding functionalized boron nitride nanosheets for reverse osmosis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118389] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
163
|
Liang Y, Ma H, Taha AA, Hsiao BS. High-flux anti-fouling nanofibrous composite ultrafiltration membranes containing negatively charged water channels. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
164
|
Wang C, Cheng R, Hou PX, Ma Y, Majeed A, Wang X, Liu C. MXene-Carbon Nanotube Hybrid Membrane for Robust Recovery of Au from Trace-Level Solution. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43032-43041. [PMID: 32856890 DOI: 10.1021/acsami.0c09310] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The use of precious metals in many areas, such as printed circuit boards, catalysts, and targeted drugs, is increasing due to their unique physical and chemical properties, but their recovery remains a great challenge. Here, we report a sandwiched Ti3C2Tx MXene/carbon nanotube (CNT) hybrid membrane, where the CNT isolates and supports the MXene sheets, which act as a reducing agent. The hybrid membrane shows excellent ability to capture precious metal ions in solution with a high flux. The water permeability of the membrane reaches 437.6 L m-2 h-1 bar-1 (2.46 × 10-18 m2), about 202 times higher than that of a pure Ti3C2Tx membrane, and captures 99.8% Au(III) from a solution with an extremely low concentration of 20 ppm. The desirable precious metal trapping capability of the Ti3C2Tx-CNT film is due to the high redox activity of C-Ti-OH. This work provides an efficient way for the recovery of precious metal ions from wastewater.
Collapse
Affiliation(s)
- Chunmei Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Renfei Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Peng-Xiang Hou
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Yonghui Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Abdul Majeed
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiaohui Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| | - Chang Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
| |
Collapse
|
165
|
Wang X, Shi X, Wang Y. In Situ Growth of Cationic Covalent Organic Frameworks (COFs) for Mixed Matrix Membranes with Enhanced Performances. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10970-10978. [PMID: 32862651 DOI: 10.1021/acs.langmuir.0c01714] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Covalent organic frameworks (COFs) are increasingly utilized as doping agents for the design of advanced ultrafiltration mixed matrix membranes, thanks to their prominent nanoporosity and excellent polymer compatibility. However, current strategies are largely limited in the complicated postaddition of neutral COF particulates. Herein, cationic COFs, namely, TpEB, with sizes down to ∼39 nm are in situ synthesized in polyacrylonitrile (PAN) solution as crystalline fillers for the production of highly permeable TpEB-PAN ultrafiltration membranes. After the condensation of monomer pairs, the growth of cationic TpEB crystallites is restrained due to the electrostatic interaction with negatively charged PAN chains, leading to the formation of a homogeneous TpEB-incorporated casting solution. During the subsequent nonsolvent-induced phase separation process, TpEB crystallites facilitate exchange between the solvent and the nonsolvent because of their hydrophilic and nanoporous nature, accelerating the rate of phase inversion to form a highly porous membrane surface. Thus-prepared TpEB-PAN membranes deliver a tight rejection of BSA with water permeance of up to 380 L m-2 h-1 bar-1, which is 35.6% higher than that of the original PAN membranes prepared without TpEB. The TpEB-PAN membranes also exhibit enhanced operation stabilities and fouling resistances. This in situ growth strategy suggests a new avenue for the preparation of advanced mixed matrix membranes.
Collapse
Affiliation(s)
- Xingyuan Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
166
|
Yu H, Gu L, Wu S, Dong G, Qiao X, Zhang K, Lu X, Wen H, Zhang D. Hydrothermal carbon nanospheres assisted-fabrication of PVDF ultrafiltration membranes with improved hydrophilicity and antifouling performance. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116889] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
167
|
van den Berg T, Ulbricht M. Polymer Nanocomposite Ultrafiltration Membranes: the Influence of Polymeric Additive, Dispersion Quality and Particle Modification on the Integration of Zinc Oxide Nanoparticles into Polyvinylidene Difluoride Membranes. MEMBRANES 2020; 10:membranes10090197. [PMID: 32846998 PMCID: PMC7559267 DOI: 10.3390/membranes10090197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 12/03/2022]
Abstract
This study aims to improve the understanding of the influence of metal oxide nanofillers on polyvinylidene difluoride (PVDF) ultrafiltration membranes. Zinc oxide nanoparticles were chosen as the model filler material. The membranes were prepared by non-solvent induced phase separation from PVDF solutions in N-methylpyrrolidone. The influences of the addition of polyvinylpyrrolidone (PVP), the nanoparticle dispersion quality, and a surface modification of the ZnO particles with PVP on the nanofiller integration into the polymer matrix and the resulting membrane separation performance, were evaluated. Unmodified and PVP-modified nanoparticles were characterized by evaluation of their Hansen solubility parameters. The membranes were characterized by ultrafiltration experiments, scanning electron microscopy (SEM) and with respect to mechanical properties, while the dope solutions were analyzed by rheology in order to judge about dispersion quality. Pure water permeability and solute rejection data revealed that the dominant effect of the addition of pristine ZnO nanoparticles was a major decrease in permeability caused by pore blocking. In SEM analyses, it was seen that the plain nanofiller did not integrate well into the polymer matrix. Importantly, it was found that the surface modification of the nanofiller, as well as a high dispersion quality, can be strategically used to enhance the integration of the nanofiller and thus suppress pore blocking, leading to membranes with high ultrafiltration rejection and permeability simultaneously. Overall, the study provides relevant insights into a new approach to integrating nanofillers into polymer nanocomposite membranes for improving their properties and performance.
Collapse
Affiliation(s)
- Thorsten van den Berg
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45141 Essen, Germany;
- Center for Nanointegration Duisburg-Essen (CENIDE), 47057 Duisburg, Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, 45141 Essen, Germany;
- Center for Nanointegration Duisburg-Essen (CENIDE), 47057 Duisburg, Germany
- Correspondence:
| |
Collapse
|
168
|
Lin CF, Chung LH, Lin GY, Chang MC, Lee CY, Tai NH. Enhancing the Efficiency of a Forward Osmosis Membrane with a Polydopamine/Graphene Oxide Layer Prepared Via the Modified Molecular Layer-by-Layer Method. ACS OMEGA 2020; 5:18738-18745. [PMID: 32775875 PMCID: PMC7407550 DOI: 10.1021/acsomega.0c01752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/07/2020] [Indexed: 05/06/2023]
Abstract
Water scarcity is one of the most critical problems that humans have to face. Working toward solving this problem, we have developed a thin-film composite (TFC) membrane using the modified molecular layer-by-layer (modified mLBL) method to fabricate polyamide (PA) active layers on different substrates. Besides, it has been found that graphene oxide (GO) contains abundant functional groups such as hydroxyl and epoxide groups, which are able to improve both the physical and chemical properties of the forward osmosis (FO) membrane. Thus, we have employed graphene oxide (GO) as the substrate and used the modified mLBL method to prepare active polydopamine/graphene oxide (PDA/GO) layers to enhance the water flux of the forward osmosis (FO) membrane. PDA/GO-coated layers could enhance the hydrophilic nature of the substrate and lower its surface roughness, which would facilitate the formation of the PA layer. Moreover, the PDA/GO coating can be applied to all substrates because of the high degree of adhesion of PDA to different substrates. In this study, the highly hydrophilic poly(vinylidene fluoride) membrane is superior in FO properties, with a water flux of 17.32 LMH and a reverse solute flux of 4.34 gMH. In addition, an excellent performance of 60.15 LMH and 14.88 gMH can be achieved when the pressure-retarded osmosis (PRO) test mode with a draw solution concentration of 2.0 M is used in the test. It shows that the membrane prepared using the novel method showed excellent FO performance, which has high potential in industrial applications such as desalination.
Collapse
Affiliation(s)
- Chi-feng Lin
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 300, Taiwan, Republic of China
| | - Li-han Chung
- Material
and Chemical Research Laboratories, Industrial
Technology Research Institute, Hsinchu 300, Taiwan, Republic of China
| | - Guan-you Lin
- Material
and Chemical Research Laboratories, Industrial
Technology Research Institute, Hsinchu 300, Taiwan, Republic of China
| | - Min-Chao Chang
- Material
and Chemical Research Laboratories, Industrial
Technology Research Institute, Hsinchu 300, Taiwan, Republic of China
| | - Chi-Young Lee
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 300, Taiwan, Republic of China
| | - Nyan-Hwa Tai
- Department
of Materials Science and Engineering, National
Tsing Hua University, Hsinchu 300, Taiwan, Republic of China
| |
Collapse
|
169
|
Noormohamadi A, Homayoonfal M, Mehrnia MR, Davar F. Employing magnetism of Fe 3O 4 and hydrophilicity of ZrO 2 to mitigate biofouling in magnetic MBR by Fe 3O 4-coated ZrO 2/PAN nanocomposite membrane. ENVIRONMENTAL TECHNOLOGY 2020; 41:2683-2704. [PMID: 30741624 DOI: 10.1080/09593330.2019.1579870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 01/26/2019] [Indexed: 06/09/2023]
Abstract
The aim of this research is benefiting from the synergistic effect of the simultaneous presence of Fe3O4 and ZrO2 in the form of Fe3O4-coated ZrO2 (Fe3O4@ZrO2) nanoparticles within the structure of PAN membrane to reduce membrane fouling. The role of Fe3O4 nanoparticles in increasing the pore size and magnetic saturation as well as the role of ZrO2 in decreasing surface roughness and hydrophobicity can mitigate membrane fouling in magnetic-assisted membrane bioreactors. For this purpose, Fe3O4, ZrO2, and Fe3O4@ZrO2 nanoparticles were embedded into PAN membrane structure and magnetic (M nM), hydrophilic (H nM), and magnetic-hydrophilic (HM nM) membranes were synthesized. H 1M (1ZrO2/PAN) membrane with a contact angle of 31 degrees, M 1N (1Fe3O4/PAN) with a pore size of 90 nm, and H 3M (3ZrO2/PAN) membrane with an RMS roughness of 13.5 nm were the most hydrophilic, porous, and smoothest membranes, respectively. High sensitivity to magnetic field along with high porosity, high hydrophilicity and low surface roughness simultaneously exist within the structure of MHMs membranes, such that MH 1M (1Fe3O4@ZrO2/PAN) indicated 116% greater flux, 121% greater flux recovery, and 85% less total filtration resistance in comparison with the blank membrane in magnetic membrane bioreactor, at a magnetic field intensity of 120 mT and MLSS = 10,000 mg/l. As an overall conclusion, the output of this research was compared with other research in term of normalized flux. Results reveal that at MLSS = 10,000 mg/l, HRT = 8 h and TMP = 0.3 bar, MH 1M membrane has normalized flux equal to 1.56 g/m2 h bar which is an acceptable value compared to normalized flux reported by other researchers.
Collapse
Affiliation(s)
- Amin Noormohamadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Maryam Homayoonfal
- Department of Chemical Engineering, College of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohammad Reza Mehrnia
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Davar
- Department of Chemistry, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
170
|
Ray SS, Iroegbu AOC, Bordado JC. Polymer-Based Membranes and Composites for Safe, Potable, and Usable Water: A Survey of Recent Advances. CHEMISTRY AFRICA 2020. [DOI: 10.1007/s42250-020-00166-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
171
|
Chen S, Olson E, Jiang S, Yong X. Nanoparticle assembly modulated by polymer chain conformation in composite materials. NANOSCALE 2020; 12:14560-14572. [PMID: 32613987 DOI: 10.1039/d0nr01740j] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mixing nanoparticles into a strategically selected polymer matrix yields nanocomposites with well-controlled microstructures and unique properties and functions. The modulation of nanoparticle assembly by polymer chain conformation can play a dominant role in determining nanocomposite structures, yet such a physical mechanism remains largely unexplored. We hypothesize that highly ordered microdomains of rigid linear polymers provide a template for nanoparticle assembly into open fractal structures. We conducted mesoscopic computer simulations and physical experiments to elucidate how polymer chain conformation regulates the dynamic evolution of nanoparticle structures during the drying processing of polymer nanocomposite films. The evaporation of polymer-nanoparticle mixtures with varying chain stiffnesses was simulated using dissipative particle dynamics. The formation of distinguished nanoparticle assemblies as a result of matrix selection was further corroborated by probing nanoparticle aggregation in different polymer nanocomposite coatings. The results show that polymer conformation not only influences the dispersion states of individual particles (dispersed vs. aggregated), but also modulates the morphologies of large-scale assembly (globular vs. fractal). The emergence of nematically ordered polymer clusters when the chain rigidity is increased creates local solvent-rich "voids" that promote anisotropic particle aggregates, which then percolate into open fractal structures upon solvent evaporation. The nanoparticle dynamics also exhibits an intriguing non-monotonic behavior attributed to the transitions between the coupling and decoupling with polymer dynamics. The nanoparticle assembly morphologies obtained in simulations match well with the electron microscopy images taken in physical experiments.
Collapse
Affiliation(s)
- Shensheng Chen
- Department of Mechanical Engineering, Binghamton University, Binghamton, New York 13902, USA.
| | | | | | | |
Collapse
|
172
|
Kim JW, Chang JH. Syntheses of Colorless and Transparent Polyimide Membranes for Microfiltration. Polymers (Basel) 2020; 12:polym12071610. [PMID: 32698338 PMCID: PMC7408252 DOI: 10.3390/polym12071610] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 11/16/2022] Open
Abstract
Herein, poly(amic acid) (PAA) was synthesized using 4,4’-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) as a dianhydride and 2,2-bis(3-aminophenyl)hexafluoropropane (6FAm) and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (6FAm-OH) as diamines. Poly(vinyl alcohol) (PVA) at various contents (0–5.0 wt%) was blended with PAA to prepare a composite material. Then, colorless and transparent polyimide (CPI) composite films were prepared by applying various stages of heat treatment using the PAA/PVA blend film as a precursor. These film-type composites were immersed in water to completely dissolve PVA, a water-soluble polymer, and their pore sizes were investigated to determine their potential as a porous membrane. According to the results of scanning electronic microscopy (SEM), as the concentration of PVA increased from 0 to 5.0 wt% in the CPI/PVA composite films, the size of the pores resulting from the dissolution of water-soluble PVA increased. Further, the micrometer-sized pores were uniformly dispersed in the CPI films. The thermal properties, morphology, and optical transparency of the two types of CPI membranes synthesized using 6FAm and 6FAm-OH monomers were examined and compared.
Collapse
|
173
|
Self-cleaning, antimicrobial, and antifouling membrane via integrating mesoporous graphitic carbon nitride into polyvinylidene fluoride. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118146] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
174
|
Mu Y, Feng H, Zhang S, Zhang C, Lu N, Luan J, Wang G. Development of highly permeable and antifouling ultrafiltration membranes based on the synergistic effect of carboxylated polysulfone and bio-inspired co-deposition modified hydroxyapatite nanotubes. J Colloid Interface Sci 2020; 572:48-61. [DOI: 10.1016/j.jcis.2020.03.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/30/2022]
|
175
|
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center For Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|
176
|
Nascimbén Santos É, László Z, Hodúr C, Arthanareeswaran G, Veréb G. Photocatalytic membrane filtration and its advantages over conventional approaches in the treatment of oily wastewater: A review. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2533] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Érika Nascimbén Santos
- Department of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
- Doctoral School of Environmental Sciences University of Szeged Szeged Hungary
| | - Zsuzsanna László
- Department of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
| | - Cecilia Hodúr
- Department of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
- Institute of Environmental and Technological Sciences University of Szeged Szeged Hungary
| | - Gangasalam Arthanareeswaran
- Membrane Research Laboratory, Department of Chemical Engineering National Institute of Technology Tiruchirappalli India
| | - Gábor Veréb
- Department of Process Engineering, Faculty of Engineering University of Szeged Szeged Hungary
| |
Collapse
|
177
|
Abstract
Polymeric membrane technology is a constantly developing field in both the research and industrial sector, with many applications considered nowadays as mature such as desalination, wastewater treatment, and hemodialysis. A variety of polymers have been used for the development of porous membranes by implementing numerous approaches such as phase inversion, electrospinning, sintering, melt-spinning and cold-stretching, 3D printing, and others. Depending on the application, certain polymer characteristics such as solubility to non-toxic solvents, mechanical and thermal stability, non-toxicity, resistance to solvents, and separation capabilities are highly desired. Poly (vinyl alcohol) (PVA) is a polymer that combines the above-mentioned properties with great film forming capabilities, good chemical and mechanical stability, and tuned hydrophilicity, rendering it a prominent candidate for membrane preparation since the 1970s. Since then, great progress has been made both in preparation methods and possible unique applications. In this review, the main preparation methods and applications of porous PVA based membranes, along with introductory material are presented.
Collapse
|
178
|
Giwa A, Hasan SW. Novel polyethersulfone-functionalized graphene oxide (PES-fGO) mixed matrix membranes for wastewater treatment. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.116735] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
179
|
Zhang X, Guo Y, Wang T, Wu Z, Wang Z. Antibiofouling performance and mechanisms of a modified polyvinylidene fluoride membrane in an MBR for wastewater treatment: Role of silver@silica nanopollens. WATER RESEARCH 2020; 176:115749. [PMID: 32247996 DOI: 10.1016/j.watres.2020.115749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/10/2020] [Accepted: 03/21/2020] [Indexed: 05/09/2023]
Abstract
Biofouling remains to be one of major obstacles in membrane bioreactors (MBRs), calling for the development of antibiofouling membranes. Silver nanoparticles (AgNPs), being a kind of broad spectrum bactericidal agent, have been widely used for modifying membrane; however, uncontrollable release of AgNPs and thus a short lifetime of modified membranes are thorny issues for the AgNPs-modified membranes. In this study, silica nanopollens were used as AgNPs nanocarriers for membrane modification (ASNP-M), which could improve silver delivery efficacy, avoid agglomeration and control Ag+ release towards bacteria. At a silver loading of 107.7 ± 10.9 μg Ag/cm2, ASNP-M effectively inhibited growth of Escherichia coli and Staphylococcus aureus, with an Ag+ release rate of 0.5 μg/(cm2 d). Long-term MBR tests showed that ASNP-M exhibited a significantly reduced transmembrane pressure increase rate of 0.88 ± 0.34 kPa/d which was much lower than that of two control membranes, i.e., pristine membrane (M0) (2.32 ± 0.86 kPa/d) and Ag@silica nanospheres (without spikes) modified membrane (ASNS-M) (2.25 ± 1.28 kPa/d). No significant adverse influences on the pollutant removal were also observed in the reactor. Foulants analysis revealed that biofilm of ASNP-M was thinner and comprised of mainly dead cells, and only organic matter with strong adhesion properties was allowed to attach onto the membrane surface. Bacterial community analysis suggested that the incorporation of Ag@silica nanopollens inhibited colonization of bacteria which are capable of causing membrane biofouling (e.g., Proteobacteria and Actinobacteria). These findings highlight the potential of the antibiofouling membrane to be used in MBRs for wastewater treatment and reclamation.
Collapse
Affiliation(s)
- Xingran Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yu Guo
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tianlin Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
180
|
Kurada KV, Agarwal A, De S. Effect of mixed solvents on phase inversion of polymeric membranes. POLYM INT 2020. [DOI: 10.1002/pi.6034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Krishnasri V Kurada
- Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur India
| | - Amit Agarwal
- Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur India
| | - Sirshendu De
- Department of Chemical Engineering Indian Institute of Technology Kharagpur Kharagpur India
| |
Collapse
|
181
|
Critical Issues and Guidelines to Improve the Performance of Photocatalytic Polymeric Membranes. Catalysts 2020. [DOI: 10.3390/catal10050570] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Photocatalytic membrane reactors (PMR), with immobilized photocatalysts, play an important role in process intensification strategies; this approach offers a simple solution to the typical catalyst recovery problem of photocatalytic processes and, by simultaneous filtration and photocatalysis of the aqueous streams, facilitates clean water production in a single unit. The synthesis of polymer photocatalytic membranes has been widely explored, while studies focused on ceramic photocatalytic membranes represent a minority. However, previous reports have identified that the successful synthesis of polymeric photocatalytic membranes still faces certain challenges that demand further research, e.g., (i) reduced photocatalytic activity, (ii) photocatalyst stability, and (iii) membrane aging, to achieve technological competitiveness with respect to suspended photocatalytic systems. The novelty of this review is to go a step further to preceding literature by first, critically analyzing the factors behind these major limitations and second, establishing useful guidelines. This information will help researchers in the field in the selection of the membrane materials and synthesis methodology for a better performance of polymeric photocatalytic membranes with targeted functionality; special attention is focused on factors affecting membrane aging and photocatalyst stability.
Collapse
|
182
|
Preparation and Properties of Cyanobacteria-Based Carbon Quantum Dots/Polyvinyl Alcohol/ Nanocellulose Composite. Polymers (Basel) 2020; 12:polym12051143. [PMID: 32429528 PMCID: PMC7285183 DOI: 10.3390/polym12051143] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/02/2020] [Accepted: 05/15/2020] [Indexed: 12/03/2022] Open
Abstract
Blue luminescent carbon quantum dots (CQDs) were prepared from cyanobacteria by a hydrothermal method. The PL quantum yields of the obtained CQDs was 5.30%. Cyanobacteria-based carbon quantum dots/polyvinyl alcohol/nanocellulose composite films were prepared, which could emit bright blue under UV light. FTIR characterization showed that the composite films had hydroxyl groups on the surface and no new groups were formed after combining the three materials. The photoluminescence (PL) spectra revealed that the emission of the prepared CQDs was excitation dependent. Studies on the water resistance performance and light barrier properties of the composite films showed that they possessed higher water resistance properties and better UV/infrared light barrier properties. Therefore, we report the cyanobacteria-based carbon quantum dots/polyvinyl alcohol/nanocellulose composite films have the potential to be applied in flexible packaging materials, anti-fake materials, UV/infrared light barrier materials and so on.
Collapse
|
183
|
Adsorption of hazardous atoms on the surface of TON zeolite and bilayer silica: a DFT study. J Mol Model 2020; 26:119. [PMID: 32382827 DOI: 10.1007/s00894-020-04381-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/22/2020] [Indexed: 10/24/2022]
Abstract
In the present study, the adsorption of two types of hazardous atoms including arsenic and lead with TON zeolite and bilayer silica (2D-SiO2) have been investigated by employing Ab initio-based density functional theory (DFT) calculations. To reach a full structural optimization and the most stable configuration, four sites were considered for TON zeolite as well as five sites for 2D-SiO2, and adsorption energy along with equilibrium geometry was determined. The adsorption energies of arsenic atom on the surface of 2D-SiO2 absorbents and TON zeolite have obtained equal to and - 1.25 eV and - 2.76 eV, respectively, which both of them are chemisorption type. We also found that the adsorption of lead on the surface of 2D-SiO2 was physisorption type with the adsorption energy accounting for - 0.13 eV, while the adsorption energy between lead and TON was calculated equal to - 2.32 eV which was chemisorption type. Furthermore, our results demonstrate that the TON zeolite was more capable of adsorbing hazardous atoms compared with 2D-SiO2 due to having greater adsorption energy. The adsorption of arsenic on the 2D-SiO2 and TON adsorbents is also stronger than those of lead atom. Furthermore, we modeled and considered graphene, as a common adsorbent nanostructure, to compare and validate the accuracy of our simulations and obtained results. Finally, the electronic density of states (DOS) calculations and charge analysis were done by the use of Mulliken method, and the results confirmed those results that had already been obtained from adsorption energies. Graphical abstract.
Collapse
|
184
|
Porous organic polymer embedded thin-film nanocomposite membranes for enhanced nanofiltration performance. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117982] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
185
|
Hussein MA, Shahzad HK, Patel F, Atieh MA, Al-Aqeeli N, Baroud TN, Laoui T. Porous Al 2O 3-CNT Nanocomposite Membrane Produced by Spark Plasma Sintering with Tailored Microstructure and Properties for Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E845. [PMID: 32353969 PMCID: PMC7712463 DOI: 10.3390/nano10050845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 11/16/2022]
Abstract
Ceramic-based nanocomposite membranes are gaining great attention in various applications, such as water treatment; gas separation; oil and gas, amid their superior fouling resistance and remarkable chemical/thermal stability. Here, we report for the first time the use of spark plasma sintering (SPS) process to fabricate a porous alumina-carbon nanotubes (Al2O3-CNT) nanocomposite membrane for water treatment. The challenge is this work is to achieve a balance between the amount of porosity, desired for a high water flux, and the membrane strength level, required to resist the applied pressure during a water flow experiment. The effect of SPS process parameters (pressure, temperature, heating rate, and holding time) on the microstructure and properties of the developed membrane was investigated and correlated. A powder mixture composed of Al2O3 and 5 wt % CNT was prepared with the addition of starch as a pore former and gum Arabic and sodium dodecyl sulfate as dispersants. The powder mixture was then sintered using SPS to produce a solid but porous nanocomposite membrane. The structure and microstructure of the developed membrane were characterized using X-ray diffraction and field emission scanning electron microscopy. The performance of the membrane was assessed in terms of porosity, permeability, and mechanical properties. Moreover, the adsorption capability of the membrane was performed by evaluating its removal efficacy for cadmium (II) from water. The microstructural analysis revealed that CNT were distributed within the alumina matrix and located mainly along the grain boundaries. The permeability and strength were highly influenced by the sintering pressure and temperature, respectively. The results indicated that the membrane sintered at a pressure of 10 MPa, temperature of 1100 °C, holding time of 5 min, and heating rate of 200 °C/min exhibited the best combination of permeability and strength. This developed membrane showed a significant removal efficiency of 97% for cadmium (II) in an aqueous solution.
Collapse
Affiliation(s)
- Mohamed Abdrabou Hussein
- Center of Research Excellence in Corrosion, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Hafiz Khurram Shahzad
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Faheemuddin Patel
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Muataz Ali Atieh
- Department of Chemical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Nasser Al-Aqeeli
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Turki Nabieh Baroud
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Tahar Laoui
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
186
|
Glass/Au Composite Membranes with Gold Nanoparticles Synthesized inside Pores for Selective Ion Transport. MATERIALS 2020; 13:ma13071767. [PMID: 32283851 PMCID: PMC7178654 DOI: 10.3390/ma13071767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 11/17/2022]
Abstract
Nanocomposite membranes have been actively developed in the last decade. The involvement of nanostructures can improve the permeability, selectivity, and anti-fouling properties of a membrane for improved filtration processes. In this work, we propose a novel type of ion-selective Glass/Au composite membrane based on porous glass (PG), which combines the advantages of porous media and promising selective properties. The latter are achieved by depositing gold nanoparticles into the membrane pores by the laser-induced liquid phase chemical deposition technique. Inside the pores, gold nanoparticles with an average diameter 25 nm were formed, which was confirmed by optical and microscopic studies. To study the transport and selective properties of the PG/Au composite membrane, the potentiometric method was applied. The uniform potential model was used to determine the surface charge from the experimental data. It was found that the formation of gold nanoparticles inside membrane pores leads to an increase in the surface charge from −2.75 mC/m2 to −5.42 mC/m2. The methods proposed in this work allow the creation of a whole family of composite materials based on porous glasses. In this case, conceptually, the synthesis of these materials will differ only in the selection of initial precursors.
Collapse
|
187
|
A review on thermally stable membranes for water treatment: Material, fabrication, and application. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
188
|
|
189
|
Kong S, Lim MY, Shin H, Baik JH, Lee JC. High-flux and antifouling polyethersulfone nanocomposite membranes incorporated with zwitterion-functionalized graphene oxide for ultrafiltration applications. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.12.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
190
|
Priyadarshini A, Tay SW, Ng S, Hong L. Skinned carbonaceous composite membrane with pore channels bearing an anchored surfactant layer for nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
191
|
Aghili F, Ghoreyshi AA, Rahimpour A, Van der Bruggen B. New Chemistry for Mixed Matrix Membranes: Growth of Continuous Multilayer UiO-66-NH2 on UiO-66-NH2-Based Polyacrylonitrile for Highly Efficient Separations. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b07063] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Fatemeh Aghili
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Street, 47148-71167 Babol, Iran
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
| | - Ali Asghar Ghoreyshi
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Street, 47148-71167 Babol, Iran
| | - Ahmad Rahimpour
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Shariati Street, 47148-71167 Babol, Iran
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
192
|
Effect of Loading and Functionalization of Carbon Nanotube on the Performance of Blended Polysulfone/Polyethersulfone Membrane during Treatment of Wastewater Containing Phenol and Benzene. MEMBRANES 2020; 10:membranes10030054. [PMID: 32213937 PMCID: PMC7142715 DOI: 10.3390/membranes10030054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/24/2020] [Indexed: 11/16/2022]
Abstract
In this study, a carbon nanotube (CNT)-infused blended polymer membrane was prepared and evaluated for phenol and benzene removal from petroleum industry wastewater. A 25:75 (by weight %) blended polysulfone/polyethersulfone (PSF/PES) membrane infused with CNTs was prepared and tested. The effect of functionalization of the CNTs on the quality and performance of the membrane was also investigated. The membranes were loaded with CNTs at different loadings: 0.5 wt. %, 1 wt. %, 1.5 wt. % pure CNTs (pCNTs) and 1 wt. % functionalized CNTs (fCNTs), to gain an insight into the effect of the amount of CNT on the quality and performance of the membranes. Physicochemical properties of the as-prepared membranes were obtained using scanning electron microscopy (SEM) for morphology, Raman spectroscopy for purity of the CNTs, Fourier transform infrared (FTIR) for surface chemistry, thermogravimetric analysis (TGA) for thermal stability, atomic force microscopy (AFM) for surface nature and nano-tensile analysis for the mechanical strength of the membranes. The performance of the membrane was tested with synthetic wastewater containing 20 ppm of phenol and 20 ppm of benzene using a dead-end filtration cell at a pressure ranging from 100 to 300 kPa. The results show that embedding CNTs in the blended polymer (PSF/PES) increased both the porosity and water absorption capacity of the membranes, thereby resulting in enhanced water flux up to 309 L/m2h for 1.5 wt. % pCNTs and 326 L/m2h for 1 wt. % functionalized CNT-loaded membrane. Infusing the polysulfone/polyethersulfone (PSF/PES) membrane with CNTs enhanced the thermal stability and mechanical strength. Results from AFM indicate enhanced hydrophilicity of the membranes, translating in the enhancement of anti-fouling properties of the membranes. However, the % rejection of membranes with CNTs decreased with an increase in pCNTs concentration and pressure, while it increased the membrane with fCNTs. The % rejection of benzene in the pCNTs membrane decreased with 13.5% and 7.55% in fCNT membrane while phenol decreased with 55.6% in pCNT membrane and 42.9% in the FCNT membrane. This can be attributed to poor CNT dispersion resulting in increased pore sizes observed when CNT concentration increases. Optimization of membrane synthesis might be required to enhance the separation performance of the membranes.
Collapse
|
193
|
Bedar A, Goswami N, Singha AK, Kumar V, Debnath AK, Sen D, Aswal VK, Kumar S, Dutta D, Keshavkumar B, Ghodke S, Jain R, Singh BG, Tewari PK, Bindal RC, Kar S. Nanodiamonds as a state-of-the-art material for enhancing the gamma radiation resistance properties of polymeric membranes. NANOSCALE ADVANCES 2020; 2:1214-1227. [PMID: 36133061 PMCID: PMC9417672 DOI: 10.1039/c9na00372j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 01/29/2020] [Indexed: 06/16/2023]
Abstract
We report, for the first time, the development of gamma radiation resistant polysulfone (Psf)-nanodiamond (ND) composite membranes with varying concentrations of NDs, ranging up to 2 wt% of Psf. Radiation stability of the synthesized membranes was tested up to a dose of 1000 kGy. To understand the structure-property correlationship of these membranes, multiple characterization techniques were used, including field-emission scanning electron microscopy, atomic force microscopy, drop shape analysis, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, gel permeation chromatography, positron annihilation spectroscopy, and small angle X-ray scattering. All the composite membranes exhibited enhanced radiation resistance properties, with 0.5% loading of NDs as the optimum. Compared to the radiation stability of Psf membranes up to a dose of 100 kGy, the optimum composite membranes are found to be stable up to a radiation dose of 500 kGy, owing to the unique surface chemistry of NDs and interfacial chemistry of Psf-ND composites. Experimental findings along with the Monte Carlo simulation studies confirmed a five times enhanced life-span of the composite membranes in an environment of the intermediate level radioactive waste, compared to the control Psf membrane.
Collapse
Affiliation(s)
- Amita Bedar
- Homi Bhabha National Institute Mumbai-400094 India
- Membrane Development Section, Bhabha Atomic Research Centre Trombay Mumbai-400085 India
| | - Nitesh Goswami
- Membrane Development Section, Bhabha Atomic Research Centre Trombay Mumbai-400085 India
| | - Amit K Singha
- Membrane Development Section, Bhabha Atomic Research Centre Trombay Mumbai-400085 India
| | - Virendra Kumar
- Radiation Technology Development Division, Bhabha Atomic Research Centre Trombay Mumbai-400085 India
| | - Anil K Debnath
- Technical Physics Division, Bhabha Atomic Research Centre Trombay Mumbai-400085 India
| | - Debasis Sen
- Homi Bhabha National Institute Mumbai-400094 India
- Solid State Physics Division, Bhabha Atomic Research Centre Trombay Mumbai-400085 India
| | - Vinod K Aswal
- Homi Bhabha National Institute Mumbai-400094 India
- Solid State Physics Division, Bhabha Atomic Research Centre Trombay Mumbai-400085 India
| | - Sanjay Kumar
- Material Science Division, Bhabha Atomic Research Centre Trombay Mumbai-400085 India
| | - Dhanadeep Dutta
- Radiochemistry Division, Bhabha Atomic Research Centre Trombay Mumbai-400085 India
| | - Biju Keshavkumar
- Health Physics Division, Bhabha Atomic Research Centre Trombay Mumbai-400085 India
| | - Sharwari Ghodke
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai-400019 India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology Mumbai-400019 India
| | - Beena G Singh
- Homi Bhabha National Institute Mumbai-400094 India
- Radiation & Photochemistry Division, Bhabha Atomic Research Centre Trombay Mumbai-400085 India
| | | | - Ramesh C Bindal
- Homi Bhabha National Institute Mumbai-400094 India
- Membrane Development Section, Bhabha Atomic Research Centre Trombay Mumbai-400085 India
| | - Soumitra Kar
- Homi Bhabha National Institute Mumbai-400094 India
- Membrane Development Section, Bhabha Atomic Research Centre Trombay Mumbai-400085 India
| |
Collapse
|
194
|
|
195
|
Casanova S, Liu TY, Chew YMJ, Livingston A, Mattia D. High flux thin-film nanocomposites with embedded boron nitride nanotubes for nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117749] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
196
|
Current Advances in Biofouling Mitigation in Membranes for Water Treatment: An Overview. Processes (Basel) 2020. [DOI: 10.3390/pr8020182] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Membranes, as the primary tool in membrane separation techniques, tend to suffer external deposition of pollutants and microorganisms depending on the nature of the treating solutions. Such issues are well recognized as biofouling and is identified as the major drawback of pressure-driven membrane processes due to the influence of the separation performance of such membrane-based technologies. Herein, the aim of this review paper is to elucidate and discuss new insights on the ongoing development works at facing the biofouling phenomenon in membranes. This paper also provides an overview of the main strategies proposed by “membranologists” to improve the fouling resistance in membranes. Special attention has been paid to the fundamentals on membrane fouling as well as the relevant results in the framework of mitigating the issue. By analyzing the literature data and state-of-the-art, the concluding remarks and future trends in the field are given as well.
Collapse
|
197
|
Mukhopadhyay R, Bhaduri D, Sarkar B, Rusmin R, Hou D, Khanam R, Sarkar S, Kumar Biswas J, Vithanage M, Bhatnagar A, Ok YS. Clay-polymer nanocomposites: Progress and challenges for use in sustainable water treatment. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121125. [PMID: 31541959 DOI: 10.1016/j.jhazmat.2019.121125] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Contaminant removal from water involves various technologies among which adsorption is considered to be simple, effective, economical, and sustainable. In recent years, nanocomposites prepared by combining clay minerals and polymers have emerged as a novel technology for cleaning contaminated water. Here, we provide an overview of various types of clay-polymer nanocomposites focusing on their synthesis processes, characteristics, and possible applications in water treatment. By evaluating various mechanisms and factors involved in the decontamination processes, we demonstrate that the nanocomposites can overcome the limitations of individual polymer and clay components such as poor specificity, pH dependence, particle size sensitivity, and low water wettability. We also discuss different regeneration and wastewater treatment options (e.g., membrane, coagulant, and barrier/columns) using clay-polymer nanocomposites. Finally, we provide an economic analysis of the use of these adsorbents and suggest future research directions.
Collapse
Affiliation(s)
- Raj Mukhopadhyay
- Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal, Haryana, India
| | | | - Binoy Sarkar
- Department of Animal and Plant Sciences, The University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Ruhaida Rusmin
- Faculty of Applied Sciences, Universiti Teknologi MARA, Negeri Sembilan Branch, Kuala Pilah Campus, Kuala Pilah, Negeri Sembilan, Malaysia
| | - Deyi Hou
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Rubina Khanam
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Subhas Sarkar
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Jayanta Kumar Biswas
- International Centre for Ecological Engineering, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia, West Bengal, India
| | - Meththika Vithanage
- Ecosphere Resilience Research Center, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Amit Bhatnagar
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Yong Sik Ok
- Korea Biochar Research Centre & Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
198
|
Gusain R, Kumar N, Ray SS. Recent advances in carbon nanomaterial-based adsorbents for water purification. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213111] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
199
|
Wu H, Zhang X, Zhao XT, Li K, Yu CY, Liu LF, Zhou YF, Gao CJ. High flux reverse osmosis membranes fabricated with hyperbranched polymers via novel twice-crosslinked interfacial polymerization method. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117480] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
200
|
Tamalampudi SR, Santos S, Lai CY, Olukan TA, Lu JY, Rajput N, Chiesa M. Rapid discrimination of chemically distinctive surface terminations in 2D material based heterostructures by direct van der Waals identification. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2020; 91:023907. [PMID: 32113390 DOI: 10.1063/1.5128756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/02/2020] [Indexed: 06/10/2023]
Abstract
We demonstrate that surfaces presenting heterogeneous and atomically flat domains can be directly and rapidly discriminated via robust intensive quantifiables by exploiting one-pass noninvasive methods in standard atomic force microscopy (AFM), single ∼2 min passes, or direct force reconstruction, i.e., ∼103 force profiles (∼10 min collection time), allowing data collection, interpretation, and presentation in under 20 min, including experimental AFM preparation and excluding only sample fabrication, in situ and without extra experimental or time load. We employ a misfit SnTiS3 compound as a model system. Such heterostructures can be exploited as multifunctional surface systems and provide multiple support sites with distinguishable chemical, mechanical, or opto-electronic distinct properties. In short, they provide an ideal model system to exemplify how current AFM methods can significantly support material discovery across fields.
Collapse
Affiliation(s)
- Srinivasa Reddy Tamalampudi
- Laboratory for Energy and NanoScience (LENS), Khalifa University of Science and Technology, Masdar Campus, Abu Dhabi 54224, United Arab Emirates
| | - Sergio Santos
- Department of Physics and Technology, UiT The Arctic University of Norway, 9010 Tromsø, Norway
| | - Chia-Yun Lai
- Department of Physics and Technology, UiT The Arctic University of Norway, 9010 Tromsø, Norway
| | - Tuza A Olukan
- Department of Physics and Technology, UiT The Arctic University of Norway, 9010 Tromsø, Norway
| | - Jin-You Lu
- Laboratory for Energy and NanoScience (LENS), Khalifa University of Science and Technology, Masdar Campus, Abu Dhabi 54224, United Arab Emirates
| | - Nitul Rajput
- Laboratory for Energy and NanoScience (LENS), Khalifa University of Science and Technology, Masdar Campus, Abu Dhabi 54224, United Arab Emirates
| | - Matteo Chiesa
- Laboratory for Energy and NanoScience (LENS), Khalifa University of Science and Technology, Masdar Campus, Abu Dhabi 54224, United Arab Emirates
| |
Collapse
|