151
|
Ultra-deep Coverage Single-molecule R-loop Footprinting Reveals Principles of R-loop Formation. J Mol Biol 2020; 432:2271-2288. [PMID: 32105733 DOI: 10.1016/j.jmb.2020.02.014] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022]
Abstract
R-loops are a prevalent class of non-B DNA structures that have been associated with both positive and negative cellular outcomes. DNA:RNA immunoprecipitation (DRIP) approaches based on the anti-DNA:RNA hybrid S9.6 antibody revealed that R-loops form dynamically over conserved genic hotspots. We have developed an orthogonal approach that queries R-loops via the presence of long stretches of single-stranded DNA on their looped-out strand. Nondenaturing sodium bisulfite treatment catalyzes the conversion of unpaired cytosines to uracils, creating permanent genetic tags for the position of an R-loop. Long-read, single-molecule PacBio sequencing allows the identification of R-loop 'footprints' at near nucleotide resolution in a strand-specific manner on long single DNA molecules and at ultra-deep coverage. Single-molecule R-loop footprinting coupled with PacBio sequencing (SMRF-seq) revealed a strong agreement between S9.6-based and bisulfite-based R-loop mapping and confirmed that R-loops form over genic hotspots, including gene bodies and terminal gene regions. Based on the largest single-molecule R-loop dataset to date, we show that individual R-loops form nonrandomly, defining discrete sets of overlapping molecular clusters that pileup through larger R-loop zones. R-loops most often map to intronic regions and their individual start and stop positions do not match with intron-exon boundaries, reinforcing the model that they form cotranscriptionally from unspliced transcripts. SMRF-seq further established that R-loop distribution patterns are not simply driven by intrinsic DNA sequence features but most likely also reflect DNA topological constraints. Overall, DRIP-based and SMRF-based approaches independently provide a complementary and congruent view of R-loop distribution, consolidating our understanding of the principles underlying R-loop formation.
Collapse
|
152
|
Appanah R, Lones EC, Aiello U, Libri D, De Piccoli G. Sen1 Is Recruited to Replication Forks via Ctf4 and Mrc1 and Promotes Genome Stability. Cell Rep 2020; 30:2094-2105.e9. [PMID: 32075754 PMCID: PMC7034062 DOI: 10.1016/j.celrep.2020.01.087] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/06/2019] [Accepted: 01/24/2020] [Indexed: 01/21/2023] Open
Abstract
DNA replication and RNA transcription compete for the same substrate during S phase. Cells have evolved several mechanisms to minimize such conflicts. Here, we identify the mechanism by which the transcription termination helicase Sen1 associates with replisomes. We show that the N terminus of Sen1 is both sufficient and necessary for replisome association and that it binds to the replisome via the components Ctf4 and Mrc1. We generated a separation of function mutant, sen1-3, which abolishes replisome binding without affecting transcription termination. We observe that the sen1-3 mutants show increased genome instability and recombination levels. Moreover, sen1-3 is synthetically defective with mutations in genes involved in RNA metabolism and the S phase checkpoint. RNH1 overexpression suppresses defects in the former, but not the latter. These findings illustrate how Sen1 plays a key function at replication forks during DNA replication to promote fork progression and chromosome stability.
Collapse
Affiliation(s)
- Rowin Appanah
- Warwick Medical School, University of Warwick, CV4 7AL Coventry, UK
| | | | - Umberto Aiello
- Institut Jacques Monod, CNRS, UMR7592, Université Paris Diderot, Paris Sorbonne Cité, Paris, France
| | - Domenico Libri
- Institut Jacques Monod, CNRS, UMR7592, Université Paris Diderot, Paris Sorbonne Cité, Paris, France
| | | |
Collapse
|
153
|
Gómez-González B, Barroso S, Herrera-Moyano E, Aguilera A. Spontaneous DNA-RNA hybrids: differential impacts throughout the cell cycle. Cell Cycle 2020; 19:525-531. [PMID: 32065022 DOI: 10.1080/15384101.2020.1728015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A large body of research supports that transcription plays a major role among the many sources of replicative stress contributing to genome instability. It is therefore not surprising that the DNA damage response has a role in the prevention of transcription-induced threatening events such as the formation of DNA-RNA hybrids, as we have recently found through an siRNA screening. Three major DDR pathways were defined to participate in the protection against DNA-RNA hybrids: ATM/CHK2, ATR/CHK1 and Postreplication Repair (PRR). Based on these observations, we envision different scenarios of DNA-RNA hybridization and their consequent DNA damage.
Collapse
Affiliation(s)
- Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Sonia Barroso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Emilia Herrera-Moyano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
154
|
Tan J, Wang X, Phoon L, Yang H, Lan L. Resolution of ROS‐induced G‐quadruplexes and R‐loops at transcriptionally active sites is dependent on BLM helicase. FEBS Lett 2020; 594:1359-1367. [DOI: 10.1002/1873-3468.13738] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/23/2019] [Accepted: 01/15/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Jun Tan
- Massachusetts General Hospital Cancer Center Harvard Medical School Charlestown MA USA
- Department of Radiation Oncology Harvard Medical School Massachusetts General Hospital Boston MA USA
| | - Xiangyu Wang
- Massachusetts General Hospital Cancer Center Harvard Medical School Charlestown MA USA
- Department of Radiation Oncology Harvard Medical School Massachusetts General Hospital Boston MA USA
| | - Laiyee Phoon
- Massachusetts General Hospital Cancer Center Harvard Medical School Charlestown MA USA
- Department of Radiation Oncology Harvard Medical School Massachusetts General Hospital Boston MA USA
| | - Haibo Yang
- Massachusetts General Hospital Cancer Center Harvard Medical School Charlestown MA USA
- Department of Radiation Oncology Harvard Medical School Massachusetts General Hospital Boston MA USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center Harvard Medical School Charlestown MA USA
- Department of Radiation Oncology Harvard Medical School Massachusetts General Hospital Boston MA USA
| |
Collapse
|
155
|
Pérez-Martínez L, Öztürk M, Butter F, Luke B. Npl3 stabilizes R-loops at telomeres to prevent accelerated replicative senescence. EMBO Rep 2020; 21:e49087. [PMID: 32026548 PMCID: PMC7054685 DOI: 10.15252/embr.201949087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/12/2023] Open
Abstract
Telomere shortening rates must be regulated to prevent premature replicative senescence. TERRA R‐loops become stabilized at critically short telomeres to promote their elongation through homology‐directed repair (HDR), thereby counteracting senescence onset. Using a non‐bias proteomic approach to detect telomere binding factors, we identified Npl3, an RNA‐binding protein previously implicated in multiple RNA biogenesis processes. Using chromatin immunoprecipitation and RNA immunoprecipitation, we demonstrate that Npl3 interacts with TERRA and telomeres. Furthermore, we show that Npl3 associates with telomeres in an R‐loop‐dependent manner, as changes in R‐loop levels, for example, at short telomeres, modulate the recruitment of Npl3 to chromosome ends. Through a series of genetic and biochemical approaches, we reveal that Npl3 binds to TERRA and stabilizes R‐loops at short telomeres, which in turn promotes HDR and prevents premature replicative senescence onset. This may have implications for diseases associated with excessive telomere shortening.
Collapse
Affiliation(s)
| | - Merve Öztürk
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Brian Luke
- Institute of Molecular Biology (IMB), Mainz, Germany.,Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg Universität, Mainz, Germany
| |
Collapse
|
156
|
Regulation of long non-coding RNAs and genome dynamics by the RNA surveillance machinery. Nat Rev Mol Cell Biol 2020; 21:123-136. [PMID: 32020081 DOI: 10.1038/s41580-019-0209-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Much of the mammalian genome is transcribed, generating long non-coding RNAs (lncRNAs) that can undergo post-transcriptional surveillance whereby only a subset of the non-coding transcripts is allowed to attain sufficient stability to persist in the cellular milieu and control various cellular functions. Paralleling protein turnover by the proteasome complex, lncRNAs are also likely to exist in a dynamic equilibrium that is maintained through constant monitoring by the RNA surveillance machinery. In this Review, we describe the RNA surveillance factors and discuss the vital role of lncRNA surveillance in orchestrating various biological processes, including the protection of genome integrity, maintenance of pluripotency of embryonic stem cells, antibody-gene diversification, coordination of immune cell activation and regulation of heterochromatin formation. We also discuss examples of human diseases and developmental defects associated with the failure of RNA surveillance mechanisms, further highlighting the importance of lncRNA surveillance in maintaining cell and organism functions and health.
Collapse
|
157
|
Novarina D, Janssens GE, Bokern K, Schut T, Oerle NC, Kazemier HG, Veenhoff LM, Chang M. A genome-wide screen identifies genes that suppress the accumulation of spontaneous mutations in young and aged yeast cells. Aging Cell 2020; 19:e13084. [PMID: 31854076 PMCID: PMC6996960 DOI: 10.1111/acel.13084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/27/2019] [Accepted: 11/10/2019] [Indexed: 12/24/2022] Open
Abstract
To ensure proper transmission of genetic information, cells need to preserve and faithfully replicate their genome, and failure to do so leads to genome instability, a hallmark of both cancer and aging. Defects in genes involved in guarding genome stability cause several human progeroid syndromes, and an age-dependent accumulation of mutations has been observed in different organisms, from yeast to mammals. However, it is unclear whether the spontaneous mutation rate changes during aging and whether specific pathways are important for genome maintenance in old cells. We developed a high-throughput replica-pinning approach to screen for genes important to suppress the accumulation of spontaneous mutations during yeast replicative aging. We found 13 known mutation suppression genes, and 31 genes that had no previous link to spontaneous mutagenesis, and all acted independently of age. Importantly, we identified PEX19, encoding an evolutionarily conserved peroxisome biogenesis factor, as an age-specific mutation suppression gene. While wild-type and pex19Δ young cells have similar spontaneous mutation rates, aged cells lacking PEX19 display an elevated mutation rate. This finding suggests that functional peroxisomes may be important to preserve genome integrity specifically in old cells.
Collapse
Affiliation(s)
- Daniele Novarina
- European Research Institute for the Biology of Ageing University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Georges E. Janssens
- European Research Institute for the Biology of Ageing University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Koen Bokern
- European Research Institute for the Biology of Ageing University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Tim Schut
- European Research Institute for the Biology of Ageing University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Noor C. Oerle
- European Research Institute for the Biology of Ageing University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Hinke G. Kazemier
- European Research Institute for the Biology of Ageing University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing University Medical Center Groningen University of Groningen Groningen The Netherlands
| | - Michael Chang
- European Research Institute for the Biology of Ageing University Medical Center Groningen University of Groningen Groningen The Netherlands
| |
Collapse
|
158
|
Regulatory R-loops as facilitators of gene expression and genome stability. Nat Rev Mol Cell Biol 2020; 21:167-178. [PMID: 32005969 DOI: 10.1038/s41580-019-0206-3] [Citation(s) in RCA: 317] [Impact Index Per Article: 63.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2019] [Indexed: 12/23/2022]
Abstract
R-loops are three-stranded structures that harbour an RNA-DNA hybrid and frequently form during transcription. R-loop misregulation is associated with DNA damage, transcription elongation defects, hyper-recombination and genome instability. In contrast to such 'unscheduled' R-loops, evidence is mounting that cells harness the presence of RNA-DNA hybrids in scheduled, 'regulatory' R-loops to promote DNA transactions, including transcription termination and other steps of gene regulation, telomere stability and DNA repair. R-loops formed by cellular RNAs can regulate histone post-translational modification and may be recognized by dedicated reader proteins. The two-faced nature of R-loops implies that their formation, location and timely removal must be tightly regulated. In this Perspective, we discuss the cellular processes that regulatory R-loops modulate, the regulation of R-loops and the potential differences that may exist between regulatory R-loops and unscheduled R-loops.
Collapse
|
159
|
Goodman LD, Bonini NM. New Roles for Canonical Transcription Factors in Repeat Expansion Diseases. Trends Genet 2019; 36:81-92. [PMID: 31837826 DOI: 10.1016/j.tig.2019.11.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 12/11/2022]
Abstract
The presence of microsatellite repeat expansions within genes is associated with >30 neurological diseases. Of interest, (GGGGCC)>30-repeats within C9orf72 are associated with amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). These expansions can be 100s to 1000s of units long. Thus, it is perplexing how RNA-polymerase II (RNAPII) can successfully transcribe them. Recent investigations focusing on GGGGCC-transcription have identified specific, canonical complexes that may promote RNAPII-transcription at these GC-rich microsatellites: the DSIF complex and PAF1C. These complexes may be important for resolving the unique secondary structures formed by GGGGCC-DNA during transcription. Importantly, this process can produce potentially toxic repeat-containing RNA that can encode potentially toxic peptides, impacting neuron function and health. Understanding how transcription of these repeats occurs has implications for therapeutics in multiple diseases.
Collapse
Affiliation(s)
- Lindsey D Goodman
- Department of Molecular and Human Genetics, Neurological Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
160
|
Hull RM, King M, Pizza G, Krueger F, Vergara X, Houseley J. Transcription-induced formation of extrachromosomal DNA during yeast ageing. PLoS Biol 2019; 17:e3000471. [PMID: 31794573 PMCID: PMC6890164 DOI: 10.1371/journal.pbio.3000471] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/31/2019] [Indexed: 12/22/2022] Open
Abstract
Extrachromosomal circular DNA (eccDNA) facilitates adaptive evolution by allowing rapid and extensive gene copy number variation and is implicated in the pathology of cancer and ageing. Here, we demonstrate that yeast aged under environmental copper accumulate high levels of eccDNA containing the copper-resistance gene CUP1. Transcription of the tandemly repeated CUP1 gene causes CUP1 eccDNA accumulation, which occurs in the absence of phenotypic selection. We have developed a sensitive and quantitative eccDNA sequencing pipeline that reveals CUP1 eccDNA accumulation on copper exposure to be exquisitely site specific, with no other detectable changes across the eccDNA complement. eccDNA forms de novo from the CUP1 locus through processing of DNA double-strand breaks (DSBs) by Sae2, Mre11 and Mus81, and genome-wide analyses show that other protein coding eccDNA species in aged yeast share a similar biogenesis pathway. Although abundant, we find that CUP1 eccDNA does not replicate efficiently, and high-copy numbers in aged cells arise through frequent formation events combined with asymmetric DNA segregation. The transcriptional stimulation of CUP1 eccDNA formation shows that age-linked genetic change varies with transcription pattern, resulting in gene copy number profiles tailored by environment. Transcription can cause the de novo formation of protein-coding extrachromosomal DNA that accumulates in ageing yeast cells; these extrachromosomal circular DNA molecules form frequently by a DNA double strand break repair mechanism.
Collapse
Affiliation(s)
- Ryan M. Hull
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Michelle King
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Grazia Pizza
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Felix Krueger
- Babraham Bioinformatics, Babraham Institute, Cambridge, United Kingdom
| | - Xabier Vergara
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
| | - Jonathan Houseley
- Epigenetics Programme, Babraham Institute, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
161
|
Chiang HC, Zhang X, Li J, Zhao X, Chen J, Wang HTH, Jatoi I, Brenner A, Hu Y, Li R. BRCA1-associated R-loop affects transcription and differentiation in breast luminal epithelial cells. Nucleic Acids Res 2019; 47:5086-5099. [PMID: 30982901 PMCID: PMC6547407 DOI: 10.1093/nar/gkz262] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 03/06/2019] [Accepted: 04/01/2019] [Indexed: 12/17/2022] Open
Abstract
BRCA1-associated basal-like breast cancer originates from luminal progenitor cells. Breast epithelial cells from cancer-free BRCA1 mutation carriers are defective in luminal differentiation. However, how BRCA1 deficiency leads to lineage-specific differentiation defect is not clear. BRCA1 is implicated in resolving R-loops, DNA-RNA hybrid structures associated with genome instability and transcriptional regulation. We recently showed that R-loops are preferentially accumulated in breast luminal epithelial cells of BRCA1 mutation carriers. Here, we interrogate the impact of a BRCA1 mutation-associated R-loop located in a putative transcriptional enhancer upstream of the ERα-encoding ESR1 gene. Genetic ablation confirms the relevance of this R-loop-containing region to enhancer-promoter interactions and transcriptional activation of the corresponding neighboring genes, including ESR1, CCDC170 and RMND1. BRCA1 knockdown in ERα+ luminal breast cancer cells increases intensity of this R-loop and reduces transcription of its neighboring genes. The deleterious effect of BRCA1 depletion on transcription is mitigated by ectopic expression of R-loop-removing RNase H1. Furthermore, RNase H1 overexpression in primary breast cells from BRCA1 mutation carriers results in a shift from luminal progenitor cells to mature luminal cells. Our findings suggest that BRCA1-dependent R-loop mitigation contributes to luminal cell-specific transcription and differentiation, which could in turn suppress BRCA1-associated tumorigenesis.
Collapse
Affiliation(s)
- Huai-Chin Chiang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Xiaowen Zhang
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Jingwei Li
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Xiayan Zhao
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jerry Chen
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Howard T-H Wang
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ismail Jatoi
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Andrew Brenner
- Department of Medicine, The Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yanfen Hu
- Department of Anatomy & Cell Biology, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| | - Rong Li
- Department of Biochemistry & Molecular Medicine, School of Medicine & Health Sciences, The George Washington University, Washington, DC 20037, USA
| |
Collapse
|
162
|
Hawkins M, Dimude JU, Howard JAL, Smith AJ, Dillingham MS, Savery NJ, Rudolph CJ, McGlynn P. Direct removal of RNA polymerase barriers to replication by accessory replicative helicases. Nucleic Acids Res 2019; 47:5100-5113. [PMID: 30869136 PMCID: PMC6547429 DOI: 10.1093/nar/gkz170] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/22/2019] [Accepted: 03/08/2019] [Indexed: 11/24/2022] Open
Abstract
Bacterial genome duplication and transcription require simultaneous access to the same DNA template. Conflicts between the replisome and transcription machinery can lead to interruption of DNA replication and loss of genome stability. Pausing, stalling and backtracking of transcribing RNA polymerases add to this problem and present barriers to replisomes. Accessory helicases promote fork movement through nucleoprotein barriers and exist in viruses, bacteria and eukaryotes. Here, we show that stalled Escherichia coli transcription elongation complexes block reconstituted replisomes. This physiologically relevant block can be alleviated by the accessory helicase Rep or UvrD, resulting in the formation of full-length replication products. Accessory helicase action during replication-transcription collisions therefore promotes continued replication without leaving gaps in the DNA. In contrast, DinG does not promote replisome movement through stalled transcription complexes in vitro. However, our data demonstrate that DinG operates indirectly in vivo to reduce conflicts between replication and transcription. These results suggest that Rep and UvrD helicases operate on DNA at the replication fork whereas DinG helicase acts via a different mechanism.
Collapse
Affiliation(s)
- Michelle Hawkins
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Juachi U Dimude
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | | | - Abigail J Smith
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Mark S Dillingham
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Nigel J Savery
- DNA-Protein Interactions Unit, School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Christian J Rudolph
- Division of Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Peter McGlynn
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| |
Collapse
|
163
|
Kim JJ, Lee SY, Gong F, Battenhouse AM, Boutz DR, Bashyal A, Refvik ST, Chiang CM, Xhemalce B, Paull TT, Brodbelt JS, Marcotte EM, Miller KM. Systematic bromodomain protein screens identify homologous recombination and R-loop suppression pathways involved in genome integrity. Genes Dev 2019; 33:1751-1774. [PMID: 31753913 PMCID: PMC6942044 DOI: 10.1101/gad.331231.119] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/28/2019] [Indexed: 01/01/2023]
Abstract
Bromodomain proteins (BRD) are key chromatin regulators of genome function and stability as well as therapeutic targets in cancer. Here, we systematically delineate the contribution of human BRD proteins for genome stability and DNA double-strand break (DSB) repair using several cell-based assays and proteomic interaction network analysis. Applying these approaches, we identify 24 of the 42 BRD proteins as promoters of DNA repair and/or genome integrity. We identified a BRD-reader function of PCAF that bound TIP60-mediated histone acetylations at DSBs to recruit a DUB complex to deubiquitylate histone H2BK120, to allowing direct acetylation by PCAF, and repair of DSBs by homologous recombination. We also discovered the bromo-and-extra-terminal (BET) BRD proteins, BRD2 and BRD4, as negative regulators of transcription-associated RNA-DNA hybrids (R-loops) as inhibition of BRD2 or BRD4 increased R-loop formation, which generated DSBs. These breaks were reliant on topoisomerase II, and BRD2 directly bound and activated topoisomerase I, a known restrainer of R-loops. Thus, comprehensive interactome and functional profiling of BRD proteins revealed new homologous recombination and genome stability pathways, providing a framework to understand genome maintenance by BRD proteins and the effects of their pharmacological inhibition.
Collapse
Affiliation(s)
- Jae Jin Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Seo Yun Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Fade Gong
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Anna M Battenhouse
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Daniel R Boutz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Aarti Bashyal
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Samantha T Refvik
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- The Howard Hughes Medical Institute
| | - Cheng-Ming Chiang
- Simmons Comprehensive Cancer Center, Department of Biochemistry, Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Blerta Xhemalce
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Tanya T Paull
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- The Howard Hughes Medical Institute
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Jennifer S Brodbelt
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas 78712, USA
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
164
|
Cerritelli SM, Crouch RJ. RNase H2-RED carpets the path to eukaryotic RNase H2 functions. DNA Repair (Amst) 2019; 84:102736. [PMID: 31761672 PMCID: PMC6936605 DOI: 10.1016/j.dnarep.2019.102736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/15/2019] [Indexed: 11/24/2022]
Abstract
Eukaryotic RNases H2 have dual functions in initiating the removal of ribonucleoside monophosphates (rNMPs) incorporated by DNA polymerases during DNA synthesis and in cleaving the RNA moiety of RNA/DNA hybrids formed during transcription and retrotransposition. The other major cellular RNase H, RNase H1, shares the hybrid processing activity, but not all substrates. After RNase H2 incision at the rNMPs in DNA the Ribonucleotide Excision Repair (RER) pathway completes the removal, restoring dsDNA. The development of the RNase H2-RED (Ribonucleotide Excision Defective) mutant enzyme, which can process RNA/DNA hybrids but is unable to cleave rNMPs embedded in DNA has unlinked the two activities and illuminated the roles of RNase H2 in cellular metabolism. Studies mostly in Saccharomyces cerevisiae, have shown both activities of RNase H2 are necessary to maintain genome integrity and that RNase H1 and H2 have overlapping as well as distinct RNA/DNA hybrid substrates. In mouse RNase H2-RED confirmed that rNMPs in DNA during embryogenesis induce lethality in a p53-dependent DNA damage response. In mammalian cell cultures, RNase H2-RED helped identifying DNA lesions produced by Top1 cleavage at rNMPs and led to determine that RNase H2 participates in the retrotransposition of LINE-1 elements. In this review, we summarize the studies and conclusions reached by utilization of RNase H2-RED enzyme in different model systems.
Collapse
Affiliation(s)
- Susana M Cerritelli
- SFR, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Crouch
- SFR, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
165
|
Saha A, Nanavaty VP, Li B. Telomere and Subtelomere R-loops and Antigenic Variation in Trypanosomes. J Mol Biol 2019; 432:4167-4185. [PMID: 31682833 DOI: 10.1016/j.jmb.2019.10.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/02/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
Trypanosoma brucei is a kinetoplastid parasite that causes African trypanosomiasis, which is fatal if left untreated. T. brucei regularly switches its major surface antigen, VSG, to evade the host immune responses. VSGs are exclusively expressed from subtelomeric expression sites (ESs) where VSG genes are flanked by upstream 70 bp repeats and downstream telomeric repeats. The telomere downstream of the active VSG is transcribed into a long-noncoding RNA (TERRA), which forms RNA:DNA hybrids (R-loops) with the telomeric DNA. At an elevated level, telomere R-loops cause more telomeric and subtelomeric double-strand breaks (DSBs) and increase VSG switching rate. In addition, stabilized R-loops are observed at the 70 bp repeats and immediately downstream of ES-linked VSGs in RNase H defective cells, which also have an increased amount of subtelomeric DSBs and more frequent VSG switching. Although subtelomere plasticity is expected to be beneficial to antigenic variation, severe defects in subtelomere integrity and stability increase cell lethality. Therefore, regulation of the telomere and 70 bp repeat R-loop levels is important for the balance between antigenic variation and cell fitness in T. brucei. In addition, the high level of the active ES transcription favors accumulation of R-loops at the telomere and 70 bp repeats, providing an intrinsic mechanism for local DSB formation, which is a strong inducer of VSG switching.
Collapse
Affiliation(s)
- Arpita Saha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Science and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Vishal P Nanavaty
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Science and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Science and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA; Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
166
|
Lockhart A, Pires VB, Bento F, Kellner V, Luke-Glaser S, Yakoub G, Ulrich HD, Luke B. RNase H1 and H2 Are Differentially Regulated to Process RNA-DNA Hybrids. Cell Rep 2019; 29:2890-2900.e5. [DOI: 10.1016/j.celrep.2019.10.108] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/10/2019] [Accepted: 10/28/2019] [Indexed: 10/25/2022] Open
|
167
|
R-Loops Promote Antisense Transcription across the Mammalian Genome. Mol Cell 2019; 76:600-616.e6. [PMID: 31679819 PMCID: PMC6868509 DOI: 10.1016/j.molcel.2019.10.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/14/2019] [Accepted: 09/30/2019] [Indexed: 11/25/2022]
Abstract
Widespread antisense long noncoding RNA (lncRNA) overlap with many protein-coding genes in mammals and emanate from gene promoter, enhancer, and termination regions. However, their origin and biological purpose remain unclear. We show that these antisense lncRNA can be generated by R-loops that form when nascent transcript invades the DNA duplex behind elongating RNA polymerase II (Pol II). Biochemically, R-loops act as intrinsic Pol II promoters to induce de novo RNA synthesis. Furthermore, their removal across the human genome by RNase H1 overexpression causes the selective reduction of antisense transcription. Consequently, we predict that R-loops act to facilitate the synthesis of many gene proximal antisense lncRNA. Not only are R-loops widely associated with DNA damage and repair, but we now show that they have the capacity to promote de novo transcript synthesis that may have aided the evolution of gene regulation. R-loops formed within plasmids promote antisense transcription in nuclear extracts TSS of lncRNA and eRNA are often near R-loop structures and sensitive to RNase H1 Preinitiation complexes associated with lncRNA synthesis are R-loop dependent Many mammalian lncRNA derive from R-loop promoter activity
Collapse
|
168
|
Kim N. The Interplay between G-quadruplex and Transcription. Curr Med Chem 2019; 26:2898-2917. [PMID: 29284393 PMCID: PMC6026074 DOI: 10.2174/0929867325666171229132619] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/22/2017] [Accepted: 12/21/2017] [Indexed: 12/25/2022]
Abstract
G4 DNA is a non-canonical DNA structure consisting of a stacked array of Gquartets held together by base pairing between guanine bases. The formation of G4 DNA requires a cluster of guanine-runs within a strand of DNA. Even though the chemistry of this remarkable DNA structure has been under investigation for decades, evidence supporting the biological relevance of G4 DNA has only begun to emerge and point to very important and conserved biological functions. This review will specifically focus on the interplay between transcription and G4 DNA and discuss two alternative but interconnected perspectives. The first part of the review will describe the evidence substantiating the intriguing idea that a shift in DNA structural conformation could be another layer of non-genetic or epigenetic regulator of gene expression and thereby an important determinant of cell fate. The second part will describe the recent genetic studies showing that those genomic loci containing G4 DNA-forming guanine-rich sequences are potential hotspots of genome instability and that the level and orientation of transcription is critical in the materialization of genome instability associated with these sequences.
Collapse
Affiliation(s)
- Nayun Kim
- Department of Microbiology and Molecular Genetics, The University of Texas Health Science Center at Houston; The University of Texas Graduate School of Biomedical Sciences, Houston, TX, United States
| |
Collapse
|
169
|
Tsegay PS, Lai Y, Liu Y. Replication Stress and Consequential Instability of the Genome and Epigenome. Molecules 2019; 24:molecules24213870. [PMID: 31717862 PMCID: PMC6864812 DOI: 10.3390/molecules24213870] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Cells must faithfully duplicate their DNA in the genome to pass their genetic information to the daughter cells. To maintain genomic stability and integrity, double-strand DNA has to be replicated in a strictly regulated manner, ensuring the accuracy of its copy number, integrity and epigenetic modifications. However, DNA is constantly under the attack of DNA damage, among which oxidative DNA damage is the one that most frequently occurs, and can alter the accuracy of DNA replication, integrity and epigenetic features, resulting in DNA replication stress and subsequent genome and epigenome instability. In this review, we summarize DNA damage-induced replication stress, the formation of DNA secondary structures, peculiar epigenetic modifications and cellular responses to the stress and their impact on the instability of the genome and epigenome mainly in eukaryotic cells.
Collapse
Affiliation(s)
- Pawlos S. Tsegay
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
| | - Yanhao Lai
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL 33199, USA;
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA;
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
- Correspondence:
| |
Collapse
|
170
|
R Loops: From Physiological to Pathological Roles. Cell 2019; 179:604-618. [PMID: 31607512 DOI: 10.1016/j.cell.2019.08.055] [Citation(s) in RCA: 427] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
DNA-RNA hybrids play a physiological role in cellular processes, but often, they represent non-scheduled co-transcriptional structures with a negative impact on transcription, replication and DNA repair. Accumulating evidence suggests that they constitute a source of replication stress, DNA breaks and genome instability. Reciprocally, DNA breaks facilitate DNA-RNA hybrid formation by releasing the double helix torsional conformation. Cells avoid DNA-RNA accumulation by either preventing or removing hybrids directly or by DNA repair-coupled mechanisms. Given the R-loop impact on chromatin and genome organization and its potential relation with genetic diseases, we review R-loop homeostasis as well as their physiological and pathological roles.
Collapse
|
171
|
Zatreanu D, Han Z, Mitter R, Tumini E, Williams H, Gregersen L, Dirac-Svejstrup AB, Roma S, Stewart A, Aguilera A, Svejstrup JQ. Elongation Factor TFIIS Prevents Transcription Stress and R-Loop Accumulation to Maintain Genome Stability. Mol Cell 2019; 76:57-69.e9. [PMID: 31519522 PMCID: PMC6863433 DOI: 10.1016/j.molcel.2019.07.037] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/28/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023]
Abstract
Although correlations between RNA polymerase II (RNAPII) transcription stress, R-loops, and genome instability have been established, the mechanisms underlying these connections remain poorly understood. Here, we used a mutant version of the transcription elongation factor TFIIS (TFIISmut), aiming to specifically induce increased levels of RNAPII pausing, arrest, and/or backtracking in human cells. Indeed, TFIISmut expression results in slower elongation rates, relative depletion of polymerases from the end of genes, and increased levels of stopped RNAPII; it affects mRNA splicing and termination as well. Remarkably, TFIISmut expression also dramatically increases R-loops, which may form at the anterior end of backtracked RNAPII and trigger genome instability, including DNA strand breaks. These results shed light on the relationship between transcription stress and R-loops and suggest that different classes of R-loops may exist, potentially with distinct consequences for genome stability.
Collapse
Affiliation(s)
- Diana Zatreanu
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Zhong Han
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Richard Mitter
- Bioinformatics and Biostatistics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Emanuela Tumini
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Hannah Williams
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Lea Gregersen
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - A Barbara Dirac-Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Stefania Roma
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Aengus Stewart
- Bioinformatics and Biostatistics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andres Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Jesper Q Svejstrup
- Mechanisms of Transcription Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
172
|
Hu Y, Bennett HW, Liu N, Moravec M, Williams JF, Azzalin CM, King MC. RNA-DNA Hybrids Support Recombination-Based Telomere Maintenance in Fission Yeast. Genetics 2019; 213:431-447. [PMID: 31405990 PMCID: PMC6781888 DOI: 10.1534/genetics.119.302606] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/09/2019] [Indexed: 11/18/2022] Open
Abstract
A subset of cancers rely on telomerase-independent mechanisms to maintain their chromosome ends. The predominant "alternative lengthening of telomeres" pathway appears dependent on homology-directed repair (HDR) to maintain telomeric DNA. However, the molecular changes needed for cells to productively engage in telomeric HDR are poorly understood. To gain new insights into this transition, we monitored the state of telomeres during serial culture of fission yeast (Schizosaccharomyces pombe) lacking the telomerase recruitment factor Ccq1. Rad52 is loaded onto critically short telomeres shortly after germination despite continued telomere erosion, suggesting that recruitment of recombination factors is not sufficient to maintain telomeres in the absence of telomerase function. Instead, survivor formation coincides with the derepression of telomeric repeat-containing RNA (TERRA). In this context, degradation of TERRA associated with the telomere in the form of R-loops drives a severe growth crisis, ultimately leading to a novel type of survivor with linear chromosomes and altered cytological telomere characteristics, including the loss of the shelterin component Rap1 (but not the TRF1/TRF2 ortholog, Taz1) from the telomere. We demonstrate that deletion of Rap1 is protective in this context, preventing the growth crisis that is otherwise triggered by degradation of telomeric R-loops in survivors with linear chromosomes. These findings suggest that upregulation of telomere-engaged TERRA, or altered recruitment of shelterin components, can support telomerase-independent telomere maintenance.
Collapse
Affiliation(s)
- Yan Hu
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Henrietta W Bennett
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Na Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Martin Moravec
- Institute of Biochemistry (IBC), Eidgenössische Technische Hochschule Zürich (ETHZ), 8093, Switzerland
| | - Jessica F Williams
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| | - Claus M Azzalin
- Instituto de Medicina Molecular João Lobo Antunes (iMM), Faculdade de Medicina da Universidade de Lisboa, 1649-028, Portugal
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520-8002
| |
Collapse
|
173
|
Briggs E, Crouch K, Lemgruber L, Hamilton G, Lapsley C, McCulloch R. Trypanosoma brucei ribonuclease H2A is an essential R-loop processing enzyme whose loss causes DNA damage during transcription initiation and antigenic variation. Nucleic Acids Res 2019; 47:9180-9197. [PMID: 31350892 PMCID: PMC6753483 DOI: 10.1093/nar/gkz644] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/09/2019] [Accepted: 07/16/2019] [Indexed: 12/21/2022] Open
Abstract
Ribonucleotides represent a threat to DNA genome stability and transmission. Two types of Ribonuclease H (RNase H) excise ribonucleotides when they form part of the DNA strand, or hydrolyse RNA when it base-pairs with DNA in structures termed R-loops. Loss of either RNase H is lethal in mammals, whereas yeast survives the absence of both enzymes. RNase H1 loss is tolerated by the parasite Trypanosoma brucei but no work has examined the function of RNase H2. Here we show that loss of T. brucei RNase H2 (TbRH2A) leads to growth and cell cycle arrest that is concomitant with accumulation of nuclear damage at sites of RNA polymerase (Pol) II transcription initiation, revealing a novel and critical role for RNase H2. Differential gene expression analysis reveals limited overall changes in RNA levels for RNA Pol II genes after TbRH2A loss, but increased perturbation of nucleotide metabolic genes. Finally, we show that TbRH2A loss causes R-loop and DNA damage accumulation in telomeric RNA Pol I transcription sites, also leading to altered gene expression. Thus, we demonstrate separation of function between two nuclear T. brucei RNase H enzymes during RNA Pol II transcription, but overlap in function during RNA Pol I-mediated gene expression during host immune evasion.
Collapse
Affiliation(s)
- Emma Briggs
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Leandro Lemgruber
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Graham Hamilton
- Glasgow Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Rd, Bearsden G61 1QH, UK
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
174
|
Chang EYC, Tsai S, Aristizabal MJ, Wells JP, Coulombe Y, Busatto FF, Chan YA, Kumar A, Dan Zhu Y, Wang AYH, Fournier LA, Hieter P, Kobor MS, Masson JY, Stirling PC. MRE11-RAD50-NBS1 promotes Fanconi Anemia R-loop suppression at transcription-replication conflicts. Nat Commun 2019; 10:4265. [PMID: 31537797 PMCID: PMC6753070 DOI: 10.1038/s41467-019-12271-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/30/2019] [Indexed: 12/25/2022] Open
Abstract
Ectopic R-loop accumulation causes DNA replication stress and genome instability. To avoid these outcomes, cells possess a range of anti-R-loop mechanisms, including RNaseH that degrades the RNA moiety in R-loops. To comprehensively identify anti-R-loop mechanisms, we performed a genome-wide trigenic interaction screen in yeast lacking RNH1 and RNH201. We identified >100 genes critical for fitness in the absence of RNaseH, which were enriched for DNA replication fork maintenance factors including the MRE11-RAD50-NBS1 (MRN) complex. While MRN has been shown to promote R-loops at DNA double-strand breaks, we show that it suppresses R-loops and associated DNA damage at transcription-replication conflicts. This occurs through a non-nucleolytic function of MRE11 that is important for R-loop suppression by the Fanconi Anemia pathway. This work establishes a novel role for MRE11-RAD50-NBS1 in directing tolerance mechanisms at transcription-replication conflicts.
Collapse
Affiliation(s)
| | - Shuhe Tsai
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Maria J Aristizabal
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, V5Z 4H4, Canada
| | - James P Wells
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yan Coulombe
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Franciele F Busatto
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Yujia A Chan
- The Broad Institute of MIT and Harvard University, Cambridge, MA, 02142, USA
| | - Arun Kumar
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yi Dan Zhu
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | | | | | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, V5Z 4H4, Canada
| | - Jean-Yves Masson
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada.
| |
Collapse
|
175
|
Barroso S, Herrera‐Moyano E, Muñoz S, García‐Rubio M, Gómez‐González B, Aguilera A. The DNA damage response acts as a safeguard against harmful DNA-RNA hybrids of different origins. EMBO Rep 2019; 20:e47250. [PMID: 31338941 PMCID: PMC6726908 DOI: 10.15252/embr.201847250] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/14/2022] Open
Abstract
Despite playing physiological roles in specific situations, DNA-RNA hybrids threat genome integrity. To investigate how cells do counteract spontaneous DNA-RNA hybrids, here we screen an siRNA library covering 240 human DNA damage response (DDR) genes and select siRNAs causing DNA-RNA hybrid accumulation and a significant increase in hybrid-dependent DNA breakage. We identify post-replicative repair and DNA damage checkpoint factors, including those of the ATM/CHK2 and ATR/CHK1 pathways. Thus, spontaneous DNA-RNA hybrids are likely a major source of replication stress, but they can also accumulate and menace genome integrity as a consequence of unrepaired DSBs and post-replicative ssDNA gaps in normal cells. We show that DNA-RNA hybrid accumulation correlates with increased DNA damage and chromatin compaction marks. Our results suggest that different mechanisms can lead to DNA-RNA hybrids with distinct consequences for replication and DNA dynamics at each cell cycle stage and support the conclusion that DNA-RNA hybrids are a common source of spontaneous DNA damage that remains unsolved under a deficient DDR.
Collapse
Affiliation(s)
- Sonia Barroso
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Emilia Herrera‐Moyano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Sergio Muñoz
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - María García‐Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Belén Gómez‐González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa‐CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| |
Collapse
|
176
|
Kuznetsov VA, Bondarenko V, Wongsurawat T, Yenamandra SP, Jenjaroenpun P. Toward predictive R-loop computational biology: genome-scale prediction of R-loops reveals their association with complex promoter structures, G-quadruplexes and transcriptionally active enhancers. Nucleic Acids Res 2019; 46:7566-7585. [PMID: 29945198 PMCID: PMC6125637 DOI: 10.1093/nar/gky554] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/08/2018] [Indexed: 12/31/2022] Open
Abstract
R-loops are three-stranded RNA:DNA hybrid structures essential for many normal and pathobiological processes. Previously, we generated a quantitative R-loop forming sequence (RLFS) model, quantitative model of R-loop-forming sequences (QmRLFS) and predicted ∼660 000 RLFSs; most of them located in genes and gene-flanking regions, G-rich regions and disease-associated genomic loci in the human genome. Here, we conducted a comprehensive comparative analysis of these RLFSs using experimental data and demonstrated the high performance of QmRLFS predictions on the nucleotide and genome scales. The preferential co-localization of RLFS with promoters, U1 splice sites, gene ends, enhancers and non-B DNA structures, such as G-quadruplexes, provides evidence for the mechanical linkage between DNA tertiary structures, transcription initiation and R-loops in critical regulatory genome regions. We introduced and characterized an abundant class of reverse-forward RLFS clusters highly enriched in non-B DNA structures, which localized to promoters, gene ends and enhancers. The RLFS co-localization with promoters and transcriptionally active enhancers suggested new models for in cis and in trans regulation by RNA:DNA hybrids of transcription initiation and formation of 3D-chromatin loops. Overall, this study provides a rationale for the discovery and characterization of the non-B DNA regulatory structures involved in the formation of the RNA:DNA interactome as the basis for an emerging quantitative R-loop biology and pathobiology.
Collapse
Affiliation(s)
- Vladimir A Kuznetsov
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Urology, Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Vladyslav Bondarenko
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Thidathip Wongsurawat
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Surya P Yenamandra
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Piroon Jenjaroenpun
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore.,Department of Biomedical Informatics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
177
|
Sugaya K. Chromosome instability caused by mutations in the genes involved in transcription and splicing. RNA Biol 2019; 16:1521-1525. [PMID: 31385554 DOI: 10.1080/15476286.2019.1652523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Mutations in molecules involved in transcription and splicing can cause chromosome instability such as sister chromatid exchanges. We isolated and characterized responsible genes from mammalian temperature-sensitive mutant cells showing chromosome instability. A mutation in the largest subunit of RNA polymerase II affected DNA synthesis in S phase-arrested cells, resulting in abnormal induction of sister chromatid exchanges. The yeast mutant harboring a homologous mutation showed very similar phenotype to that of the mammalian mutant. A mutation in Smu1, which is involved in splicing, also affected DNA synthesis in S and G2 phase-arrested cells, resulting in abnormal induction of sister chromatid exchanges and chromosomal aberrations. These cells showed a connection between defects of RNA metabolism and induction of chromosome instability. Genome instability appeared to be caused by links between RNA metabolism and replication resulting in genomic recombination. RNA metabolism can be regarded as one possible driver of genome modification triggering genome evolution.
Collapse
Affiliation(s)
- Kimihiko Sugaya
- Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST) , Chiba , Japan.,Group of Quantum-state Controlled MRI, QST , Chiba , Japan
| |
Collapse
|
178
|
Burger K, Ketley RF, Gullerova M. Beyond the Trinity of ATM, ATR, and DNA-PK: Multiple Kinases Shape the DNA Damage Response in Concert With RNA Metabolism. Front Mol Biosci 2019; 6:61. [PMID: 31428617 PMCID: PMC6688092 DOI: 10.3389/fmolb.2019.00061] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/11/2019] [Indexed: 12/22/2022] Open
Abstract
Our genome is constantly exposed to endogenous and exogenous sources of DNA damage resulting in various alterations of the genetic code. DNA double-strand breaks (DSBs) are considered one of the most cytotoxic lesions. Several types of repair pathways act to repair DNA damage and maintain genome stability. In the canonical DNA damage response (DDR) DSBs are recognized by the sensing kinases Ataxia-telangiectasia mutated (ATM), Ataxia-telangiectasia and Rad3-related (ATR), and DNA-dependent protein kinase (DNA-PK), which initiate a cascade of kinase-dependent amplification steps known as DSB signaling. Recent evidence suggests that efficient recognition and repair of DSBs relies on the transcription and processing of non-coding (nc)RNA molecules by RNA polymerase II (RNAPII) and the RNA interference (RNAi) factors Drosha and Dicer. Multiple kinases influence the phosphorylation status of both the RNAPII carboxy-terminal domain (CTD) and Dicer in order to regulate RNA-dependent DSBs repair. The importance of kinase signaling and RNA processing in the DDR is highlighted by the regulation of p53-binding protein (53BP1), a key regulator of DSB repair pathway choice between homologous recombination (HR) and non-homologous end joining (NHEJ). Additionally, emerging evidence suggests that RNA metabolic enzymes also play a role in the repair of other types of DNA damage, including the DDR to ultraviolet radiation (UVR). RNAi factors are also substrates for mitogen-activated protein kinase (MAPK) signaling and mediate the turnover of ncRNA during nucleotide excision repair (NER) in response to UVR. Here, we review kinase-dependent phosphorylation events on RNAPII, Drosha and Dicer, and 53BP1 that modulate the key steps of the DDR to DSBs and UVR, suggesting an intimate link between the DDR and RNA metabolism.
Collapse
Affiliation(s)
| | | | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
179
|
Neugebauer KM. Nascent RNA and the Coordination of Splicing with Transcription. Cold Spring Harb Perspect Biol 2019; 11:11/8/a032227. [PMID: 31371351 DOI: 10.1101/cshperspect.a032227] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
At each active protein-encoding gene, nascent RNA is tethered to the DNA axis by elongating RNA polymerase II (Pol II) and is continuously altered by splicing and other processing events during its synthesis. This review discusses the development of three major methods that enable us to track the conversion of precursor messenger RNA (pre-mRNA) to messenger RNA (mRNA) products in vivo: live-cell imaging, metabolic labeling of RNA, and RNA-seq of purified nascent RNA. These approaches are complementary, addressing distinct issues of transcription rates and intron lifetimes alongside spatial information regarding the gene position of Pol II at which spliceosomes act. The findings will be placed in the context of active transcription units, each of which-because of the presence of nascent RNA, Pol II, and features of the chromatin environment-will recruit a potentially gene-specific constellation of RNA binding proteins and processing machineries.
Collapse
Affiliation(s)
- Karla M Neugebauer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520
| |
Collapse
|
180
|
Mersaoui SY, Yu Z, Coulombe Y, Karam M, Busatto FF, Masson J, Richard S. Arginine methylation of the DDX5 helicase RGG/RG motif by PRMT5 regulates resolution of RNA:DNA hybrids. EMBO J 2019; 38:e100986. [PMID: 31267554 PMCID: PMC6669924 DOI: 10.15252/embj.2018100986] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 05/15/2019] [Accepted: 05/28/2019] [Indexed: 01/09/2023] Open
Abstract
Aberrant transcription-associated RNA:DNA hybrid (R-loop) formation often causes catastrophic conflicts during replication, resulting in DNA double-strand breaks and genomic instability. Preventing such conflicts requires hybrid dissolution by helicases and/or RNase H. Little is known about how such helicases are regulated. Herein, we identify DDX5, an RGG/RG motif-containing DEAD-box family RNA helicase, as crucial player in R-loop resolution. In vitro, recombinant DDX5 resolves R-loops in an ATP-dependent manner, leading to R-loop degradation by the XRN2 exoribonuclease. DDX5-deficient cells accumulate R-loops at loci with propensity to form such structures based on RNA:DNA immunoprecipitation (DRIP)-qPCR, causing spontaneous DNA double-strand breaks and hypersensitivity to replication stress. DDX5 associates with XRN2 and resolves R-loops at transcriptional termination regions downstream of poly(A) sites, to facilitate RNA polymerase II release associated with transcriptional termination. Protein arginine methyltransferase 5 (PRMT5) binds and methylates DDX5 at its RGG/RG motif. This motif is required for DDX5 interaction with XRN2 and repression of cellular R-loops, but not essential for DDX5 helicase enzymatic activity. PRMT5-deficient cells accumulate R-loops, resulting in increased formation of γH2AX foci. Our findings exemplify a mechanism by which an RNA helicase is modulated by arginine methylation to resolve R-loops, and its potential role in regulating transcription.
Collapse
Affiliation(s)
- Sofiane Y Mersaoui
- Departments of Oncology and MedicineSegal Cancer CenterLady Davis Institute for Medical ResearchMcGill UniversityMontréalQCCanada
| | - Zhenbao Yu
- Departments of Oncology and MedicineSegal Cancer CenterLady Davis Institute for Medical ResearchMcGill UniversityMontréalQCCanada
| | - Yan Coulombe
- Genome Stability LaboratoryOncology DivisionCHU de Québec‐Université LavalQuébecQCCanada
- Department of Molecular Biology, Medical Biochemistry and PathologyLaval University Cancer Research CenterQuébecQCCanada
| | - Martin Karam
- Departments of Oncology and MedicineSegal Cancer CenterLady Davis Institute for Medical ResearchMcGill UniversityMontréalQCCanada
| | - Franciele F Busatto
- Genome Stability LaboratoryOncology DivisionCHU de Québec‐Université LavalQuébecQCCanada
- Department of Molecular Biology, Medical Biochemistry and PathologyLaval University Cancer Research CenterQuébecQCCanada
| | - Jean‐Yves Masson
- Genome Stability LaboratoryOncology DivisionCHU de Québec‐Université LavalQuébecQCCanada
- Department of Molecular Biology, Medical Biochemistry and PathologyLaval University Cancer Research CenterQuébecQCCanada
| | - Stéphane Richard
- Departments of Oncology and MedicineSegal Cancer CenterLady Davis Institute for Medical ResearchMcGill UniversityMontréalQCCanada
| |
Collapse
|
181
|
Abstract
Transcription is a source of genome instability that stimulates mutation and recombination. Part of the damage produced by transcription is mediated by R-loops, non-B DNA structures that normally form by the re-annealing of the nascent RNA with the template DNA outside the catalytic center of the RNA polymerase, displacing the non-template strand. Recent discoveries have revealed that R-loops might not be harmful by themselves. Instead, chromatin compaction triggered by these structures seems necessary, as deduced from the histone modifications frequently found associated with harmful R-loops. Remarkably, hybrids may also become harmful if stabilized by specific RNA binding proteins, one example of which is the yeast Yra1. We discuss here the possible mechanisms by which cells may stabilize R-loops and the consequences on transcription-replication conflicts and telomere homeostasis.
Collapse
Affiliation(s)
- Ana G Rondón
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, 41092, Seville, Spain.
| |
Collapse
|
182
|
Fang Y, Chen L, Lin K, Feng Y, Zhang P, Pan X, Sanders J, Wu Y, Wang XE, Su Z, Chen C, Wei H, Zhang W. Characterization of functional relationships of R-loops with gene transcription and epigenetic modifications in rice. Genome Res 2019; 29:1287-1297. [PMID: 31262943 PMCID: PMC6673715 DOI: 10.1101/gr.246009.118] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 06/27/2019] [Indexed: 11/24/2022]
Abstract
We conducted genome-wide identification of R-loops followed by integrative analyses of R-loops with relation to gene expression and epigenetic signatures in the rice genome. We found that the correlation between gene expression levels and profiled R-loop peak levels was dependent on the positions of R-loops within gene structures (hereafter named “genic position”). Both antisense only (ASO)-R-loops and sense/antisense (S/AS)-R-loops sharply peaked around transcription start sites (TSSs), and these peak levels corresponded positively with transcript levels of overlapping genes. In contrast, sense only (SO)-R-loops were generally spread over the coding regions, and their peak levels corresponded inversely to transcript levels of overlapping genes. In addition, integrative analyses of R-loop data with existing RNA-seq, chromatin immunoprecipitation sequencing (ChIP-seq), DNase I hypersensitive sites sequencing (DNase-seq), and whole-genome bisulfite sequencing (WGBS or BS-seq) data revealed interrelationships and intricate connections among R-loops, gene expression, and epigenetic signatures. Experimental validation provided evidence that the demethylation of both DNA and histone marks can influence R-loop peak levels on a genome-wide scale. This is the first study in plants that reveals novel functional aspects of R-loops, their interrelations with epigenetic methylation, and roles in transcriptional regulation.
Collapse
Affiliation(s)
- Yuan Fang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Lifen Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Kande Lin
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Yilong Feng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Pengyue Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Xiucai Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Jennifer Sanders
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, USA
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Xiu-E Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| | - Zhen Su
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Caiyan Chen
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, P.R. China
| | - Hairong Wei
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, Michigan 49931, USA.,Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, P.R. China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu 210095, P.R. China
| |
Collapse
|
183
|
The human Exonuclease-1 interactome and phosphorylation sites. Biochem Biophys Res Commun 2019; 514:567-573. [DOI: 10.1016/j.bbrc.2019.04.171] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/25/2019] [Indexed: 01/16/2023]
|
184
|
Abstract
Genome replication involves dealing with obstacles that can result from DNA damage but also from chromatin alterations, topological stress, tightly bound proteins or non-B DNA structures such as R loops. Experimental evidence reveals that an engaged transcription machinery at the DNA can either enhance such obstacles or be an obstacle itself. Thus, transcription can become a potentially hazardous process promoting localized replication fork hindrance and stress, which would ultimately cause genome instability, a hallmark of cancer cells. Understanding the causes behind transcription-replication conflicts as well as how the cell resolves them to sustain genome integrity is the aim of this review.
Collapse
|
185
|
Chen JY, Zhang X, Fu XD, Chen L. R-ChIP for genome-wide mapping of R-loops by using catalytically inactive RNASEH1. Nat Protoc 2019; 14:1661-1685. [PMID: 30996261 DOI: 10.1038/s41596-019-0154-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 02/21/2019] [Indexed: 11/09/2022]
Abstract
Nascent RNA may form a three-stranded structure with DNA, called an R-loop, which has been linked to fundamental biological processes such as transcription, replication and genome instability. Here, we provide a detailed protocol for a newly developed strategy, named R-ChIP, for robust capture of R-loops genome-wide. Distinct from R-loop-mapping methods based on the monoclonal antibody S9.6, which recognizes RNA-DNA hybrid structures, R-ChIP involves expression of an exogenous catalytically inactive RNASEH1 in cells to bind RNA-DNA hybrids but not resolve them. This is followed by chromatin immunoprecipitation (ChIP) of the tagged RNASEH1 and construction of a strand-specific library for deep sequencing. It takes ~3 weeks to establish a stable cell line expressing the mutant enzyme and 5 more days to proceed with the R-ChIP protocol. In principle, R-ChIP is applicable to both cell lines and animals, as long as the catalytically inactive RNASEH1 can be expressed to study the dynamics of R-loop formation and resolution, as well as its impact on the functionality of the genome. In our recent studies with R-ChIP, we showed an intimate spatiotemporal relationship between R-loops and RNA polymerase II pausing/pause release, as well as linking augmented R-loop formation to DNA damage response induced by driver mutations of key splicing factors associated with myelodysplastic syndrome (MDS).
Collapse
Affiliation(s)
- Jia-Yu Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xuan Zhang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - Liang Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA. .,Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
186
|
Tam AS, Stirling PC. Splicing, genome stability and disease: splice like your genome depends on it! Curr Genet 2019; 65:905-912. [PMID: 30953124 DOI: 10.1007/s00294-019-00964-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 03/27/2019] [Accepted: 03/28/2019] [Indexed: 12/21/2022]
Abstract
The spliceosome has been implicated in genome maintenance for decades. Recently, a surge in discoveries in cancer has suggested that the oncogenic mechanism of spliceosomal defects may involve defective genome stability. The action of the core spliceosome prevents R-loop accumulation, and regulates the expression of genome stability factors. At the same time, specific spliceosomal components have non-canonical functions in genome maintenance. Here we review these different models, highlighting their discovery in different model systems, and describing their potential impact on human disease states.
Collapse
Affiliation(s)
- Annie S Tam
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
187
|
Padeken J, Zeller P, Towbin B, Katic I, Kalck V, Methot SP, Gasser SM. Synergistic lethality between BRCA1 and H3K9me2 loss reflects satellite derepression. Genes Dev 2019; 33:436-451. [PMID: 30804228 PMCID: PMC6446544 DOI: 10.1101/gad.322495.118] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/14/2019] [Indexed: 01/11/2023]
Abstract
Padeken et al. performed a genome-wide synthetic lethality screen and show that the BRCA1/BARD1 complex is necessary for germline viability in worms lacking MET-2 but not SET-25. The synthetic sterility upon BRCA1/BARD1 and H3K9me2 loss is directly linked to the DNA damage provoked by unscheduled satellite repeat transcription. Caenorhabditis elegans has two histone H3 Lys9 methyltransferases, MET-2 (SETDB1 homolog) and SET-25 (G9a/SUV39H1 related). In worms, we found simple repeat sequences primarily marked by H3K9me2, while transposable elements and silent tissue-specific genes bear H3K9me3. RNA sequencing (RNA-seq) in histone methyltransferase (HMT) mutants shows that MET-2-mediated H3K9me2 is necessary for satellite repeat repression, while SET-25 silences a subset of transposable elements and tissue-specific genes through H3K9me3. A genome-wide synthetic lethality screen showed that RNA processing, nuclear RNA degradation, the BRCA1/BARD1 complex, and factors mediating replication stress survival are necessary for germline viability in worms lacking MET-2 but not SET-25. Unlike set-25 mutants, met-2-null worms accumulated satellite repeat transcripts, which form RNA:DNA hybrids on repetitive sequences, additively with the loss of BRCA1 or BARD1. BRCA1/BARD1-mediated H2A ubiquitination and MET-2 deposited H3K9me2 on satellite repeats are partially interdependent, suggesting both that the loss of silencing generates BRCA-recruiting DNA damage and that BRCA1 recruitment by damage helps silence repeats. The artificial induction of MSAT1 transcripts can itself trigger damage-induced germline lethality in a wild-type background, arguing that the synthetic sterility upon BRCA1/BARD1 and H3K9me2 loss is directly linked to the DNA damage provoked by unscheduled satellite repeat transcription.
Collapse
Affiliation(s)
- Jan Padeken
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Peter Zeller
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Benjamin Towbin
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Iskra Katic
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Veronique Kalck
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Stephen P Methot
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland.,Faculty of Natural Sciences, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|
188
|
Datta A, Brosh RM. Holding All the Cards-How Fanconi Anemia Proteins Deal with Replication Stress and Preserve Genomic Stability. Genes (Basel) 2019; 10:genes10020170. [PMID: 30813363 PMCID: PMC6409899 DOI: 10.3390/genes10020170] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 12/18/2022] Open
Abstract
Fanconi anemia (FA) is a hereditary chromosomal instability disorder often displaying congenital abnormalities and characterized by a predisposition to progressive bone marrow failure (BMF) and cancer. Over the last 25 years since the discovery of the first linkage of genetic mutations to FA, its molecular genetic landscape has expanded tremendously as it became apparent that FA is a disease characterized by a defect in a specific DNA repair pathway responsible for the correction of covalent cross-links between the two complementary strands of the DNA double helix. This pathway has become increasingly complex, with the discovery of now over 20 FA-linked genes implicated in interstrand cross-link (ICL) repair. Moreover, gene products known to be involved in double-strand break (DSB) repair, mismatch repair (MMR), and nucleotide excision repair (NER) play roles in the ICL response and repair of associated DNA damage. While ICL repair is predominantly coupled with DNA replication, it also can occur in non-replicating cells. DNA damage accumulation and hematopoietic stem cell failure are thought to contribute to the increased inflammation and oxidative stress prevalent in FA. Adding to its confounding nature, certain FA gene products are also engaged in the response to replication stress, caused endogenously or by agents other than ICL-inducing drugs. In this review, we discuss the mechanistic aspects of the FA pathway and the molecular defects leading to elevated replication stress believed to underlie the cellular phenotypes and clinical features of FA.
Collapse
Affiliation(s)
- Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD 21224, USA.
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, NIH Biomedical Research Center, Baltimore, MD 21224, USA.
| |
Collapse
|
189
|
Abstract
Exposure of genomic, single-stranded DNA (ssDNA) during transcription and replication creates opportunities for the formation of inappropriate secondary structures. Cells manage this exposure by using topoisomerases and helicases to reduce the inherent topological stress that arises from unwinding the double helix and by coating ssDNA with protective protein complexes. Interestingly, specific DNA-RNA hybrids, known as R-loops, form during transcription and exist in homeostasis throughout the genomes of prokaryotes and eukaryotes. These hybrids nucleate from guanine rich clusters in the template strand and extend across GC rich spans of transcribed genes. In vivo regulatory functions have evolved from R-loops, including regulation of gene expression and telomere lengthening. However, they also exist as a form of stress, particularly when replication forks collide with the transcription machinery. New methodologies and models are being developed to delineate the biology of R-loops, including those related to cell stress-based diseases like cancer. As accumulation of R-loops is associated with disease, targeting molecular pathways that regulate their formation or removal could provide new avenues for therapeutic intervention. This review covers recent understandings of the molecular basis for R-loop formation, removal, and biological outcomes in the context of cellular stress.
Collapse
Affiliation(s)
- David F Allison
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
190
|
Mechanism and Regulation of Co-transcriptional mRNP Assembly and Nuclear mRNA Export. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1203:1-31. [DOI: 10.1007/978-3-030-31434-7_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
191
|
Anufrieva KS, Shender VO, Arapidi GP, Lagarkova MA, Govorun VM. The Diverse Roles of Spliceosomal Proteins in the Regulation of Cell Processes. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1068162019010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
192
|
Briggs E, Hamilton G, Crouch K, Lapsley C, McCulloch R. Genome-wide mapping reveals conserved and diverged R-loop activities in the unusual genetic landscape of the African trypanosome genome. Nucleic Acids Res 2018; 46:11789-11805. [PMID: 30304482 PMCID: PMC6294496 DOI: 10.1093/nar/gky928] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/25/2018] [Accepted: 10/05/2018] [Indexed: 01/09/2023] Open
Abstract
R-loops are stable RNA-DNA hybrids that have been implicated in transcription initiation and termination, as well as in telomere maintenance, chromatin formation, and genome replication and instability. RNA Polymerase (Pol) II transcription in the protozoan parasite Trypanosoma brucei is highly unusual: virtually all genes are co-transcribed from multigene transcription units, with mRNAs generated by linked trans-splicing and polyadenylation, and transcription initiation sites display no conserved promoter motifs. Here, we describe the genome-wide distribution of R-loops in wild type mammal-infective T. brucei and in mutants lacking RNase H1, revealing both conserved and diverged functions. Conserved localization was found at centromeres, rRNA genes and retrotransposon-associated genes. RNA Pol II transcription initiation sites also displayed R-loops, suggesting a broadly conserved role despite the lack of promoter conservation or transcription initiation regulation. However, the most abundant sites of R-loop enrichment were within the regions between coding sequences of the multigene transcription units, where the hybrids coincide with sites of polyadenylation and nucleosome-depletion. Thus, instead of functioning in transcription termination the most widespread localization of R-loops in T. brucei suggests a novel correlation with pre-mRNA processing. Finally, we find little evidence for correlation between R-loop localization and mapped sites of DNA replication initiation.
Collapse
Affiliation(s)
- Emma Briggs
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Graham Hamilton
- Glasgow Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Garscube Estate, Switchback Rd, Bearsden, G61 1QH, UK
| | - Kathryn Crouch
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Craig Lapsley
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| | - Richard McCulloch
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
193
|
Makharashvili N, Arora S, Yin Y, Fu Q, Wen X, Lee JH, Kao CH, Leung JWC, Miller KM, Paull TT. Sae2/CtIP prevents R-loop accumulation in eukaryotic cells. eLife 2018; 7:e42733. [PMID: 30523780 PMCID: PMC6296784 DOI: 10.7554/elife.42733] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023] Open
Abstract
The Sae2/CtIP protein is required for efficient processing of DNA double-strand breaks that initiate homologous recombination in eukaryotic cells. Sae2/CtIP is also important for survival of single-stranded Top1-induced lesions and CtIP is known to associate directly with transcription-associated complexes in mammalian cells. Here we investigate the role of Sae2/CtIP at single-strand lesions in budding yeast and in human cells and find that depletion of Sae2/CtIP promotes the accumulation of stalled RNA polymerase and RNA-DNA hybrids at sites of highly expressed genes. Overexpression of the RNA-DNA helicase Senataxin suppresses DNA damage sensitivity and R-loop accumulation in Sae2/CtIP-deficient cells, and a catalytic mutant of CtIP fails to complement this sensitivity, indicating a role for CtIP nuclease activity in the repair process. Based on this evidence, we propose that R-loop processing by 5' flap endonucleases is a necessary step in the stabilization and removal of nascent R-loop initiating structures in eukaryotic cells.
Collapse
Affiliation(s)
- Nodar Makharashvili
- Howard Hughes Medical Institute, The University of Texas at AustinAustinUnited states
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Sucheta Arora
- Howard Hughes Medical Institute, The University of Texas at AustinAustinUnited states
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Yizhi Yin
- Howard Hughes Medical Institute, The University of Texas at AustinAustinUnited states
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Qiong Fu
- Gastrointestinal Malignancy Section, Thoracic and Gastrointestinal Oncology Branch, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthBethesdaUnited States
| | - Xuemei Wen
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Ji-Hoon Lee
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Chung-Hsuan Kao
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Justin WC Leung
- Department of Radiation OncologyUniversity of Arkansas for Medical SciencesLittle RockUnited States
| | - Kyle M Miller
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| | - Tanya T Paull
- Howard Hughes Medical Institute, The University of Texas at AustinAustinUnited states
- Department of Molecular BiosciencesThe University of Texas at AustinAustinUnited States
| |
Collapse
|
194
|
Briggs E, Crouch K, Lemgruber L, Lapsley C, McCulloch R. Ribonuclease H1-targeted R-loops in surface antigen gene expression sites can direct trypanosome immune evasion. PLoS Genet 2018; 14:e1007729. [PMID: 30543624 PMCID: PMC6292569 DOI: 10.1371/journal.pgen.1007729] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/01/2018] [Indexed: 11/19/2022] Open
Abstract
Switching of the Variant Surface Glycoprotein (VSG) in Trypanosoma brucei provides a crucial host immune evasion strategy that is catalysed both by transcription and recombination reactions, each operating within specialised telomeric VSG expression sites (ES). VSG switching is likely triggered by events focused on the single actively transcribed ES, from a repertoire of around 15, but the nature of such events is unclear. Here we show that RNA-DNA hybrids, called R-loops, form preferentially within sequences termed the 70 bp repeats in the actively transcribed ES, but spread throughout the active and inactive ES, in the absence of RNase H1, which degrades R-loops. Loss of RNase H1 also leads to increased levels of VSG coat switching and replication-associated genome damage, some of which accumulates within the active ES. This work indicates VSG ES architecture elicits R-loop formation, and that these RNA-DNA hybrids connect T. brucei immune evasion by transcription and recombination.
Collapse
Affiliation(s)
- Emma Briggs
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Kathryn Crouch
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Leandro Lemgruber
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Craig Lapsley
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| | - Richard McCulloch
- The Wellcome Centre for Molecular Parasitology, University of Glasgow, College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, Glasgow, United Kingdom
| |
Collapse
|
195
|
Okamoto Y, Abe M, Itaya A, Tomida J, Ishiai M, Takaori-Kondo A, Taoka M, Isobe T, Takata M. FANCD2 protects genome stability by recruiting RNA processing enzymes to resolve R-loops during mild replication stress. FEBS J 2018; 286:139-150. [PMID: 30431240 DOI: 10.1111/febs.14700] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/02/2018] [Accepted: 11/12/2018] [Indexed: 01/19/2023]
Abstract
R-loops, which consist of DNA : RNA hybrids and displaced single-strand DNA, are a major threat to genome stability. We have previously reported that a key Fanconi anemia protein, FANCD2, accumulates on large fragile genes during mild replication stress in a manner depending on R-loops. In this study, we found that FANCD2 suppresses R-loop levels. Furthermore, we identified FANCD2 interactions with RNA processing factors, including hnRNP U and DDX47. Our data suggest that FANCD2, which accumulates with R-loops in chromatin, recruits these factors and thereby promotes efficient processing of long RNA transcripts. This may lead to a reduction in transcription-replication collisions, as detected by PLA between PCNA and RNA Polymerase II, and hence, lowered R-loop levels. We propose that this mechanism might contribute to maintenance of genome stability during mild replication stress.
Collapse
Affiliation(s)
- Yusuke Okamoto
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Japan.,Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | - Masako Abe
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Japan
| | - Akiko Itaya
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Japan
| | - Junya Tomida
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Japan.,Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC, 28223, USA
| | - Masamichi Ishiai
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Japan.,National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Japan
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Japan
| | - Minoru Takata
- Laboratory of DNA Damage Signaling, Department of Late Effects Studies, Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Japan
| |
Collapse
|
196
|
The Role for the DSB Response Pathway in Regulating Chromosome Translocations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:65-87. [PMID: 29956292 DOI: 10.1007/978-981-13-0593-1_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In response to DNA double strand breaks (DSB), mammalian cells activate the DNA Damage Response (DDR), a network of factors that coordinate their detection, signaling and repair. Central to this network is the ATM kinase and its substrates at chromatin surrounding DSBs H2AX, MDC1 and 53BP1. In humans, germline inactivation of ATM causes Ataxia Telangiectasia (A-T), an autosomal recessive syndrome of increased proneness to hematological malignancies driven by clonal chromosomal translocations. Studies of cancers arising in A-T patients and in genetically engineered mouse models (GEMM) deficient for ATM and its substrates have revealed complex, multilayered roles for ATM in translocation suppression and identified functional redundancies between ATM and its substrates in this context. "Programmed" DSBs at antigen receptor loci in developing lymphocytes employ ubiquitous DDR factors for signaling and repair and have been particularly useful for mechanistic studies because they are region-specific and can be monitored in vitro and in vivo. In this context, murine thymocytes deficient for ATM recapitulate the molecular events that lead to transformation in T cells from A-T patients and provide a widely used model to study the mechanisms that suppress RAG recombinase-dependent translocations. Similarly, analyses of the fate of Activation induced Cytidine Deaminase (AID)-dependent DSBs during mature B cell Class Switch Recombination (CSR) have defined the genetic requirements for end-joining and translocation suppression in this setting. Moreover, a unique role for 53BP1 in the promotion of synapsis of distant DSBs has emerged from these studies.
Collapse
|
197
|
Cruz C, Llop-Guevara A, Garber JE, Arun BK, Pérez Fidalgo JA, Lluch A, Telli ML, Fernández C, Kahatt C, Galmarini CM, Soto-Matos A, Alfaro V, Pérez de la Haza A, Domchek SM, Antolin S, Vahdat L, Tung NM, Lopez R, Arribas J, Vivancos A, Baselga J, Serra V, Balmaña J, Isakoff SJ. Multicenter Phase II Study of Lurbinectedin in BRCA-Mutated and Unselected Metastatic Advanced Breast Cancer and Biomarker Assessment Substudy. J Clin Oncol 2018. [PMID: 30240327 DOI: 10.1200/jco.2018.78.6558.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE This multicenter phase II trial evaluated lurbinectedin (PM01183), a selective inhibitor of active transcription of protein-coding genes, in patients with metastatic breast cancer. A unicenter translational substudy assessed potential mechanisms of lurbinectedin resistance. PATIENTS AND METHODS Two arms were evaluated according to germline BRCA1/2 status: BRCA1/2 mutated (arm A; n = 54) and unselected ( BRCA1/2 wild-type or unknown status; arm B; n = 35). Lurbinectedin starting dose was a 7-mg flat dose and later, 3.5 mg/m2 in arm A. The primary end point was objective response rate (ORR) per Response Evaluation Criteria in Solid Tumors (RECIST). The translational substudy of resistance mechanisms included exome sequencing (n = 13) and in vivo experiments with patient-derived xenografts (n = 11) from BRCA1/2-mutated tumors. RESULTS ORR was 41% (95% CI, 28% to 55%) in arm A and 9% (95% CI, 2% to 24%) in arm B. In arm A, median progression-free survival was 4.6 months (95% CI, 3.0 to 6.0 months), and median overall survival was 20.0 months (95% CI, 11.8 to 26.6 months). Patients with BRCA2 mutations showed an ORR of 61%, median progression-free survival of 5.9 months, and median overall survival of 26.6 months. The safety profile improved with lurbinectedin dose adjustment to body surface area. The most common nonhematologic adverse events seen at 3.5 mg/m2 were nausea (74%; grade 3, 5%) and fatigue (74%; grade 3, 21%). Neutropenia was the most common severe hematologic adverse event (grade 3, 47%; grade 4, 10%). Exome sequencing showed mutations in genes related to the nucleotide excision repair pathway in four of seven tumors at primary or acquired resistance and in one patient with short-term stable disease. In vivo, sensitivity to cisplatin and lurbinectedin was evidenced in lurbinectedin-resistant (one of two) and cisplatin-resistant (two of three) patient-derived xenografts. CONCLUSION Lurbinectedin showed noteworthy activity in patients with BRCA1/2 mutations. Response and survival was notable in those with BRCA2 mutations. Additional clinical development in this subset of patients with metastatic breast cancer is warranted.
Collapse
Affiliation(s)
- Cristina Cruz
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Alba Llop-Guevara
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Judy E Garber
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Banu K Arun
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - José A Pérez Fidalgo
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Ana Lluch
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Melinda L Telli
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Cristian Fernández
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Carmen Kahatt
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Carlos M Galmarini
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Arturo Soto-Matos
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Vicente Alfaro
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Aitor Pérez de la Haza
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Susan M Domchek
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Silvia Antolin
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Linda Vahdat
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Nadine M Tung
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Rafael Lopez
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Joaquín Arribas
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Ana Vivancos
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - José Baselga
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Violeta Serra
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Judith Balmaña
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| | - Steven J Isakoff
- Cristina Cruz and Judith Balmaña, Vall d'Hebron Hospital; Cristina Cruz, Alba Llop-Guevara, Joaquín Arribas, Ana Vivancos, Violeta Serra, and Judith Balmaña, Vall d'Hebron Institute of Oncology; José A. Pérez Fidalgo, Ana Lluch, Joaquín Arribas, and Violeta Serra, Centro de Investigación Biomédica en Red; Joaquín Arribas, Institució Catalana de Recerca i Estudis Avançats, Barcelona; José A. Pérez Fidalgo and Ana Lluch, Hospital Clínico de Valencia, Valencia; Cristian Fernández, Carmen Kahatt, Carlos M. Galmarini, Arturo Soto-Matos, Vicente Alfaro, and Aitor Pérez de la Haza, PharmaMar, Madrid; Silvia Antolin, Complejo Universitario Hospitalario La Coruña, La Coruña; Rafael Lopez, Complejo Hospitalario Universitario Santiago de Compostela, Santiago de Compostela, Spain; Judy E. Garber, Dana Farber Cancer Institute; Nadine M. Tung, Beth Israel Deaconess Medical Center; José Baselga and Steven J. Isakoff, Massachusetts General Hospital Cancer Center, Boston, MA; Banu K. Arun, MD Anderson Cancer Center, Houston, TX; Melinda L. Telli, Stanford University School of Medicine, Stanford, CA; Susan M. Domchek, University of Pennsylvania, Philadelphia, PA; and Linda Vahdat, Weill Cornell Medicine, New York, NY
| |
Collapse
|
198
|
da Silva MS, Hovel-Miner GA, Briggs EM, Elias MC, McCulloch R. Evaluation of mechanisms that may generate DNA lesions triggering antigenic variation in African trypanosomes. PLoS Pathog 2018; 14:e1007321. [PMID: 30440029 PMCID: PMC6237402 DOI: 10.1371/journal.ppat.1007321] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Antigenic variation by variant surface glycoprotein (VSG) coat switching in African trypanosomes is one of the most elaborate immune evasion strategies found among pathogens. Changes in the identity of the transcribed VSG gene, which is always flanked by 70-bp and telomeric repeats, can be achieved either by transcriptional or DNA recombination mechanisms. The major route of VSG switching is DNA recombination, which occurs in the bloodstream VSG expression site (ES), a multigenic site transcribed by RNA polymerase I. Recombinogenic VSG switching is frequently catalyzed by homologous recombination (HR), a reaction normally triggered by DNA breaks. However, a clear understanding of how such breaks arise-including whether there is a dedicated and ES-focused mechanism-is lacking. Here, we synthesize data emerging from recent studies that have proposed a range of mechanisms that could generate these breaks: action of a nuclease or nucleases; repetitive DNA, most notably the 70-bp repeats, providing an intra-ES source of instability; DNA breaks derived from the VSG-adjacent telomere; DNA breaks arising from high transcription levels at the active ES; and DNA lesions arising from replication-transcription conflicts in the ES. We discuss the evidence that underpins these switch-initiation models and consider what features and mechanisms might be shared or might allow the models to be tested further. Evaluation of all these models highlights that we still have much to learn about the earliest acting step in VSG switching, which may have the greatest potential for therapeutic intervention in order to undermine the key reaction used by trypanosomes for their survival and propagation in the mammalian host.
Collapse
Affiliation(s)
- Marcelo Santos da Silva
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
- The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Galadriel A. Hovel-Miner
- The George Washington University, Department of Microbiology Immunology, and Tropical Medicine, Washington, DC, United States of America
| | - Emma M. Briggs
- The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Maria Carolina Elias
- Laboratório Especial de Ciclo Celular, Center of Toxins, Immune Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, Brazil
| | - Richard McCulloch
- The Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
199
|
Chakraborty P, Huang JTJ, Hiom K. DHX9 helicase promotes R-loop formation in cells with impaired RNA splicing. Nat Commun 2018; 9:4346. [PMID: 30341290 PMCID: PMC6195550 DOI: 10.1038/s41467-018-06677-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 09/06/2018] [Indexed: 01/05/2023] Open
Abstract
R-loops are stable nucleic acid structures that have important physiological functions, but which also pose a significant threat to genomic stability. Increased R-loops cause replication stress and chromosome fragility and have been associated with diseases such as neurodegeneration and cancer. Although excessive R-loops are a feature of cells that are defective in RNA processing, what causes them to form is unclear. Here, we demonstrate that DHX9 (RNA helicase A) promotes the formation of pathological and non-pathological R-loops. In the absence of splicing factors, formation of R-loops correlates with the prolonged association of DHX9 with RNA Polymerase II (RNA Pol II). This leads to the production of DNA–RNA hybrid, which traps RNA Pol II on chromatin with the potential to block DNA replication. Our data provide a molecular mechanism for the formation of R-loops that is relevant to neurodegenerative diseases and cancers in which deregulated RNA processing is a feature. Unresolved R-loops can represent a threat to genome stability. Here the authors reveal that DHX9 helicase can promote R-loop formation in the absence of splicing factors SFPQ and SF3B3.
Collapse
Affiliation(s)
- Prasun Chakraborty
- Division of Cellular Medicine, School of Medicine, University of Dundee, Scotland, UK
| | - Jeffrey T J Huang
- Biomarker and Drug Analysis Core Facility, School of Medicine, University of Dundee, Scotland, UK
| | - Kevin Hiom
- Division of Cellular Medicine, School of Medicine, University of Dundee, Scotland, UK.
| |
Collapse
|
200
|
Konopka A, Atkin JD. The Emerging Role of DNA Damage in the Pathogenesis of the C9orf72 Repeat Expansion in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2018; 19:ijms19103137. [PMID: 30322030 PMCID: PMC6213462 DOI: 10.3390/ijms19103137] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, rapidly progressing neurodegenerative disease affecting motor neurons, and frontotemporal dementia (FTD) is a behavioural disorder resulting in early-onset dementia. Hexanucleotide (G4C2) repeat expansions in the gene encoding chromosome 9 open reading frame 72 (C9orf72) are the major cause of familial forms of both ALS (~40%) and FTD (~20%) worldwide. The C9orf72 repeat expansion is known to form abnormal nuclei acid structures, such as hairpins, G-quadruplexes, and R-loops, which are increasingly associated with human diseases involving microsatellite repeats. These configurations form during normal cellular processes, but if they persist they also damage DNA, and hence are a serious threat to genome integrity. It is unclear how the repeat expansion in C9orf72 causes ALS, but recent evidence implicates DNA damage in neurodegeneration. This may arise from abnormal nucleic acid structures, the greatly expanded C9orf72 RNA, or by repeat-associated non-ATG (RAN) translation, which generates toxic dipeptide repeat proteins. In this review, we detail recent advances implicating DNA damage in C9orf72-ALS. Furthermore, we also discuss increasing evidence that targeting these aberrant C9orf72 confirmations may have therapeutic value for ALS, thus revealing new avenues for drug discovery for this disorder.
Collapse
Affiliation(s)
- Anna Konopka
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Julie D Atkin
- Centre for MND Research, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
- La Trobe Institute for Molecular Science, Melbourne, VIC 3086, Australia.
| |
Collapse
|