151
|
Abstract
X chromosome inactivation (XCI) is a dosage compensation process that was adopted by female mammals to balance gene dosage between XX females and XY males. XCI starts with the upregulation of the non-coding RNA Xist, after which most X-linked genes are silenced and acquire a repressive chromatin state. Even though the chromatin marks of the inactive X have been fairly well described, the mechanisms responsible for the initiation of XCI remain largely unknown. In this review, we discuss recent developments that revealed unexpected factors playing a role in XCI and that might be of crucial importance to understand the mechanisms responsible for the very first steps of this chromosome-wide gene-silencing event.
Collapse
Affiliation(s)
- Ines Pinheiro
- Mammalian Developmental Epigenetics Group (équipe labellisée La Ligue), Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, 26 Rue d'Ulm, 11 75248 Paris Cedex 05, France
| | - Edith Heard
- Mammalian Developmental Epigenetics Group (équipe labellisée La Ligue), Institut Curie, PSL Research University, CNRS UMR3215, INSERM U934, 26 Rue d'Ulm, 11 75248 Paris Cedex 05, France
| |
Collapse
|
152
|
Lewis ZA. Polycomb Group Systems in Fungi: New Models for Understanding Polycomb Repressive Complex 2. Trends Genet 2017; 33:220-231. [DOI: 10.1016/j.tig.2017.01.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 02/03/2023]
|
153
|
Molecular basis of PRC1 targeting to Polycomb response elements by PhoRC. Genes Dev 2017; 30:1116-27. [PMID: 27151979 PMCID: PMC4863741 DOI: 10.1101/gad.279141.116] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/13/2016] [Indexed: 12/11/2022]
Abstract
Here, Frey et al. report the structural basis by which the Drosophila Pho-repressive complex (PhoRC), the only Polycomb group protein complex with sequence-specific DNA-binding activity, binds to Polycomb-repressive complex 1 (PRC1) and thereby recruits it to Polycomb response elements in target genes. Polycomb group (PcG) protein complexes repress transcription by modifying target gene chromatin. In Drosophila, this repression requires association of PcG protein complexes with cis-regulatory Polycomb response elements (PREs), but the interactions permitting formation of these assemblies are poorly understood. We show that the Sfmbt subunit of the DNA-binding Pho-repressive complex (PhoRC) and the Scm subunit of the canonical Polycomb-repressive complex 1 (PRC1) directly bind each other through their SAM domains. The 1.9 Å crystal structure of the Scm-SAM:Sfmbt-SAM complex reveals the recognition mechanism and shows that Sfmbt-SAM lacks the polymerization capacity of the SAM domains of Scm and its PRC1 partner subunit, Ph. Functional analyses in Drosophila demonstrate that Sfmbt-SAM and Scm-SAM are essential for repression and that PhoRC DNA binding is critical to initiate PRC1 association with PREs. Together, this suggests that PRE-tethered Sfmbt-SAM nucleates PRC1 recruitment and that Scm-SAM/Ph-SAM-mediated polymerization then results in the formation of PRC1-compacted chromatin.
Collapse
|
154
|
Robert Finestra T, Gribnau J. X chromosome inactivation: silencing, topology and reactivation. Curr Opin Cell Biol 2017; 46:54-61. [PMID: 28236732 DOI: 10.1016/j.ceb.2017.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/19/2017] [Accepted: 01/30/2017] [Indexed: 01/22/2023]
Abstract
To ensure X-linked gene dosage compensation between females (XX) and males (XY), one X chromosome undergoes X chromosome inactivation (XCI) in female cells. This process is tightly regulated throughout development by many different factors, with Xist as a key regulator, encoding a long non-coding RNA, involved in establishment of several layers of repressive epigenetic modifications. Several recent studies on XCI focusing on identification and characterization of Xist RNA-protein interactors, revealed new factors involved in gene silencing, genome topology and nuclear membrane attachment, amongst others. Also, new insights in higher order chromatin organization have been presented, revealing differences between the topological organization of active and inactive X chromosomes (Xa and Xi), with associated differences in gene expression. Finally, further evidence indicates that the inactive state of the Xi can be (partially) reversed, and that this X chromosome reactivation (XCR) might be associated with disease.
Collapse
Affiliation(s)
- Teresa Robert Finestra
- Department of Developmental Biology, Erasmus MC, Wytemaweg 80, Rotterdam CN 3015, The Netherlands
| | - Joost Gribnau
- Department of Developmental Biology, Erasmus MC, Wytemaweg 80, Rotterdam CN 3015, The Netherlands.
| |
Collapse
|
155
|
Chetverina DA, Elizar’ev PV, Lomaev DV, Georgiev PG, Erokhin MM. Control of the gene activity by polycomb and trithorax group proteins in Drosophila. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417020028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
156
|
Yang X, Tong A, Yan B, Wang X. Governing the Silencing State of Chromatin: The Roles of Polycomb Repressive Complex 1 in Arabidopsis. PLANT & CELL PHYSIOLOGY 2017; 58:198-206. [PMID: 28069891 DOI: 10.1093/pcp/pcw209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/17/2016] [Indexed: 06/06/2023]
Abstract
Polycomb group proteins form multiple protein complexes such as Polycomb Repressive Complex (PRC) 1 and PRC2, which repress the expression of thousands of genes. PRC1 and PRC2 are essential for normal development in Arabidopsis. Recently, significant progress has been made in understanding the functions and regulatory mechanisms of PRC1. In this review, we focus on the discovery of the composition of PRC1, functions of its components, the recruitment of PRC1 to target genes and the control of PRC1 function in Arabidopsis. Perspectives on dissecting the roles of PRC1 in plant gene expression and development are also given.
Collapse
Affiliation(s)
- Xianli Yang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Aizi Tong
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Bowen Yan
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Xiaoxue Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
157
|
H3K27 methylation: a promiscuous repressive chromatin mark. Curr Opin Genet Dev 2016; 43:31-37. [PMID: 27940208 DOI: 10.1016/j.gde.2016.11.001] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 10/21/2016] [Accepted: 11/04/2016] [Indexed: 12/24/2022]
Abstract
Polycomb Repressive Complex 2 (PRC2) is a multiprotein complex that catalyzes the methylation of lysine 27 on histone H3 (H3K27me). This histone modification is a feature of facultative heterochromatin in many eukaryotes and maintains transcriptional repression established during early development. Understanding how PRC2 targets regions of the genome to be methylated remains poorly understood. Different cell types can show disparate patterns of H3K27me, and chromatin perturbations, such as loss of marks of constitutive heterochromatin, can cause redistribution of H3K27me, implying that DNA sequence, per se, is not sufficient to define the distribution of this mark. Emerging information supports the idea that the chromatin context-including histone modifications, DNA methylation, transcription, chromatin structure and organization within the nucleus-informs PRC2 target selection.
Collapse
|
158
|
Pal R, Tiwari PC, Nath R, Pant KK. Role of neuroinflammation and latent transcription factors in pathogenesis of Parkinson’s disease. Neurol Res 2016; 38:1111-1122. [DOI: 10.1080/01616412.2016.1249997] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Rishi Pal
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| | | | - Rajendra Nath
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| | - Kamlesh Kumar Pant
- Department of Pharmacology & Therapeutics, King George’s Medical University, Lucknow, India
| |
Collapse
|
159
|
Zhen CY, Tatavosian R, Huynh TN, Duc HN, Das R, Kokotovic M, Grimm JB, Lavis LD, Lee J, Mejia FJ, Li Y, Yao T, Ren X. Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin. eLife 2016; 5. [PMID: 27723458 PMCID: PMC5056789 DOI: 10.7554/elife.17667] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/29/2016] [Indexed: 12/11/2022] Open
Abstract
The Polycomb PRC1 plays essential roles in development and disease pathogenesis. Targeting of PRC1 to chromatin is thought to be mediated by the Cbx family proteins (Cbx2/4/6/7/8) binding to histone H3 with a K27me3 modification (H3K27me3). Despite this prevailing view, the molecular mechanisms of targeting remain poorly understood. Here, by combining live-cell single-molecule tracking (SMT) and genetic engineering, we reveal that H3K27me3 contributes significantly to the targeting of Cbx7 and Cbx8 to chromatin, but less to Cbx2, Cbx4, and Cbx6. Genetic disruption of the complex formation of PRC1 facilitates the targeting of Cbx7 to chromatin. Biochemical analyses uncover that the CD and AT-hook-like (ATL) motif of Cbx7 constitute a functional DNA-binding unit. Live-cell SMT of Cbx7 mutants demonstrates that Cbx7 is targeted to chromatin by co-recognizing of H3K27me3 and DNA. Our data suggest a novel hierarchical cooperation mechanism by which histone modifications and DNA coordinate to target chromatin regulatory complexes. DOI:http://dx.doi.org/10.7554/eLife.17667.001
Collapse
Affiliation(s)
- Chao Yu Zhen
- Department of Chemistry, University of Colorado Denver, Denver, United States
| | - Roubina Tatavosian
- Department of Chemistry, University of Colorado Denver, Denver, United States
| | - Thao Ngoc Huynh
- Department of Chemistry, University of Colorado Denver, Denver, United States
| | - Huy Nguyen Duc
- Department of Chemistry, University of Colorado Denver, Denver, United States
| | - Raibatak Das
- Department of Integrative Biology, University of Colorado Denver, Denver, United States
| | - Marko Kokotovic
- Department of Chemistry, University of Colorado Denver, Denver, United States
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jun Lee
- Department of Chemistry, University of Colorado Denver, Denver, United States
| | - Frances J Mejia
- Department of Chemistry, University of Colorado Denver, Denver, United States
| | - Yang Li
- Department of Chemistry, University of Colorado Denver, Denver, United States
| | - Tingting Yao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado Denver, Denver, United States
| |
Collapse
|
160
|
Rose NR, King HW, Blackledge NP, Fursova NA, Ember KJ, Fischer R, Kessler BM, Klose RJ. RYBP stimulates PRC1 to shape chromatin-based communication between Polycomb repressive complexes. eLife 2016; 5. [PMID: 27705745 PMCID: PMC5065315 DOI: 10.7554/elife.18591] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/01/2016] [Indexed: 12/29/2022] Open
Abstract
Polycomb group (PcG) proteins function as chromatin-based transcriptional repressors that are essential for normal gene regulation during development. However, how these systems function to achieve transcriptional regulation remains very poorly understood. Here, we discover that the histone H2AK119 E3 ubiquitin ligase activity of Polycomb repressive complex 1 (PRC1) is defined by the composition of its catalytic subunits and is highly regulated by RYBP/YAF2-dependent stimulation. In mouse embryonic stem cells, RYBP plays a central role in shaping H2AK119 mono-ubiquitylation at PcG targets and underpins an activity-based communication between PRC1 and Polycomb repressive complex 2 (PRC2) which is required for normal histone H3 lysine 27 trimethylation (H3K27me3). Without normal histone modification-dependent communication between PRC1 and PRC2, repressive Polycomb chromatin domains can erode, rendering target genes susceptible to inappropriate gene expression signals. This suggests that activity-based communication and histone modification-dependent thresholds create a localized form of epigenetic memory required for normal PcG chromatin domain function in gene regulation. DOI:http://dx.doi.org/10.7554/eLife.18591.001
Collapse
Affiliation(s)
- Nathan R Rose
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Hamish W King
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Neil P Blackledge
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Nadezda A Fursova
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Katherine Ji Ember
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Roman Fischer
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
161
|
Meng S, Zhou G, Gu Q, Chanda PK, Ospino F, Cooke JP. Transdifferentiation Requires iNOS Activation: Role of RING1A S-Nitrosylation. Circ Res 2016; 119:e129-e138. [PMID: 27623813 DOI: 10.1161/circresaha.116.308263] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/13/2016] [Indexed: 12/22/2022]
Abstract
RATIONALE We have previously shown that innate immunity is necessary for transdifferentiation of fibroblasts to endothelial cells. A major signaling molecule involved in innate immunity is inducible nitric oxide synthase (iNOS). Accordingly, we hypothesized that iNOS-generated nitric oxide (NO) might enhance transdifferentiation. OBJECTIVE To elucidate the role of NO in epigenetic plasticity during transdifferentiation. METHODS AND RESULTS We exposed the BJ fibroblasts to transdifferentiation formulation that included endothelial growth factors and innate immune activator polyinosinic:polycytidylic acid to induce endothelial cells. Generation of transdifferentiated endothelial cells was associated with iNOS expression and NO elaboration. In the absence of polyinosinic:polycytidylic acid, or in the presence of antagonists of NFκB (nuclear factor kappa B) or iNOS activity, NO synthesis and induce endothelial cell generation was reduced. Furthermore, genetic knockout (in murine embryonic fibroblasts) or siRNA knockdown (in BJ fibroblasts) of iNOS nearly abolished transdifferentiation, an effect that could be reversed by iNOS overexpression. Notably, polyinosinic:polycytidylic acid induced nuclear localization of iNOS, and its binding to, and nitrosylation of, the epigenetic modifier ring finger protein 1A (RING1A) as assessed by immunostaining, Co-IP, and mass spectrometry. Nitrosylation of RING1A reduced its binding to chromatin and reduced global levels of repressive histone marker H3K27 trimethylation. Overexpression of a mutant form of RING1A (C398A) lacking the nitrosylation site almost abrogated transdifferentiation. CONCLUSIONS Overall, our data indicate that during transdifferentiation, innate immune activation increases iNOS generation of NO to S-nitrosylate RING1A, a key member of the polycomb repressive complex. Nitrosylation of RING1A reduces its binding to chromatin and decreases H3K27 trimethylation level. The release of epigenetic repression by nitrosylation of RING1A is critical for effective transdifferentiation.
Collapse
Affiliation(s)
- Shu Meng
- From the Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, TX
| | - Gang Zhou
- From the Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, TX
| | - Qilin Gu
- From the Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, TX
| | - Palas K Chanda
- From the Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, TX
| | - Frank Ospino
- From the Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, TX
| | - John P Cooke
- From the Department of Cardiovascular Sciences, Center for Cardiovascular Regeneration, Houston Methodist Research Institute, TX.
| |
Collapse
|
162
|
Laugesen A, Højfeldt JW, Helin K. Role of the Polycomb Repressive Complex 2 (PRC2) in Transcriptional Regulation and Cancer. Cold Spring Harb Perspect Med 2016; 6:cshperspect.a026575. [PMID: 27449971 DOI: 10.1101/cshperspect.a026575] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The chromatin environment is modulated by a machinery of chromatin modifiers, required for the specification and maintenance of cell fate. Many mutations in the machinery have been linked to the development and progression of cancer. In this review, we give a brief introduction to Polycomb group (PcG) proteins, their assembly into Polycomb repressive complexes (PRCs) and the normal physiological roles of these complexes with a focus on the PRC2. We review the many findings of mutations in the PRC2 coding genes, both loss-of-function and gain-of-function, associated with human cancers and discuss potential molecular mechanisms involved in the contribution of PRC2 mutations to cancer development and progression. Finally, we discuss some of the recent advances in developing and testing drugs targeting the PRC2 as well as emerging results from clinical trials using these drugs in the treatment of human cancers.
Collapse
Affiliation(s)
- Anne Laugesen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, DK-2200 Copenhagen N, Denmark The Danish Stem Cell Center (DanStem), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jonas Westergaard Højfeldt
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, DK-2200 Copenhagen N, Denmark The Danish Stem Cell Center (DanStem), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, DK-2200 Copenhagen N, Denmark Centre for Epigenetics, University of Copenhagen, DK-2200 Copenhagen N, Denmark The Danish Stem Cell Center (DanStem), University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
163
|
Kahn TG, Dorafshan E, Schultheis D, Zare A, Stenberg P, Reim I, Pirrotta V, Schwartz YB. Interdependence of PRC1 and PRC2 for recruitment to Polycomb Response Elements. Nucleic Acids Res 2016; 44:10132-10149. [PMID: 27557709 PMCID: PMC5137424 DOI: 10.1093/nar/gkw701] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 12/31/2022] Open
Abstract
Polycomb Group (PcG) proteins are epigenetic repressors essential for control of development and cell differentiation. They form multiple complexes of which PRC1 and PRC2 are evolutionary conserved and obligatory for repression. The targeting of PRC1 and PRC2 is poorly understood and was proposed to be hierarchical and involve tri-methylation of histone H3 (H3K27me3) and/or monoubiquitylation of histone H2A (H2AK118ub). Here, we present a strict test of this hypothesis using the Drosophila model. We discover that neither H3K27me3 nor H2AK118ub is required for targeting PRC complexes to Polycomb Response Elements (PREs). We find that PRC1 can bind PREs in the absence of PRC2 but at many PREs PRC2 requires PRC1 to be targeted. We show that one role of H3K27me3 is to allow PcG complexes anchored at PREs to interact with surrounding chromatin. In contrast, the bulk of H2AK118ub is unrelated to PcG repression. These findings radically change our view of how PcG repression is targeted and suggest that PRC1 and PRC2 can communicate independently of histone modifications.
Collapse
Affiliation(s)
- Tatyana G Kahn
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Eshagh Dorafshan
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Dorothea Schultheis
- Friedrich-Alexander University of Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Erlangen, D-91058, Germany
| | - Aman Zare
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| | - Per Stenberg
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden.,Division of CBRN Defense and Security, Swedish Defense Research Agency, FOI, Umeå, 906 21, Sweden
| | - Ingolf Reim
- Friedrich-Alexander University of Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Erlangen, D-91058, Germany
| | - Vincenzo Pirrotta
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yuri B Schwartz
- Department of Molecular Biology, Umeå University, Umeå, 901 87, Sweden
| |
Collapse
|
164
|
Jung J, Buisman S, de Haan G. Hematopoiesis during development, aging, and disease. Exp Hematol 2016; 44:689-95. [DOI: 10.1016/j.exphem.2016.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/10/2016] [Accepted: 05/11/2016] [Indexed: 11/26/2022]
|
165
|
Formation of a Polycomb-Domain in the Absence of Strong Polycomb Response Elements. PLoS Genet 2016; 12:e1006200. [PMID: 27466807 PMCID: PMC4965088 DOI: 10.1371/journal.pgen.1006200] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 06/25/2016] [Indexed: 12/24/2022] Open
Abstract
Polycomb group response elements (PREs) in Drosophila are DNA-elements that recruit Polycomb proteins (PcG) to chromatin and regulate gene expression. PREs are easily recognizable in the Drosophila genome as strong peaks of PcG-protein binding over discrete DNA fragments; many small but statistically significant PcG peaks are also observed in PcG domains. Surprisingly, in vivo deletion of the four characterized strong PREs from the PcG regulated invected-engrailed (inv-en) gene complex did not disrupt the formation of the H3K27me3 domain and did not affect inv-en expression in embryos or larvae suggesting the presence of redundant PcG recruitment mechanism. Further, the 3D-structure of the inv-en domain was only minimally altered by the deletion of the strong PREs. A reporter construct containing a 7.5kb en fragment that contains three weak peaks but no large PcG peaks forms an H3K27me3 domain and is PcG-regulated. Our data suggests a model for the recruitment of PcG-complexes to Drosophila genes via interactions with multiple, weak PREs spread throughout an H3K27me3 domain.
Collapse
|
166
|
Abdalkader L, Oka T, Takata K, Sato H, Murakami I, Otte AP, Yoshino T. Aberrant differential expression of EZH1 and EZH2 in Polycomb repressive complex 2 among B- and T/NK-cell neoplasms. Pathology 2016; 48:467-82. [PMID: 27311868 DOI: 10.1016/j.pathol.2016.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 11/25/2022]
Abstract
The Polycomb repressive complex-2 members (EZH2, EED, SUZ12 and EZH1) are important regulators of haematopoiesis, cell cycle and differentiation. Over-expression of EZH2 has been linked to cancer metastases and poor prognosis. Detailed information on the expression of other members in normal and neoplastic lymphoid tissue remains to be elucidated. Immunohistochemical and immunofluorescent analyses of 156 samples from haematopoietic neoplasms patients and 27 haematopoietic cell lines were used. B-cell neoplasms showed a significant over-expression of EZH2, EED and SUZ12 in the aggressive subtypes compared to the indolent subtypes and normal tissue (p = 0.000-0.046) while expression of EZH1 was decreased in mantle cell lymphoma compared to normal tissue (p = 0.011). T/NK-cell neoplasms also showed significant over-expression of EZH2, EED and SUZ12 (p = 0.000-0.002) and decreased expression of EZH1 (p = 0.001) compared to normal cells. EZH2 and EZH1 have opposite expression patterns both in normal and neoplastic lymphoid tissues as well as an opposite relation to Ki-67. These results were supported by western blotting analyses. Immunofluorescent staining revealed a difference in the intracellular localisation of EZH1 compared to other members. These evidences suggest that EZH2 and EZH1 are important in the counter-balancing mechanisms controlling proliferation/resting of lymphoid cells. The disruption of the balanced EZH2/EZH1 ratio may play important roles in the pathogenesis of lymphomas.
Collapse
Affiliation(s)
- Lamia Abdalkader
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Department of Pathology, Faculty of Medicine, Mansoura University, Egypt
| | - Takashi Oka
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
| | - Katsuyoshi Takata
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Hiaki Sato
- Department of Medical Technology, Graduate School of Health Sciences, Okayama University, Okayama, Japan
| | - Ichiro Murakami
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan; Department of Molecular Pathology, Tottori University Medical School, Japan
| | - Arie P Otte
- Department of Biochemistry Swammerdam Institute for Life Sciences, University of Amsterdam, Netherlands
| | - Tadashi Yoshino
- Department of Pathology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
167
|
Mahmoud F, Shields B, Makhoul I, Hutchins LF, Shalin SC, Tackett AJ. Role of EZH2 histone methyltrasferase in melanoma progression and metastasis. Cancer Biol Ther 2016; 17:579-91. [PMID: 27105109 PMCID: PMC4990393 DOI: 10.1080/15384047.2016.1167291] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 02/25/2016] [Accepted: 03/13/2016] [Indexed: 02/07/2023] Open
Abstract
There is accumulating evidence that the histone methyltransferase enhancer of zeste homolog 2 (EZH2), the main component of the polycomb-repressive complex 2 (PRC2), is involved in melanoma progression and metastasis. Novel drugs that target and reverse such epigenetic changes may find a way into the management of patients with advanced melanoma. We provide a comprehensive up-to-date review of the role and biology of EZH2 on gene transcription, senescence/apoptosis, melanoma microenvironment, melanocyte stem cells, the immune system, and micro RNA. Furthermore, we discuss EZH2 inhibitors as potential anti-cancer therapy.
Collapse
Affiliation(s)
- Fade Mahmoud
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Bradley Shields
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Issam Makhoul
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Laura F. Hutchins
- Department of Internal Medicine, Division of Hematology/Oncology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sara C. Shalin
- Departments of Pathology and Dermatology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan J. Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
168
|
Entrevan M, Schuettengruber B, Cavalli G. Regulation of Genome Architecture and Function by Polycomb Proteins. Trends Cell Biol 2016; 26:511-525. [PMID: 27198635 DOI: 10.1016/j.tcb.2016.04.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 12/13/2022]
Abstract
Polycomb group (PcG) proteins dynamically define cellular identities through the epigenetic repression of key developmental regulatory genes. PcG proteins are recruited to specific regulatory elements to modify the chromatin surrounding them. In addition, they regulate the organization of their target genes in the 3D space of the nucleus, and this regulatory function of the 3D genome architecture is involved in cell differentiation and the maintenance of cellular memory. In this review we discuss recent advances in our understanding of how PcG proteins are recruited to chromatin to induce local and global changes in chromosome conformation and regulate their target genes.
Collapse
Affiliation(s)
- Marianne Entrevan
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France
| | - Bernd Schuettengruber
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS UPR1142 and University of Montpellier, 141 Rue de la Cardonille, 34396, Montpellier Cedex 5, France.
| |
Collapse
|
169
|
|
170
|
A positive role for polycomb in transcriptional regulation via H4K20me1. Cell Res 2016; 26:529-42. [PMID: 27002220 PMCID: PMC4856762 DOI: 10.1038/cr.2016.33] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/24/2022] Open
Abstract
The highly conserved polycomb group (PcG) proteins maintain heritable transcription repression of the genes essential for development from fly to mammals. However, sporadic reports imply a potential role of PcGs in positive regulation of gene transcription, although systematic investigation of such function and the underlying mechanism has rarely been reported. Here, we report a Pc-mediated, H3K27me3-dependent positive transcriptional regulation of Senseless (Sens), a key transcription factor required for development. Mechanistic studies show that Pc regulates Sens expression by promoting H4K20me1 at the Sens locus. Further bioinformatic analysis at genome-wide level indicates that the existence of H4K20me1 acts as a selective mark for positive transcriptional regulation by Pc/H3K27me3. Both the intensities and specific patterns of Pc and H3K27me3 are important for the fates of target gene transcription. Moreover, binding of transcription factor Broad (Br), which physically interacts with Pc and positively regulates the transcription of Sens, is observed in Pc+H3K27me3+H4K20me1+ genes, but not in Pc+H3K27me3+H4K20me1− genes. Taken together, our study reveals that, coupling with the transcription factor Br, Pc positively regulates transcription of Pc+H3K27me3+H4K20me1+ genes in developing Drosophila wing disc.
Collapse
|
171
|
Zhang WJ, Wu XN, Shi TT, Xu HT, Yi J, Shen HF, Huang MF, Shu XY, Wang FF, Peng BL, Xiao RQ, Gao WW, Ding JC, Liu W. Regulation of Transcription Factor Yin Yang 1 by SET7/9-mediated Lysine Methylation. Sci Rep 2016; 6:21718. [PMID: 26902152 PMCID: PMC4763200 DOI: 10.1038/srep21718] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 01/29/2016] [Indexed: 11/14/2022] Open
Abstract
Yin Yang 1 (YY1) is a multifunctional transcription factor shown to be critical in a variety of biological processes. Although it is regulated by multiple types of post-translational modifications (PTMs), whether YY1 is methylated, which enzyme methylates YY1, and hence the functional significance of YY1 methylation remains completely unknown. Here we reported the first methyltransferase, SET7/9 (KMT7), capable of methylating YY1 at two highly conserved lysine (K) residues, K173 and K411, located in two distinct domains, one in the central glycine-rich region and the other in the very carboxyl-terminus. Functional studies revealed that SET7/9-mediated YY1 methylation regulated YY1 DNA-binding activity both in vitro and at specific genomic loci in cultured cells. Consistently, SET7/9-mediated YY1 methylation was shown to involve in YY1-regulated gene transcription and cell proliferation. Our findings revealed a novel regulatory strategy, methylation by lysine methyltransferase, imposed on YY1 protein, and linked YY1 methylation with its biological functions.
Collapse
Affiliation(s)
- Wen-juan Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Xiao-nan Wu
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Tao-tao Shi
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Huan-teng Xu
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Jia Yi
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Hai-feng Shen
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Ming-feng Huang
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Xing-yi Shu
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Fei-fei Wang
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Bing-ling Peng
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Rong-quan Xiao
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Wei-wei Gao
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China.,College of Chemistry and Chemical Engineering, Xiamen University, No. 422 Siming South Road, Xiamen, Fujian 361105, China
| | - Jian-cheng Ding
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| | - Wen Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiang'an South Road, Xiamen, Fujian 361102, China
| |
Collapse
|
172
|
Abstract
The role of genome architecture in transcription regulation has become the focus of an increasing number of studies over the past decade. Chromatin organization can have a significant impact on gene expression by promoting or restricting the physical proximity between regulatory DNA elements. Given that any change in chromatin state has the potential to alter DNA folding and the proximity between control elements, the spatial organization of chromatin is inherently linked to its molecular composition. In this review, we explore how modulators of chromatin state and organization might keep gene expression in check. We discuss recent findings and present some of the less well-studied aspects of spatial genome organization such as chromatin dynamics and regulation by non-coding RNAs.
Collapse
|
173
|
Calvo-Martín JM, Librado P, Aguadé M, Papaceit M, Segarra C. Adaptive selection and coevolution at the proteins of the Polycomb repressive complexes in Drosophila. Heredity (Edinb) 2016; 116:213-23. [PMID: 26486609 PMCID: PMC4806890 DOI: 10.1038/hdy.2015.91] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/23/2015] [Accepted: 08/10/2015] [Indexed: 11/08/2022] Open
Abstract
Polycomb group (PcG) proteins are important epigenetic regulatory proteins that modulate the chromatin state through posttranslational histone modifications. These interacting proteins form multimeric complexes that repress gene expression. Thus, PcG proteins are expected to evolve coordinately, which might be reflected in their phylogenetic trees by concordant episodes of positive selection and by a correlation in evolutionary rates. In order to detect these signals of coevolution, the molecular evolution of 17 genes encoding the subunits of five Polycomb repressive complexes has been analyzed in the Drosophila genus. The observed distribution of divergence differs substantially among and along proteins. Indeed, CAF1 is uniformly conserved, whereas only the established protein domains are conserved in other proteins, such as PHO, PHOL, PSC, PH-P and ASX. Moreover, regions with a low divergence not yet described as protein domains are present, for instance, in SFMBT and SU(Z)12. Maximum likelihood methods indicate an acceleration in the nonsynonymous substitution rate at the lineage ancestral to the obscura group species in most genes encoding subunits of the Pcl-PRC2 complex and in genes Sfmbt, Psc and Kdm2. These methods also allow inferring the action of positive selection in this lineage at genes E(z) and Sfmbt. Finally, the protein interaction network predicted from the complete proteomes of 12 Drosophila species using a coevolutionary approach shows two tight PcG clusters. These clusters include well-established binary interactions among PcG proteins as well as new putative interactions.
Collapse
Affiliation(s)
- J M Calvo-Martín
- Facultat de Biologia, Departament de Genètica, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - P Librado
- Facultat de Biologia, Departament de Genètica, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - M Aguadé
- Facultat de Biologia, Departament de Genètica, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - M Papaceit
- Facultat de Biologia, Departament de Genètica, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | - C Segarra
- Facultat de Biologia, Departament de Genètica, and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
174
|
Kim JM, Kim K, Punj V, Liang G, Ulmer TS, Lu W, An W. Linker histone H1.2 establishes chromatin compaction and gene silencing through recognition of H3K27me3. Sci Rep 2015; 5:16714. [PMID: 26581166 PMCID: PMC4652225 DOI: 10.1038/srep16714] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/19/2015] [Indexed: 12/21/2022] Open
Abstract
Linker histone H1 is a protein component of chromatin and has been linked to higher-order chromatin compaction and global gene silencing. However, a growing body of evidence suggests that H1 plays a gene-specific role, regulating a relatively small number of genes. Here we show that H1.2, one of the H1 subtypes, is overexpressed in cancer cells and contributes to gene silencing. H1.2 gets recruited to distinct chromatin regions in a manner dependent on EZH2-mediated H3K27me3, and inhibits transcription of multiple growth suppressive genes via modulation of chromatin architecture. The C-terminal tail of H1.2 is critical for the observed effects, because mutations of three H1.2-specific amino acids in this domain abrogate the ability of H1.2 to bind H3K27me3 nucleosomes and inactivate target genes. Collectively, these results provide a molecular explanation for H1.2 functions in the regulation of chromatin folding and indicate that H3K27me3 is a key mechanism governing the recruitment and activity of H1.2 at target loci.
Collapse
Affiliation(s)
- Jin-Man Kim
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| | - Kyunghwan Kim
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biology, College of Natural Sciences, Chungbuk National University, Cheongju, Chungbuk 361-763, Republic of Korea
| | - Vasu Punj
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA.,Department of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gangning Liang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Tobias S Ulmer
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Wange Lu
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California, Los Angeles, CA 90033, USA
| | - Woojin An
- Department of Biochemistry and Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
175
|
Blackledge NP, Rose NR, Klose RJ. Targeting Polycomb systems to regulate gene expression: modifications to a complex story. Nat Rev Mol Cell Biol 2015; 16:643-649. [PMID: 26420232 PMCID: PMC5469428 DOI: 10.1038/nrm4067] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polycomb group proteins are transcriptional repressors that are essential for normal gene regulation during development. Recent studies suggest that Polycomb repressive complexes (PRCs) recognize and are recruited to their genomic target sites through a range of different mechanisms, which involve transcription factors, CpG island elements and non-coding RNAs. Together with the realization that the interplay between PRC1 and PRC2 is more intricate than was previously appreciated, this has increased our understanding of the vertebrate Polycomb system at the molecular level.
Collapse
Affiliation(s)
- Neil P. Blackledge
- Department of Biochemistry, South Parks Road, University of Oxford, OX1 3QU
| | - Nathan R. Rose
- Department of Biochemistry, South Parks Road, University of Oxford, OX1 3QU
| | - Robert J. Klose
- Department of Biochemistry, South Parks Road, University of Oxford, OX1 3QU
| |
Collapse
|
176
|
The central role of EED in the orchestration of polycomb group complexes. Nat Commun 2015; 5:3127. [PMID: 24457600 PMCID: PMC4073494 DOI: 10.1038/ncomms4127] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 12/16/2013] [Indexed: 12/17/2022] Open
Abstract
Polycomb Repressive Complexes 1 and 2 (PRC1 and 2) play a critical role in the epigenetic regulation of transcription during cellular differentiation, stem cell pluripotency, and neoplastic progression. Here we show that the Polycomb Group protein EED, a core component of PRC2, physically interacts with and functions as part of PRC1. Components of PRC1 and PRC2 compete for EED binding. EED functions to recruit PRC1 to H3K27me3 loci and enhances PRC1 mediated H2A ubiquitin E3 ligase activity. Taken together, we suggest an integral role for EED as an epigenetic exchange factor coordinating the activities of PRC1 and 2.
Collapse
|
177
|
Pervasive lncRNA binding by epigenetic modifying complexes--The challenges ahead. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:93-101. [PMID: 26463275 DOI: 10.1016/j.bbagrm.2015.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/01/2015] [Accepted: 10/08/2015] [Indexed: 02/08/2023]
Abstract
Epigenetic modifying factors are fundamental regulators of chromatin structure and gene expression during development and differentiation through the induction of chemical modifications on histones, DNA or via remodeling of the chromatin structure. Protein complexes involved in these three processes contain non-canonical RNA-binding components that interact with long non-coding RNAs, in many cases in the absence of any sequence or structural signatures. However, there is growing evidence of the role of such protein-lncRNA interactions in the regulation of the epigenetic landscape in vivo. This review summarizes the growing number of epigenetic modifying factors described to interact with lncRNAs in mouse and human, and then discusses the challenges that lay ahead in understanding lncRNAs as part of the intricate networks of epigenetic regulation. A combination of protein and RNA-centric approaches is required for this purpose. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.
Collapse
|
178
|
Zhang T, Cooper S, Brockdorff N. The interplay of histone modifications - writers that read. EMBO Rep 2015; 16:1467-81. [PMID: 26474904 PMCID: PMC4641500 DOI: 10.15252/embr.201540945] [Citation(s) in RCA: 553] [Impact Index Per Article: 55.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/16/2015] [Indexed: 01/07/2023] Open
Abstract
Histones are subject to a vast array of posttranslational modifications including acetylation, methylation, phosphorylation, and ubiquitylation. The writers of these modifications play important roles in normal development and their mutation or misregulation is linked with both genetic disorders and various cancers. Readers of these marks contain protein domains that allow their recruitment to chromatin. Interestingly, writers often contain domains which can read chromatin marks, allowing the reinforcement of modifications through a positive feedback loop or inhibition of their activity by other modifications. We discuss how such positive reinforcement can result in chromatin states that are robust and can be epigenetically maintained through cell division. We describe the implications of these regulatory systems in relation to modifications including H3K4me3, H3K79me3, and H3K36me3 that are associated with active genes and H3K27me3 and H3K9me3 that have been linked to transcriptional repression. We also review the crosstalk between active and repressive modifications, illustrated by the interplay between the Polycomb and Trithorax histone-modifying proteins, and discuss how this may be important in defining gene expression states during development.
Collapse
Affiliation(s)
- Tianyi Zhang
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Sarah Cooper
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| | - Neil Brockdorff
- Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
179
|
The quest for mammalian Polycomb response elements: are we there yet? Chromosoma 2015; 125:471-96. [PMID: 26453572 PMCID: PMC4901126 DOI: 10.1007/s00412-015-0539-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 12/12/2022]
Abstract
A long-standing mystery in the field of Polycomb and Trithorax regulation is how these proteins, which are highly conserved between flies and mammals, can regulate several hundred equally highly conserved target genes, but recognise these targets via cis-regulatory elements that appear to show no conservation in their DNA sequence. These elements, termed Polycomb/Trithorax response elements (PRE/TREs or PREs), are relatively well characterised in flies, but their mammalian counterparts have proved to be extremely difficult to identify. Recent progress in this endeavour has generated a wealth of data and raised several intriguing questions. Here, we ask why and to what extent mammalian PREs are so different to those of the fly. We review recent advances, evaluate current models and identify open questions in the quest for mammalian PREs.
Collapse
|
180
|
Wang H, Ge S, Qian G, Li W, Cui J, Wang G, Hoffman AR, Hu JF. Restoration of IGF2 imprinting by polycomb repressive complex 2 docking factor SUZ12 in colon cancer cells. Exp Cell Res 2015; 338:214-21. [PMID: 26407907 DOI: 10.1016/j.yexcr.2015.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 09/13/2015] [Accepted: 09/19/2015] [Indexed: 01/09/2023]
Abstract
The insulin-like growth factor II (IGF2) gene is aberrantly expressed in tumors as a result of loss of imprinting (LOI). Reactivation of the normally-suppressed maternal allele may lead to IGF2 upregulation and increased tumor growth, particularly in colon cancer. However, the mechanisms underlying IGF2 LOI in tumors are poorly defined. In this report, we identified polycomb repressive complex 2 (PRC2) docking factor SUZ12 as a critical factor in regulating IGF2 imprinting in tumors. Human colon cancer cell lines (HRT18 and HT29) show loss of IGF2 imprinting. Ectopic expression of SUZ12 restored normal monoallelic expression of IGF2 in these two colon cancer cell lines. Using chromatin immunoprecipitation (ChIP) and chromatin conformation capture (3C), we found that the virally-expressed SUZ12 bound to IGF2 promoters, coordinating with endogenous CTCF to orchestrate a long range intrachromosomal loop between the imprinting control region (ICR) and the IGF2 promoters. The histone methyltransferase EZH2 was recruited to the IGF2 promoters, where it induced H3K27 hypermethylation, suppressing one allele, leading to the restoration of IGF2 imprinting. These data demonstrate that SUZ12 is a key molecule in the regulation of monoallelic expression of IGF2, suggesting a novel epigenetic therapeutic strategy for modulating IGF2 production in human tumors.
Collapse
Affiliation(s)
- Haibo Wang
- Institute of Cardiovascular Diseases, Rui Jin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Shengfang Ge
- Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China
| | - Guanxiang Qian
- Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, PR China
| | - Wei Li
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China
| | - Jiuwei Cui
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China
| | - Guanjun Wang
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China
| | - Andrew R Hoffman
- Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| | - Ji-Fan Hu
- Stem Cell and Cancer Center, First Affiliated Hospital, Jilin University, Changchun, Jilin 130061, PR China; Stanford University Medical School, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
181
|
Jiang XX, Chou Y, Jones L, Wang T, Sanchez S, Huang XF, Zhang L, Wang C, Chen SY. Epigenetic Regulation of Antibody Responses by the Histone H2A Deubiquitinase MYSM1. Sci Rep 2015; 5:13755. [PMID: 26348977 PMCID: PMC4562257 DOI: 10.1038/srep13755] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/04/2015] [Indexed: 01/25/2023] Open
Abstract
B cell-mediated antibody response plays critical roles in protective immunity, as well as in the pathogenesis of allergic and autoimmune diseases. Epigenetic histone and DNA modifications regulate gene transcription and immunity; however, so far, little is known about the role of epigenetic regulation in antibody responses. In this study, we found that mice deficient in the histone H2A deubiquitinase MYSM1, despite their severe defect in B cell development, exhibit an enhanced antibody response against both T cell-dependent and independent antigens. We revealed that MYSM1 intrinsically represses plasma cell differentiation and antibody production. Mechanistic studies demonstrated that MYSM1 is a transcriptional activator of Pax5, the repressors of plasma cell differentiation, by facilitating key transcriptional factor recruitment and coordinating histone modifications at the Pax5 loci. Hence, this study uncovers a critical role for MYSM1 in epigenetically repressing plasma cell differentiation and antibody production, in addition to its opposing, active role in B cell development. Importantly, this study further provides a new target and strategy to modulate antibody production and responses with profound therapeutic implications.
Collapse
Affiliation(s)
- Xiao-Xia Jiang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA.,Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - YuChia Chou
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA
| | - Lindsey Jones
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA
| | - Tao Wang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA
| | - Suzi Sanchez
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA
| | - Xue F Huang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA
| | - Lei Zhang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Changyong Wang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Si-Yi Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center Keck School of Medicine, University of Southern California, Los Angeles, California, 90033, USA
| |
Collapse
|
182
|
Geisler SJ, Paro R. Trithorax and Polycomb group-dependent regulation: a tale of opposing activities. Development 2015; 142:2876-2887. [DOI: 10.1242/dev.120030] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Intricate layers of regulation determine the unique gene expression profiles of a given cell and, therefore, underlie the immense phenotypic diversity observed among cell types. Understanding the mechanisms that govern which genes are expressed and which genes are silenced is a fundamental focus in biology. The Polycomb and Trithorax group chromatin proteins play important roles promoting the stable and heritable repression and activation of gene expression, respectively. These proteins, which are conserved across metazoans, modulate post-translational modifications on histone tails and regulate nucleosomal structures. Here, we review recent advances that have shed light on the mechanisms by which these two classes of proteins act to maintain epigenetic memory and allow dynamic switches in gene expression during development.
Collapse
Affiliation(s)
- Sarah J. Geisler
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland
| | - Renato Paro
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel 4058, Switzerland
- Faculty of Science, University of Basel, Klingelbergstrasse 50, Basel 4056, Switzerland
| |
Collapse
|
183
|
Inoue K, Fry EA, Frazier DP. Transcription factors that interact with p53 and Mdm2. Int J Cancer 2015; 138:1577-85. [PMID: 26132471 DOI: 10.1002/ijc.29663] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/22/2015] [Indexed: 01/21/2023]
Abstract
The tumor suppressor p53 is activated upon cellular stresses such as DNA damage, oncogene activation, hypoxia, which transactivates sets of genes that induce DNA repair, cell cycle arrest, apoptosis, or autophagy, playing crucial roles in the prevention of tumor formation. The central regulator of the p53 pathway is Mdm2 which inhibits transcriptional activity, nuclear localization and protein stability. More than 30 cellular p53-binding proteins have been isolated and characterized including Mdm2, Mdm4, p300, BRCA1/2, ATM, ABL and 53BP-1/2. Most of them are nuclear proteins; however, not much is known about p53-binding transcription factors. In this review, we focus on transcription factors that directly interact with p53/Mdm2 through direct binding including Dmp1, E2F1, YB-1 and YY1. Dmp1 and YB-1 bind only to p53 while E2F1 and YY1 bind to both p53 and Mdm2. Dmp1 has been shown to bind to p53 and block all the known functions for Mdm2 on p53 inhibition, providing a secondary mechanism for tumor suppression in Arf-null cells. Although E2F1-p53 binding provides a checkpoint mechanism to silence hyperactive E2F1, YB-1 or YY1 interaction with p53 subverts the activity of p53, contributing to cell cycle progression and tumorigenesis. Thus, the modes and consequences for each protein-protein interaction vary from the viewpoint of tumor development and suppression.
Collapse
Affiliation(s)
- Kazushi Inoue
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157
| | - Elizabeth A Fry
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157
| | - Donna P Frazier
- Department of Pathology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157
| |
Collapse
|
184
|
van Kruijsbergen I, Hontelez S, Veenstra GJC. Recruiting polycomb to chromatin. Int J Biochem Cell Biol 2015; 67:177-87. [PMID: 25982201 DOI: 10.1016/j.biocel.2015.05.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 10/23/2022]
Abstract
Polycomb group (PcG) proteins are key regulators in establishing a transcriptional repressive state. Polycomb Repressive Complex 2 (PRC2), one of the two major PcG protein complexes, is essential for proper differentiation and maintenance of cellular identity. Multiple factors are involved in recruiting PRC2 to its genomic targets. In this review, we will discuss the role of DNA sequence, transcription factors, pre-existing histone modifications, and RNA in guiding PRC2 towards specific genomic loci. The DNA sequence itself influences the DNA methylation state, which is an important determinant of PRC2 recruitment. Other histone modifications are also important for PRC2 binding as PRC2 can respond to different cellular states via crosstalk between histone modifications. Additionally, PRC2 might be able to sense the transcriptional status of genes by binding to nascent RNA, which could also guide the complex to chromatin. In this review, we will discuss how all these molecular aspects define a local chromatin state which controls accurate, cell-type-specific epigenetic silencing by PRC2. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Ila van Kruijsbergen
- Radboud University Nijmegen, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | - Saartje Hontelez
- Radboud University Nijmegen, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | - Gert Jan C Veenstra
- Radboud University Nijmegen, Department of Molecular Developmental Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands.
| |
Collapse
|
185
|
|
186
|
PcG and trxG in plants - friends or foes. Trends Genet 2015; 31:252-62. [PMID: 25858128 DOI: 10.1016/j.tig.2015.03.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 03/07/2015] [Accepted: 03/09/2015] [Indexed: 01/07/2023]
Abstract
The highly-conserved Polycomb group (PcG) and trithorax group (trxG) proteins play major roles in regulating gene expression and maintaining developmental states in many organisms. However, neither the recruitment of Polycomb repressive complexes (PRC) nor the mechanisms of PcG and trxG-mediated gene silencing and activation are well understood. Recent progress in Arabidopsis research challenges the dominant model of PRC2-dependent recruitment of PRC1 to target genes. Moreover, evidence indicates that diverse forms of PRC1, with shared components, are a common theme in plants and mammals. Although trxG is known to antagonize PcG, emerging data reveal that trxG can also repress gene expression, acting cooperatively with PcG. We discuss these recent findings and highlight the employment of diverse epigenetic mechanisms during development in plants and animals.
Collapse
|
187
|
Bajusz I, Sipos L, Pirity MK. Nucleotide substitutions revealing specific functions of Polycomb group genes. Mol Genet Metab 2015; 114:547-56. [PMID: 25669595 DOI: 10.1016/j.ymgme.2015.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 01/22/2015] [Indexed: 01/22/2023]
Abstract
POLYCOMB group (PCG) proteins belong to the family of epigenetic regulators of genes playing important roles in differentiation and development. Mutants of PcG genes were isolated first in the fruit fly, Drosophila melanogaster, resulting in spectacular segmental transformations due to the ectopic expression of homeotic genes. Homologs of Drosophila PcG genes were also identified in plants and in vertebrates and subsequent experiments revealed the general role of PCG proteins in the maintenance of the repressed state of chromatin through cell divisions. The past decades of gene targeting experiments have allowed us to make significant strides towards understanding how the network of PCG proteins influences multiple aspects of cellular fate determination during development. Being involved in the transmission of specific expression profiles of different cell lineages, PCG proteins were found to control wide spectra of unrelated epigenetic processes in vertebrates, such as stem cell plasticity and renewal, genomic imprinting and inactivation of X-chromosome. PCG proteins also affect regulation of metabolic genes being important for switching programs between pluripotency and differentiation. Insight into the precise roles of PCG proteins in normal physiological processes has emerged from studies employing cell culture-based systems and genetically modified animals. Here we summarize the findings obtained from PcG mutant fruit flies and mice generated to date with a focus on PRC1 and PRC2 members altered by nucleotide substitutions resulting in specific alleles. We also include a compilation of lessons learned from these models about the in vivo functions of this complex protein family. With multiple knockout lines, sophisticated approaches to study the consequences of peculiar missense point mutations, and insights from complementary gain-of-function systems in hand, we are now in a unique position to significantly advance our understanding of the molecular basis of in vivo functions of PcG proteins.
Collapse
Affiliation(s)
- Izabella Bajusz
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, H-6701 Szeged, Hungary.
| | - László Sipos
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, H-6701 Szeged, Hungary
| | - Melinda K Pirity
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, H-6701 Szeged, Hungary
| |
Collapse
|
188
|
Chemical “Diversity” of Chromatin Through Histone Variants and Histone Modifications. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s40610-015-0005-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
189
|
Xiao J, Wagner D. Polycomb repression in the regulation of growth and development in Arabidopsis. CURRENT OPINION IN PLANT BIOLOGY 2015; 23:15-24. [PMID: 25449722 DOI: 10.1016/j.pbi.2014.10.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/01/2014] [Accepted: 10/06/2014] [Indexed: 05/18/2023]
Abstract
Chromatin state is critical for cell identity and development in multicellular eukaryotes. Among the regulators of chromatin state, Polycomb group (PcG) proteins stand out because of their role in both establishment and maintenance of cell identity. PcG proteins act in two major complexes in metazoans and plants. These complexes function to epigenetically-in a mitotically heritable manner-prevent expression of important developmental regulators at the wrong stage of development or in the wrong tissue. In Arabidopsis, PcG function is required throughout the life cycle from seed germination to embryo formation. Recent studies have expanded our knowledge regarding the biological roles and the regulation of the activity of PcG complexes. In this review, we discuss novel functions of Polycomb repression in plant development as well as advances in understanding PcG complex recruitment, activity regulation and removal in Arabidopsis and other plant species.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Doris Wagner
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
190
|
Abstract
Correct expression of specific sets of genes in time and space ensures the establishment and maintenance of cell identity, which is required for proper development of multicellular organisms. Polycomb and Trithorax group proteins form multisubunit complexes that antagonistically act in epigenetic gene repression and activation, respectively. The traditional view of Polycomb repressive complexes (PRCs) as executors of long-lasting and stable gene repression is being extended by evidence of flexible repression in response to developmental and environmental cues, increasing the complexity of mechanisms that ensure selective and properly timed PRC targeting and release of Polycomb repression. Here, we review advances in understanding of the composition, mechanisms of targeting, and function of plant PRCs and discuss the parallels and differences between plant and animal models.
Collapse
Affiliation(s)
- Iva Mozgova
- Department of Plant Biology, Uppsala BioCenter, and Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden; ,
| | | |
Collapse
|
191
|
Grossniklaus U, Paro R. Transcriptional silencing by polycomb-group proteins. Cold Spring Harb Perspect Biol 2014; 6:a019331. [PMID: 25367972 DOI: 10.1101/cshperspect.a019331] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polycomb-group (PcG) genes encode chromatin proteins involved in stable and heritable transcriptional silencing. PcG proteins participate in distinct multimeric complexes that deposit, or bind to, specific histone modifications (e.g., H3K27me3 and H2AK119ub1) to prevent gene activation and maintain repressed chromatin domains. PcG proteins are evolutionary conserved and play a role in processes ranging from vernalization and seed development in plants, over X-chromosome inactivation in mammals, to the maintenance of stem cell identity. PcG silencing is medically relevant as it is often observed in human disorders, including cancer, and tissue regeneration, which involve the reprogramming of PcG-controlled target genes.
Collapse
Affiliation(s)
- Ueli Grossniklaus
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, CH-8008 Zürich, Switzerland
| | - Renato Paro
- Department of Biosystems Science and Engineering, ETH Zürich, 4058 Basel, Switzerland
| |
Collapse
|
192
|
Corley M, Kroll KL. The roles and regulation of Polycomb complexes in neural development. Cell Tissue Res 2014; 359:65-85. [PMID: 25367430 DOI: 10.1007/s00441-014-2011-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/17/2014] [Indexed: 12/20/2022]
Abstract
In the developing mammalian nervous system, common progenitors integrate both cell extrinsic and intrinsic regulatory programs to produce distinct neuronal and glial cell types as development proceeds. This spatiotemporal restriction of neural progenitor differentiation is enforced, in part, by the dynamic reorganization of chromatin into repressive domains by Polycomb repressive complexes, effectively limiting the expression of fate-determining genes. Here, we review the distinct roles that Polycomb repressive complexes play during neurogenesis and gliogenesis, while also highlighting recent work describing the molecular mechanisms that govern their dynamic activity in neural development. Further investigation of the way in which Polycomb complexes are regulated in neural development will enable more precise manipulation of neural progenitor differentiation facilitating the efficient generation of specific neuronal and glial cell types for many biological applications.
Collapse
Affiliation(s)
- Matthew Corley
- Department of Developmental Biology, Washington University School of Medicine, 320 McDonnell Sciences Building, Campus Box 8103, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | | |
Collapse
|
193
|
Schuettengruber B, Oded Elkayam N, Sexton T, Entrevan M, Stern S, Thomas A, Yaffe E, Parrinello H, Tanay A, Cavalli G. Cooperativity, specificity, and evolutionary stability of Polycomb targeting in Drosophila. Cell Rep 2014; 9:219-233. [PMID: 25284790 DOI: 10.1016/j.celrep.2014.08.072] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/08/2014] [Accepted: 08/27/2014] [Indexed: 12/21/2022] Open
Abstract
Metazoan genomes are partitioned into modular chromosomal domains containing active or repressive chromatin. In flies, Polycomb group (PcG) response elements (PREs) recruit PHO and other DNA-binding factors and act as nucleation sites for the formation of Polycomb repressive domains. The sequence specificity of PREs is not well understood. Here, we use comparative epigenomics and transgenic assays to show that Drosophila domain organization and PRE specification are evolutionarily conserved despite significant cis-element divergence within Polycomb domains, whereas cis-element evolution is strongly correlated with transcription factor binding divergence outside of Polycomb domains. Cooperative interactions of PcG complexes and their recruiting factor PHO stabilize PHO recruitment to low-specificity sequences. Consistently, PHO recruitment to sites within Polycomb domains is stabilized by PRC1. These data suggest that cooperative rather than hierarchical interactions among low-affinity sequences, DNA-binding factors, and the Polycomb machinery are giving rise to specific and strongly conserved 3D structures in Drosophila.
Collapse
Affiliation(s)
- Bernd Schuettengruber
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Noa Oded Elkayam
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tom Sexton
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Marianne Entrevan
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Shani Stern
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aubin Thomas
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Eitan Yaffe
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hugues Parrinello
- Montpellier GenomiX IBiSA, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics and Department of Biological Regulation, The Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Giacomo Cavalli
- Institute of Human Genetics, UPR 1142, CNRS, 141 rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| |
Collapse
|
194
|
Affiliation(s)
- Itys Comet
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark, and the Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Helin
- 1] Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark, and the Centre for Epigenetics, University of Copenhagen, Copenhagen, Denmark. [2] Danish Stem Cell Center (DanStem), Copenhagen, Denmark
| |
Collapse
|
195
|
Zhen CY, Duc HN, Kokotovic M, Phiel CJ, Ren X. Cbx2 stably associates with mitotic chromosomes via a PRC2- or PRC1-independent mechanism and is needed for recruiting PRC1 complex to mitotic chromosomes. Mol Biol Cell 2014; 25:3726-39. [PMID: 25232004 PMCID: PMC4230780 DOI: 10.1091/mbc.e14-06-1109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cbx2 is immobilized at mitotic chromosomes, and the immobilization is independent of PRC1 or PRC2. Cbx2 plays important roles in recruiting PRC1 complex to mitotic chromosomes. This study provides novel insights into the PcG epigenetic memory passing down through cell divisions. Polycomb group (PcG) proteins are epigenetic transcriptional factors that repress key developmental regulators and maintain cellular identity through mitosis via a poorly understood mechanism. Using quantitative live-cell imaging in mouse ES cells and tumor cells, we demonstrate that, although Polycomb repressive complex (PRC) 1 proteins (Cbx-family proteins, Ring1b, Mel18, and Phc1) exhibit variable capacities of association with mitotic chromosomes, Cbx2 overwhelmingly binds to mitotic chromosomes. The recruitment of Cbx2 to mitotic chromosomes is independent of PRC1 or PRC2, and Cbx2 is needed to recruit PRC1 complex to mitotic chromosomes. Quantitative fluorescence recovery after photobleaching analysis indicates that PRC1 proteins rapidly exchange at interphasic chromatin. On entry into mitosis, Cbx2, Ring1b, Mel18, and Phc1 proteins become immobilized at mitotic chromosomes, whereas other Cbx-family proteins dynamically bind to mitotic chromosomes. Depletion of PRC1 or PRC2 protein has no effect on the immobilization of Cbx2 on mitotic chromosomes. We find that the N-terminus of Cbx2 is needed for its recruitment to mitotic chromosomes, whereas the C-terminus is required for its immobilization. Thus these results provide fundamental insights into the molecular mechanisms of epigenetic inheritance.
Collapse
Affiliation(s)
- Chao Yu Zhen
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364
| | - Huy Nguyen Duc
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364
| | - Marko Kokotovic
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364
| | - Christopher J Phiel
- Department of Integrative Biology, University of Colorado Denver, Denver, CO 80217-3364
| | - Xiaojun Ren
- Department of Chemistry, University of Colorado Denver, Denver, CO 80217-3364
| |
Collapse
|
196
|
Kahn TG, Stenberg P, Pirrotta V, Schwartz YB. Combinatorial interactions are required for the efficient recruitment of pho repressive complex (PhoRC) to polycomb response elements. PLoS Genet 2014; 10:e1004495. [PMID: 25010632 PMCID: PMC4091789 DOI: 10.1371/journal.pgen.1004495] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/23/2014] [Indexed: 12/20/2022] Open
Abstract
Polycomb Group (PcG) proteins are epigenetic repressors that control metazoan development and cell differentiation. In Drosophila, PcG proteins form five distinct complexes targeted to genes by Polycomb Response Elements (PREs). Of all PcG complexes PhoRC is the only one that contains a sequence-specific DNA binding subunit (PHO or PHOL), which led to a model that places PhoRC at the base of the recruitment hierarchy. Here we demonstrate that in vivo PHO is preferred to PHOL as a subunit of PhoRC and that PHO and PHOL associate with PREs and a subset of transcriptionally active promoters. Although the binding to the promoter sites depends on the quality of recognition sequences, the binding to PREs does not. Instead, the efficient recruitment of PhoRC to PREs requires the SFMBT subunit and crosstalk with Polycomb Repressive Complex 1. We find that human YY1 protein, the ortholog of PHO, binds sites at active promoters in the human genome but does not bind most PcG target genes, presumably because the interactions involved in the targeting to Drosophila PREs are lost in the mammalian lineage. We conclude that the recruitment of PhoRC to PREs is based on combinatorial interactions and propose that such a recruitment strategy is important to attenuate the binding of PcG proteins when the target genes are transcriptionally active. Our findings allow the appropriate placement of PhoRC in the PcG recruitment hierarchy and provide a rationale to explain why YY1 is unlikely to serve as a general recruiter of mammalian Polycomb complexes despite its reported ability to participate in PcG repression in flies. Polycomb Group (PcG) proteins are epigenetic repressors essential for development and cell differentiation. PcG proteins form five complexes targeted to specific genes by Polycomb Response Elements (PREs). How PcG complexes are recruited to PREs is poorly understood. Here we investigate the recruitment of PhoRC, a seemingly simple case of a complex that contains a sequence-specific DNA binding subunit: PHO (or the related protein PHOL). Unexpectedly, we find that the sequence specific binding of PHO is not a primary determinant for recruitment of PhoRC to PRE, which depends on the non-DNA binding subunit SFMBT and cross-talk with another PcG complex, PRC1. The binding of PhoRC is helped by PRC1 and, in turn, may stabilize the binding of PRC1. We propose that the recruitment based on combinatorial interactions enables the conditional binding of PcG proteins, which is important for switching the state of the target genes from repressed to active. The critical role of the cross-talk between PhoRC and PRC1 is further supported by the finding that in mammals, where the protein domains linking the two complexes are missing, the PHO ortholog YY1 has no implication in PcG repression, despite 100% conservation between DNA binding domains of YY1 and PHO.
Collapse
Affiliation(s)
- Tatyana G. Kahn
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Per Stenberg
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Computational Life Science Cluster (CLiC), Umeå University, Umeå, Sweden
| | - Vincenzo Pirrotta
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail: (VP); (YBS)
| | - Yuri B. Schwartz
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
- * E-mail: (VP); (YBS)
| |
Collapse
|
197
|
Tao J, Liu YL, Zhang G, Ma YY, Cui BB, Yang YM. Expression and clinicopathological significance of Mel-18 mRNA in colorectal cancer. Tumour Biol 2014; 35:9619-25. [PMID: 24964959 DOI: 10.1007/s13277-014-2220-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022] Open
|
198
|
Blackledge NP, Farcas AM, Kondo T, King HW, McGouran JF, Hanssen LLP, Ito S, Cooper S, Kondo K, Koseki Y, Ishikura T, Long HK, Sheahan TW, Brockdorff N, Kessler BM, Koseki H, Klose RJ. Variant PRC1 complex-dependent H2A ubiquitylation drives PRC2 recruitment and polycomb domain formation. Cell 2014; 157:1445-1459. [PMID: 24856970 PMCID: PMC4048464 DOI: 10.1016/j.cell.2014.05.004] [Citation(s) in RCA: 567] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 03/10/2014] [Accepted: 05/02/2014] [Indexed: 11/30/2022]
Abstract
Chromatin modifying activities inherent to polycomb repressive complexes PRC1 and PRC2 play an essential role in gene regulation, cellular differentiation, and development. However, the mechanisms by which these complexes recognize their target sites and function together to form repressive chromatin domains remain poorly understood. Recruitment of PRC1 to target sites has been proposed to occur through a hierarchical process, dependent on prior nucleation of PRC2 and placement of H3K27me3. Here, using a de novo targeting assay in mouse embryonic stem cells we unexpectedly discover that PRC1-dependent H2AK119ub1 leads to recruitment of PRC2 and H3K27me3 to effectively initiate a polycomb domain. This activity is restricted to variant PRC1 complexes, and genetic ablation experiments reveal that targeting of the variant PCGF1/PRC1 complex by KDM2B to CpG islands is required for normal polycomb domain formation and mouse development. These observations provide a surprising PRC1-dependent logic for PRC2 occupancy at target sites in vivo.
Collapse
Affiliation(s)
- Neil P Blackledge
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Anca M Farcas
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Takashi Kondo
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hamish W King
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Joanna F McGouran
- Ubiquitin Proteolysis Group, Central Proteomics Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN, UK
| | - Lars L P Hanssen
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Shinsuke Ito
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Sarah Cooper
- Laboratory of Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Kaori Kondo
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Yoko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Tomoyuki Ishikura
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Hannah K Long
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Thomas W Sheahan
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Neil Brockdorff
- Laboratory of Developmental Epigenetics, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Benedikt M Kessler
- Ubiquitin Proteolysis Group, Central Proteomics Facility, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, OX3 7BN, UK
| | - Haruhiko Koseki
- Laboratory of Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Robert J Klose
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
199
|
Targeting polycomb to pericentric heterochromatin in embryonic stem cells reveals a role for H2AK119u1 in PRC2 recruitment. Cell Rep 2014; 7:1456-1470. [PMID: 24857660 PMCID: PMC4062935 DOI: 10.1016/j.celrep.2014.04.012] [Citation(s) in RCA: 250] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/12/2014] [Accepted: 04/11/2014] [Indexed: 11/24/2022] Open
Abstract
The mechanisms by which the major Polycomb group (PcG) complexes PRC1 and PRC2 are recruited to target sites in vertebrate cells are not well understood. Building on recent studies that determined a reciprocal relationship between DNA methylation and Polycomb activity, we demonstrate that, in methylation-deficient embryonic stem cells (ESCs), CpG density combined with antagonistic effects of H3K9me3 and H3K36me3 redirects PcG complexes to pericentric heterochromatin and gene-rich domains. Surprisingly, we find that PRC1-linked H2A monoubiquitylation is sufficient to recruit PRC2 to chromatin in vivo, suggesting a mechanism through which recognition of unmethylated CpG determines the localization of both PRC1 and PRC2 at canonical and atypical target sites. We discuss our data in light of emerging evidence suggesting that PcG recruitment is a default state at licensed chromatin sites, mediated by interplay between CpG hypomethylation and counteracting H3 tail modifications. Absence of DNA methylation recruits Polycomb complexes to pericentric heterochromatin H3K9me3 antagonizes activity of PRC2, but not PRC1, at pericentric heterochromatin CpG density and antagonism by H3 modifications define genome-wide Polycomb occupancy PRC1-mediated H2AK119u1 recruits PRC2 and H3K27me3
Collapse
|
200
|
Basu A, Dasari V, Mishra RK, Khosla S. The CpG island encompassing the promoter and first exon of human DNMT3L gene is a PcG/TrX response element (PRE). PLoS One 2014; 9:e93561. [PMID: 24743422 PMCID: PMC3990577 DOI: 10.1371/journal.pone.0093561] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 03/07/2014] [Indexed: 01/27/2023] Open
Abstract
DNMT3L, a member of DNA methyltransferases family, is present only in mammals. As it provides specificity to the action of de novo methyltransferases, DNMT3A and DNMT3B and interacts with histone H3, DNMT3L has been invoked as the molecule that can read the histone code and translate it into DNA methylation. It plays an important role in the initiation of genomic imprints during gametogenesis and in nuclear reprogramming. With important functions attributed to it, it is imperative that the DNMT3L expression is tightly controlled. Previously, we had identified a CpG island within the human DNMT3L promoter and first exon that showed loss of DNA methylation in cancer samples. Here we show that this Differentially Methylated CpG island within DNMT3L (DNMT3L DMC) acts to repress transcription, is a Polycomb/Trithorax Response Element (PRE) and interacts with both PRC1 and PRC2 Polycomb repressive complexes. In addition, it adopts inactive chromatin conformation and is associated with other inactive chromatin-specific proteins like SUV39H1 and HP1. The presence of DNMT3L DMC also influences the adjacent promoter to adopt repressive histone post-translational modifications. Due to its association with multiple layers of repressive epigenetic modifications, we believe that PRE within the DNMT3L DMC is responsible for the tight regulation of DNMT3L expression and the aberrant epigenetic modifications of this region leading to DNMT3L overexpression could be the reason of nuclear programming during carcinogenesis.
Collapse
Affiliation(s)
- Amitava Basu
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad, India
| | - Vasanthi Dasari
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Rakesh K. Mishra
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Hyderabad, India
| | - Sanjeev Khosla
- Centre for DNA Fingerprinting and Diagnostics (CDFD), Nampally, Hyderabad, India
| |
Collapse
|