151
|
Savas JN, Tanese N. A combined immunoprecipitation, mass spectrometric and nucleic acid sequencing approach to determine microRNA-mediated post-transcriptional gene regulatory networks. Brief Funct Genomics 2010; 9:24-31. [PMID: 20053813 DOI: 10.1093/bfgp/elp050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
While initiation of transcription has attracted the most attention in the field of gene regulation, it has become clear that additional stages in the gene expression cascade including post-transcriptional events are under equally exquisite control. The seminal discovery that short RNAs (microRNA, small interfering RNA, Piwi-interacting RNA), play important roles in repressing gene expression has spurred a rush of new interest in post-transcriptional gene silencing mechanisms. The development of affinity tags and high-resolution tandem mass spectrometry (MS/MS) has greatly simplified the analysis of proteins that regulate gene expression. Further, the use of DNA microarrays and 'second generation' nucleic acid sequencing ('deep sequencing') technologies has facilitated the identification of their regulatory targets. These technological advancements mark a significant step towards a comprehensive understanding of gene regulatory networks. The purpose of this review is to highlight several recent reports that illustrate the value of affinity-purification (immunoprecipitation) followed by mass spectrometric protein analysis and nucleic acid analysis by deep sequencing (AP-MS/Seq) to examine mRNA after it has been transcribed. The ability to identify the direct nucleic acid targets of post-transcriptional gene regulatory machines is a critical first step towards understanding the contribution of post-transcriptional pathways on gene expression.
Collapse
Affiliation(s)
- Jeffrey N Savas
- Department of Microbiology, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
152
|
Lee MH, Schedl T. C. elegans star proteins, GLD-1 and ASD-2, regulate specific RNA targets to control development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 693:106-22. [PMID: 21189689 DOI: 10.1007/978-1-4419-7005-3_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
A comprehensive understanding of the C. elegans STAR proteins GLD-1 and ASD-2 is emerging from a combination of studies. Those employing genetic analysis reveal in vivo function, others involving biochemical approaches pursue the identification of mRNA targets through which these proteins act. Lastly, mechanistic studies provide the molecular pathway of target mRNA regulation.
Collapse
Affiliation(s)
- Min-Ho Lee
- Department of Biological Sciences, University at Albany, SUNY, Albany, New York 12222, USA.
| | | |
Collapse
|
153
|
Li L, Xu J, Yang D, Tan X, Wang H. Computational approaches for microRNA studies: a review. Mamm Genome 2009; 21:1-12. [PMID: 20012966 DOI: 10.1007/s00335-009-9241-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 11/23/2009] [Indexed: 10/20/2022]
Abstract
MicroRNAs (miRNAs) are one class of tiny, endogenous RNAs that can regulate messenger RNA (mRNA) expression by targeting homologous sequences in mRNAs. Their aberrant expressions have been observed in many cancers and several miRNAs have been convincingly shown to play important roles in carcinogenesis. Since the discovery of this small regulator, computational methods have been indispensable tools in miRNA gene finding and functional studies. In this review we first briefly outline the biological findings of miRNA genes, such as genomic feature, biogenesis, gene structure, and functional mechanism. We then discuss in detail the three main aspects of miRNA computational studies: miRNA gene finding, miRNA target prediction, and regulation of miRNA genes. Finally, we provide perspectives on some emerging issues, including combinatorial regulation by miRNAs and functional binding sites beyond the 3'-untranslated region (3'UTR) of target mRNAs. Available online resources for miRNA computational studies are also provided.
Collapse
Affiliation(s)
- Li Li
- Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, 200092, People's Republic of China
| | | | | | | | | |
Collapse
|
154
|
Abstract
The discovery in mammalian cells of hundreds of small RNA molecules, called microRNAs, with the potential to modulate the expression of the majority of the protein-coding genes has revolutionized many areas of biomedical research, including the diabetes field. MicroRNAs function as translational repressors and are emerging as key regulators of most, if not all, physiological processes. Moreover, alterations in the level or function of microRNAs are associated with an increasing number of diseases. Here, we describe the mechanisms governing the biogenesis and activities of microRNAs. We present evidence for the involvement of microRNAs in diabetes mellitus, by outlining the contribution of these small RNA molecules in the control of pancreatic beta-cell functions and by reviewing recent studies reporting changes in microRNA expression in tissues isolated from diabetes animal models. MicroRNAs hold great potential as therapeutic targets. We describe the strategies developed for the delivery of molecules mimicking or blocking the function of these tiny regulators of gene expression in living animals. In addition, because changes in serum microRNA profiles have been shown to occur in association with different human diseases, we also discuss the potential use of microRNAs as blood biomarkers for prevention and management of diabetes.
Collapse
Affiliation(s)
- I G M Kolfschoten
- Department of Cellular Biology and Morphology, University of Lausanne, Switzerland
| | | | | | | |
Collapse
|
155
|
Ago-TNRC6 triggers microRNA-mediated decay by promoting two deadenylation steps. Nat Struct Mol Biol 2009; 16:1160-6. [PMID: 19838187 PMCID: PMC2921184 DOI: 10.1038/nsmb.1709] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 09/25/2009] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) silence the expression of their mRNA targets mainly by promoting mRNA decay. The mechanism, kinetics and participating enzymes for miRNA-mediated decay in mammalian cells remain largely unclear. Combining the approaches of transcriptional pulsing, RNA tethering, overexpression of dominant-negative mutants, and siRNA-mediated gene knockdown, we show that let-7 miRNA-induced silencing complexes (miRISCs), which contain the proteins Argonaute (Ago) and TNRC6 (also known as GW182), trigger very rapid mRNA decay by inducing accelerated biphasic deadenylation mediated by Pan2-Pan3 and Ccr4-Caf1 deadenylase complexes followed by Dcp1-Dcp2 complex-directed decapping in mammalian cells. When tethered to mRNAs, all four human Ago proteins and TNRC6C are each able to recapitulate the two deadenylation steps. Two conserved human Ago2 phenylalanines (Phe470 and Phe505) are critical for recruiting TNRC6 to promote deadenylation. These findings indicate that promotion of biphasic deadenylation to trigger mRNA decay is an intrinsic property of miRISCs.
Collapse
|
156
|
Alexiou P, Maragkakis M, Papadopoulos GL, Reczko M, Hatzigeorgiou AG. Lost in translation: an assessment and perspective for computational microRNA target identification. ACTA ACUST UNITED AC 2009; 25:3049-55. [PMID: 19789267 DOI: 10.1093/bioinformatics/btp565] [Citation(s) in RCA: 240] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
UNLABELLED MicroRNAs (miRNAs) are a class of short endogenously expressed RNA molecules that regulate gene expression by binding directly to the messenger RNA of protein coding genes. They have been found to confer a novel layer of genetic regulation in a wide range of biological processes. Computational miRNA target prediction remains one of the key means used to decipher the role of miRNAs in development and disease. Here we introduce the basic idea behind the experimental identification of miRNA targets and present some of the most widely used computational miRNA target identification programs. The review includes an assessment of the prediction quality of these programs and their combinations. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Panagiotis Alexiou
- Institute of Molecular Oncology, Biomedical Sciences Research Center Alexander Fleming, 166 72 Varkiza, Greece.
| | | | | | | | | |
Collapse
|
157
|
Lal A, Navarro F, Maher CA, Maliszewski LE, Yan N, O'Day E, Chowdhury D, Dykxhoorn DM, Tsai P, Hofmann O, Becker KG, Gorospe M, Hide W, Lieberman J. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to "seedless" 3'UTR microRNA recognition elements. Mol Cell 2009; 35:610-25. [PMID: 19748357 DOI: 10.1016/j.molcel.2009.08.020] [Citation(s) in RCA: 496] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 08/10/2009] [Accepted: 08/25/2009] [Indexed: 01/07/2023]
Abstract
miR-24, upregulated during terminal differentiation of multiple lineages, inhibits cell-cycle progression. Antagonizing miR-24 restores postmitotic cell proliferation and enhances fibroblast proliferation, whereas overexpressing miR-24 increases the G1 compartment. The 248 mRNAs downregulated upon miR-24 overexpression are highly enriched for DNA repair and cell-cycle regulatory genes that form a direct interaction network with prominent nodes at genes that enhance (MYC, E2F2, CCNB1, and CDC2) or inhibit (p27Kip1 and VHL) cell-cycle progression. miR-24 directly regulates MYC and E2F2 and some genes that they transactivate. Enhanced proliferation from antagonizing miR-24 is abrogated by knocking down E2F2, but not MYC, and cell proliferation, inhibited by miR-24 overexpression, is rescued by miR-24-insensitive E2F2. Therefore, E2F2 is a critical miR-24 target. The E2F2 3'UTR lacks a predicted miR-24 recognition element. In fact, miR-24 regulates expression of E2F2, MYC, AURKB, CCNA2, CDC2, CDK4, and FEN1 by recognizing seedless but highly complementary sequences.
Collapse
Affiliation(s)
- Ashish Lal
- Immune Disease Institute, Children's Hospital Boston, Department of Pediatrics, Harvard Medical School, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Khoshnaw SM, Green AR, Powe DG, Ellis IO. MicroRNA involvement in the pathogenesis and management of breast cancer. J Clin Pathol 2009; 62:422-8. [PMID: 19398594 DOI: 10.1136/jcp.2008.060681] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) are a highly abundant class of endogenous small non-coding RNAs (18-25 nucleotides in length) that regulate gene expression by targeting protein-coding mRNAs post-transcriptionally. miRNAs have been implicated in cancer development and progression. As miRNAs and their regulatory functions are further revealed, the more the importance of miRNA-directed gene regulation is emphasised. In the human genome, 695 mature miRNAs have been identified, although computational calculation predicts that this may increase to >1000. Deregulation of miRNA expression profiles is thought to be implicated in the pathogenesis of many human cancers including breast tumours. Breast cancer subtypes are observed to have deranged miRNA expression signatures, which makes miRNAs important targets for developing a novel molecular classification of breast cancer and opening avenues for more individualised treatment strategies for patients with breast cancer.
Collapse
Affiliation(s)
- S M Khoshnaw
- Department of Histopathology, School of Molecular Medical Sciences, University of Nottingham and Nottingham University Hospitals Trust, Nottingham, UK.
| | | | | | | |
Collapse
|
159
|
Yu AM. Role of microRNAs in the regulation of drug metabolism and disposition. Expert Opin Drug Metab Toxicol 2009; 5:1513-28. [DOI: 10.1517/17425250903307448] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
160
|
The silencing domain of GW182 interacts with PABPC1 to promote translational repression and degradation of microRNA targets and is required for target release. Mol Cell Biol 2009; 29:6220-31. [PMID: 19797087 DOI: 10.1128/mcb.01081-09] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GW182 family proteins are essential in animal cells for microRNA (miRNA)-mediated gene silencing, yet the molecular mechanism that allows GW182 to promote translational repression and mRNA decay remains largely unknown. Previous studies showed that while the GW182 N-terminal domain interacts with Argonaute proteins, translational repression and degradation of miRNA targets are promoted by a bipartite silencing domain comprising the GW182 middle and C-terminal regions. Here we show that the GW182 C-terminal region is required for GW182 to release silenced mRNPs; moreover, GW182 dissociates from miRNA targets at a step of silencing downstream of deadenylation, indicating that GW182 is required to initiate but not to maintain silencing. In addition, we show that the GW182 bipartite silencing domain competes with eukaryotic initiation factor 4G for binding to PABPC1. The GW182-PABPC1 interaction is also required for miRNA target degradation; accordingly, we observed that PABPC1 associates with components of the CCR4-NOT deadenylase complex. Finally, we show that PABPC1 overexpression suppresses the silencing of miRNA targets. We propose a model in which the GW182 silencing domain promotes translational repression, at least in part, by interfering with mRNA circularization and also recruits the deadenylase complex through the interaction with PABPC1.
Collapse
|
161
|
Biggar KK, Dubuc A, Storey K. MicroRNA regulation below zero: differential expression of miRNA-21 and miRNA-16 during freezing in wood frogs. Cryobiology 2009; 59:317-21. [PMID: 19735650 DOI: 10.1016/j.cryobiol.2009.08.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 08/31/2009] [Accepted: 08/31/2009] [Indexed: 12/31/2022]
Abstract
Natural freeze tolerance depends on numerous biochemical adaptations that address the multiple stresses imposed on cells by freezing and preserves viability by suppressing energy-expensive cell functions in the frozen state. We hypothesized that microRNAs, small non-coding RNA transcripts that bind to mRNA, could act to establish rapid biological controls that aid the reorganization of metabolic priorities for freezing survival. Selected microRNA species (miR-16 and miR-21) were evaluated using RT-PCR in liver and skeletal muscle of wood frogs (Rana sylvatica) comparing controls (5 degrees C acclimated) with animals frozen for 24h at -3 degrees C. Levels of miR-21 increased significantly during freezing by 1.5-fold and 1.3-fold in liver and skeletal muscle, respectively. MiR-16 transcripts also rose significantly by 1.5-fold in liver of frozen frogs but fell by 50% in skeletal muscle. Protein levels of Dicer, a type III RNase that is responsible for mature microRNA processing in the cytoplasm, were unchanged in liver and decreased significantly by 50% in muscle. This data provides the first report of differential regulation of microRNA species in a freeze tolerant vertebrate and suggest a mechanism for rapid, yet reversible, gene silencing when animals transition into the frozen state.
Collapse
Affiliation(s)
- Kyle K Biggar
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., Canada K1S
| | | | | |
Collapse
|
162
|
Tan LP, Seinen E, Duns G, de Jong D, Sibon OCM, Poppema S, Kroesen BJ, Kok K, van den Berg A. A high throughput experimental approach to identify miRNA targets in human cells. Nucleic Acids Res 2009; 37:e137. [PMID: 19734348 PMCID: PMC2777426 DOI: 10.1093/nar/gkp715] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The study of human microRNAs is seriously hampered by the lack of proper tools allowing genome-wide identification of miRNA targets. We performed Ribonucleoprotein ImmunoPrecipitation—gene Chip (RIP-Chip) using antibodies against wild-type human Ago2 in untreated Hodgkin lymphoma (HL) cell lines. Ten to thirty percent of the gene transcripts from the genome were enriched in the Ago2-IP fraction of untreated cells, representing the HL miRNA-targetome. In silico analysis indicated that ∼40% of these gene transcripts represent targets of the abundantly co-expressed miRNAs. To identify targets of miR-17/20/93/106, RIP-Chip with anti-miR-17/20/93/106 treated cells was performed and 1189 gene transcripts were identified. These genes were analyzed for miR-17/20/93/106 target sites in the 5′-UTRs, coding regions and 3′-UTRs. Fifty-one percent of them had miR-17/20/93/106 target sites in the 3′-UTR while 19% of them were predicted miR-17/20/93/106 targets by TargetScan. Luciferase reporter assay confirmed targeting of miR-17/20/93/106 to the 3′-UTRs of 8 out of 10 genes. In conclusion, we report a method which can establish the miRNA-targetome in untreated human cells and identify miRNA specific targets in a high throughput manner. This approach is applicable to identify miRNA targets in any human tissue sample or purified cell population in an unbiased and physiologically relevant manner.
Collapse
Affiliation(s)
- Lu Ping Tan
- Department of Pathology and Laboratory Medicine, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Zhang L, Hammell M, Kudlow BA, Ambros V, Han M. Systematic analysis of dynamic miRNA-target interactions during C. elegans development. Development 2009; 136:3043-55. [PMID: 19675127 PMCID: PMC2730362 DOI: 10.1242/dev.039008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2009] [Indexed: 11/20/2022]
Abstract
Although microRNA (miRNA)-mediated functions have been implicated in many aspects of animal development, the majority of miRNA::mRNA regulatory interactions remain to be characterized experimentally. We used an AIN/GW182 protein immunoprecipitation approach to systematically analyze miRNA::mRNA interactions during C. elegans development. We characterized the composition of miRNAs in functional miRNA-induced silencing complexes (miRISCs) at each developmental stage and identified three sets of miRNAs with distinct stage-specificity of function. We then identified thousands of miRNA targets in each developmental stage, including a significant portion that is subject to differential miRNA regulation during development. By identifying thousands of miRNA family-mRNA pairs with temporally correlated patterns of AIN-2 association, we gained valuable information on the principles of physiological miRNA::target recognition and predicted 1589 high-confidence miRNA family::mRNA interactions. Our data support the idea that miRNAs preferentially target genes involved in signaling processes and avoid genes with housekeeping functions, and that miRNAs orchestrate temporal developmental programs by coordinately targeting or avoiding genes involved in particular biological functions.
Collapse
Affiliation(s)
- Liang Zhang
- Howard Hughes Medical Institute and Department of MCDB, University of Colorado, Boulder, CO 80309, USA
| | | | | | | | | |
Collapse
|
164
|
Fabian MR, Mathonnet G, Sundermeier T, Mathys H, Zipprich JT, Svitkin YV, Rivas F, Jinek M, Wohlschlegel J, Doudna JA, Chen CYA, Shyu AB, Yates JR, Hannon GJ, Filipowicz W, Duchaine TF, Sonenberg N. Mammalian miRNA RISC recruits CAF1 and PABP to affect PABP-dependent deadenylation. Mol Cell 2009; 35:868-80. [PMID: 19716330 DOI: 10.1016/j.molcel.2009.08.004] [Citation(s) in RCA: 299] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2008] [Revised: 04/13/2009] [Accepted: 08/11/2009] [Indexed: 11/13/2022]
Abstract
MicroRNAs (miRNAs) inhibit mRNA expression in general by base pairing to the 3'UTR of target mRNAs and consequently inhibiting translation and/or initiating poly(A) tail deadenylation and mRNA destabilization. Here we examine the mechanism and kinetics of miRNA-mediated deadenylation in mouse Krebs-2 ascites extract. We demonstrate that miRNA-mediated mRNA deadenylation occurs subsequent to initial translational inhibition, indicating a two-step mechanism of miRNA action, which serves to consolidate repression. We show that a let-7 miRNA-loaded RNA-induced silencing complex (miRISC) interacts with the poly(A)-binding protein (PABP) and the CAF1 and CCR4 deadenylases. In addition, we demonstrate that miRNA-mediated deadenylation is dependent upon CAF1 activity and PABP, which serves as a bona fide miRNA coactivator. Importantly, we present evidence that GW182, a core component of the miRISC, directly interacts with PABP via its C-terminal region and that this interaction is required for miRNA-mediated deadenylation.
Collapse
Affiliation(s)
- Marc R Fabian
- Department of Biochemistry, McGill University, Montreal, QC H3G 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Hayashida Y, Nishibu T, Inoue K, Kurokawa T. A useful approach to total analysis of RISC-associated RNA. BMC Res Notes 2009; 2:169. [PMID: 19706194 PMCID: PMC2748084 DOI: 10.1186/1756-0500-2-169] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 08/26/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identifying the endogenous RNA induced silencing complex(RISC)-associated RNAs is essential for understanding the cellular regulatory networks by miRNAs. Recently, isolation of RISC-associated mRNAs using antibody was reported, but their method needs a large amount of initial materials. We tried to improve the protocol and constructed an efficient and convenient system for analyzing miRNA and mRNA contents in RISC. FINDINGS With our protocol, it is possible to clone both miRNAs and mRNAs from the endogenous RISC-associated RNAs immunoprecipitated from less than 107 cells, and we show the ability of our system to isolate the particular target mRNAs for a specific miRNA from the RISC-associated mRNAs using well-characterized miR-122 as an example. After introduction of miR-122 into HepG2 cells, we found several cDNA clones that have miR-122 target sequences. Four of these clones that were concentrated in RISC but decreased in total RNA fraction are expected to be miR-122 target candidates. Interestingly, we found substantial amounts of Alu-related sequences, including both free Alu RNA and Alu-embedded mRNA, which might be one of the general targets for miRNA, in the cDNA clones from the RISC-associated mRNAs. CONCLUSION Our method thus enables us to examine not only dynamic changes in miRNA and mRNA contents in RISC but also the relationship of miRNA and target mRNA. We believe that our method can contribute to understanding cellular regulatory networks by miRNAs.
Collapse
Affiliation(s)
- Yukinobu Hayashida
- Genome Research Laboratories, Wako Pure Chemical Industries, Ltd, Takada 6-1, Amagasaki, Hyogo 661-0963, Japan.
| | | | | | | |
Collapse
|
166
|
Immunopurification of Ago1 miRNPs selects for a distinct class of microRNA targets. Proc Natl Acad Sci U S A 2009; 106:15085-90. [PMID: 19706460 DOI: 10.1073/pnas.0908149106] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
microRNAs comprise a few percent of animal genes and have been recognized as important regulators of a diverse range of biological processes. Understanding the biological functions of miRNAs requires effective means to identify their targets. Combined efforts from computational prediction, miRNA over-expression or depletion, and biochemical purification have identified thousands of potential miRNA-target pairs in cells and organisms. Complementarity to the miRNA seed sequence appears to be a common principle in target recognition. Other features, including miRNA-target duplex stability, binding site accessibility, and local UTR structure might affect target recognition. Yet computational approaches using such contextual features have yielded largely nonoverlapping results and experimental assessment of their impact has been limited. Here, we compare two large sets of miRNA targets: targets identified using an improved Ago1 immunopurification method and targets identified among transcripts up-regulated after Ago1 depletion. We found surprisingly limited overlap between these sets. The two sets showed enrichment for target sites with different molecular, structural and functional properties. Intriguingly, we found a strong correlation between UTR length and other contextual features that distinguish the two groups. This finding was extended to all predicted microRNA targets. Distinct repression mechanisms could have evolved to regulate targets with different contextual features. This study reveals a complex relationship among different features in miRNA-target recognition and poses a new challenge for computational prediction.
Collapse
|
167
|
Eulalio A, Tritschler F, Izaurralde E. The GW182 protein family in animal cells: new insights into domains required for miRNA-mediated gene silencing. RNA (NEW YORK, N.Y.) 2009; 15:1433-42. [PMID: 19535464 PMCID: PMC2714752 DOI: 10.1261/rna.1703809] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
GW182 family proteins interact directly with Argonaute proteins and are required for miRNA-mediated gene silencing in animal cells. The domains of the GW182 proteins have recently been studied to determine their role in silencing. These studies revealed that the middle and C-terminal regions function as an autonomous domain with a repressive function that is independent of both the interaction with Argonaute proteins and of P-body localization. Such findings reinforce the idea that GW182 proteins are key components of miRNA repressor complexes in metazoa.
Collapse
Affiliation(s)
- Ana Eulalio
- Department of Biochemistry, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
168
|
Chan SP, Slack FJ. Ribosomal protein RPS-14 modulates let-7 microRNA function in Caenorhabditis elegans. Dev Biol 2009; 334:152-60. [PMID: 19627982 DOI: 10.1016/j.ydbio.2009.07.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 07/10/2009] [Accepted: 07/12/2009] [Indexed: 12/11/2022]
Abstract
The let-7 microRNA (miRNA) regulates developmental timing at the larval-to-adult transition in Caenorhabditis elegans. Dysregulation of let-7 results in irregular hypodermal and vulval development. Disrupted let-7 function is also a feature of human lung cancer. However, little is known about the mechanism and co-factors of let-7. Here we demonstrate that ribosomal protein RPS-14 is able to modulate let-7 function in C. elegans. The RPS-14 protein co-immunoprecipitated with the nematode Argonaute homolog, ALG-1. Reduction of rps-14 gene expression by RNAi suppressed the aberrant vulva and hypodermis development phenotypes of let-7(n2853) mutant animals and the mis-regulation of a reporter bearing the lin-41 3'UTR, a well established let-7 target. Our results indicate an interactive relationship between let-7 miRNA function and ribosomal protein RPS-14 in regulation of terminal differentiation that may help in understanding the mechanism of translational control by miRNAs.
Collapse
Affiliation(s)
- Shih-Peng Chan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | | |
Collapse
|
169
|
Computational challenges in miRNA target predictions: to be or not to be a true target? J Biomed Biotechnol 2009; 2009:803069. [PMID: 19551154 PMCID: PMC2699446 DOI: 10.1155/2009/803069] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 03/20/2009] [Indexed: 11/17/2022] Open
Abstract
All microRNA (miRNA) target—finder algorithms return lists of candidate target genes. How valid is that output in a biological setting? Transcriptome analysis has proven to be a useful approach to determine mRNA targets. Time course mRNA microarray experiments may reliably identify downregulated genes in response to overexpression of specific miRNA. The approach may miss some miRNA targets that are principally downregulated at the protein level. However, the high-throughput capacity of the assay makes it an effective tool to rapidly identify a large number of promising miRNA targets. Finally, loss and gain of function miRNA genetics have the clear potential of being critical in evaluating the biological relevance of thousands of target genes predicted by bioinformatic studies and to test the degree to which miRNA-mediated regulation of any “validated” target functionally matters to the animal or plant.
Collapse
|
170
|
Chi SW, Zang JB, Mele A, Darnell RB. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature 2009; 460:479-86. [PMID: 19536157 PMCID: PMC2733940 DOI: 10.1038/nature08170] [Citation(s) in RCA: 1410] [Impact Index Per Article: 88.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Accepted: 05/29/2009] [Indexed: 12/16/2022]
Abstract
MicroRNAs (miRNAs) play critical roles in the regulation of gene expression. However, since miRNA activity requires base pairing with only 6-8 nucleotides of mRNA, predicting target mRNAs is a major challenge. Recently, high-throughput sequencing of RNAs isolated by crosslinking immunoprecipitation (HITS-CLIP) has identified functional protein-RNA interaction sites. Here we use HITS-CLIP to covalently crosslink native Argonaute (Ago) protein-RNA complexes in mouse brain. This produced two simultaneous datasets—Ago-miRNA and Ago-mRNA binding sites—that were combined with bioinformatic analysis to identify miRNA-target mRNA interaction sites. We validated genome-wide interaction maps for miR-124, and generated additional maps for the 20 most abundant miRNAs present in P13 mouse brain. Ago HITS-CLIP provides a general platform for exploring the specificity and range of miRNA action in vivo, and identifies precise sequences for targeting clinically relevant miRNA-mRNA interactions.
Collapse
Affiliation(s)
- Sung Wook Chi
- Laboratory of Molecular Neuro-Oncology and Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | |
Collapse
|
171
|
Takimoto K, Wakiyama M, Yokoyama S. Mammalian GW182 contains multiple Argonaute-binding sites and functions in microRNA-mediated translational repression. RNA (NEW YORK, N.Y.) 2009; 15:1078-89. [PMID: 19398495 PMCID: PMC2685530 DOI: 10.1261/rna.1363109] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In mammalian cells, microRNAs (miRNAs) are incorporated into miRNA-induced silencing complexes (miRISCs), which regulate protein expression post-transcriptionally through binding to 3'-untranslated regions of target mRNAs. Argonaute2 (Ago2), a key component of the miRISC, recruits GW182, a component of the processing body (GW/P-body), to the target mRNAs. To elucidate the function of GW182 in an miRNA-mediated translational repression, we analyzed Argonaute-binding sites in GW182. We found that human GW182 contains three binding sites for Ago2, within the amino-terminal glycine tryptophan (GW/WG)-repeated region that is characteristic of the GW182 family proteins. We also found that the first and second Ago2-binding site is conserved within the amino-terminal half of TNRC6B, which is a paralog of GW182. Each of the Ago-binding sites is alone sufficient to bind Ago2. Furthermore, we demonstrated that multiple Argonaute proteins were connected via the GW182 protein. A GW182 fragment containing the Ago2-binding region partially relieved let-7-mediated repression of protein synthesis in a mammalian cell-free system. Coincidentally, let-7-directed target mRNA deadenylation was delayed. Together, these results strongly suggested that the interactions of GW182 with Argonautes may induce the formation of large complexes containing miRNA target mRNAs, and may be critical for miRNA-mediated translational repression.
Collapse
Affiliation(s)
- Koji Takimoto
- Systems and Structural Biology Center, Yokohama Institute, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama 230-0045, Japan
| | | | | |
Collapse
|
172
|
Lazzaretti D, Tournier I, Izaurralde E. The C-terminal domains of human TNRC6A, TNRC6B, and TNRC6C silence bound transcripts independently of Argonaute proteins. RNA (NEW YORK, N.Y.) 2009; 15:1059-66. [PMID: 19383768 PMCID: PMC2685519 DOI: 10.1261/rna.1606309] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 03/17/2009] [Indexed: 05/24/2023]
Abstract
Proteins of the GW182 family are essential components of the miRNA pathway in animal cells. Vertebrate genomes encode three GW182 paralogs (TNRC6A, TNRC6B, and TNRC6C), which may be functionally redundant. Here, we show that the N-terminal GW-repeat-containing regions of all three TNRC6s interact with the four human Argonaute proteins (AGO1-AGO4). We also show that TNRC6A, TNRC6B, and TNRC6C silence the expression of bound mRNAs. This activity is mediated by their C-terminal silencing domains, and thus, is independent of the interaction with AGO1-AGO4. Silencing by TNRC6A, TNRC6B, and TNRC6C is effected by changes in protein expression and mRNA stability that can, in part, be attributed to deadenylation. Our findings indicate that TNRC6A, TNRC6B, and TNRC6C are recruited to miRNA targets through an interaction between their N-terminal domain and an Argonaute protein; the TNRC6s then promote translational repression and/or degradation of miRNA targets through a C-terminal silencing domain.
Collapse
Affiliation(s)
- Daniela Lazzaretti
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
173
|
Eulalio A, Helms S, Fritzsch C, Fauser M, Izaurralde E. A C-terminal silencing domain in GW182 is essential for miRNA function. RNA (NEW YORK, N.Y.) 2009; 15:1067-77. [PMID: 19383769 PMCID: PMC2685512 DOI: 10.1261/rna.1605509] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Proteins of the GW182 family are essential for miRNA-mediated gene silencing in animal cells; they interact with Argonaute proteins (AGOs) and are required for both the translational repression and mRNA degradation mediated by miRNAs. To gain insight into the role of the GW182-AGO1 interaction in silencing, we generated protein mutants that do not interact and tested them in complementation assays. We show that silencing of miRNA targets requires the N-terminal domain of GW182, which interacts with AGO1 through multiple glycine-tryptophan (GW)-repeats. Indeed, a GW182 mutant that does not interact with AGO1 cannot rescue silencing in cells depleted of endogenous GW182. Conversely, silencing is impaired by mutations in AGO1 that strongly reduce the interaction with GW182 but not with miRNAs. We further show that a GW182 mutant that does not localize to P-bodies but interacts with AGO1 rescues silencing in GW182-depleted cells, even though in these cells, AGO1 also fails to localize to P-bodies. Finally, we show that in addition to the N-terminal AGO1-binding domain, the middle and C-terminal regions of GW182 (referred to as the bipartite silencing domain) are essential for silencing. Together our results indicate that miRNA silencing in animal cells is mediated by AGO1 in complex with GW182, and that P-body localization is not required for silencing.
Collapse
Affiliation(s)
- Ana Eulalio
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | | | | | |
Collapse
|
174
|
Functional dissection of the human TNRC6 (GW182-related) family of proteins. Mol Cell Biol 2009; 29:4144-55. [PMID: 19470757 DOI: 10.1128/mcb.00380-09] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Argonaute (Ago) proteins through their association with small RNAs perform a critical function in the effector step of RNA interference. The TNRC6 (trinucleotide repeat containing 6) family of proteins have been shown to stably associate with Agos in mammalian cells. Here, we describe the isolation and functional characterization of TNRC6B- and TNRC6C-containing complexes. We show that TNRC6B and TNRC6C proteins associate with all four human Agos which are already loaded with microRNAs. Detailed domain analysis of TNRC6B protein indicated that distinct domains of the protein are required for Ago binding and P-body localization. Functional analysis using reporter constructs responsive to TNRC6B tethered through an MS2-binding domain indicates that neither the Ago-binding nor the P-body localization domains are required for translational silencing. In contrast, the C-terminal domain containing the RNA recognition motif plays a critical role in the silencing mediated by the TNRC6B protein.
Collapse
|
175
|
Chekulaeva M, Filipowicz W, Parker R. Multiple independent domains of dGW182 function in miRNA-mediated repression in Drosophila. RNA (NEW YORK, N.Y.) 2009; 15:794-803. [PMID: 19304924 PMCID: PMC2673071 DOI: 10.1261/rna.1364909] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 01/22/2009] [Indexed: 05/19/2023]
Abstract
miRNA-mediated repression affects a wide range of biological processes including development and human pathologies. The GW182 protein is a key component of miRNA repression complex, recruited by Argonaute and functioning downstream to repress translation and accelerate mRNA degradation, but little is known about how GW182 proteins act. Using both tethered function and complementation assays, we identify three independent domains of the Drosophila GW182 protein (also termed Gawky) that are sufficient to repress mRNA. Each of these domains also functions independently of poly(A) tails. These results indicate that miRNA-mediated repression is facilitated by multiple domains of GW182.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
176
|
Zipprich JT, Bhattacharyya S, Mathys H, Filipowicz W. Importance of the C-terminal domain of the human GW182 protein TNRC6C for translational repression. RNA (NEW YORK, N.Y.) 2009; 15:781-93. [PMID: 19304925 PMCID: PMC2673060 DOI: 10.1261/rna.1448009] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Proteins of the GW182 family play an important role in the execution of microRNA repression in metazoa. They interact directly with Argonaute proteins, components of microRNPs, and also form part of P-bodies, structures implicated in translational repression and mRNA degradation. Recent results demonstrated that Drosophila GW182 has the potential to both repress translation and accelerate mRNA deadenylation and decay. In contrast to a single GW182 protein in Drosophila, the three GW182 paralogs TNRC6A, TNRC6B, and TNRC6C are encoded in mammalian genomes. In this study, we provide evidence that TNRC6C, like TNRC6A and TNRC6B, is important for efficient miRNA repression. We further demonstrate that tethering of each of the human TNRC6 proteins to a reporter mRNA has a dramatic inhibitory effect on protein synthesis. The repression is due to a combination of effects on the mRNA level and mRNA translation. Through deletion and mutagenesis, we identified the C-terminal part of TNRC6C encompassing the RRM RNA-binding motif as a key effector domain mediating protein synthesis repression by TNRC6C.
Collapse
Affiliation(s)
- Jakob T Zipprich
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
| | | | | | | |
Collapse
|
177
|
van der Burgt A, Fiers MWJE, Nap JP, van Ham RCHJ. In silico miRNA prediction in metazoan genomes: balancing between sensitivity and specificity. BMC Genomics 2009; 10:204. [PMID: 19405940 PMCID: PMC2688010 DOI: 10.1186/1471-2164-10-204] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2008] [Accepted: 04/30/2009] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs), short approximately 21-nucleotide RNA molecules, play an important role in post-transcriptional regulation of gene expression. The number of known miRNA hairpins registered in the miRBase database is rapidly increasing, but recent reports suggest that many miRNAs with restricted temporal or tissue-specific expression remain undiscovered. Various strategies for in silico miRNA identification have been proposed to facilitate miRNA discovery. Notably support vector machine (SVM) methods have recently gained popularity. However, a drawback of these methods is that they do not provide insight into the biological properties of miRNA sequences. RESULTS We here propose a new strategy for miRNA hairpin prediction in which the likelihood that a genomic hairpin is a true miRNA hairpin is evaluated based on statistical distributions of observed biological variation of properties (descriptors) of known miRNA hairpins. These distributions are transformed into a single and continuous outcome classifier called the L score. Using a dataset of known miRNA hairpins from the miRBase database and an exhaustive set of genomic hairpins identified in the genome of Caenorhabditis elegans, a subset of 18 most informative descriptors was selected after detailed analysis of correlation among and discriminative power of individual descriptors. We show that the majority of previously identified miRNA hairpins have high L scores, that the method outperforms miRNA prediction by threshold filtering and that it is more transparent than SVM classifiers. CONCLUSION The L score is applicable as a prediction classifier with high sensitivity for novel miRNA hairpins. The L-score approach can be used to rank and select interesting miRNA hairpin candidates for downstream experimental analysis when coupled to a genome-wide set of in silico-identified hairpins or to facilitate the analysis of large sets of putative miRNA hairpin loci obtained in deep-sequencing efforts of small RNAs. Moreover, the in-depth analyses of miRNA hairpins descriptors preceding and determining the L score outcome could be used as an extension to miRBase entries to help increase the reliability and biological relevance of the miRNA registry.
Collapse
Affiliation(s)
- Ate van der Burgt
- Applied Bioinformatics, Plant Research International, Wageningen University & Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
- Laboratory of Bioinformatics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Mark WJE Fiers
- Applied Bioinformatics, Plant Research International, Wageningen University & Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
- Current address: New Zealand Institute for Plant & Food Research Ltd, Private Bag 4704, Christchurch, New Zealand
| | - Jan-Peter Nap
- Applied Bioinformatics, Plant Research International, Wageningen University & Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
- Centre for BioSystems Genomics 2012 (CBSG2012), PO Box 98, 6700 AB Wageningen, The Netherlands
| | - Roeland CHJ van Ham
- Applied Bioinformatics, Plant Research International, Wageningen University & Research Centre, PO Box 16, 6700 AA Wageningen, The Netherlands
- Laboratory of Bioinformatics, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| |
Collapse
|
178
|
Hammell CM, Lubin I, Boag PR, Blackwell TK, Ambros V. nhl-2 Modulates microRNA activity in Caenorhabditis elegans. Cell 2009; 136:926-38. [PMID: 19269369 DOI: 10.1016/j.cell.2009.01.053] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 12/19/2008] [Accepted: 01/28/2009] [Indexed: 10/21/2022]
Abstract
TRIM-NHL proteins represent a large class of metazoan proteins implicated in development and disease. We demonstrate that a C. elegans TRIM-NHL protein, NHL-2, functions as a cofactor for the microRNA-induced silencing complex (miRISC) and thereby enhances the posttranscriptional repression of several genetically verified microRNA targets, including hbl-1 and let-60/Ras (by the let-7 family of microRNAs) and cog-1 (by the lsy-6 microRNA). NHL-2 is localized to cytoplasmic P-bodies and physically associates with the P-body protein CGH-1 and the core miRISC components ALG-1/2 and AIN-1. nhl-2 and cgh-1 mutations compromise the repression of microRNA targets in vivo but do not affect microRNA biogenesis, indicating a role for an NHL-2:CGH-1 complex in the effector phase of miRISC activity. We propose that the NHL-2:CGH-1 complex functions in association with mature miRISC to modulate the efficacy of microRNA:target interactions in response to physiological and developmental signals, thereby ensuring the robustness of genetic regulatory pathways regulated by microRNAs.
Collapse
|
179
|
Eulalio A, Tritschler F, Büttner R, Weichenrieder O, Izaurralde E, Truffault V. The RRM domain in GW182 proteins contributes to miRNA-mediated gene silencing. Nucleic Acids Res 2009; 37:2974-83. [PMID: 19295135 PMCID: PMC2685099 DOI: 10.1093/nar/gkp173] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Proteins of the GW182 family interact with Argonaute proteins and are required for miRNA-mediated gene silencing. These proteins contain two structural domains, an ubiquitin-associated (UBA) domain and an RNA recognition motif (RRM), embedded in regions predicted to be unstructured. The structure of the RRM of Drosophila melanogaster GW182 reveals that this domain adopts an RRM fold, with an additional C-terminal α-helix. The helix lies on the β-sheet surface, generally used by these domains to bind RNA. This, together with the absence of aromatic residues in the conserved RNP1 and RNP2 motifs, and the lack of general affinity for RNA, suggests that the GW182 RRM does not bind RNA. The domain may rather engage in protein interactions through an unusual hydrophobic cleft exposed on the opposite face of the β-sheet. We further show that the GW182 RRM is dispensable for P-body localization and for interaction of GW182 with Argonaute-1 and miRNAs. Nevertheless, its deletion impairs the silencing activity of GW182 in a miRNA target-specific manner, indicating that this domain contributes to silencing. The conservation of structural and surface residues suggests that the RRM domain adopts a similar fold with a related function in insect and vertebrate GW182 family members.
Collapse
Affiliation(s)
- Ana Eulalio
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
180
|
Soukup GA. Little but loud: small RNAs have a resounding affect on ear development. Brain Res 2009; 1277:104-14. [PMID: 19245798 DOI: 10.1016/j.brainres.2009.02.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 02/10/2009] [Accepted: 02/11/2009] [Indexed: 02/07/2023]
Abstract
The impact of small RNA function has resonated throughout nearly every aspect of eukaryotic biology and captured the varied interests of researchers, whether they are endeavoring to understand the basis of development and disease or seeking novel therapeutic targets and tools. The genetic regulatory roles of microRNAs (miRNAs) are particularly interesting given that these often highly conserved factors post-transcriptionally silence many complementary target genes by inhibiting messenger RNA translation. In this regard, miRNAs can be considered as counterparts to transcription factors, the ensemble of which establishes the set of expressed genes that define the characteristics of a specific cell type. In this review, evidence supporting a resounding role for small RNAs in development and maturation of sensory epithelia in the mouse inner ear will be considered with an emphasis on the contribution of one hair cell miRNA family (miR-183, miR-96, and miR-182). Although there is much yet to be explored in this fledgling aspect of ear biology, the breadth of miRNA expression and functional requirement for ear development are already sounding off.
Collapse
Affiliation(s)
- Garrett A Soukup
- Department of Biomedical Sciences, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
181
|
mirWIP: microRNA target prediction based on microRNA-containing ribonucleoprotein-enriched transcripts. Nat Methods 2009; 5:813-9. [PMID: 19160516 DOI: 10.1038/nmeth.1247] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Target prediction for animal microRNAs (miRNAs) has been hindered by the small number of verified targets available to evaluate the accuracy of predicted miRNA-target interactions. Recently, a dataset of 3,404 miRNA-associated mRNA transcripts was identified by immunoprecipitation of the RNA-induced silencing complex components AIN-1 and AIN-2. Our analysis of this AIN-IP dataset revealed enrichment for defining characteristics of functional miRNA-target interactions, including structural accessibility of target sequences, total free energy of miRNA-target hybridization and topology of base-pairing to the 5' seed region of the miRNA. We used these enriched characteristics as the basis for a quantitative miRNA target prediction method, miRNA targets by weighting immunoprecipitation-enriched parameters (mirWIP), which optimizes sensitivity to verified miRNA-target interactions and specificity to the AIN-IP dataset. MirWIP can be used to capture all known conserved miRNA-mRNA target relationships in Caenorhabditis elegans at a lower false-positive rate than can the current standard methods.
Collapse
|
182
|
Ding XC, Grosshans H. Repression of C. elegans microRNA targets at the initiation level of translation requires GW182 proteins. EMBO J 2009; 28:213-22. [PMID: 19131968 DOI: 10.1038/emboj.2008.275] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 12/03/2008] [Indexed: 11/09/2022] Open
Abstract
MicroRNAs (miRNAs) repress target genes through a poorly defined antisense mechanism. Cell-free and cell-based assays have supported the idea that miRNAs repress their target mRNAs by blocking initiation of translation, whereas studies in animal models argued against this possibility. We examined endogenous targets of the let-7 miRNA, an important regulator of stem cell fates. We report that let-7 represses translation initiation in Caenorhabditis elegans, demonstrating this mode of action for the first time in an organism. Unexpectedly, although the lin-4 miRNA was previously reported to repress its targets at a step downstream of translation initiation, we also observe repression of translation initiation for this miRNA. This repressive mechanism, which frequently but not always coincides with transcript degradation, requires the GW182 proteins AIN-1 and AIN-2, and acts on several mRNAs targeted by different miRNAs. Our analysis of an expanded set of endogenous miRNA targets therefore indicates widespread repression of translation initiation under physiological conditions and establishes C. elegans as a genetic system for dissection of the underlying mechanisms.
Collapse
Affiliation(s)
- Xavier C Ding
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | | |
Collapse
|
183
|
Eulalio A, Huntzinger E, Nishihara T, Rehwinkel J, Fauser M, Izaurralde E. Deadenylation is a widespread effect of miRNA regulation. RNA (NEW YORK, N.Y.) 2009; 15:21-32. [PMID: 19029310 PMCID: PMC2612776 DOI: 10.1261/rna.1399509] [Citation(s) in RCA: 311] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
miRNAs silence gene expression by repressing translation and/or by promoting mRNA decay. In animal cells, degradation of partially complementary miRNA targets occurs via deadenylation by the CAF1-CCR4-NOT1 deadenylase complex, followed by decapping and subsequent exonucleolytic digestion. To determine how generally miRNAs trigger deadenylation, we compared mRNA expression profiles in D. melanogaster cells depleted of AGO1, CAF1, or NOT1. We show that approximately 60% of AGO1 targets are regulated by CAF1 and/or NOT1, indicating that deadenylation is a widespread effect of miRNA regulation. However, neither a poly(A) tail nor mRNA circularization are required for silencing, because mRNAs whose 3' ends are generated by a self-cleaving ribozyme are also silenced in vivo. We show further that miRNAs trigger mRNA degradation, even when binding by 40S ribosomal subunits is inhibited in cis. These results indicate that miRNAs promote mRNA decay by altering mRNP composition and/or conformation, rather than by directly interfering with the binding and function of ribosomal subunits.
Collapse
Affiliation(s)
- Ana Eulalio
- Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
184
|
Abstract
MicroRNAs (miRNAs) regulate cell fate during development and in response to environmental cues. Here, we review the emerging story of how miRNAs regulate immune cell development and function.
Collapse
Affiliation(s)
- Fabio Petrocca
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
185
|
Landthaler M, Gaidatzis D, Rothballer A, Chen PY, Soll SJ, Dinic L, Ojo T, Hafner M, Zavolan M, Tuschl T. Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA (NEW YORK, N.Y.) 2008; 14:2580-96. [PMID: 18978028 PMCID: PMC2590962 DOI: 10.1261/rna.1351608] [Citation(s) in RCA: 294] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Accepted: 09/15/2008] [Indexed: 05/18/2023]
Abstract
microRNAs (miRNAs) regulate the expression of mRNAs in animals and plants through miRNA-containing ribonucleoprotein particles (RNPs). At the core of these miRNA silencing effector complexes are the Argonaute (AGO) proteins that bind miRNAs and mediate target mRNA recognition. We generated HEK293 cell lines stably expressing epitope-tagged human AGO proteins and other RNA silencing-related proteins and used these cells to purify miRNA-containing RNPs. Mass spectrometric analyses of the proteins associated with different AGO proteins revealed a common set of helicases and mRNA-binding proteins, among them the three trinucleotide repeat containing proteins 6 (TNRC6A,-B,-C). mRNA microarray analyses of these miRNA-associated RNPs revealed that AGO and TNRC6 proteins bind highly similar sets of transcripts enriched in binding sites for highly expressed endogenous miRNAs, indicating that the TNRC6 proteins are a component of the mRNA-targeting miRNA silencing complex. Together with the very similar proteomic composition of each AGO complex, this result suggests substantial functional redundancy within families of human AGO and TNRC6 proteins. Our results further demonstrate that we have developed an effective biochemical approach to identify physiologically relevant human miRNA targets.
Collapse
Affiliation(s)
- Markus Landthaler
- Laboratory of RNA Molecular Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Andachi Y. A novel biochemical method to identify target genes of individual microRNAs: identification of a new Caenorhabditis elegans let-7 target. RNA (NEW YORK, N.Y.) 2008; 14:2440-51. [PMID: 18824511 PMCID: PMC2578851 DOI: 10.1261/rna.1139508] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 07/23/2008] [Indexed: 05/22/2023]
Abstract
MicroRNAs (miRNAs) are roughly 22-nucleotide regulatory RNAs that play important roles in many developmental and physiological processes. Animal miRNAs down-regulate target genes by forming imperfect base pairs with 3' untranslated regions (3' UTRs) of their mRNAs. Thousands of miRNAs have been discovered in several organisms. However, the target genes of almost all of these miRNAs remain to be identified. Here, we describe a method for isolating cDNA clones of target mRNAs that form base pairs in vivo with an endogenous miRNA of interest, in which the cDNAs are synthesized from the mRNAs using the miRNA as a reverse-transcription primer. The application of this method to Caenorhabditis elegans miRNA lin-4 under test conditions yielded many clones of the known target gene lin-14 that correspond to partial sequences 5' to lin-4 binding sites in the 3' UTR. The method was also applied to C. elegans miRNA let-7 and a new target gene responsible for the lethal phenotype in let-7 mutants was identified. These results demonstrate that the method is a useful way to identify targets on the basis of base pairing with individual miRNAs.
Collapse
Affiliation(s)
- Yoshiki Andachi
- Genome Biology Laboratory, Center for Genetic Resource Information, National Institute of Genetics, Research Organization of Information and Systems, Mishima 411-8540, Japan.
| |
Collapse
|
187
|
Target practice. Nat Methods 2008; 5:749-50. [DOI: 10.1038/nmeth0908-749b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
188
|
Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 2008; 455:64-71. [PMID: 18668037 DOI: 10.1038/nature07242] [Citation(s) in RCA: 2885] [Impact Index Per Article: 169.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 07/10/2008] [Indexed: 12/16/2022]
Abstract
MicroRNAs are endogenous approximately 23-nucleotide RNAs that can pair to sites in the messenger RNAs of protein-coding genes to downregulate the expression from these messages. MicroRNAs are known to influence the evolution and stability of many mRNAs, but their global impact on protein output had not been examined. Here we use quantitative mass spectrometry to measure the response of thousands of proteins after introducing microRNAs into cultured cells and after deleting mir-223 in mouse neutrophils. The identities of the responsive proteins indicate that targeting is primarily through seed-matched sites located within favourable predicted contexts in 3' untranslated regions. Hundreds of genes were directly repressed, albeit each to a modest degree, by individual microRNAs. Although some targets were repressed without detectable changes in mRNA levels, those translationally repressed by more than a third also displayed detectable mRNA destabilization, and, for the more highly repressed targets, mRNA destabilization usually comprised the major component of repression. The impact of microRNAs on the proteome indicated that for most interactions microRNAs act as rheostats to make fine-scale adjustments to protein output.
Collapse
Affiliation(s)
- Daehyun Baek
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | |
Collapse
|
189
|
Quantitative proteomics as a new piece of the systems biology puzzle. J Proteomics 2008; 71:357-67. [PMID: 18640294 DOI: 10.1016/j.jprot.2008.07.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/30/2008] [Accepted: 07/02/2008] [Indexed: 12/19/2022]
Abstract
The definition of the role of each gene product in its cellular context is of outstanding importance in the post-genomics era. Recent technological innovations have driven research in proteomics from single protein characterization to global approaches, aiming to achieve a comprehensive qualitative and quantitative description of complex molecular mechanisms. In this review, we discuss the methodology of quantitative proteomics as it applies to the analysis of complex biological model systems. A special attention will be given to model systems that are suitable for functional genomic studies, where the potential of quantitative proteomics can be effectively demonstrated.
Collapse
|
190
|
Magner DB, Antebi A. Caenorhabditis elegans nuclear receptors: insights into life traits. Trends Endocrinol Metab 2008; 19:153-60. [PMID: 18406164 PMCID: PMC2744080 DOI: 10.1016/j.tem.2008.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 02/13/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
Abstract
Nuclear receptors are a class of hormone-gated transcription factors found in metazoans that regulate global changes in gene expression when bound to their cognate ligands. Despite species diversification, nuclear receptors function similarly across taxa, having fundamental roles in detecting intrinsic and environmental signals, and subsequently in coordinating transcriptional cascades that direct reproduction, development, metabolism and homeostasis. These endocrine receptors function in vivo in part as molecular switches and timers that regulate transcriptional cascades. Several Caenorhabditis elegans nuclear receptors integrate intrinsic and extrinsic signals to regulate the dauer diapause and longevity, molting, and heterochronic circuits of development, and are comparable to similar in vivo endocrine regulated processes in other animals.
Collapse
Affiliation(s)
| | - Adam Antebi
- Corresponding author: Antebi, A. (), Tel: 713-798-6661; Fax: 713-798-4161
| |
Collapse
|
191
|
Abstract
Animal genomes contain hundreds of microRNAs (miRNAs), small regulatory RNAs that control gene expression by binding to complementary sites in target mRNAs. Some rules that govern miRNA/target interaction have been elucidated but their general applicability awaits further experimentation on a case-by-case basis. We use here an assay system in transgenic nematodes to analyze the interaction of the Caenorhabditis elegans lsy-6 miRNA with 3' UTR sequences. In contrast to many previously described assay systems used to analyze miRNA/target interactions, our assay system operates within the cellular context in which lsy-6 normally functions, a single neuron in the nervous system of C. elegans. Through extensive mutational analysis, we define features in the known and experimentally validated target of lsy-6, the 3' UTR of the cog-1 homeobox gene, that are required for a functional miRNA/target interaction. We describe that both in the context of the cog-1 3' UTR and in the context of heterologous 3' UTRs, one or more seed matches are not a reliable predictor for a functional miRNA/target interaction. We rather find that two nonsequence specific contextual features beyond miRNA target sites are critical determinants of miRNA-mediated 3' UTR regulation. The contextual features reside 3' of lsy-6 binding sites in the 3' UTR and act in a combinatorial manner; mutation of each results in limited defects in 3' UTR regulation, but a combinatorial deletion results in complete loss of 3' UTR regulation. Together with two lsy-6 sites, these two contextual features are capable of imparting regulation on a heterologous 3' UTR. Moreover, the contextual features need to be present in a specific configuration relative to miRNA binding sites and could either represent protein binding sites or provide an appropriate structural context. We conclude that a given target site resides in a 3' UTR context that evolved beyond target site complementarity to support regulation by a specific miRNA. The large number of 3' UTRs that we analyzed in this study will also be useful to computational biologists in designing the next generation of miRNA/target prediction algorithms.
Collapse
Affiliation(s)
- Dominic Didiano
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032, USA
| | | |
Collapse
|
192
|
Hendrickson DG, Hogan DJ, Herschlag D, Ferrell JE, Brown PO. Systematic identification of mRNAs recruited to argonaute 2 by specific microRNAs and corresponding changes in transcript abundance. PLoS One 2008; 3:e2126. [PMID: 18461144 PMCID: PMC2330160 DOI: 10.1371/journal.pone.0002126] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Accepted: 03/17/2008] [Indexed: 12/02/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs that regulate mRNA stability and translation through the action of the RNAi-induced silencing complex (RISC). Our current understanding of miRNA function is inferred largely from studies of the effects of miRNAs on steady-state mRNA levels and from seed match conservation and context in putative targets. Here we have taken a more direct approach to these issues by comprehensively assessing the miRNAs and mRNAs that are physically associated with Argonaute 2 (Ago2), which is a core RISC component. We transfected HEK293T cells with epitope-tagged Ago2, immunopurified Ago2 together with any associated miRNAs and mRNAs, and quantitatively determined the levels of these RNAs by microarray analyses. We found that Ago2 immunopurified samples contained a representative repertoire of the cell's miRNAs and a select subset of the cell's total mRNAs. Transfection of the miRNAs miR-1 and miR-124 caused significant changes in the association of scores of mRNAs with Ago2. The mRNAs whose association with Ago2 increased upon miRNA expression were much more likely to contain specific miRNA seed matches and to have their overall mRNA levels decrease in response to the miRNA transfection than expected by chance. Hundreds of mRNAs were recruited to Ago2 by each miRNA via seed sequences in 3′-untranslated regions and coding sequences and a few mRNAs appear to be targeted via seed sequences in 5′-untranslated regions. Microarray analysis of Ago2 immunopurified samples provides a simple, direct method for experimentally identifying the targets of miRNAs and for elucidating roles of miRNAs in cellular regulation.
Collapse
Affiliation(s)
- David G. Hendrickson
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Daniel J. Hogan
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Daniel Herschlag
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- * E-mail: (DH); (PB)
| | - James E. Ferrell
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
| | - Patrick O. Brown
- Department of Biochemistry, Stanford University School of Medicine, Palo Alto, California, United States of America
- Howard Hughes Medical Institute, Stanford University School of Medicine, Palo Alto, California, United States of America
- * E-mail: (DH); (PB)
| |
Collapse
|
193
|
Liu J. Control of protein synthesis and mRNA degradation by microRNAs. Curr Opin Cell Biol 2008; 20:214-21. [PMID: 18329869 DOI: 10.1016/j.ceb.2008.01.006] [Citation(s) in RCA: 198] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 01/26/2008] [Indexed: 11/29/2022]
Affiliation(s)
- Jidong Liu
- Cell Biology Program, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
194
|
Abstract
The downregulation of gene expression by miRNAs and siRNAs is a complex process involving both translational repression and accelerated mRNA turnover, each of which appears to occur by multiple mechanisms. Moreover, under certain conditions, miRNAs are also capable of activating translation. A variety of cellular proteins have been implicated in these regulatory mechanisms, yet their exact roles remain largely unresolved.
Collapse
Affiliation(s)
- Ligang Wu
- Kimmel Center for Biology and Medicine, Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
195
|
Eulalio A, Huntzinger E, Izaurralde E. GW182 interaction with Argonaute is essential for miRNA-mediated translational repression and mRNA decay. Nat Struct Mol Biol 2008; 15:346-53. [PMID: 18345015 DOI: 10.1038/nsmb.1405] [Citation(s) in RCA: 310] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 02/20/2008] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) silence gene expression by binding 3' untranslated regions of target mRNAs. Recent studies suggested silencing is achieved through either recruitment of eIF6, which prevents ribosome assembly, or displacement of eIF4E from the mRNA 5' cap structure. Using Drosophila melanogaster cells, we show that eIF6 is not required for silencing. In contrast, silencing is abolished by mutating Argonaute 1 (AGO1) at two conserved phenylalanine residues predicted to mediate binding to the cap structure. Notably, we found these mutations also prevented AGO1 from interacting with GW182 and miRNAs, indicating that the essential role of these residues is unrelated to cap binding. Consistently, depleting GW182 or overexpressing its AGO1 binding domain relieved silencing of all reporters tested, including those lacking a poly(A) tail. Together, our findings show that miRNA function is effected by AGO1-GW182 complexes and the role of GW182 in silencing goes beyond promoting deadenylation.
Collapse
Affiliation(s)
- Ana Eulalio
- Max Planck Institute for Developmental Biology, Spemannstrasse 35, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
196
|
Audhya A, Desai A. Proteomics in Caenorhabditis elegans. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:205-10. [DOI: 10.1093/bfgp/eln014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
197
|
Lehrbach NJ, Miska EA. Functional genomic, computational and proteomic analysis of C. elegans microRNAs. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2008; 7:228-35. [DOI: 10.1093/bfgp/eln024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
198
|
Stevens K. Gathering a bouquet of miRNA targets. Nat Methods 2008. [DOI: 10.1038/nmeth0208-122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|