151
|
Peña-Castillo L, Badis G. Systematic Determination of Transcription Factor DNA-Binding Specificities in Yeast. Methods Mol Biol 2015; 1361:203-25. [PMID: 26483024 DOI: 10.1007/978-1-4939-3079-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Understanding how genes are regulated, decoding their "regulome", is one of the main challenges of the post-genomic era. Here, we describe the in vitro method we used to associate cis-regulatory sites with cognate trans-regulators by characterizing the DNA-binding specificity of the vast majority of yeast transcription factors using Protein Binding Microarrays. This approach can be implemented to any given organism.
Collapse
Affiliation(s)
- Lourdes Peña-Castillo
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada, A1B 3X5.,Department of Computer Science, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Gwenael Badis
- Institut Pasteur, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 3525, Paris, 75724, France.
| |
Collapse
|
152
|
Vernekar DV, Bhargava P. Yeast Bud27 modulates the biogenesis of Rpc128 and Rpc160 subunits and the assembly of RNA polymerase III. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1340-53. [PMID: 26423792 DOI: 10.1016/j.bbagrm.2015.09.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/23/2015] [Accepted: 09/25/2015] [Indexed: 01/22/2023]
Abstract
Yeast Bud27, an unconventional prefoldin is reported to affect the expression of nutrient-responsive genes, translation initiation and assembly of the multi-subunit eukaryotic RNA polymerases (pols), at a late step. We found that Bud27 associates with pol III in active as well as repressed states. Pol III transcription and occupancy at the target genes reduce with the deletion of BUD27. It promotes the interaction of pol III with the chromatin remodeler RSC found on most of the pol III targets, and with the heat shock protein Ssa4, which helps in nuclear import of the assembled pol III. Under nutrient-starvation, Ssa4-pol III interaction increases, while pol III remains inside the nucleus. Bud27 but not Ssa4 is required for RSC-pol III interaction, which reduces under nutrient-starvation. In the bud27Δ cells, total protein level of the largest pol III subunit Rpc160 but not of Rpc128, Rpc34 and Rpc53 subunits is reduced. This is accompanied by lower transcription of RPC128 gene and lower RPC160 translation due to reduced association of mRNA with the ribosomes. The resultant alteration in the normal cellular ratio of the two largest subunits of pol III core leads to reduced association of other pol III subunits and hampers the normal assembly of pol III at an early step in the cytoplasm. Our results show that Bud27 is required in multiple activities responsible for pol III biogenesis and activity.
Collapse
Affiliation(s)
- Dipti Vinayak Vernekar
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India
| | - Purnima Bhargava
- Centre for Cellular and Molecular Biology (Council of Scientific and Industrial Research), Uppal Road, Hyderabad 500007, India.
| |
Collapse
|
153
|
Desai PR, van Wijlick L, Kurtz D, Juchimiuk M, Ernst JF. Hypoxia and Temperature Regulated Morphogenesis in Candida albicans. PLoS Genet 2015; 11:e1005447. [PMID: 26274602 PMCID: PMC4537295 DOI: 10.1371/journal.pgen.1005447] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 07/15/2015] [Indexed: 01/31/2023] Open
Abstract
Candida albicans is a common commensal in the human gut but in predisposed patients it can become an important human fungal pathogen. As a commensal, C. albicans adapts to low-oxygen conditions and represses its hyphal development by the transcription factor Efg1, which under normoxia activates filamentation. The repressive hypoxic but not the normoxic function of Efg1 required its unmodified N-terminus, was prevented by phosphomimetic residues at normoxic phosphorylation sites T179 and T206 and occurred only at temperatures ≤35°C. Genome-wide binding sites for native Efg1 identified 300 hypoxia-specific target genes, which overlapped partially with hypoxic binding sites for Ace2, a known positive regulator of hypoxic filamentation. Transcriptional analyses revealed that EFG1, ACE2 and their identified targets BCR1 and BRG1 encode an interconnected regulatory hub, in which Efg1/Bcr1 act as negative and Ace2/Brg1 act as positive regulators of gene expression under hypoxia. In this circuit, the hypoxic function of Ace2 was stimulated by elevated CO2 levels. The hyperfilamentous phenotype of efg1 and bcr1 mutants depended on Ace2/Brg1 regulators and required increased expression of genes encoding Cek1 MAP kinase and its downstream target Cph1. The intricate temperature-dependent regulatory mechanisms under hypoxia suggest that C. albicans restricts hyphal morphogenesis in oxygen-poor body niches, possibly to persist as a commensal in the human host.
Collapse
Affiliation(s)
- Prashant R. Desai
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Lasse van Wijlick
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Manchot Graduate School Molecules of Infection, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Dagmar Kurtz
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Mateusz Juchimiuk
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Joachim F. Ernst
- Department Biologie, Molekulare Mykologie, Heinrich-Heine-Universität, Düsseldorf, Germany
- Manchot Graduate School Molecules of Infection, Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|
154
|
Schaefke B, Wang TY, Wang CY, Li WH. Gains and Losses of Transcription Factor Binding Sites in Saccharomyces cerevisiae and Saccharomyces paradoxus. Genome Biol Evol 2015. [PMID: 26220934 PMCID: PMC4558856 DOI: 10.1093/gbe/evv138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gene expression evolution occurs through changes in cis- or trans-regulatory elements or both. Interactions between transcription factors (TFs) and their binding sites (TFBSs) constitute one of the most important points where these two regulatory components intersect. In this study, we investigated the evolution of TFBSs in the promoter regions of different Saccharomyces strains and species. We divided the promoter of a gene into the proximal region and the distal region, which are defined, respectively, as the 200-bp region upstream of the transcription starting site and as the 200-bp region upstream of the proximal region. We found that the predicted TFBSs in the proximal promoter regions tend to be evolutionarily more conserved than those in the distal promoter regions. Additionally, Saccharomyces cerevisiae strains used in the fermentation of alcoholic drinks have experienced more TFBS losses than gains compared with strains from other environments (wild strains, laboratory strains, and clinical strains). We also showed that differences in TFBSs correlate with the cis component of gene expression evolution between species (comparing S. cerevisiae and its sister species Saccharomyces paradoxus) and within species (comparing two closely related S. cerevisiae strains).
Collapse
Affiliation(s)
- Bernhard Schaefke
- Institute of Biomedical Informatics, National Yang-Ming University, Taipei, Taiwan National Yang-Ming University, Taipei, Taiwan Bioinformatics Program, Institute of Information Science, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | | | | | - Wen-Hsiung Li
- National Yang-Ming University, Taipei, Taiwan China Medical University Hospital, Taichung, Taiwan Department of Ecology and Evolution, University of Chicago
| |
Collapse
|
155
|
The development and characterization of synthetic minimal yeast promoters. Nat Commun 2015; 6:7810. [PMID: 26183606 PMCID: PMC4518256 DOI: 10.1038/ncomms8810] [Citation(s) in RCA: 186] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/15/2015] [Indexed: 01/11/2023] Open
Abstract
Synthetic promoters, especially minimally sized, are critical for advancing fungal synthetic biology. Fungal promoters often span hundreds of base pairs, nearly ten times the amount of bacterial counterparts. This size limits large-scale synthetic biology efforts in yeasts. Here we address this shortcoming by establishing a methodical workflow necessary to identify robust minimal core elements that can be linked with minimal upstream activating sequences to develop short, yet strong yeast promoters. Through a series of library-based synthesis, analysis and robustness tests, we create a set of non-homologous, purely synthetic, minimal promoters for yeast. These promoters are comprised of short core elements that are generic and interoperable and 10 bp UAS elements that impart strong, constitutive function. Through this methodology, we are able to generate the shortest fungal promoters to date, which can achieve high levels of both inducible and constitutive expression with up to an 80% reduction in size. Endogenous fungal gene promoters can be hundreds of base pairs long, limiting their use in synthetic biology and biotechnology. Here Redden and Alper screen a library of synthetic promoter elements to generate compact DNA sequences of ∼100 base pairs able to drive high levels of gene expression.
Collapse
|
156
|
A Biophysical Approach to Predicting Protein-DNA Binding Energetics. Genetics 2015; 200:1349-61. [PMID: 26081193 DOI: 10.1534/genetics.115.178384] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 06/10/2015] [Indexed: 11/18/2022] Open
Abstract
Sequence-specific interactions between proteins and DNA play a central role in DNA replication, repair, recombination, and control of gene expression. These interactions can be studied in vitro using microfluidics, protein-binding microarrays (PBMs), and other high-throughput techniques. Here we develop a biophysical approach to predicting protein-DNA binding specificities from high-throughput in vitro data. Our algorithm, called BindSter, can model alternative DNA-binding modes and multiple protein species competing for access to DNA, while rigorously taking into account all sterically allowed configurations of DNA-bound factors. BindSter can be used with a hierarchy of protein-DNA interaction models of increasing complexity, including contributions of mononucleotides, dinucleotides, and longer words to the total protein-DNA binding energy. We observe that the quality of BindSter predictions does not change significantly as some of the energy parameters vary over a sizable range. To take this degeneracy into account, we have developed a graphical representation of parameter uncertainties called IntervalLogo. We find that our simplest model, in which each nucleotide in the binding site is treated independently, performs better than previous biophysical approaches. The extensions of this model, in which contributions of longer words are also considered, result in further improvements, underscoring the importance of higher-order effects in protein-DNA energetics. In contrast, we find little evidence of multiple binding modes for the transcription factors (TFs) and experimental conditions in our data set. Furthermore, there is limited consistency in predictions for the same TF based on microfluidics and PBM data.
Collapse
|
157
|
Parnell TJ, Schlichter A, Wilson BG, Cairns BR. The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism. eLife 2015; 4:e06073. [PMID: 25821983 PMCID: PMC4423118 DOI: 10.7554/elife.06073] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 03/28/2015] [Indexed: 12/19/2022] Open
Abstract
ISWI family chromatin remodelers typically organize nucleosome arrays, while SWI/SNF family remodelers (RSC) typically disorganize and eject nucleosomes, implying an antagonism that is largely unexplored in vivo. Here, we describe two independent genetic screens for rsc suppressors that yielded mutations in the promoter-focused ISW1a complex or mutations in the ‘basic patch’ of histone H4 (an epitope that regulates ISWI activity), strongly supporting RSC-ISW1a antagonism in vivo. RSC and ISW1a largely co-localize, and genomic nucleosome studies using rsc isw1 mutant combinations revealed opposing functions: promoters classified with a nucleosome-deficient region (NDR) gain nucleosome occupancy in rsc mutants, but this gain is attenuated in rsc isw1 double mutants. Furthermore, promoters lacking NDRs have the highest occupancy of both remodelers, consistent with regulation by nucleosome occupancy, and decreased transcription in rsc mutants. Taken together, we provide the first genetic and genomic evidence for RSC-ISW1a antagonism and reveal different mechanisms at two different promoter architectures. DOI:http://dx.doi.org/10.7554/eLife.06073.001 The genome of an organism can contain hundreds to thousands of genes. However, these genes are not all active at the same time. Instead, mechanisms exist that control when genes are switched off or on. One such mechanism alters how tightly DNA is packaged into a structure called chromatin. To form chromatin, DNA is wrapped around histone proteins at different points along its length; these structures are known as nucleosomes. Once formed, chromatin can either adopt a tightly packed form that represses gene activity or a less compact form associated with gene activation. The proteins that control how chromatin is packed are called ‘chromatin remodelers’. These proteins work in complexes that either disassemble chromatin—for example, by repositioning nucleosomes or removing histones—or organize chromatin by replacing nucleosomes and making it more compact. Studies in many organisms have identified two key families of chromatin remodelers. In yeast, the ISWI family of complexes assembles chromatin and a protein complex called RSC disassembles chromatin. Parnell, Schlichter et al. used a range of genetic techniques to investigate whether these two chromatin-remodeling complexes work against each other in a species of yeast called Saccharomyces cerevisiae. The results suggest that this is indeed the case. Both the ISWI complex and the RSC complex bind to regions of DNA called promoters, which are found at the start of a gene and help to regulate its activity. Parnell, Schlichter et al. found that the RSC complex helps to activate genes by establishing or maintaining regions of nucleosome-poor chromatin at a promoter. The chromatin is relaxed in these regions, which allows the proteins that activate genes to access the DNA. This effect is partially counteracted by the ISWI complex, which repositions nucleosomes across the promoters to fill the gaps created by the RSC complex. In comparison, Parnell, Schlichter et al. found that promoters that do not have regions of nucleosome-poor chromatin contain a larger number of both of the remodeling complexes and have a high turnover of histone proteins. This suggests that at these sites, the RSC proteins are needed to overcome the assembly of nucleosomes by the ISWI complex in order to activate the gene. Thus, these two chromatin remodelers, ISWI and RSC, compete at promoters to determine whether they contain or lack nucleosomes, which helps determine whether the gene is silent or active, respectively. Future work will look further at how the ‘winner’ is determined: how transcription factors or signaling systems within the cell bias the recruitment or activity of RSC or ISWI at particular promoters, to determine gene activity. DOI:http://dx.doi.org/10.7554/eLife.06073.002
Collapse
Affiliation(s)
- Timothy J Parnell
- Department of Oncological Sciences, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Alisha Schlichter
- Department of Oncological Sciences, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Boris G Wilson
- Department of Oncological Sciences, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, United States
| | - Bradley R Cairns
- Department of Oncological Sciences, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|
158
|
Abstract
Previous studies have described a transcriptional "memory effect," whereby transcript levels of many Abf1-regulated genes in the budding yeast Saccharomyces cerevisiae are undiminished even after Abf1 has dissociated from its regulatory sites. Here we provide additional support for this effect and investigate its molecular basis. We show that the effect is observed in a distinct abf1 ts mutant from that used in earlier studies, demonstrating that it is robust, and use chromatin immunoprecipitation to show that Abf1 association is decreased similarly from memory effect and transcriptionally responsive genes at the restrictive temperature. We also demonstrate that the association of TATA-binding protein and Pol II decreases after the loss of Abf1 binding for transcriptionally responsive genes but not for memory effect genes. Examination of genome-wide nucleosome occupancy data reveals that although transcriptionally responsive genes exhibit increased nucleosome occupancy in abf1 ts yeast, the promoter regions of memory effect targets show no change in abf1 ts mutants, maintaining an open chromatin conformation even after Abf1 eviction. This contrasting behavior reflects different inherent propensity for nucleosome formation between the two classes, driven by the presence of A/T-rich sequences upstream of the Abf1 site in memory effect gene promoters. These sequence-based differences show conservation in closely related fungi and also correlate with different gene expression noise, suggesting a physiological basis for greater access to "memory effect" promoter regions. Thus, our results establish a conserved mechanism underlying a transcriptional memory effect whereby sequences surrounding Abf1 binding sequences affect local nucleosome occupancy following loss of Abf1 binding. Furthermore, these findings demonstrate that sequence-based differences in the propensity for nucleosome occupancy can influence the transcriptional response of genes to an altered regulatory signal.
Collapse
|
159
|
Shirozu R, Yashiroda H, Murata S. Identification of minimum Rpn4-responsive elements in genes related to proteasome functions. FEBS Lett 2015; 589:933-40. [PMID: 25747386 DOI: 10.1016/j.febslet.2015.02.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/23/2015] [Accepted: 02/24/2015] [Indexed: 12/29/2022]
Abstract
The proteasome is an essential, 66-subunit protease that mediates ubiquitin-dependent proteolysis. The transcription factor Rpn4 regulates concerted expression of proteasome subunits to increase the proteasome by recognizing nonamer proteasome-associated control element (PACE) elements on the promoter regions. However, the genes for proteasome assembly chaperones and some of the subunits have no PACEs. Here we identified a minimal hexamer "PACE-core" sequence that responds to Rpn4. PACE-cores are found in many genes related to proteasome function including the assembly chaperones, but cannot substitute for PACE of the subunits. Our results add a new layer of complexity in transcriptional regulation of genes involved in protein degradation.
Collapse
Affiliation(s)
- Ryohei Shirozu
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hideki Yashiroda
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
160
|
Dai Z, Guo D, Dai X, Xiong Y. Genome-wide analysis of transcription factor binding sites and their characteristic DNA structures. BMC Genomics 2015; 16 Suppl 3:S8. [PMID: 25708259 PMCID: PMC4331811 DOI: 10.1186/1471-2164-16-s3-s8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Background Transcription factors (TF) regulate gene expression by binding DNA regulatory regions. Transcription factor binding sites (TFBSs) are conserved not only in primary DNA sequences but also in DNA structures. However, the global relationship between TFs and their preferred DNA structures remains to be elucidated. Results In this paper, we have developed a computational method to generate a genome-wide landscape of TFs and their characteristic binding DNA structures in Saccharomyces cerevisiae. We revealed DNA structural features for different TFs. The structural conservation shows positional preference in TFBSs. Structural levels of DNA sequences are correlated with TF-DNA binding affinities. Conclusions We provided the genome-wide correspondences of TFs to DNA structures. Our findings will have implications in understanding TF regulatory mechanisms.
Collapse
|
161
|
Nucleosome positioning in yeasts: methods, maps, and mechanisms. Chromosoma 2014; 124:131-51. [PMID: 25529773 DOI: 10.1007/s00412-014-0501-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 01/23/2023]
Abstract
Eukaryotic nuclear DNA is packaged into nucleosomes. During the past decade, genome-wide nucleosome mapping across species revealed the high degree of order in nucleosome positioning. There is a conserved stereotypical nucleosome organization around transcription start sites (TSSs) with a nucleosome-depleted region (NDR) upstream of the TSS and a TSS-aligned regular array of evenly spaced nucleosomes downstream over the gene body. As nucleosomes largely impede access to DNA and thereby provide an important level of genome regulation, it is of general interest to understand the mechanisms generating nucleosome positioning and especially the stereotypical NDR-array pattern. We focus here on the most advanced models, unicellular yeasts, and review the progress in mapping nucleosomes and which nucleosome positioning mechanisms are discussed. There are four mechanistic aspects: How are NDRs generated? How are individual nucleosomes positioned, especially those flanking the NDRs? How are nucleosomes evenly spaced leading to regular arrays? How are regular arrays aligned at TSSs? The main candidates for nucleosome positioning determinants are intrinsic DNA binding preferences of the histone octamer, specific DNA binding factors, nucleosome remodeling enzymes, transcription, and statistical positioning. We summarize the state of the art in an integrative model where nucleosomes are positioned by a combination of all these candidate determinants. We highlight the predominance of active mechanisms involving nucleosome remodeling enzymes which may be recruited by DNA binding factors and the transcription machinery. While this mechanistic framework emerged clearly during recent years, the involved factors and their mechanisms are still poorly understood and require future efforts combining in vivo and in vitro approaches.
Collapse
|
162
|
Zhang H, Zhao X, Li J, Cai H, Deng XW, Li L. MicroRNA408 is critical for the HY5-SPL7 gene network that mediates the coordinated response to light and copper. THE PLANT CELL 2014; 26:4933-53. [PMID: 25516599 PMCID: PMC4311192 DOI: 10.1105/tpc.114.127340] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 11/06/2014] [Accepted: 11/26/2014] [Indexed: 05/18/2023]
Abstract
Light and copper are important environmental determinants of plant growth and development. Despite the wealth of knowledge on both light and copper signaling, the molecular mechanisms that integrate the two pathways remain poorly understood. Here, we use Arabidopsis thaliana to demonstrate an interaction between SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7) and ELONGATED HYPOCOTYL5 (HY5), which mediate copper and light signaling, respectively. Through whole-genome chromatin immunoprecipitation and RNA sequencing analyses, we elucidated the SPL7 regulon and compared it with that of HY5. We found that the two transcription factors coregulate many genes, including those involved in anthocyanin accumulation and photosynthesis. Moreover, SPL7 and HY5 act coordinately to transcriptionally regulate MIR408, which results in differential expression of microRNA408 (miR408) and its target genes in response to changing light and copper conditions. We demonstrate that this regulation is tied to copper allocation to the chloroplast and plastocyanin levels. Finally, we found that constitutively activated miR408 rescues the distinct developmental defects of the hy5, spl7, and hy5 spl7 mutants. These findings revealed the existence of crosstalk between light and copper, mediated by a HY5-SPL7 network. Furthermore, integration of transcriptional and posttranscriptional regulation is critical for governing proper metabolism and development in response to combined copper and light signaling.
Collapse
Affiliation(s)
- Huiyong Zhang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China Department of Biology, University of Virginia, Charlottesville, Virginia 22904 College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xin Zhao
- Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| | - Jigang Li
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520 State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huaqing Cai
- Department of Cell Biology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21205
| | - Xing Wang Deng
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06520
| | - Lei Li
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing 100871, China Department of Biology, University of Virginia, Charlottesville, Virginia 22904
| |
Collapse
|
163
|
Andrilenas KK, Penvose A, Siggers T. Using protein-binding microarrays to study transcription factor specificity: homologs, isoforms and complexes. Brief Funct Genomics 2014; 14:17-29. [PMID: 25431149 DOI: 10.1093/bfgp/elu046] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Protein-DNA binding is central to specificity in gene regulation, and methods for characterizing transcription factor (TF)-DNA binding remain crucial to studies of regulatory specificity. High-throughput (HT) technologies have revolutionized our ability to characterize protein-DNA binding by significantly increasing the number of binding measurements that can be performed. Protein-binding microarrays (PBMs) are a robust and powerful HT platform for studying DNA-binding specificity of TFs. Analysis of PBM-determined DNA-binding profiles has provided new insight into the scope and mechanisms of TF binding diversity. In this review, we focus specifically on the PBM technique and discuss its application to the study of TF specificity, in particular, the binding diversity of TF homologs and multi-protein complexes.
Collapse
|
164
|
Spain MM, Ansari SA, Pathak R, Palumbo MJ, Morse RH, Govind CK. The RSC complex localizes to coding sequences to regulate Pol II and histone occupancy. Mol Cell 2014; 56:653-66. [PMID: 25457164 DOI: 10.1016/j.molcel.2014.10.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 09/26/2014] [Accepted: 10/02/2014] [Indexed: 10/24/2022]
Abstract
ATP-dependent chromatin remodelers regulate chromatin structure during multiple stages of transcription. We report that RSC, an essential chromatin remodeler, is recruited to the open reading frames (ORFs) of actively transcribed genes genome wide, suggesting a role for RSC in regulating transcription elongation. Consistent with such a role, Pol II occupancy in the ORFs of weakly transcribed genes is drastically reduced upon depletion of the RSC catalytic subunit Sth1. RSC inactivation also reduced histone H3 occupancy across transcribed regions. Remarkably, the strongest effects on Pol II and H3 occupancy were confined to the genes displaying the greatest RSC ORF enrichment. Additionally, RSC recruitment to the ORF requires the activities of the SAGA and NuA4 HAT complexes and is aided by the activities of the Pol II CTD Ser2 kinases Bur1 and Ctk1. Overall, our findings strongly implicate ORF-associated RSC in governing Pol II function and in maintaining chromatin structure over transcribed regions.
Collapse
Affiliation(s)
- Marla M Spain
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Suraiya A Ansari
- Laboratory of Molecular Genetics, Wadsworth Center, NY State Department of Health, Albany, NY 12208, USA
| | - Rakesh Pathak
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Michael J Palumbo
- Laboratory of Molecular Genetics, Wadsworth Center, NY State Department of Health, Albany, NY 12208, USA
| | - Randall H Morse
- Laboratory of Molecular Genetics, Wadsworth Center, NY State Department of Health, Albany, NY 12208, USA
| | - Chhabi K Govind
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
165
|
Bosio MC, Negri R, Dieci G. Promoter architectures in the yeast ribosomal expression program. Transcription 2014; 2:71-77. [PMID: 21468232 DOI: 10.4161/trns.2.2.14486] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/15/2010] [Accepted: 12/16/2010] [Indexed: 12/13/2022] Open
Abstract
Ribosome biogenesis begins with the orchestrated expression of hundreds of genes, including the three large classes of ribosomal protein, ribosome biogenesis and snoRNA genes. Current knowledge about the corresponding promoters suggests the existence of novel class-specific transcriptional strategies and crosstalk between telomere length and cell growth control.
Collapse
Affiliation(s)
- Maria Cristina Bosio
- Dipartimento di Biochimica e Biologia Molecolare; Università degli Studi di Parma; Parma
| | | | | |
Collapse
|
166
|
Zeevi D, Lubliner S, Lotan-Pompan M, Hodis E, Vesterman R, Weinberger A, Segal E. Molecular dissection of the genetic mechanisms that underlie expression conservation in orthologous yeast ribosomal promoters. Genome Res 2014; 24:1991-9. [PMID: 25294245 PMCID: PMC4248315 DOI: 10.1101/gr.179259.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent studies have shown a surprising phenomenon, whereby orthologous regulatory regions from different species drive similar expression levels despite being highly diverged in sequence. Here, we investigated this phenomenon by genomically integrating hundreds of ribosomal protein (RP) promoters from nine different yeast species into S. cerevisiae and accurately measuring their activity. We found that orthologous RP promoters have extreme expression conservation even across evolutionarily distinct yeast species. Notably, our measurements reveal two distinct mechanisms that underlie this conservation and which act in different regions of the promoter. In the core promoter region, we found compensatory changes, whereby effects of sequence variations in one part of the core promoter were reversed by variations in another part. In contrast, we observed robustness in Rap1 transcription factor binding sites, whereby significant sequence variations had little effect on promoter activity. Finally, cases in which orthologous promoter activities were not conserved could largely be explained by the sequence variation within the core promoter. Together, our results provide novel insights into the mechanisms by which expression is conserved throughout evolution across diverged promoter sequences.
Collapse
Affiliation(s)
- Danny Zeevi
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 7610001, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Shai Lubliner
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 7610001, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eran Hodis
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 7610001, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Rita Vesterman
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 7610001, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, 7610001, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 7610001, Israel
| |
Collapse
|
167
|
Lopez-Serra L, Kelly G, Patel H, Stewart A, Uhlmann F. The Scc2-Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions. Nat Genet 2014; 46:1147-51. [PMID: 25173104 PMCID: PMC4177232 DOI: 10.1038/ng.3080] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 08/06/2014] [Indexed: 12/14/2022]
Abstract
The cohesin complex is at the heart of many chromosomal activities, including sister chromatid cohesion and transcriptional regulation. Cohesin loading onto chromosomes depends on the Scc2-Scc4 cohesin loader complex, but the chromatin features that form cohesin loading sites remain poorly understood. Here we show that the RSC chromatin remodeling complex recruits budding yeast Scc2-Scc4 to broad nucleosome-free regions, which the cohesin loader helps to maintain. Consequently, inactivation of either the cohesin loader or the RSC complex has similar effects on nucleosome positioning, gene expression and sister chromatid cohesion. These results show an intimate link between local chromatin structure and higher-order chromosome architecture. Our findings pertain to the similarities between two severe human disorders, Cornelia de Lange syndrome, which is caused by alterations in the human cohesin loader, and Coffin-Siris syndrome, which results from alterations in human RSC complex components. Both syndromes can arise from gene misregulation due to related changes in the nucleosome landscape.
Collapse
MESH Headings
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/metabolism
- Binding Sites/genetics
- Chromatids/genetics
- Chromatids/metabolism
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomes, Fungal/genetics
- Chromosomes, Fungal/metabolism
- De Lange Syndrome/genetics
- De Lange Syndrome/metabolism
- Face/abnormalities
- Gene Expression Profiling
- Gene Expression Regulation, Fungal
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/metabolism
- Humans
- Intellectual Disability/genetics
- Intellectual Disability/metabolism
- Micrognathism/genetics
- Micrognathism/metabolism
- Neck/abnormalities
- Nucleosomes/genetics
- Nucleosomes/metabolism
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic/genetics
- Protein Binding
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/metabolism
- Transcription Initiation Site
Collapse
Affiliation(s)
- Lidia Lopez-Serra
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Gavin Kelly
- Bioinformatics and Biostatistics Service, Cancer Research UK London Research Institute, London, UK
| | - Harshil Patel
- Bioinformatics and Biostatistics Service, Cancer Research UK London Research Institute, London, UK
| | - Aengus Stewart
- Bioinformatics and Biostatistics Service, Cancer Research UK London Research Institute, London, UK
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, London, UK
| |
Collapse
|
168
|
Knight B, Kubik S, Ghosh B, Bruzzone MJ, Geertz M, Martin V, Dénervaud N, Jacquet P, Ozkan B, Rougemont J, Maerkl SJ, Naef F, Shore D. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. Genes Dev 2014; 28:1695-709. [PMID: 25085421 PMCID: PMC4117944 DOI: 10.1101/gad.244434.114] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In yeast, ribosome production is controlled transcriptionally by tight coregulation of the 138 ribosomal protein genes (RPGs). RPG promoters display limited sequence homology, and the molecular basis for their coregulation remains largely unknown. Here we identify two prevalent RPG promoter types, both characterized by upstream binding of the general transcription factor (TF) Rap1 followed by the RPG-specific Fhl1/Ifh1 pair, with one type also binding the HMG-B protein Hmo1. We show that the regulatory properties of the two promoter types are remarkably similar, suggesting that they are determined to a large extent by Rap1 and the Fhl1/Ifh1 pair. Rapid depletion experiments allowed us to define a hierarchy of TF binding in which Rap1 acts as a pioneer factor required for binding of all other TFs. We also uncovered unexpected features underlying recruitment of Fhl1, whose forkhead DNA-binding domain is not required for binding at most promoters, and Hmo1, whose binding is supported by repeated motifs. Finally, we describe unusually micrococcal nuclease (MNase)-sensitive nucleosomes at all RPG promoters, located between the canonical +1 and -1 nucleosomes, which coincide with sites of Fhl1/Ifh1 and Hmo1 binding. We speculate that these "fragile" nucleosomes play an important role in regulating RPG transcriptional output.
Collapse
Affiliation(s)
- Britta Knight
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Slawomir Kubik
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Bhaswar Ghosh
- The Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Marcel Geertz
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland; The Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Victoria Martin
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Dénervaud
- The Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Philippe Jacquet
- Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Burak Ozkan
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland
| | - Jacques Rougemont
- Bioinformatics and Biostatistics Core Facility, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Sebastian J Maerkl
- The Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Félix Naef
- The Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - David Shore
- Department of Molecular Biology, National Centres of Competence in Research Program "Frontiers in Genetics," Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, 1211 Geneva, Switzerland;
| |
Collapse
|
169
|
Amariei C, Machné R, Stolc V, Soga T, Tomita M, Murray DB. Time resolved DNA occupancy dynamics during the respiratory oscillation uncover a global reset point in the yeast growth program. MICROBIAL CELL 2014; 1:279-288. [PMID: 28357254 PMCID: PMC5349131 DOI: 10.15698/mic2014.09.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The structural dynamics of chromatin have been implicated in the regulation of
fundamental eukaryotic processes, such as DNA transcription, replication and
repair. Although previous studies have revealed that the chromatin landscape,
nucleosome remodeling and histone modification events are intimately tied into
cellular energetics and redox state, few studies undertake defined time-resolved
measurements of these state variables. Here, we use metabolically synchronous,
continuously-grown yeast cultures to measure DNA occupancy and track global
patterns with respect to the metabolic state of the culture. Combined with
transcriptome analyses and ChIP-qPCR experiments, these paint an intriguing
picture where genome-wide nucleosome focusing occurs during the recovery of
energy charge, followed by clearance of the promoter regions and global
transcriptional slow-down, thus indicating a nucleosome-mediated “reset point”
for the cycle. The reset begins at the end of the catabolic and stress-response
transcriptional programs and ends prior to the start of the anabolic and
cell-growth transcriptional program, and the histones on genes from both the
catabolic and anabolic superclusters are deacetylated.
Collapse
Affiliation(s)
- Cornelia Amariei
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan. ; Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | - Rainer Machné
- Institute for Theoretical Biology, Humboldt University, Berlin, Invalidenstrasse 43, D-10115, Berlin, Germany. ; Institute for Theoretical Chemistry, University of Vienna, Währingerstrasse 17, A-1090, Vienna, Austria
| | - Viktor Stolc
- NASA Ames Research Center, Moffett Field, California, United States of America
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan. ; Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | - Masaru Tomita
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan. ; Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa 252-8520, Japan
| | - Douglas B Murray
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| |
Collapse
|
170
|
The switch from fermentation to respiration in Saccharomyces cerevisiae is regulated by the Ert1 transcriptional activator/repressor. Genetics 2014; 198:547-60. [PMID: 25123508 DOI: 10.1534/genetics.114.168609] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the yeast Saccharomyces cerevisiae, fermentation is the major pathway for energy production, even under aerobic conditions. However, when glucose becomes scarce, ethanol produced during fermentation is used as a carbon source, requiring a shift to respiration. This adaptation results in massive reprogramming of gene expression. Increased expression of genes for gluconeogenesis and the glyoxylate cycle is observed upon a shift to ethanol and, conversely, expression of some fermentation genes is reduced. The zinc cluster proteins Cat8, Sip4, and Rds2, as well as Adr1, have been shown to mediate this reprogramming of gene expression. In this study, we have characterized the gene YBR239C encoding a putative zinc cluster protein and it was named ERT1 (ethanol regulated transcription factor 1). ChIP-chip analysis showed that Ert1 binds to a limited number of targets in the presence of glucose. The strongest enrichment was observed at the promoter of PCK1 encoding an important gluconeogenic enzyme. With ethanol as the carbon source, enrichment was observed with many additional genes involved in gluconeogenesis and mitochondrial function. Use of lacZ reporters and quantitative RT-PCR analyses demonstrated that Ert1 regulates expression of its target genes in a manner that is highly redundant with other regulators of gluconeogenesis. Interestingly, in the presence of ethanol, Ert1 is a repressor of PDC1 encoding an important enzyme for fermentation. We also show that Ert1 binds directly to the PCK1 and PDC1 promoters. In summary, Ert1 is a novel factor involved in the regulation of gluconeogenesis as well as a key fermentation gene.
Collapse
|
171
|
Siggers T, Reddy J, Barron B, Bulyk ML. Diversification of transcription factor paralogs via noncanonical modularity in C2H2 zinc finger DNA binding. Mol Cell 2014; 55:640-8. [PMID: 25042805 DOI: 10.1016/j.molcel.2014.06.019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 05/27/2014] [Accepted: 06/09/2014] [Indexed: 12/25/2022]
Abstract
A major challenge in obtaining a full molecular description of evolutionary adaptation is to characterize how transcription factor (TF) DNA-binding specificity can change. To identify mechanisms of TF diversification, we performed detailed comparisons of yeast C2H2 ZF proteins with identical canonical recognition residues that are expected to bind the same DNA sequences. Unexpectedly, we found that ZF proteins can adapt to recognize new binding sites in a modular fashion whereby binding to common core sites remains unaffected. We identified two distinct mechanisms, conserved across multiple Ascomycota species, by which this molecular adaptation occurred. Our results suggest a route for TF evolution that alleviates negative pleiotropic effects by modularly gaining new binding sites. These findings expand our current understanding of ZF DNA binding and provide evidence for paralogous ZFs utilizing alternate modes of DNA binding to recognize unique sets of noncanonical binding sites.
Collapse
Affiliation(s)
- Trevor Siggers
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Biology, Boston University, Boston, MA 02215, USA.
| | - Jessica Reddy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Brian Barron
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
172
|
Ganguli D, Chereji RV, Iben JR, Cole HA, Clark DJ. RSC-dependent constructive and destructive interference between opposing arrays of phased nucleosomes in yeast. Genome Res 2014; 24:1637-49. [PMID: 25015381 PMCID: PMC4199373 DOI: 10.1101/gr.177014.114] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RSC and SWI/SNF are related ATP-dependent chromatin remodeling machines that move nucleosomes, regulating access to DNA. We addressed their roles in nucleosome phasing relative to transcription start sites in yeast. SWI/SNF has no effect on phasing at the global level. In contrast, RSC depletion results in global nucleosome repositioning: Both upstream and downstream nucleosomal arrays shift toward the nucleosome-depleted region (NDR), with no change in spacing, resulting in a narrower and partly filled NDR. The global picture of RSC-depleted chromatin represents the average of a range of chromatin structures, with most genes showing a shift of the +1 or the -1 nucleosome into the NDR. Using RSC ChIP data reported by others, we show that RSC occupancy is highest on the coding regions of heavily transcribed genes, though not at their NDRs. We propose that RSC has a role in restoring chromatin structure after transcription. Analysis of gene pairs in different orientations demonstrates that phasing patterns reflect competition between phasing signals emanating from neighboring NDRs. These signals may be in phase, resulting in constructive interference and a regular array, or out of phase, resulting in destructive interference and fuzzy positioning. We propose a modified barrier model, in which a stable complex located at the NDR acts as a bidirectional phasing barrier. In RSC-depleted cells, this barrier has a smaller footprint, resulting in narrower NDRs. Thus, RSC plays a critical role in organizing yeast chromatin.
Collapse
Affiliation(s)
- Dwaipayan Ganguli
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Răzvan V Chereji
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - James R Iben
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Hope A Cole
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - David J Clark
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
173
|
Expression of NYV1 encoding the negative regulator of Pmc1 is repressed by two transcriptional repressors, Nrg1 and Mig1. FEBS Lett 2014; 588:3195-201. [PMID: 25017437 DOI: 10.1016/j.febslet.2014.06.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/25/2014] [Accepted: 06/30/2014] [Indexed: 12/26/2022]
Abstract
ESCRT components function to form multivesicular bodies for sorting of proteins destined to the yeast vacuole. The calcium hypersensitivity of ESCRT mutants is mainly due to repressed expression of PMR1 through the Rim101/Nrg1 pathway in budding yeast. Here, we show that overexpression of PMC1 and its negative regulator gene NYV1 suppresses and increases calcium hypersensitivity of ESCRT mutants, respectively. Consistently, deletion of NYV1 suppresses their calcium hypersensitivity. Expression of NYV1 is dramatically reduced in ESCRT mutants. Promoter analysis demonstrates that both Nrg1 and Mig1 repress NYV1 expression. Deletion of ESCRTs increases Nrg1 binding, but not Mig1-binding, to the NYV1 promoter. Deletion of MIG1 increases calcium sensitivity of ESCRT mutants due to derepression of NYV1 expression.
Collapse
|
174
|
Oberstaller J, Pumpalova Y, Schieler A, Llinás M, Kissinger JC. The Cryptosporidium parvum ApiAP2 gene family: insights into the evolution of apicomplexan AP2 regulatory systems. Nucleic Acids Res 2014; 42:8271-84. [PMID: 24957599 PMCID: PMC4117751 DOI: 10.1093/nar/gku500] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/15/2014] [Accepted: 05/19/2014] [Indexed: 01/13/2023] Open
Abstract
We provide the first comprehensive analysis of any transcription factor family in Cryptosporidium, a basal-branching apicomplexan that is the second leading cause of infant diarrhea globally. AP2 domain-containing proteins have evolved to be the major regulatory family in the phylum to the exclusion of canonical regulators. We show that apicomplexan and perkinsid AP2 domains cluster distinctly from other chromalveolate AP2s. Protein-binding specificity assays of C. parvum AP2 domains combined with motif conservation upstream of co-regulated gene clusters allowed the construction of putative AP2 regulons across the in vitro life cycle. Orthologous Apicomplexan AP2 (ApiAP2) expression has been rearranged relative to the malaria parasite P. falciparum, suggesting ApiAP2 network rewiring during evolution. C. hominis orthologs of putative C. parvum ApiAP2 proteins and target genes show greater than average variation. C. parvum AP2 domains display reduced binding diversity relative to P. falciparum, with multiple domains binding the 5'-TGCAT-3', 5'-CACACA-3' and G-box motifs (5'-G[T/C]GGGG-3'). Many overrepresented motifs in C. parvum upstream regions are not AP2 binding motifs. We propose that C. parvum is less reliant on ApiAP2 regulators in part because it utilizes E2F/DP1 transcription factors. C. parvum may provide clues to the ancestral state of apicomplexan transcriptional regulation, pre-AP2 domination.
Collapse
Affiliation(s)
- Jenna Oberstaller
- Department of Genetics, University of Georgia, Athens, GA 30602, USA Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Yoanna Pumpalova
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Ariel Schieler
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Manuel Llinás
- Department of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Jessica C Kissinger
- Department of Genetics, University of Georgia, Athens, GA 30602, USA Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
175
|
Ward LD, Wang J, Bussemaker HJ. Characterizing a collective and dynamic component of chromatin immunoprecipitation enrichment profiles in yeast. BMC Genomics 2014; 15:494. [PMID: 24947676 PMCID: PMC4124144 DOI: 10.1186/1471-2164-15-494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 05/27/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Recent chromatin immunoprecipitation (ChIP) experiments in fly, mouse, and human have revealed the existence of high-occupancy target (HOT) regions or "hotspots" that show enrichment across many assayed DNA-binding proteins. Similar co-enrichment observed in yeast so far has been treated as artifactual, and has not been fully characterized. RESULTS Here we reanalyze ChIP data from both array-based and sequencing-based experiments to show that in the yeast S. cerevisiae, the collective enrichment phenomenon is strongly associated with proximity to noncoding RNA genes and with nucleosome depletion. DNA sequence motifs that confer binding affinity for the proteins are largely absent from these hotspots, suggesting that protein-protein interactions play a prominent role. The hotspots are condition-specific, suggesting that they reflect a chromatin state or protein state, and are not a static feature of underlying sequence. Additionally, only a subset of all assayed factors is associated with these loci, suggesting that the co-enrichment cannot be simply explained by a chromatin state that is universally more prone to immunoprecipitation. CONCLUSIONS Together our results suggest that the co-enrichment patterns observed in yeast represent transcription factor co-occupancy. More generally, they make clear that great caution must be used when interpreting ChIP enrichment profiles for individual factors in isolation, as they will include factor-specific as well as collective contributions.
Collapse
Affiliation(s)
- Lucas D Ward
- />Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave, New York, NY 10027 USA
- />Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Junbai Wang
- />Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave, New York, NY 10027 USA
- />Department of Pathology, Oslo University Hospital - The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | - Harmen J Bussemaker
- />Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave, New York, NY 10027 USA
- />Center for Computational Biology and Bioinformatics, Columbia University, 1130 St. Nicholas Ave, New York, NY 10032 USA
| |
Collapse
|
176
|
Abstract
Instructions for when, where and to what level each gene should be expressed are encoded within regulatory sequences. The importance of motifs recognized by DNA-binding regulators has long been known, but their extensive characterization afforded by recent technologies only partly accounts for how regulatory instructions are encoded in the genome. Here, we review recent advances in our understanding of regulatory sequences that influence transcription and go beyond the description of motifs. We discuss how understanding different aspects of the sequence-encoded regulation can help to unravel the genotype-phenotype relationship, which would lead to a more accurate and mechanistic interpretation of personal genome sequences.
Collapse
Affiliation(s)
- Michal Levo
- Department of Molecular Cell Biology, and Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eran Segal
- Department of Molecular Cell Biology, and Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
177
|
Mehrotra S, Galdieri L, Zhang T, Zhang M, Pemberton LF, Vancura A. Histone hypoacetylation-activated genes are repressed by acetyl-CoA- and chromatin-mediated mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:751-63. [PMID: 24907648 DOI: 10.1016/j.bbagrm.2014.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 05/12/2014] [Accepted: 05/29/2014] [Indexed: 01/07/2023]
Abstract
Transcriptional activation is typically associated with increased acetylation of promoter histones. However, this paradigm does not apply to transcriptional activation of all genes. In this study we have characterized a group of genes that are repressed by histone acetylation. These histone hypoacetylation-activated genes (HHAAG) are normally repressed during exponential growth, when the cellular level of acetyl-CoA is high and global histone acetylation is also high. The HHAAG are induced during diauxic shift, when the levels of acetyl-CoA and global histone acetylation decrease. The histone hypoacetylation-induced activation of HHAAG is independent of Msn2/Msn4. The repression of HSP12, one of the HHAAG, is associated with well-defined nucleosomal structure in the promoter region, while histone hypoacetylation-induced activation correlates with delocalization of positioned nucleosomes or with reduced nucleosome occupancy. Correspondingly, unlike the majority of yeast genes, HHAAG are transcriptionally upregulated when expression of histone genes is reduced. Taken together, these results suggest a model in which histone acetylation is required for proper positioning of promoter nucleosomes and repression of HHAAG.
Collapse
Affiliation(s)
- Swati Mehrotra
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Luciano Galdieri
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Tiantian Zhang
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Man Zhang
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Lucy F Pemberton
- Center for Cell Signalling, Department of Microbiology, University of Virginia Health Sciences Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Ales Vancura
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
178
|
Downes DJ, Davis MA, Wong KH, Kreutzberger SD, Hynes MJ, Todd RB. Dual DNA binding and coactivator functions ofAspergillus nidulans TamA, a Zn(II)2Cys6 transcription factor. Mol Microbiol 2014; 92:1198-211. [DOI: 10.1111/mmi.12620] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Damien J. Downes
- Department of Plant Pathology; Kansas State University; 4024 Throckmorton Plant Sciences Center Manhattan KS 66506 USA
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| | - Meryl A. Davis
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| | - Koon Ho Wong
- Department of Biological Chemistry & Molecular Pharmacology; Harvard Medical School; 240 Longwood Ave, Room C2-325 Boston MA 02115 USA
- Faculty of Health Sciences; University of Macau; Macau SAR China
| | - Sara D. Kreutzberger
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| | - Michael J. Hynes
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| | - Richard B. Todd
- Department of Plant Pathology; Kansas State University; 4024 Throckmorton Plant Sciences Center Manhattan KS 66506 USA
- Department of Genetics; The University of Melbourne; Parkville Vic. 3010 Australia
| |
Collapse
|
179
|
Affiliation(s)
- Amanda L. Hughes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| | - Oliver J. Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605;
| |
Collapse
|
180
|
Kemmeren P, Sameith K, van de Pasch L, Benschop J, Lenstra T, Margaritis T, O’Duibhir E, Apweiler E, van Wageningen S, Ko C, van Heesch S, Kashani M, Ampatziadis-Michailidis G, Brok M, Brabers N, Miles A, Bouwmeester D, van Hooff S, van Bakel H, Sluiters E, Bakker L, Snel B, Lijnzaad P, van Leenen D, Groot Koerkamp M, Holstege F. Large-Scale Genetic Perturbations Reveal Regulatory Networks and an Abundance of Gene-Specific Repressors. Cell 2014; 157:740-52. [DOI: 10.1016/j.cell.2014.02.054] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/30/2013] [Accepted: 02/25/2014] [Indexed: 11/17/2022]
|
181
|
Gupta A, Christensen RG, Bell HA, Goodwin M, Patel RY, Pandey M, Enuameh MS, Rayla AL, Zhu C, Thibodeau-Beganny S, Brodsky MH, Joung JK, Wolfe SA, Stormo GD. An improved predictive recognition model for Cys(2)-His(2) zinc finger proteins. Nucleic Acids Res 2014; 42:4800-12. [PMID: 24523353 PMCID: PMC4005693 DOI: 10.1093/nar/gku132] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 11/17/2022] Open
Abstract
Cys(2)-His(2) zinc finger proteins (ZFPs) are the largest family of transcription factors in higher metazoans. They also represent the most diverse family with regards to the composition of their recognition sequences. Although there are a number of ZFPs with characterized DNA-binding preferences, the specificity of the vast majority of ZFPs is unknown and cannot be directly inferred by homology due to the diversity of recognition residues present within individual fingers. Given the large number of unique zinc fingers and assemblies present across eukaryotes, a comprehensive predictive recognition model that could accurately estimate the DNA-binding specificity of any ZFP based on its amino acid sequence would have great utility. Toward this goal, we have used the DNA-binding specificities of 678 two-finger modules from both natural and artificial sources to construct a random forest-based predictive model for ZFP recognition. We find that our recognition model outperforms previously described determinant-based recognition models for ZFPs, and can successfully estimate the specificity of naturally occurring ZFPs with previously defined specificities.
Collapse
Affiliation(s)
- Ankit Gupta
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan G. Christensen
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Heather A. Bell
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Mathew Goodwin
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Ronak Y. Patel
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Manishi Pandey
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Metewo Selase Enuameh
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Amy L. Rayla
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Cong Zhu
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Stacey Thibodeau-Beganny
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Michael H. Brodsky
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - J. Keith Joung
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Scot A. Wolfe
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Gary D. Stormo
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA, Department of Genetics, Washington University School of Medicine, St Louis, MO 63108, USA, Department of Biochemistry and Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA, Molecular Pathology Unit, Center for Computational and Integrative Biology, and Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA 02129, USA, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA and Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
182
|
Liu G, Marras A, Nielsen J. The future of genome-scale modeling of yeast through integration of a transcriptional regulatory network. QUANTITATIVE BIOLOGY 2014. [DOI: 10.1007/s40484-014-0027-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
183
|
Freaney JE, Zhang Q, Yigit E, Kim R, Widom J, Wang JP, Horvath CM. High-density nucleosome occupancy map of human chromosome 9p21-22 reveals chromatin organization of the type I interferon gene cluster. J Interferon Cytokine Res 2014; 34:676-85. [PMID: 24673249 DOI: 10.1089/jir.2013.0118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Genome-wide investigations have dramatically increased our understanding of nucleosome positioning and the role of chromatin in gene regulation, yet some genomic regions have been poorly represented in human nucleosome maps. One such region is represented by human chromosome 9p21-22, which contains the type I interferon gene cluster that includes 16 interferon alpha genes and the single interferon beta, interferon epsilon, and interferon omega genes. A high-density nucleosome mapping strategy was used to generate locus-wide maps of the nucleosome organization of this biomedically important locus at a steady state and during a time course of infection with Sendai virus, an inducer of interferon gene expression. Detailed statistical and computational analysis illustrates that nucleosomes in this locus exhibit preferences for particular dinucleotide and oligomer DNA sequence motifs in vivo, which are similar to those reported for lower eukaryotic nucleosome-DNA interactions. These data were used to visualize the region's chromatin architecture and reveal features that are common to the organization of all the type I interferon genes, indicating a common nucleosome-mediated gene regulatory paradigm. Additionally, this study clarifies aspects of the dynamic changes that occur with the nucleosome occupying the transcriptional start site of the interferon beta gene after virus infection.
Collapse
Affiliation(s)
- Jonathan E Freaney
- 1 Department of Molecular Biosciences, Northwestern University , Evanston, Illinois
| | | | | | | | | | | | | |
Collapse
|
184
|
Abstract
The term “transcriptional network” refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms.
Collapse
|
185
|
Elfving N, Chereji RV, Bharatula V, Björklund S, Morozov AV, Broach JR. A dynamic interplay of nucleosome and Msn2 binding regulates kinetics of gene activation and repression following stress. Nucleic Acids Res 2014; 42:5468-82. [PMID: 24598258 PMCID: PMC4027177 DOI: 10.1093/nar/gku176] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transcription factor Msn2 mediates a significant proportion of the environmental stress response, in which a common cohort of genes changes expression in a stereotypic fashion upon exposure to any of a wide variety of stresses. We have applied genome-wide chromatin immunoprecipitation and nucleosome profiling to determine where Msn2 binds under stressful conditions and how that binding affects, and is affected by, nucleosome positioning. We concurrently determined the effect of Msn2 activity on gene expression following stress and demonstrated that Msn2 stimulates both activation and repression. We found that some genes responded to both intermittent and continuous Msn2 nuclear occupancy while others responded only to continuous occupancy. Finally, these studies document a dynamic interplay between nucleosomes and Msn2 such that nucleosomes can restrict access of Msn2 to its canonical binding sites while Msn2 can promote reposition, expulsion and recruitment of nucleosomes to alter gene expression. This interplay may allow the cell to discriminate between different types of stress signaling.
Collapse
Affiliation(s)
- Nils Elfving
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Răzvan V Chereji
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA
| | - Vasudha Bharatula
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå 901 87, Sweden
| | - Alexandre V Morozov
- Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08854, USA BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - James R Broach
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
186
|
Abstract
Robustness, the maintenance of a character in the presence of genetic change, can help preserve adaptive traits but also may hinder evolvability, the ability to bring forth novel adaptations. We used genotype networks to analyze the binding site repertoires of 193 transcription factors from mice and yeast, providing empirical evidence that robustness and evolvability need not be conflicting properties. Network vertices represent binding sites where two sites are connected if they differ in a single nucleotide. We show that the binding sites of larger genotype networks are not only more robust, but the sequences adjacent to such networks can also bind more transcription factors, thus demonstrating that robustness can facilitate evolvability.
Collapse
Affiliation(s)
- Joshua L Payne
- University of Zurich, Institute of Evolutionary Biology and Environmental Studies, Zurich, Switzerland
| | | |
Collapse
|
187
|
Czaja W, Mao P, Smerdon MJ. Chromatin remodelling complex RSC promotes base excision repair in chromatin of Saccharomyces cerevisiae. DNA Repair (Amst) 2014; 16:35-43. [PMID: 24674626 DOI: 10.1016/j.dnarep.2014.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 12/04/2013] [Accepted: 01/07/2014] [Indexed: 12/15/2022]
Abstract
The base excision repair (BER) pathway is a conserved DNA repair system required to maintain genomic integrity and prevent mutagenesis in all eukaryotic cells. Nevertheless, how BER operates in vivo (i.e. in the context of chromatin) is poorly understood. We have investigated the role of an essential ATP-dependent chromatin remodelling (ACR) complex RSC (Remodels the Structure of Chromatin) in BER of intact yeast cells. We show that depletion of STH1, the ATPase subunit of RSC, causes enhanced sensitivity to the DNA alkylating agent methyl methanesulfonate (MMS) and results in a substantial inhibition of BER, at the GAL1 locus and in the genome overall. Consistent with this observation, the DNA in chromatin is less accessible to micrococcal nuclease digestion in the absence of RSC. Quantitative PCR results indicate that repair deficiency in STH1 depleted cells is not due to changes in the expression of BER genes. Collectively, our data indicates the RSC complex promotes efficient BER in chromatin. These results provide, for the first time, a link between ATP-dependent chromatin remodelling and BER in living cells.
Collapse
Affiliation(s)
- Wioletta Czaja
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Peng Mao
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA
| | - Michael J Smerdon
- Biochemistry and Biophysics, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA.
| |
Collapse
|
188
|
Bisschops MMM, Zwartjens P, Keuter SGF, Pronk JT, Daran-Lapujade P. To divide or not to divide: a key role of Rim15 in calorie-restricted yeast cultures. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1020-30. [PMID: 24487068 DOI: 10.1016/j.bbamcr.2014.01.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 01/20/2014] [Accepted: 01/23/2014] [Indexed: 10/25/2022]
Abstract
The PAS kinase Rim15 is proposed to integrate signals from different nutrient-sensing pathways and to control transcriptional reprogramming of Saccharomyces cerevisiae upon nutrient depletion. Despite this proposed role, previous transcriptome analyses of rim15 mutants solely focused on growing cultures. In the present work, retentostat cultivation enabled analysis of the role of Rim15 under severely calorie-restricted, virtually non-growing conditions. Under these conditions, deletion of RIM15 affected transcription of over 10-fold more genes than in growing cultures. Transcriptional responses, metabolic rates and cellular morphology indicated a key role of Rim15 in controlled cell-cycle arrest upon nutrient depletion. Moreover, deletion of rim15 reduced heat-shock tolerance in non-growing, but not in growing cultures. The failure of rim15 cells to adapt to calorie restriction by entering a robust post-mitotic state resembles cancer cell physiology and shows that retentostat cultivation of yeast strains can provide relevant models for healthy post-mitotic and transformed human cells.
Collapse
Affiliation(s)
- Markus M M Bisschops
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands
| | - Priscilla Zwartjens
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands
| | - Sebastiaan G F Keuter
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands; Kluyver Centre for Genomics of Industrial Fermentation, PO Box 5057, 2600 GA Delft, The Netherlands.
| |
Collapse
|
189
|
QTL dissection of Lag phase in wine fermentation reveals a new translocation responsible for Saccharomyces cerevisiae adaptation to sulfite. PLoS One 2014; 9:e86298. [PMID: 24489712 PMCID: PMC3904918 DOI: 10.1371/journal.pone.0086298] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/10/2013] [Indexed: 12/03/2022] Open
Abstract
Quantitative genetics and QTL mapping are efficient strategies for deciphering the genetic polymorphisms that explain the phenotypic differences of individuals within the same species. Since a decade, this approach has been applied to eukaryotic microbes such as Saccharomyces cerevisiae in order to find natural genetic variations conferring adaptation of individuals to their environment. In this work, a QTL responsible for lag phase duration in the alcoholic fermentation of grape juice was dissected by reciprocal hemizygosity analysis. After invalidating the effect of some candidate genes, a chromosomal translocation affecting the lag phase was brought to light using de novo assembly of parental genomes. This newly described translocation (XV-t-XVI) involves the promoter region of ADH1 and the gene SSU1 and confers an increased expression of the sulfite pump during the first hours of alcoholic fermentation. This translocation constitutes another adaptation route of wine yeast to sulfites in addition to the translocation VIII-t-XVI previously described. A population survey of both translocation forms in a panel of domesticated yeast strains suggests that the translocation XV-t-XVI has been empirically selected by human activity.
Collapse
|
190
|
Jia C, Carson MB, Wang Y, Lin Y, Lu H. A new exhaustive method and strategy for finding motifs in ChIP-enriched regions. PLoS One 2014; 9:e86044. [PMID: 24475069 PMCID: PMC3901781 DOI: 10.1371/journal.pone.0086044] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 12/04/2013] [Indexed: 12/22/2022] Open
Abstract
ChIP-seq, which combines chromatin immunoprecipitation (ChIP) with next-generation parallel sequencing, allows for the genome-wide identification of protein-DNA interactions. This technology poses new challenges for the development of novel motif-finding algorithms and methods for determining exact protein-DNA binding sites from ChIP-enriched sequencing data. State-of-the-art heuristic, exhaustive search algorithms have limited application for the identification of short (l, d) motifs (l ≤ 10, d ≤ 2) contained in ChIP-enriched regions. In this work we have developed a more powerful exhaustive method (FMotif) for finding long (l, d) motifs in DNA sequences. In conjunction with our method, we have adopted a simple ChIP-enriched sampling strategy for finding these motifs in large-scale ChIP-enriched regions. Empirical studies on synthetic samples and applications using several ChIP data sets including 16 TF (transcription factor) ChIP-seq data sets and five TF ChIP-exo data sets have demonstrated that our proposed method is capable of finding these motifs with high efficiency and accuracy. The source code for FMotif is available at http://211.71.76.45/FMotif/.
Collapse
Affiliation(s)
- Caiyan Jia
- School of Computer and Information Technology & Beijing Key Lab of Traffic Data Analysis, Beijing Jiaotong University, Beijing, China
- Department of Bioengineering/Bioinformatics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Matthew B. Carson
- Center for Healthcare Studies, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yang Wang
- School of Computer and Information Technology & Beijing Key Lab of Traffic Data Analysis, Beijing Jiaotong University, Beijing, China
| | - Youfang Lin
- School of Computer and Information Technology & Beijing Key Lab of Traffic Data Analysis, Beijing Jiaotong University, Beijing, China
| | - Hui Lu
- Department of Bioengineering/Bioinformatics, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Shanghai Institute of Medical Genetics, Shanghai Children’s Hospital, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
191
|
Musladin S, Krietenstein N, Korber P, Barbaric S. The RSC chromatin remodeling complex has a crucial role in the complete remodeler set for yeast PHO5 promoter opening. Nucleic Acids Res 2014; 42:4270-82. [PMID: 24465003 PMCID: PMC3985623 DOI: 10.1093/nar/gkt1395] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although yeast PHO5 promoter chromatin opening is a founding model for chromatin remodeling, the complete set of involved remodelers remained unknown for a long time. The SWI/SNF and INO80 remodelers cooperate here, but nonessentially, and none of the many tested single or combined remodeler gene mutations could prevent PHO5 promoter opening. RSC, the most abundant and only remodeler essential for viability, was a controversial candidate for the unrecognized remodeling activity but unassessed in vivo. Now we show that remodels the structure of chromatin (RSC) is crucially involved in PHO5 promoter opening. Further, the isw1 chd1 double deletion also delayed chromatin remodeling. Strikingly, combined absence of RSC and Isw1/Chd1 or Snf2 abolished for the first time promoter opening on otherwise sufficient induction in vivo. Together with previous findings, we recognize now a surprisingly complex network of five remodelers (RSC, SWI/SNF, INO80, Isw1 and Chd1) from four subfamilies (SWI/SNF, INO80, ISWI and CHD) as involved in PHO5 promoter chromatin remodeling. This is likely the first described complete remodeler set for a physiological chromatin transition. RSC was hardly involved at the coregulated PHO8 or PHO84 promoters despite cofactor recruitment by the same transactivator and RSC’s presence at all three promoters. Therefore, promoter-specific chromatin rather than transactivators determine remodeler requirements.
Collapse
Affiliation(s)
- Sanja Musladin
- Laboratory of Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb, Zagreb 10000, Croatia and Molecular Biology, Adolf-Butenandt-Institut, University of Munich, Munich 80336, Germany
| | | | | | | |
Collapse
|
192
|
Maguire SL, Wang C, Holland LM, Brunel F, Neuvéglise C, Nicaud JM, Zavrel M, White TC, Wolfe KH, Butler G. Zinc finger transcription factors displaced SREBP proteins as the major Sterol regulators during Saccharomycotina evolution. PLoS Genet 2014; 10:e1004076. [PMID: 24453983 PMCID: PMC3894159 DOI: 10.1371/journal.pgen.1004076] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 11/18/2013] [Indexed: 12/26/2022] Open
Abstract
In most eukaryotes, including the majority of fungi, expression of sterol biosynthesis genes is regulated by Sterol-Regulatory Element Binding Proteins (SREBPs), which are basic helix-loop-helix transcription activators. However, in yeasts such as Saccharomyces cerevisiae and Candida albicans sterol synthesis is instead regulated by Upc2, an unrelated transcription factor with a Gal4-type zinc finger. The SREBPs in S. cerevisiae (Hms1) and C. albicans (Cph2) have lost a domain, are not major regulators of sterol synthesis, and instead regulate filamentous growth. We report here that rewiring of the sterol regulon, with Upc2 taking over from SREBP, likely occurred in the common ancestor of all Saccharomycotina. Yarrowia lipolytica, a deep-branching species, is the only genome known to contain intact and full-length orthologs of both SREBP (Sre1) and Upc2. Deleting YlUPC2, but not YlSRE1, confers susceptibility to azole drugs. Sterol levels are significantly reduced in the YlUPC2 deletion. RNA-seq analysis shows that hypoxic regulation of sterol synthesis genes in Y. lipolytica is predominantly mediated by Upc2. However, YlSre1 still retains a role in hypoxic regulation; growth of Y. lipolytica in hypoxic conditions is reduced in a Ylupc2 deletion and is abolished in a Ylsre1/Ylupc2 double deletion, and YlSre1 regulates sterol gene expression during hypoxia adaptation. We show that YlSRE1, and to a lesser extent YlUPC2, are required for switching from yeast to filamentous growth in hypoxia. Sre1 appears to have an ancestral role in the regulation of filamentation, which became decoupled from its role in sterol gene regulation by the arrival of Upc2 in the Saccharomycotina.
Collapse
Affiliation(s)
- Sarah L. Maguire
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Can Wang
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Linda M. Holland
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - François Brunel
- INRA UMR1319 Micalis, AgroParisTech, Jouy-en-Josas, France
- CNRS, Micalis, Jouy-en-Josas, France
| | - Cécile Neuvéglise
- INRA UMR1319 Micalis, AgroParisTech, Jouy-en-Josas, France
- CNRS, Micalis, Jouy-en-Josas, France
| | - Jean-Marc Nicaud
- INRA UMR1319 Micalis, AgroParisTech, Jouy-en-Josas, France
- CNRS, Micalis, Jouy-en-Josas, France
| | - Martin Zavrel
- University of Missouri-Kansas City, School of Biological Sciences, Cell Biology and Biophysics, Kansas City, Missouri, United States of America
| | - Theodore C. White
- University of Missouri-Kansas City, School of Biological Sciences, Cell Biology and Biophysics, Kansas City, Missouri, United States of America
| | - Kenneth H. Wolfe
- UCD School of Medicine and Medical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
| | - Geraldine Butler
- UCD School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin, Ireland
- * E-mail:
| |
Collapse
|
193
|
Gan Y, Guan J, Zhou S, Zhang W. Identifying Cis-Regulatory Elements and Modules Using Conditional Random Fields. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2014; 11:73-82. [PMID: 26355509 DOI: 10.1109/tcbb.2013.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Accurate identification of cis-regulatory elements and their correlated modules is essential for analysis of transcriptional regulation, which is a challenging problem in computational biology. Unsupervised learning has the advantage of compensating for missing annotated data, and is thus promising to be effective to identify cis-regulatory elements and modules. We introduced a Conditional Random Fields model, referred to as CRFEM, to integrate sequence features and long-range dependency of genomic sequences such as epigenetic features to identify cis-regulatory elements and modules at the same time. The proposed method is able to automatically learn model parameters with no labeled data and explicitly optimize the predictive probability of cis-regulatory elements and modules. In comparison with existing methods, our method is more accurate and can be used for genome-wide studies of gene regulation.
Collapse
|
194
|
Mueller-Planitz F, Klinker H, Becker PB. Nucleosome sliding mechanisms: new twists in a looped history. Nat Struct Mol Biol 2013; 20:1026-32. [PMID: 24008565 DOI: 10.1038/nsmb.2648] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 07/12/2013] [Indexed: 01/11/2023]
Abstract
Nucleosomes, the basic organizational units of chromatin, package and regulate eukaryotic genomes. ATP-dependent nucleosome-remodeling factors endow chromatin with structural flexibility by promoting assembly or disruption of nucleosomes and the exchange of histone variants. Furthermore, most remodeling factors induce nucleosome movements through sliding of histone octamers on DNA. We summarize recent progress toward unraveling the basic nucleosome sliding mechanism and the interplay of the remodelers' DNA translocases with accessory domains. Such domains optimize and regulate the basic sliding reaction and exploit sliding to achieve diverse structural effects, such as nucleosome positioning or eviction, or the regular spacing of nucleosomes in chromatin.
Collapse
Affiliation(s)
- Felix Mueller-Planitz
- 1] Adolf-Butenandt-Institute, Ludwig-Maximilians-Universität, Munich, Germany. [2] Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität, Munich, Germany
| | | | | |
Collapse
|
195
|
SWR-C and INO80 chromatin remodelers recognize nucleosome-free regions near +1 nucleosomes. Cell 2013; 154:1246-56. [PMID: 24034248 DOI: 10.1016/j.cell.2013.08.043] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/22/2013] [Accepted: 08/23/2013] [Indexed: 10/26/2022]
Abstract
SWR-C/SWR1 and INO80 are multisubunit complexes that catalyze the deposition and removal, respectively, of histone variant H2A.Z from the first nucleosome at the start of genes. How they target and engage these +1 nucleosomes is unclear. Using ChIP-exo, we identified the subnucleosomal placement of 20 of their subunits across the yeast genome. The Swc2 subunit of SWR-C bound a narrowly defined region in the adjacent nucleosome-free region (NFR), where it positioned the Swr1 subunit over one of two sites of H2A.Z deposition at +1. The genomic binding maps suggest that many subunits have a rather plastic organization that allows subunits to exchange between the two complexes. One outcome of promoting H2A/H2A.Z exchange was an enhanced turnover of entire nucleosomes, thereby creating dynamic chromatin at the start of genes. Our findings provide unifying concepts on how these two opposing chromatin remodeling complexes function selectively at the +1 nucleosome of nearly all genes.
Collapse
|
196
|
Ranjan A, Mizuguchi G, FitzGerald PC, Wei D, Wang F, Huang Y, Luk E, Woodcock CL, Wu C. Nucleosome-free region dominates histone acetylation in targeting SWR1 to promoters for H2A.Z replacement. Cell 2013; 154:1232-45. [PMID: 24034247 DOI: 10.1016/j.cell.2013.08.005] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/04/2013] [Accepted: 08/05/2013] [Indexed: 01/31/2023]
Abstract
The histone variant H2A.Z is a genome-wide signature of nucleosomes proximal to eukaryotic regulatory DNA. Whereas the multisubunit chromatin remodeler SWR1 is known to catalyze ATP-dependent deposition of H2A.Z, the mechanism of SWR1 recruitment to S. cerevisiae promoters has been unclear. A sensitive assay for competitive binding of dinucleosome substrates revealed that SWR1 preferentially binds long nucleosome-free DNA and the adjoining nucleosome core particle, allowing discrimination of gene promoters over gene bodies. Analysis of mutants indicates that the conserved Swc2/YL1 subunit and the adenosine triphosphatase domain of Swr1 are mainly responsible for binding to substrate. SWR1 binding is enhanced on nucleosomes acetylated by the NuA4 histone acetyltransferase, but recognition of nucleosome-free and nucleosomal DNA is dominant over interaction with acetylated histones. Such hierarchical cooperation between DNA and histone signals expands the dynamic range of genetic switches, unifying classical gene regulation by DNA-binding factors with ATP-dependent nucleosome remodeling and posttranslational histone modifications.
Collapse
Affiliation(s)
- Anand Ranjan
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Nguyen V, Ranjan A, Stengel F, Wei D, Aebersold R, Wu C, Leschziner A. Molecular architecture of the ATP-dependent chromatin-remodeling complex SWR1. Cell 2013; 154:1220-31. [PMID: 24034246 PMCID: PMC3776929 DOI: 10.1016/j.cell.2013.08.018] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/24/2013] [Accepted: 08/09/2013] [Indexed: 11/19/2022]
Abstract
The ATP-dependent chromatin-remodeling complex SWR1 exchanges a variant histone H2A.Z/H2B dimer for a canonical H2A/H2B dimer at nucleosomes flanking histone-depleted regions, such as promoters. This localization of H2A.Z is conserved throughout eukaryotes. SWR1 is a 1 megadalton complex containing 14 different polypeptides, including the AAA+ ATPases Rvb1 and Rvb2. Using electron microscopy, we obtained the three-dimensional structure of SWR1 and mapped its major functional components. Our data show that SWR1 contains a single heterohexameric Rvb1/Rvb2 ring that, together with the catalytic subunit Swr1, brackets two independently assembled multisubunit modules. We also show that SWR1 undergoes a large conformational change upon engaging a limited region of the nucleosome core particle. Our work suggests an important structural role for the Rvbs and a distinct substrate-handling mode by SWR1, thereby providing a structural framework for understanding the complex dimer-exchange reaction.
Collapse
Affiliation(s)
- Vu Q. Nguyen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Anand Ranjan
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Florian Stengel
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8092, Switzerland
| | - Debbie Wei
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8092, Switzerland
- Faculty of Science, University of Zurich, Zurich 8057, Switzerland
| | - Carl Wu
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
- HHMI Janelia Farm Research Campus, Ashburn, VA 20147, USA
| | - Andres E. Leschziner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Corresponding author
| |
Collapse
|
198
|
Soriano I, Quintales L, Antequera F. Clustered regulatory elements at nucleosome-depleted regions punctuate a constant nucleosomal landscape in Schizosaccharomyces pombe. BMC Genomics 2013; 14:813. [PMID: 24256300 PMCID: PMC4046669 DOI: 10.1186/1471-2164-14-813] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/14/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Nucleosomes facilitate the packaging of the eukaryotic genome and modulate the access of regulators to DNA. A detailed description of the nucleosomal organization under different transcriptional programmes is essential to understand their contribution to genomic regulation. RESULTS To visualize the dynamics of individual nucleosomes under different transcriptional programmes we have generated high-resolution nucleosomal maps in Schizosaccharomyces pombe. We show that 98.5% of the genome remains almost invariable during mitosis and meiosis while remodelling is limited to approximately 1100 nucleosomes in the promoters of a subset of meiotic genes. These inducible nucleosome-depleted regions (NDR) and also those constitutively present in the genome overlap precisely with clusters of binding sites for transcription factors (TF) specific for meiosis and for different functional classes of genes, respectively. Deletion of two TFs affects only a small fraction of all the NDRs to which they bind in vivo, indicating that TFs collectively contribute to NDR maintenance. CONCLUSIONS Our results show that the nucleosomal profile in S. pombe is largely maintained under different physiological conditions and patterns of gene expression. This relatively constant landscape favours the concentration of regulators in constitutive and inducible NDRs. The combinatorial analysis of binding motifs in this discrete fraction of the genome will facilitate the definition of the transcriptional regulatory networks.
Collapse
Affiliation(s)
- Ignacio Soriano
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain.
| | | | | |
Collapse
|
199
|
Siggers T, Gordân R. Protein-DNA binding: complexities and multi-protein codes. Nucleic Acids Res 2013; 42:2099-111. [PMID: 24243859 PMCID: PMC3936734 DOI: 10.1093/nar/gkt1112] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Binding of proteins to particular DNA sites across the genome is a primary determinant of specificity in genome maintenance and gene regulation. DNA-binding specificity is encoded at multiple levels, from the detailed biophysical interactions between proteins and DNA, to the assembly of multi-protein complexes. At each level, variation in the mechanisms used to achieve specificity has led to difficulties in constructing and applying simple models of DNA binding. We review the complexities in protein–DNA binding found at multiple levels and discuss how they confound the idea of simple recognition codes. We discuss the impact of new high-throughput technologies for the characterization of protein–DNA binding, and how these technologies are uncovering new complexities in protein–DNA recognition. Finally, we review the concept of multi-protein recognition codes in which new DNA-binding specificities are achieved by the assembly of multi-protein complexes.
Collapse
Affiliation(s)
- Trevor Siggers
- Department of Biology, Boston University, Boston, MA 02215, USA, Departments of Biostatistics and Bioinformatics, Computer Science, and Molecular Genetics and Microbiology, Institute for Genome Sciences and Policy, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
200
|
Keren L, Zackay O, Lotan-Pompan M, Barenholz U, Dekel E, Sasson V, Aidelberg G, Bren A, Zeevi D, Weinberger A, Alon U, Milo R, Segal E. Promoters maintain their relative activity levels under different growth conditions. Mol Syst Biol 2013; 9:701. [PMID: 24169404 PMCID: PMC3817408 DOI: 10.1038/msb.2013.59] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/27/2013] [Indexed: 12/20/2022] Open
Abstract
Most genes change expression levels across conditions, but it is unclear which of these changes represents specific regulation and what determines their quantitative degree. Here, we accurately measured activities of ~900 S. cerevisiae and ~1800 E. coli promoters using fluorescent reporters. We show that in both organisms 60-90% of promoters change their expression between conditions by a constant global scaling factor that depends only on the conditions and not on the promoter's identity. Quantifying such global effects allows precise characterization of specific regulation-promoters deviating from the global scale line. These are organized into few functionally related groups that also adhere to scale lines and preserve their relative activities across conditions. Thus, only several scaling factors suffice to accurately describe genome-wide expression profiles across conditions. We present a parameter-free passive resource allocation model that quantitatively accounts for the global scaling factors. It suggests that many changes in expression across conditions result from global effects and not specific regulation, and provides means for quantitative interpretation of expression profiles.
Collapse
Affiliation(s)
- Leeat Keren
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ora Zackay
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Maya Lotan-Pompan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Uri Barenholz
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Erez Dekel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Vered Sasson
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Guy Aidelberg
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Anat Bren
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Danny Zeevi
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Uri Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Milo
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|