151
|
Adrain C, Freeman M. Regulation of receptor tyrosine kinase ligand processing. Cold Spring Harb Perspect Biol 2014; 6:6/1/a008995. [PMID: 24384567 DOI: 10.1101/cshperspect.a008995] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A primary mode of regulating receptor tyrosine kinase (RTK) signaling is to control access of ligand to its receptor. Many RTK ligands are synthesized as transmembrane proteins. Frequently, the active ligand must be released from the membrane by proteolysis before signaling can occur. Here, we discuss RTK ligand shedding and describe the proteases that catalyze it in flies and mammals. We focus principally on the control of EGF receptor ligand shedding, but also refer to ligands of other RTKs. Two prominent themes emerge. First, control by regulated trafficking and cellular compartmentalization of the proteases and their ligand substrates plays a key role in shedding. Second, many external signals converge on the shedding proteases and their control machinery. Proteases therefore act as regulatory hubs that integrate information that the cell receives and translate it into precise outgoing signals. The activation of signaling by proteases is therefore an essential element of the cellular communication machinery.
Collapse
Affiliation(s)
- Colin Adrain
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, United Kingdom
| | | |
Collapse
|
152
|
Schwarz J, Schmidt S, Will O, Koudelka T, Köhler K, Boss M, Rabe B, Tholey A, Scheller J, Schmidt-Arras D, Schwake M, Rose-John S, Chalaris A. Polo-like kinase 2, a novel ADAM17 signaling component, regulates tumor necrosis factor α ectodomain shedding. J Biol Chem 2013; 289:3080-93. [PMID: 24338472 DOI: 10.1074/jbc.m113.536847] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ADAM17 (a disintegrin and metalloprotease 17) controls pro- and anti-inflammatory signaling events by promoting ectodomain shedding of cytokine precursors and cytokine receptors. Despite the well documented substrate repertoire of ADAM17, little is known about regulatory mechanisms, leading to substrate recognition and catalytic activation. Here we report a direct interaction of the acidophilic kinase Polo-like kinase 2 (PLK2, also known as SNK) with the cytoplasmic portion of ADAM17 through the C-terminal noncatalytic region of PLK2 containing the Polo box domains. PLK2 activity leads to ADAM17 phosphorylation at serine 794, which represents a novel phosphorylation site. Activation of ADAM17 by PLK2 results in the release of pro-TNFα and TNF receptors from the cell surface, and pharmacological inhibition of PLK2 leads to down-regulation of LPS-induced ADAM17-mediated shedding on primary macrophages and dendritic cells. Importantly, PLK2 expression is up-regulated during inflammatory conditions increasing ADAM17-mediated proteolytic events. Our findings suggest a new role for PLK2 in the regulation of inflammatory diseases by modulating ADAM17 activity.
Collapse
Affiliation(s)
- Jeanette Schwarz
- From the Institute of Biochemistry, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Patel VB, Clarke N, Wang Z, Fan D, Parajuli N, Basu R, Putko B, Kassiri Z, Turner AJ, Oudit GY. Angiotensin II induced proteolytic cleavage of myocardial ACE2 is mediated by TACE/ADAM-17: a positive feedback mechanism in the RAS. J Mol Cell Cardiol 2013; 66:167-76. [PMID: 24332999 DOI: 10.1016/j.yjmcc.2013.11.017] [Citation(s) in RCA: 251] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 02/08/2023]
Abstract
Angiotensin converting enzyme (ACE) 2 is a key negative regulator of the renin-angiotensin system where it metabolizes angiotensin (Ang) II into Ang 1-7. We hypothesize that Ang II suppresses ACE2 by increasing TNF-α converting enzyme (TACE) activity and ACE2 cleavage. Ang II infusion (1.5 mg/kg/day) in wild-type mice for 2 weeks resulted in substantial decrease in myocardial ACE2 protein levels and activity with corresponding increase in plasma ACE2 activity, prevented by AT1R blockade. Ang II resulted in AT1R-mediated increase in myocardial TACE expression and activity, and membrane translocation of TACE. Ang II treatment in Huh7 cells exhibited AT1R-dependent metalloproteinase mediated shedding of ACE2 while transfection with siTACE prevented shedding of ACE2; cardiomyocyte-specific deletion of TACE also prevented shedding of ACE2. Reactive oxygen species played a key role since p47(phox)KO mice were resistant to Ang II-induced TACE phosphorylation and activation with preservation of myocardial ACE2 which dampened Ang II-induced cardiac dysfunction and hypertrophy. In conclusion, Ang II induces ACE2 shedding by promoting TACE activity as a positive feedback mechanism whereby Ang II facilitates the loss of its negative regulator, ACE2. In HF, elevated plasma ACE2 activity likely represents loss of the protective effects of ACE2 in the heart.
Collapse
Affiliation(s)
- Vaibhav B Patel
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Nicola Clarke
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Zuocheng Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Dong Fan
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada; Department of Physiology, University of Alberta, Edmonton, Canada
| | - Nirmal Parajuli
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Ratnadeep Basu
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Brendan Putko
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Zamaneh Kassiri
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada; Department of Physiology, University of Alberta, Edmonton, Canada
| | - Anthony J Turner
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada.
| |
Collapse
|
154
|
Schwarz J, Broder C, Helmstetter A, Schmidt S, Yan I, Müller M, Schmidt-Arras D, Becker-Pauly C, Koch-Nolte F, Mittrücker HW, Rabe B, Rose-John S, Chalaris A. Short-term TNFα shedding is independent of cytoplasmic phosphorylation or furin cleavage of ADAM17. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:3355-3367. [DOI: 10.1016/j.bbamcr.2013.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/23/2013] [Accepted: 10/05/2013] [Indexed: 01/06/2023]
|
155
|
Yacoub D, Benslimane N, Al-Zoobi L, Hassan G, Nadiri A, Mourad W. CD154 is released from T-cells by a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and ADAM17 in a CD40 protein-dependent manner. J Biol Chem 2013; 288:36083-93. [PMID: 24189063 DOI: 10.1074/jbc.m113.506220] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CD154 (CD40 ligand) is a type II transmembrane protein that belongs to the tumor necrosis factor superfamily. The soluble form of CD154 (sCD154), which results from the shedding of membrane-bound CD154, plays a key role in the production of proinflammatory cytokines and has been linked to various autoimmune and vascular disorders. Therefore, elucidating the mechanisms by which CD154 is released from the cell surface following its interaction with its various receptors is of primordial importance. Using co-culture experiments, we show that CD154 is shed predominantly upon its engagement with CD40. Indeed, only CD40 (both membrane-bound and soluble) and not α5β1 or αMβ2 is involved in the cleavage and release of CD154 from Jurkat E6.1 T-cells. Interestingly, CD154 is cleaved independently of the formation of cell surface CD40 homodimers and independently of its association into lipid rafts. In contrast, we found that the protein kinase C (PKC) signaling family and the matrix metalloproteinases ADAM10 and ADAM17 are intimately involved in this process. In conclusion, our data indicate that CD154 is released from T-cells by ADAM10 and ADAM17 upon CD40 ligation. These findings add significant insights into the mechanisms by which CD154 is down-regulated and may lead to the generation of novel therapeutic targets for the treatment of CD154-associated disorders.
Collapse
Affiliation(s)
- Daniel Yacoub
- From the Laboratoire d'Immunologie Cellulaire et Moléculaire, Centre Hospitalier de l'Université de Montréal, Hôpital St-Luc, Montréal, Quebec H2X 1P1, Canada
| | | | | | | | | | | |
Collapse
|
156
|
Leicht S, Shipkova M, Klett C, Gert H, Altrock E, Wilhelm J, Bolley R, Wollmeyer J, Ender A, Luz B, Olbricht C, Wieland E. CD26/dipeptidyl peptidase IV: A comparative study of healthy persons and kidney transplant recipients before and early after transplantation. Clin Biochem 2013; 46:1383-8. [DOI: 10.1016/j.clinbiochem.2013.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 12/12/2022]
|
157
|
Yan F, Liu L, Dempsey PJ, Tsai YH, Raines EW, Wilson CL, Cao H, Cao Z, Liu L, Polk DB. A Lactobacillus rhamnosus GG-derived soluble protein, p40, stimulates ligand release from intestinal epithelial cells to transactivate epidermal growth factor receptor. J Biol Chem 2013; 288:30742-30751. [PMID: 24043629 DOI: 10.1074/jbc.m113.492397] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
p40, a Lactobacillus rhamnosus GG (LGG)-derived soluble protein, ameliorates intestinal injury and colitis, reduces apoptosis, and preserves barrier function by transactivation of the EGF receptor (EGFR) in intestinal epithelial cells. The aim of this study is to determine the mechanisms by which p40 transactivates the EGFR in intestinal epithelial cells. Here we show that p40-conditioned medium activates EGFR in young adult mouse colon epithelial cells and human colonic epithelial cell line, T84 cells. p40 up-regulates a disintegrin and metalloproteinase domain-containing protein 17 (ADAM17) catalytic activity, and broad spectrum metalloproteinase inhibitors block EGFR transactivation by p40 in these two cell lines. In ADAM17-deficient mouse colonic epithelial (ADAM17(-/-) MCE) cells, p40 transactivation of EGFR is blocked, but can be rescued by re-expression with WT ADAM17. Furthermore, p40 stimulates release of heparin binding (HB)-EGF, but not transforming growth factor (TGF)α or amphiregulin, in young adult mouse colon cells and ADAM17(-/-) MCE cells overexpressing WT ADAM17. Knockdown of HB-EGF expression by siRNA suppresses p40 effects on transactivating EGFR and Akt, preventing apoptosis, and preserving tight junction function. The effects of p40 on HB-EGF release and ADAM17 activation in vivo are examined after administration of p40-containing pectin/zein hydrogel beads to mice. p40 stimulates ADAM17 activity and EGFR activation in colonic epithelial cells and increases HB-EGF levels in blood from WT mice, but not from mice with intestinal epithelial cell-specific ADAM17 deletion. Thus, these data define a mechanism of a probiotic-derived soluble protein in modulating intestinal epithelial cell homeostasis through ADAM17-mediated HB-EGF release, leading to transactivation of EGFR.
Collapse
Affiliation(s)
- Fang Yan
- From the Departments of Pediatrics and
| | | | - Peter J Dempsey
- the Departments of Pediatrics and Communicable Diseases and; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Yu-Hwai Tsai
- the Departments of Pediatrics and Communicable Diseases and; Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Elaine W Raines
- the Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Carole L Wilson
- the Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195
| | - Hailong Cao
- From the Departments of Pediatrics and; the Department of Gastroenterology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zheng Cao
- Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - LinShu Liu
- the Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Wyndmoor, Pennsylvania 19038, and
| | - D Brent Polk
- the Departments of Pediatrics and Biochemistry and Molecular Biology, University of Southern California and Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California 90089.
| |
Collapse
|
158
|
Normal CFTR inhibits epidermal growth factor receptor-dependent pro-inflammatory chemokine production in human airway epithelial cells. PLoS One 2013; 8:e72981. [PMID: 23977375 PMCID: PMC3745379 DOI: 10.1371/journal.pone.0072981] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 07/18/2013] [Indexed: 01/14/2023] Open
Abstract
Mutations in cystic fibrosis transmembrane conductance regulator (CFTR) protein cause cystic fibrosis, a disease characterized by exaggerated airway epithelial production of the neutrophil chemokine interleukin (IL)-8, which results in exuberant neutrophilic inflammation. Because activation of an epidermal growth factor receptor (EGFR) signaling cascade induces airway epithelial IL-8 production, we hypothesized that normal CFTR suppresses EGFR-dependent IL-8 production and that loss of CFTR at the surface exaggerates IL-8 production via activation of a pro-inflammatory EGFR cascade. We examined this hypothesis in human airway epithelial (NCI-H292) cells and in normal human bronchial epithelial (NHBE) cells containing normal CFTR treated with a CFTR-selective inhibitor (CFTR-172), and in human airway epithelial (IB3) cells containing mutant CFTR versus isogenic (C38) cells containing wild-type CFTR. In NCI-H292 cells, CFTR-172 induced IL-8 production EGFR-dependently. Pretreatment with an EGFR neutralizing antibody or the metalloprotease TACE inhibitor TAPI-1, or TACE siRNA knockdown prevented CFTR-172-induced EGFR phosphorylation (EGFR-P) and IL-8 production, implicating TACE-dependent EGFR pro-ligand cleavage in these responses. Pretreatment with neutralizing antibodies to IL-1R or to IL-1alpha, but not to IL-1beta, markedly suppressed CFTR-172-induced EGFR-P and IL-8 production, suggesting that binding of IL-1alpha to IL-1R stimulates a TACE-EGFR-IL-8 cascade. Similarly, in NHBE cells, CFTR-172 increased IL-8 production EGFR-, TACE-, and IL-1alpha/IL-1R-dependently. In IB3 cells, constitutive IL-8 production was markedly increased compared to C38 cells. EGFR-P was increased in IB3 cells compared to C38 cells, and exaggerated IL-8 production in the IB3 cells was EGFR-dependent. Activation of TACE and binding of IL-1alpha to IL-1R contributed to EGFR-P and IL-8 production in IB3 cells but not in C38 cells. Thus, we conclude that normal CFTR suppresses airway epithelial IL-8 production that occurs via a stimulatory EGFR cascade, and that loss of normal CFTR activity exaggerates IL-8 production via activation of a pro-inflammatory EGFR cascade.
Collapse
|
159
|
Mruk DD, Xiao X, Lydka M, Li MWM, Bilinska B, Cheng CY. Intercellular adhesion molecule 1: recent findings and new concepts involved in mammalian spermatogenesis. Semin Cell Dev Biol 2013; 29:43-54. [PMID: 23942142 DOI: 10.1016/j.semcdb.2013.07.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 01/05/2023]
Abstract
Spermatogenesis, the process of spermatozoa production, is regulated by several endocrine factors, including testosterone, follicle stimulating hormone, luteinizing hormone and estradiol 17β. For spermatogenesis to reach completion, developing germ cells must traverse the seminiferous epithelium while remaining transiently attached to Sertoli cells. If germ cell adhesion were to be compromised for a period of time longer than usual, germ cells would slough from the seminiferous epithelium and infertility would result. Presently, Sertoli-germ cell adhesion is known to be mediated largely by classical and desmosomal cadherins. More recent studies, however, have begun to expand long-standing concepts and to examine the roles of other proteins such as intercellular adhesion molecules. In this review, we focus on the biology of intercellular adhesion molecules in the mammalian testis, hoping that this information is useful in the design of future studies.
Collapse
Affiliation(s)
- Dolores D Mruk
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, United States.
| | - Xiang Xiao
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, United States
| | - Marta Lydka
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, United States
| | - Michelle W M Li
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, United States
| | - Barbara Bilinska
- Institute of Zoology, Department of Endocrinology, The Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - C Yan Cheng
- Center for Biomedical Research, Population Council, 1230 York Avenue, New York, NY 10065, United States
| |
Collapse
|
160
|
Dietary α-linolenic acid increases the platelet count in ApoE-/- mice by reducing clearance. Blood 2013; 122:1026-33. [PMID: 23801636 DOI: 10.1182/blood-2013-02-484741] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Previously we reported that dietary intake of alpha-linolenic acid (ALA) reduces atherogenesis and inhibits arterial thrombosis. Here, we analyze the substantial increase in platelet count induced by ALA and the mechanisms of reduced platelet clearance. Eight-week-old male apolipoprotein E knockout (ApoE(-/-)) mice were fed a 0.21g% cholesterol diet complemented by either a high- (7.3g%) or low-ALA (0.03g%) content. Platelet counts doubled after 16 weeks of ALA feeding, whereas the bleeding time remained similar. Plasma glycocalicin and glycocalicin index were reduced, while reticulated platelets, thrombopoietin, and bone marrow megakaryocyte colony-forming units remained unchanged. Platelet contents of liver and spleen were substantially reduced, without affecting macrophage function and number. Glycoprotein Ib (GPIb) shedding, exposure of P-selectin, and activated integrin αIIbβ3 upon activation with thrombin were reduced. Dietary ALA increased the platelet count by reducing platelet clearance in the reticulo-endothelial system. The latter appears to be mediated by reduced cleavage of GPIb by tumor necrosis factor-α-converting enzyme and reduced platelet activation/expression of procoagulant signaling. Ex vivo, there was less adhesion of human platelets to von Willebrand factor under high shear conditions after ALA treatment. Thus, ALA may be a promising tool in transfusion medicine and in high turnover/high activation platelet disorders.
Collapse
|
161
|
Regulated ADAM17-dependent EGF family ligand release by substrate-selecting signaling pathways. Proc Natl Acad Sci U S A 2013; 110:9776-81. [PMID: 23720309 DOI: 10.1073/pnas.1307478110] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ectodomain cleavage of cell-surface proteins by A disintegrin and metalloproteinases (ADAMs) is highly regulated, and its dysregulation has been linked to many diseases. ADAM10 and ADAM17 cleave most disease-relevant substrates. Broad-spectrum metalloprotease inhibitors have failed clinically, and targeting the cleavage of a specific substrate has remained impossible. It is therefore necessary to identify signaling intermediates that determine substrate specificity of cleavage. We show here that phorbol ester or angiotensin II-induced proteolytic release of EGF family members may not require a significant increase in ADAM17 protease activity. Rather, inducers activate a signaling pathway using PKC-α and the PKC-regulated protein phosphatase 1 inhibitor 14D that is required for ADAM17 cleavage of TGF-α, heparin-binding EGF, and amphiregulin. A second pathway involving PKC-δ is required for neuregulin (NRG) cleavage, and, indeed, PKC-δ phosphorylation of serine 286 in the NRG cytosolic domain is essential for induced NRG cleavage. Thus, signaling-mediated substrate selection is clearly distinct from regulation of enzyme activity, an important mechanism that offers itself for application in disease.
Collapse
|
162
|
Elliott KJ, Bourne AM, Takayanagi T, Takaguri A, Kobayashi T, Eguchi K, Eguchi S. ADAM17 silencing by adenovirus encoding miRNA-embedded siRNA revealed essential signal transduction by angiotensin II in vascular smooth muscle cells. J Mol Cell Cardiol 2013; 62:1-7. [PMID: 23688779 DOI: 10.1016/j.yjmcc.2013.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 04/24/2013] [Accepted: 05/06/2013] [Indexed: 12/25/2022]
Abstract
Small interfering RNA (siRNA) mediated gene silencing has been utilized as a powerful molecular tool to study the functional significance of a specific protein. However, due to transient gene silencing and insufficient transfection efficiency, this approach can be problematic in primary cell culture such as vascular smooth muscle cells. To overcome this weakness, we utilized an adenoviral-encoded microRNA (miRNA)-embedded siRNA "mi/siRNA"-based RNA interference. Here, we report the results of silencing a disintegrin and metalloprotease 17 (ADAM17) in cultured rat vascular smooth muscle cells and its functional mechanism in angiotensin II signal transduction. 3 distinct mi/siRNA sequences targeting rat ADAM17 were inserted into pAd/CMV/V5-DEST and adenoviral solutions were obtained. Nearly 90% silencing of ADAM17 was achieved when vascular smooth muscle cells were infected with 100 multiplicity of infection of each ADAM17 mi/siRNA encoding adenovirus for 3days. mi/siRNA-ADAM17 but not mi/siRNA-control inhibited angiotensin II-induced epidermal growth factor receptor trans-activation and subsequent extracellular signal-regulated kinase activation and hypertrophic response in the cells. mi/siRNA-ADAM17 also inhibited angiotensin II-induced heparin-binding epidermal growth factor-like factor shedding. This inhibition was rescued with co-infection of adenovirus encoding mouse ADAM17 but not by its cytosolic domain deletion mutant or cytosolic Y702F mutant. As expected, angiotensin II induced tyrosine phosphorylation of ADAM17 in the cells. In conclusion, ADAM17 activation via its tyrosine phosphorylation contributes to heparin-binding epidermal growth factor-like factor shedding and subsequent growth promoting signals induced by angiotensin II in vascular smooth muscle cells. An artificial mi/siRNA-based adenoviral approach appears to be a reliable gene-silencing strategy for signal transduction research in primary cultured vascular cells.
Collapse
Affiliation(s)
- Katherine J Elliott
- Cardiovascular Research Center and Department of Physiology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
163
|
ADAM-10 and -17 regulate endometriotic cell migration via concerted ligand and receptor shedding feedback on kinase signaling. Proc Natl Acad Sci U S A 2013; 110:E2074-83. [PMID: 23674691 DOI: 10.1073/pnas.1222387110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A Disintegrin and Metalloproteinases (ADAMs) are the principal enzymes for shedding receptor tyrosine kinase (RTK) ectodomains and ligands from the cell surface. Multiple layers of activity regulation, feedback, and catalytic promiscuity impede our understanding of context-dependent ADAM "sheddase" function and our ability to predictably target that function in disease. This study uses combined measurement and computational modeling to examine how various growth factor environments influence sheddase activity and cell migration in the invasive disease of endometriosis. We find that ADAM-10 and -17 dynamically integrate numerous signaling pathways to direct cell motility. Data-driven modeling reveals that induced cell migration is a quantitative function of positive feedback through EGF ligand release and negative feedback through RTK shedding. Although sheddase inhibition prevents autocrine ligand shedding and resultant EGF receptor transactivation, it also leads to an accumulation of phosphorylated receptors (HER2, HER4, and MET) on the cell surface, which subsequently enhances Jnk/p38 signaling. Jnk/p38 inhibition reduces cell migration by blocking sheddase activity while additionally preventing the compensatory signaling from accumulated RTKs. In contrast, Mek inhibition reduces ADAM-10 and -17 activities but fails to inhibit compensatory signaling from accumulated RTKs, which actually enhances cell motility in some contexts. Thus, here we present a sheddase-based mechanism of rapidly acquired resistance to Mek inhibition through reduced RTK shedding that can be overcome with rationally directed combination inhibitor treatment. We investigate the clinical relevance of these findings using targeted proteomics of peritoneal fluid from endometriosis patients and find growth-factor-driven ADAM-10 activity and MET shedding are jointly dysregulated with disease.
Collapse
|
164
|
Perna AF, Sepe I, Lanza D, Capasso R, Zappavigna S, Capasso G, Caraglia M, Ingrosso D. Hydrogen sulfide reduces cell adhesion and relevant inflammatory triggering by preventing ADAM17-dependent TNF-α activation. J Cell Biochem 2013; 114:1536-48. [DOI: 10.1002/jcb.24495] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/18/2012] [Indexed: 12/31/2022]
|
165
|
Ni SS, Zhang J, Zhao WL, Dong XC, Wang JL. ADAM17 is overexpressed in non-small cell lung cancer and its expression correlates with poor patient survival. Tumour Biol 2013; 34:1813-8. [PMID: 23475633 DOI: 10.1007/s13277-013-0721-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 02/24/2013] [Indexed: 10/27/2022] Open
Abstract
The purpose of this study was to assess ADAM17 expression and to explore its contribution to the non-small cell lung cancer (NSCLC). Real-time quantitative reverse transcriptase-polymerase chain reaction was conducted to detect ADAM17 mRNA expression. In addition, ADAM17 expression was analyzed by immunohistochemistry in 124 clinicopathologically characterized NSCLC cases. The correlation of ADAM17 expression with patients' survival rate was assessed by Kaplan-Meier and Cox regression. The expression levels of ADAM17 mRNA and protein in NSCLC tissues were both significantly higher than those in non-cancerous tissues. In addition, high expression of ADAM17 was significantly correlated with tumor grade (P=0.026), tumor size (P=0.001), clinical stage (P=0.016), and lymph node metastases (P<0.001). Furthermore, multivariate analysis suggested that tumor grade, tumor size, clinical stage, lymph node metastases, and ADAM17 expression were independent prognostic indicators for NSCLC. Our data suggest for the first time that the increased expression of ADAM17 in NSCLC is associated significantly with aggressive progression and poor prognosis. ADAM17 may be an important molecular marker for predicting the carcinogenesis, progression, and prognosis of NSCLC.
Collapse
Affiliation(s)
- Shuang-Shuang Ni
- Department of Radiology, Changzheng Hospital, Second Military Medical University, No. 415, Fengyang Road, Shanghai, 200003, China
| | | | | | | | | |
Collapse
|
166
|
Waheed F, Dan Q, Amoozadeh Y, Zhang Y, Tanimura S, Speight P, Kapus A, Szászi K. Central role of the exchange factor GEF-H1 in TNF-α-induced sequential activation of Rac, ADAM17/TACE, and RhoA in tubular epithelial cells. Mol Biol Cell 2013; 24:1068-82. [PMID: 23389627 PMCID: PMC3608494 DOI: 10.1091/mbc.e12-09-0661] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Tumor necrosis factor-α activates the enzyme TACE/ADAM17 through the guanine nucleotide exchange factor GEF-H1, Rac, and p38, leading to activation of the epidermal growth factor. GEF-H1 mediates hierarchical activation of Rac and RhoA through differential phosphorylation. Transactivation of the epidermal growth factor receptor (EGFR) by tumor necrosis factor-α (TNF-α) is a key step in mediating RhoA activation and cytoskeleton and junction remodeling in the tubular epithelium. In this study we explore the mechanisms underlying TNF-α–induced EGFR activation. We show that TNF-α stimulates the TNF-α convertase enzyme (TACE/a disintegrin and metalloproteinase-17), leading to activation of the EGFR/ERK pathway. TACE activation requires the mitogen-activated protein kinase p38, which is activated through the small GTPase Rac. TNF-α stimulates both Rac and RhoA through the guanine nucleotide exchange factor (GEF)-H1 but by different mechanisms. EGFR- and ERK-dependent phosphorylation at the T678 site of GEF-H1 is a prerequisite for RhoA activation only, whereas both Rac and RhoA activation require GEF-H1 phosphorylation on S885. Of interest, GEF-H1-mediated Rac activation is upstream from the TACE/EGFR/ERK pathway and regulates T678 phosphorylation. We also show that TNF-α enhances epithelial wound healing through TACE, ERK, and GEF-H1. Taken together, our findings can explain the mechanisms leading to hierarchical activation of Rac and RhoA by TNF-α through a single GEF. This mechanism could coordinate GEF functions and fine-tune Rac and RhoA activation in epithelial cells, thereby promoting complex functions such as sheet migration.
Collapse
Affiliation(s)
- Faiza Waheed
- Department of Surgery, University of Toronto, Toronto, ON M5B 1T8, Canada
| | | | | | | | | | | | | | | |
Collapse
|
167
|
Hirano S, Kataoka T. Deoxynivalenol induces ectodomain shedding of TNF receptor 1 and thereby inhibits the TNF-α-induced NF-κB signaling pathway. Eur J Pharmacol 2013; 701:144-51. [PMID: 23357557 DOI: 10.1016/j.ejphar.2013.01.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 11/27/2012] [Accepted: 01/09/2013] [Indexed: 12/27/2022]
Abstract
Trichothecene mycotoxins are known to inhibit eukaryotic translation and to trigger the ribotoxic stress response, which regulates gene expression via the activation of the mitogen-activated protein (MAP) kinase superfamily. In this study, we found that deoxynivalenol induced the ectodomain shedding of tumor necrosis factor (TNF) receptor 1 (TNFRSF1A) and thereby inhibited the TNF-α-induced signaling pathway. In human lung carcinoma A549 cells, deoxynivalenol and 3-acetyldeoxynivalenol inhibited the expression of intercellular adhesion molecule-1 (ICAM-1) induced by TNF-α more strongly than that induced by interleukin 1α (IL-1α), whereas T-2 toxin and verrucarin A exerted nonselective inhibitory effects. Deoxynivalenol and 3-acetyldeoxynivalenol also inhibited the nuclear factor κB (NF-κB) signaling pathway induced by TNF-α, but not that induced by IL-1α. Consistent with these findings, deoxynivalenol and 3-acetyldeoxynivalenol induced the ectodomain shedding of TNF receptor 1 by TNF-α-converting enzyme (TACE), also known as a disintegrin and metalloproteinase 17 (ADAM17). In addition to the TACE inhibitor TAPI-2, the MAP kinase or extracellular signal-regulated kinase (ERK) kinase (MEK) inhibitor U0126 and the p38 MAP kinase inhibitor SB203580, but not the c-Jun N-terminal kinase (JNK) inhibitor SP600125, suppressed the ectodomain shedding of TNF receptor 1 induced by deoxynivalenol and reversed its selective inhibition of TNF-α-induced ICAM-1 expression. Our results demonstrate that deoxynivalenol induces the TACE-dependent ectodomain shedding of TNF receptor 1 via the activation of ERK and p38 MAP kinase, and thereby inhibits the TNF-α-induced NF-κB signaling pathway.
Collapse
Affiliation(s)
- Seiya Hirano
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, Japan
| | | |
Collapse
|
168
|
Yoda M, Kimura T, Tohmonda T, Morioka H, Matsumoto M, Okada Y, Toyama Y, Horiuchi K. Systemic overexpression of TNFα-converting enzyme does not lead to enhanced shedding activity in vivo. PLoS One 2013; 8:e54412. [PMID: 23342154 PMCID: PMC3544834 DOI: 10.1371/journal.pone.0054412] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 12/13/2012] [Indexed: 01/12/2023] Open
Abstract
TNFα-converting enzyme (TACE/ADAM17) is a membrane-bound proteolytic enzyme with a diverse set of target molecules. Most importantly, TACE is indispensable for the release and activation of pro-TNFα and the ligands for epidermal growth factor receptor in vivo. Previous studies suggested that the overproduction of TACE is causally related to the pathogenesis of inflammatory diseases and cancers. To test this hypothesis, we generated a transgenic line in which the transcription of exogenous Tace is driven by a CAG promoter. The Tace-transgenic mice were viable and exhibited no overt defects, and the quantitative RT-PCR and Western blot analyses confirmed that the transgenically introduced Tace gene was highly expressed in all of the tissues examined. The Tace-transgenic mice were further crossed with Tace⁻/⁺ mice to abrogate the endogenous TACE expression, and the Tace-transgenic mice lacking endogenous Tace gene were also viable without any apparent defects. Furthermore, there was no difference in the serum TNFα levels after lipopolysaccharide injection between the transgenic mice and control littermates. These observations indicate that TACE activity is not necessarily dependent on transcriptional regulation and that excess TACE does not necessarily result in aberrant proteolytic activity in vivo.
Collapse
Affiliation(s)
- Masaki Yoda
- Anti-aging Orthopedic Research, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Hartmann M, Herrlich A, Herrlich P. Who decides when to cleave an ectodomain? Trends Biochem Sci 2013; 38:111-20. [PMID: 23298902 DOI: 10.1016/j.tibs.2012.12.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 11/27/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
Many life-essential molecules such as growth factors, cytokines, ectoenzymes, and decoy receptors are produced by ectodomain cleavage of transmembrane precursor molecules. Not surprisingly, misregulation of such essential functions is linked to numerous diseases. Ectodomain cleavage is the function of transmembrane ADAMs (a disintegrin and metalloprotease) and other membrane-bound metalloproteases, which have an extracellular catalytic domain. Almost all work on ectodomain cleavage regulation has focused on the control of enzyme activity determined by substrate cleavage as surrogate. However, the number of substrates far exceeds the number of enzymes. Specificity can therefore not be achieved by solely modulating enzyme activity. Here, we argue that specific regulatory pathways must exist to control the availability and susceptibility of substrates.
Collapse
Affiliation(s)
- Monika Hartmann
- Leibniz Institute for Age Research - Fritz Lipmann Institute, Herrlich Laboratory, Beutenbergstr. 11, 07745 Jena, Germany
| | | | | |
Collapse
|
170
|
Aragão AZB, Nogueira MLC, Granato DC, Simabuco FM, Honorato RV, Hoffman Z, Yokoo S, Laurindo FRM, Squina FM, Zeri ACM, Oliveira PSL, Sherman NE, Paes Leme AF. Identification of novel interaction between ADAM17 (a disintegrin and metalloprotease 17) and thioredoxin-1. J Biol Chem 2012; 287:43071-82. [PMID: 23105116 PMCID: PMC3522302 DOI: 10.1074/jbc.m112.364513] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 10/24/2012] [Indexed: 12/31/2022] Open
Abstract
ADAM17, which is also known as TNFα-converting enzyme, is the major sheddase for the EGF receptor ligands and is considered to be one of the main proteases responsible for the ectodomain shedding of surface proteins. How a membrane-anchored proteinase with an extracellular catalytic domain can be activated by inside-out regulation is not completely understood. We characterized thioredoxin-1 (Trx-1) as a partner of the ADAM17 cytoplasmic domain that could be involved in the regulation of ADAM17 activity. We induced the overexpression of the ADAM17 cytoplasmic domain in HEK293 cells, and ligands able to bind this domain were identified by MS after protein immunoprecipitation. Trx-1 was also validated as a ligand of the ADAM17 cytoplasmic domain and full-length ADAM17 recombinant proteins by immunoblotting, immunolocalization, and solid phase binding assay. In addition, using nuclear magnetic resonance, it was shown in vitro that the titration of the ADAM17 cytoplasmic domain promotes changes in the conformation of Trx-1. The MS analysis of the cross-linked complexes showed cross-linking between the two proteins by lysine residues. To further evaluate the functional role of Trx-1, we used a heparin-binding EGF shedding cell model and observed that the overexpression of Trx-1 in HEK293 cells could decrease the activity of ADAM17, activated by either phorbol 12-myristate 13-acetate or EGF. This study identifies Trx-1 as a novel interaction partner of the ADAM17 cytoplasmic domain and suggests that Trx-1 is a potential candidate that could be involved in ADAM17 activity regulation.
Collapse
Affiliation(s)
- Annelize Z. B. Aragão
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Maria Luiza C. Nogueira
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Daniela C. Granato
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Fernando M. Simabuco
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Rodrigo V. Honorato
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Zaira Hoffman
- the Laboratório Nacional de Ciência e Tecnologia do Bioetanol, CTBE, CNPEM, Campinas, Brasil
| | - Sami Yokoo
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | | | - Fabio M. Squina
- the Laboratório Nacional de Ciência e Tecnologia do Bioetanol, CTBE, CNPEM, Campinas, Brasil
| | - Ana Carolina M. Zeri
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Paulo S. L. Oliveira
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| | - Nicholas E. Sherman
- the W. M. Keck Biomedical Mass Spectrometry Lab, University of Virginia, Charlottesville, Virginia 22908
| | - Adriana F. Paes Leme
- From the Laboratório de Espectrometria de Massas, Laboratório Nacional de Biociências, LNBio, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, Brasil
| |
Collapse
|
171
|
Pore-forming bacterial toxins and antimicrobial peptides as modulators of ADAM function. Med Microbiol Immunol 2012; 201:419-26. [PMID: 22972233 DOI: 10.1007/s00430-012-0260-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 02/05/2023]
Abstract
Membrane-perturbating proteins and peptides are widespread agents in biology. Pore-forming bacterial toxins represent major virulence factors of pathogenic microorganisms. Membrane-damaging peptides constitute important antimicrobial effectors of innate immunity. Membrane perturbation can incur multiple responses in mammalian cells. The present discussion will focus on the interplay between membrane-damaging agents and the function of cell-bound metalloproteinases of the ADAM family. These transmembrane enzymes have emerged as the major proteinase family that mediate the proteolytic release of membrane-associated proteins, a process designated as "shedding". They liberate a large spectrum of functionally active molecules including inflammatory cytokines, growth factor receptors and cell adhesion molecules, thereby regulating such vital cellular functions as cell-cell adhesion, cell proliferation and cell migration. ADAM activation may constitute part of the cellular recovery machinery on the one hand, but likely also promotes inflammatory processes on the other. The mechanisms underlying ADAM activation and the functional consequences thereof are currently the subject of intensive research. Attention here is drawn to the possible involvement of purinergic receptors and ceramide generation in the context of ADAM activation following membrane perturbation by membrane-active agents.
Collapse
|
172
|
Chanthaphavong RS, Loughran PA, Lee TYS, Scott MJ, Billiar TR. A role for cGMP in inducible nitric-oxide synthase (iNOS)-induced tumor necrosis factor (TNF) α-converting enzyme (TACE/ADAM17) activation, translocation, and TNF receptor 1 (TNFR1) shedding in hepatocytes. J Biol Chem 2012; 287:35887-98. [PMID: 22898814 DOI: 10.1074/jbc.m112.365171] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We and others have previously shown that the inducible nitric-oxide synthase (iNOS) and nitric oxide (NO) are hepatoprotective in a number of circumstances, including endotoxemia. In vitro, hepatocytes are protected from tumor necrosis factor (TNF) α-induced apoptosis via cGMP-dependent and cGMP-independent mechanisms. We have shown that the cGMP-dependent protective mechanisms involve the inhibition of death-inducing signaling complex formation. We show here that LPS-induced iNOS expression leads to rapid TNF receptor shedding from the surface of hepatocytes via NO/cGMP/protein kinase G-dependent activation and surface translocation of TNFα-converting enzyme (TACE/ADAM17). The activation of TACE is associated with the up-regulation of iRhom2 as well as the interaction and phosphorylation of TACE and iRhom2, which are also NO/cGMP/protein kinase G-dependent. These findings suggest that one mechanism of iNOS/NO-mediated protection of hepatocytes involves the rapid shedding of TNF receptor 1 to limit TNFα signaling.
Collapse
Affiliation(s)
- R Savanh Chanthaphavong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
173
|
Guinea-Viniegra J, Zenz R, Scheuch H, Jiménez M, Bakiri L, Petzelbauer P, Wagner EF. Differentiation-induced skin cancer suppression by FOS, p53, and TACE/ADAM17. J Clin Invest 2012; 122:2898-910. [PMID: 22772468 DOI: 10.1172/jci63103] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/30/2012] [Indexed: 12/22/2022] Open
Abstract
Squamous cell carcinomas (SCCs) are heterogeneous and aggressive skin tumors for which innovative, targeted therapies are needed. Here, we identify a p53/TACE pathway that is negatively regulated by FOS and show that the FOS/p53/TACE axis suppresses SCC by inducing differentiation. We found that epidermal Fos deletion in mouse tumor models or pharmacological FOS/AP-1 inhibition in human SCC cell lines induced p53 expression. Epidermal cell differentiation and skin tumor suppression were caused by a p53-dependent transcriptional activation of the metalloprotease TACE/ADAM17 (TNF-α-converting enzyme), a previously unknown p53 target gene that was required for NOTCH1 activation. Although half of cutaneous human SCCs display p53-inactivating mutations, restoring p53/TACE activity in mouse and human skin SCCs induced tumor cell differentiation independently of the p53 status. We propose FOS/AP-1 inhibition or p53/TACE reactivating strategies as differentiation-inducing therapies for SCCs.
Collapse
Affiliation(s)
- Juan Guinea-Viniegra
- Fundación Banco Bilbao Vizcaya (F-BBVA) - CNIO Cancer Cell Biology Program, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
174
|
Stress- and Rho-activated ZO-1-associated nucleic acid binding protein binding to p21 mRNA mediates stabilization, translation, and cell survival. Proc Natl Acad Sci U S A 2012; 109:10897-902. [PMID: 22711822 DOI: 10.1073/pnas.1118822109] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A central component of the cellular stress response is p21(WAF1/CIP1), which regulates cell proliferation, survival, and differentiation. Inflammation and cell stress often up-regulate p21 posttranscriptionally by regulatory mechanisms that are poorly understood. ZO-1-associated nucleic acid binding protein (ZONAB)/DbpA is a Y-box transcription factor that is regulated by components of intercellular junctions that are affected by cytokines and tissue damage. We therefore asked whether ZONAB activation is part of the cellular stress response. Here, we demonstrate that ZONAB promotes cell survival in response to proinflammatory, hyperosmotic, and cytotoxic stress and that stress-induced ZONAB activation involves the Rho regulator GEF-H1. Unexpectedly, stress-induced ZONAB activation does not stimulate ZONAB's activity as a transcription factor but leads to the posttranscriptional up-regulation of p21 protein and mRNA. Up-regulation is mediated by ZONAB binding to specific sites in the 3'-untranslated region of the p21 mRNA, resulting in mRNA stabilization and enhanced translation. Binding of ZONAB to mRNA is activated by GEF-H1 via Rho stimulation and also mediates Ras-induced p21 expression. We thus identify a unique type of stress and Rho signaling activated pathway that drives mRNA stabilization and translation and links the cellular stress response to p21 expression and cell survival.
Collapse
|
175
|
Lomash V, Jadhav SE, Vijayaraghavan R, Pant SC. Time course pathogenesis of sulphur mustard-induced skin lesions in mouse model. Int Wound J 2012; 10:441-54. [PMID: 22672652 DOI: 10.1111/j.1742-481x.2012.01003.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sulphur mustard (SM) is a bifunctional alkylating agent that causes cutaneous blistering in humans and animals. In this study, we have presented closer views on pathogenesis of SM-induced skin injury in a mouse model. SM diluted in acetone was applied once dermally at a dose of 5 or 10 mg/kg to Swiss albino mice. Skin was dissected out at 0, 1, 3, 6, 12, 24, 48, 72 and 168 hours, post-SM exposure for studying histopathological changes and immunohistochemistry of inflammatory-reparative biomarkers, namely, transforming growth factor alpha (TGF-α), fibroblast growth factor (FGF), endothelial nitric oxide synthase (eNOS) and interlukin 6 (IL-6). Histopathological changes were similar to other mammalian species and basal cell damage resembled the histopathological signs observed with vesication in human skin. Inflammatory cell recruitment at the site of injury was supported by differential expressions of IL-6 at various stages. Time-dependent expressions of eNOS played pivotal roles in all the events of wound healing of SM-induced skin lesions. TGF-α and FGF were strongly associated with keratinocyte migration, re-epithelialisation, angiogenesis, fibroblast proliferation and cell differentiation. Furthermore, quantification of the tissue leukocytosis and DNA damage along with semiquantitative estimation of re-epithelialisation, fibroplasia and neovascularisation on histomorphologic scale could be efficiently used for screening the efficacy of orphan drugs against SM-induced skin injury.
Collapse
Affiliation(s)
- Vinay Lomash
- Department of Pharmacology and Toxicology, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, India
| | | | | | | |
Collapse
|
176
|
Xu P, Liu J, Derynck R. Post-translational regulation of TGF-β receptor and Smad signaling. FEBS Lett 2012; 586:1871-84. [PMID: 22617150 DOI: 10.1016/j.febslet.2012.05.010] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 05/06/2012] [Accepted: 05/07/2012] [Indexed: 01/17/2023]
Abstract
TGF-β family signaling through Smads is conceptually a simple and linear signaling pathway, driven by sequential phosphorylation, with type II receptors activating type I receptors, which in turn activate R-Smads. Nevertheless, TGF-β family proteins induce highly complex programs of gene expression responses that are extensively regulated, and depend on the physiological context of the cells. Regulation of TGF-β signaling occurs at multiple levels, including TGF-β activation, formation, activation and destruction of functional TGF-β receptor complexes, activation and degradation of Smads, and formation of Smad transcription complexes at regulatory gene sequences that cooperate with a diverse set of DNA binding transcription factors and coregulators. Here we discuss recent insights into the roles of post-translational modifications and molecular interaction networks in the functions of receptors and Smads in TGF-β signal responses. These layers of regulation demonstrate how a simple signaling system can be coopted to exert exquisitely regulated, complex responses.
Collapse
Affiliation(s)
- Pinglong Xu
- Department of Cell and Tissue Biology, Programs in Cell Biology and Developmental Biology, University of California, San Francisco, CA, USA
| | | | | |
Collapse
|
177
|
Xu P, Liu J, Sakaki-Yumoto M, Derynck R. TACE activation by MAPK-mediated regulation of cell surface dimerization and TIMP3 association. Sci Signal 2012; 5:ra34. [PMID: 22550340 DOI: 10.1126/scisignal.2002689] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ectodomain shedding mediated by tumor necrosis factor-α (TNF-α)-converting enzyme [TACE; also known as ADAM17 (a disintegrin and metalloproteinase 17)] provides an important switch in regulating cell proliferation, inflammation, and cancer progression. TACE-mediated ectodomain cleavage is activated by signaling of the mitogen-activated protein kinases (MAPKs) p38 and ERK (extracellular signal-regulated kinase). Here, we found that under basal conditions, TACE was predominantly present as dimers at the cell surface, which required its cytoplasmic domain and enabled efficient association with tissue inhibitor of metalloproteinase-3 (TIMP3) and silencing of TACE activity. Upon activation of the ERK or p38 MAPK pathway, the balance shifted from TACE dimers to monomers, and this shift was associated with increased cell surface presentation of TACE and decreased TIMP3 association, which relieved the inhibition of TACE by TIMP3 and increased TACE-mediated proteolysis of transforming growth factor-α. Thus, cell signaling altered the dimer-monomer equilibrium and inhibitor association to promote activation of TACE-mediated ectodomain shedding, a regulatory mechanism that may extend to other ADAM proteases.
Collapse
Affiliation(s)
- Pinglong Xu
- Department of Cell and Tissue Biology, Programs in Cell Biology and Developmental Biology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | |
Collapse
|
178
|
Wang CH, Huang CD, Lin HC, Huang TT, Lee KY, Lo YL, Lin SM, Chung KF, Kuo HP. Increased activation of fibrocytes in patients with chronic obstructive asthma through an epidermal growth factor receptor–dependent pathway. J Allergy Clin Immunol 2012; 129:1367-76. [DOI: 10.1016/j.jaci.2012.01.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 01/07/2012] [Accepted: 01/10/2012] [Indexed: 10/14/2022]
|
179
|
Pioli PD, Saleh AMZ, El Fiky A, Nastiuk KL, Krolewski JJ. Sequential proteolytic processing of an interferon-alpha receptor subunit by TNF-alpha converting enzyme and presenilins. J Interferon Cytokine Res 2012; 32:312-25. [PMID: 22458690 DOI: 10.1089/jir.2011.0116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is well established that interferons trigger tyrosine-kinase-dependent signaling via JAK kinases and STAT transcription factors. However, we have observed both IFNaR2 receptor cleavage and functional activity of the liberated intracellular domain (ICD), suggesting that interferon-alpha (IFN-alpha) can also signal via regulated intramembrane proteolysis (RIP), an evolutionarily conserved mechanism of receptor-mediated signaling. Sequential cleavage of the receptor ectodomain and transmembrane domain is a hallmark of the most common class of RIP. To investigate the mechanisms of IFNaR2 RIP signaling, we examined IFNaR2 cleavage by TNF-alpha converting enzyme (TACE) and presenilin proteases. We tracked the fate of epitope-tagged and fusion variants of IFNaR2 in cells expressing wild-type, mutant, or null versions of TACE and presenilins 1 and 2. Cleavage and subcellular location were determined by immunoblot, fluoresence microscopy, and reporter assays. We found that both TACE and presenilin 1/2 cleave IFNaR2, in a sequential manner that allows the ICD to move to the nucleus. TACE cleavage was induced by IFN-alpha but was not consistently required for the anti-proliferative effects of IFN-alpha. In conclusion, IFNaR2 is cleaved by TACE and Presenilin 1/2, suggesting that interferons signal by both kinase and RIP-mediated pathways.
Collapse
Affiliation(s)
- Peter D Pioli
- Department of Pathology and Laboratory Medicine, University of California, IRVINE, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
180
|
Hall KC, Blobel CP. Interleukin-1 stimulates ADAM17 through a mechanism independent of its cytoplasmic domain or phosphorylation at threonine 735. PLoS One 2012; 7:e31600. [PMID: 22384041 PMCID: PMC3288042 DOI: 10.1371/journal.pone.0031600] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Accepted: 01/16/2012] [Indexed: 12/15/2022] Open
Abstract
ADAM17 (a disintegrin and metalloproteinase) is a membrane-anchored metalloproteinase that regulates the release of EGFR-ligands, TNFα and other membrane proteins from cells. ADAM17 can be rapidly activated by a variety of signaling pathways, yet little is known about the underlying mechanism. Several studies have demonstrated that the cytoplasmic domain of ADAM17 is not required for its rapid activation by a variety of stimuli, including phorbol esters, tyrosine kinases and some G-protein coupled receptors. However, phosphorylation of cytoplasmic residue T735 was recently reported as a crucial step for activation of ADAM17 by IL-1β and by the p38 MAP-kinase pathway. One possible mechanism to reconcile these results would be that T735 has an inhibitory role and that it must be phosphorylated as a pre-requisite for the activation of ADAM17, which would then proceed via a mechanism that is independent of its cytoplasmic domain. To test this hypothesis, we performed rescue experiments of Adam17−/− cells with wild type and mutant forms of ADAM17. However, these experiments showed that an inactivating mutation (T735A) or an activating mutation (T735D) of cytoplasmic residue T735 or the removal of the cytoplasmic domain of ADAM17 did not significantly affect the stimulation of ADAM17 by IL-1β or by activation of MAP-kinase with anisomycin. Moreover, we found that the MAP-kinase inhibitor SB203580 blocked activation of cytoplasmic tail-deficient ADAM17 and of the T735A mutant by IL-1β or by anisomycin, providing further support for a model in which the activation mechanism of ADAM17 does not rely on its cytoplasmic domain or phosphorylation of T735.
Collapse
Affiliation(s)
- Katherine C. Hall
- Arthritis and Tissue Degeneration Program, The Hospital for Special Surgery, New York, New York, United States of America
- Cell Biology and Genetics Program, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Carl P. Blobel
- Arthritis and Tissue Degeneration Program, The Hospital for Special Surgery, New York, New York, United States of America
- Cell Biology and Genetics Program, Weill Medical College of Cornell University, New York, New York, United States of America
- Department of Medicine and Physiology, Biophysics and Systems Biology Program, Weill Medical College of Cornell University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
181
|
Hughes-Alford SK, Lauffenburger DA. Quantitative analysis of gradient sensing: towards building predictive models of chemotaxis in cancer. Curr Opin Cell Biol 2012; 24:284-91. [PMID: 22284347 DOI: 10.1016/j.ceb.2012.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Revised: 12/16/2011] [Accepted: 01/03/2012] [Indexed: 11/17/2022]
Abstract
Chemotaxis of tumor cells in response to a gradient of extracellular ligand is an important step in cancer metastasis. The heterogeneity of chemotactic responses in cancer has not been widely addressed by experimental or mathematical modeling techniques. However, recent advancements in chemoattractant presentation, fluorescent-based signaling probes, and phenotypic analysis paradigms provide rich sources for building data-driven relational models that describe tumor cell chemotaxis in response to a wide variety of stimuli. Here we present gradient sensing, and the resulting chemotactic behavior, in a 'cue-signal-response' framework and suggest methods for utilizing recently reported experimental methods in data-driven modeling ventures.
Collapse
Affiliation(s)
- Shannon K Hughes-Alford
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | |
Collapse
|
182
|
Adrain C, Zettl M, Christova Y, Taylor N, Freeman M. Tumor necrosis factor signaling requires iRhom2 to promote trafficking and activation of TACE. Science 2012; 335:225-8. [PMID: 22246777 PMCID: PMC3272371 DOI: 10.1126/science.1214400] [Citation(s) in RCA: 325] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cytokine tumor necrosis factor (TNF) is the primary trigger of inflammation. Like many extracellular signaling proteins, TNF is synthesized as a transmembrane protein; the active signal is its ectodomain, which is shed from cells after cleavage by an ADAM family metalloprotease, ADAM17 (TNFα-converting enzyme, TACE). We report that iRhom2 (RHBDF2), a proteolytically inactive member of the rhomboid family, is required for TNF release in mice. iRhom2 binds TACE and promotes its exit from the endoplasmic reticulum. The failure of TACE to exit the endoplasmic reticulum in the absence of iRhom2 prevents the furin-mediated maturation and trafficking of TACE to the cell surface, the site of TNF cleavage. Given the role of TNF in autoimmune and inflammatory diseases, iRhom2 may represent an attractive therapeutic target.
Collapse
Affiliation(s)
- Colin Adrain
- Medical Research Council Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | |
Collapse
|
183
|
Kataoka T. Translation inhibitors and their unique biological properties. Eur J Pharmacol 2011; 676:1-5. [PMID: 22173124 DOI: 10.1016/j.ejphar.2011.11.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 11/28/2011] [Indexed: 12/22/2022]
Abstract
In eukaryotes, many translation inhibitors have been widely used as bioprobes to evaluate the contribution of translation to signaling pathways and cellular functions. Several types of translation inhibitors are also known to trigger the activation of the mitogen-activated protein kinase superfamily in an intracellular mechanism called ribotoxic stress response. This perspective focuses on the biological properties of recently identified translation inhibitors that trigger ribotoxic stress response, particularly glutarimides as well as triene-ansamycins.
Collapse
Affiliation(s)
- Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
184
|
The role of ADAM-mediated shedding in vascular biology. Eur J Cell Biol 2011; 91:472-85. [PMID: 22138087 DOI: 10.1016/j.ejcb.2011.09.003] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 07/08/2011] [Accepted: 09/08/2011] [Indexed: 01/14/2023] Open
Abstract
Within the vasculature the disintegrins and metalloproteinases (ADAMs) 8, 9, 10, 12, 15, 17, 19, 28 and 33 are expressed on endothelial cells, smooth muscle cells and on leukocytes. As surface-expressed proteases they mediate cleavage of vascular surface molecules at an extracellular site close to the membrane. This process is termed shedding and leads to the release of a soluble substrate ectodomain thereby critically modulating the biological function of the substrate. In the vasculature several surface molecules undergo ADAM-mediated shedding including tumour necrosis factor (TNF) α, interleukin (IL) 6 receptor α, L-selectin, vascular endothelial (VE)-cadherin, the transmembrane CX3C-chemokine ligand (CX3CL) 1, Notch, transforming growth factor (TGF) and heparin-binding epidermal growth factor (HB-EGF). These substrates play distinct roles in vascular biology by promoting inflammation, permeability changes, leukocyte recruitment, resolution of inflammation, regeneration and/or neovascularisation. Especially ADAM17 and ADAM10 are capable of cleaving many substrates with diverse function within the vasculature, whereas other ADAMs have a more restricted substrate range. Therefore, targeting ADAM17 or ADAM10 by pharmacologic inhibition or gene knockout not only attenuates the inflammatory response in animal models but also affects tissue regeneration and neovascularisation. Recent discoveries indicate that other ADAMs (e.g. ADAM8 and 9) also play important roles in vascular biology but appear to have more selective effects on vascular responses (e.g. on neovascularisation only). Although, targeting of ADAM17 and ADAM10 in inflammatory diseases is still a promising approach, temporal and spatial as well as substrate-specific inhibition approaches are required to minimise undesired side effects on vascular cells.
Collapse
|
185
|
Zhang TC, Zhu WG, Huang MD, Fan RH, Chen XF. Prognostic value of ADAM17 in human gastric cancer. Med Oncol 2011; 29:2684-90. [PMID: 22139867 DOI: 10.1007/s12032-011-0125-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 11/22/2011] [Indexed: 10/14/2022]
Abstract
A disintegrin and metalloproteinase-17 (ADAM17, also named as tumor necrosis factor-alpha-converting enzyme) is a member of the ADAM family. Of all ADAMs, the strongest evidence for a role in malignancy exists for ADAM17. Especially, it has been demonstrated that ADAM17 expression was significantly increased in human gastric cancer. The aim of this study was to investigate the association between ADAM17 expression and the clinicopathological features of patients with gastric cancer. The expression of ADAM17 was detected by real-time quantitative RT-PCR in gastric cancer and adjacent non-cancerous tissues. In addition, ADAM17 expression was analyzed by immunohistochemistry in 220 clinicopathologically characterized gastric cancer cases. The expression levels of ADAM17 mRNA and protein in gastric cancer tissues were both significantly higher than those in non-cancerous gastric mucosa. In addition, positive expression of ADAM17 correlated with the degree of tumor differentiation, depth of invasion, lymph node metastases, distant metastases, and TNM stage (all P<0.05). Furthermore, multivariate analysis suggested that lymph node metastases, distant metastases, TNM stage, and ADAM17 expression were independent prognostic indicators for gastric cancer. Our data suggest for the first time that the increased expression of ADAM17 in gastric cancer is associated significantly with aggressive progression and poor prognosis. ADAM17 may be an important molecular marker for predicting the carcinogenesis, progression, and prognosis of gastric cancer.
Collapse
Affiliation(s)
- Tie-cheng Zhang
- Department of Oncology, First Hospital of Huaian, Nanjing Medical University, Huaian, 223300, China
| | | | | | | | | |
Collapse
|
186
|
Li X, Pérez L, Fan H. Inhibitory role of TACE/ADAM17 cytotail in protein ectodomain shedding. World J Biol Chem 2011; 2:246-51. [PMID: 22125668 PMCID: PMC3224872 DOI: 10.4331/wjbc.v2.i11.246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 10/12/2011] [Accepted: 10/19/2011] [Indexed: 02/05/2023] Open
Abstract
AIM: To determine if the cytotail of the principal sheddase tumor necrosis factor-α converting enzyme (TACE; ADAM17) controls protein ectodomain shedding.
METHODS: Site-directed mutagenesis was performed to derive TACE variants. The resulting TACE expression plasmids with amino acid substitutions in the extracellular, cysteine-rich disintegrin domain (CRD) and/or deleted cytotail, along with an expression vector for the enhanced green fluorescence protein were transfected into shedding-defective M1 mutants stably expressing transmembrane L-selectin or transforming growth factor (TGF)-α. The expression levels of the TACE substrates at the cell surface were determined by flow cytometry.
RESULTS: Consistent with published data, a single point mutation (C600Y) in the CRD led to shedding deficiency. However, removal of the cytotail from the C600Y TACE variant partially restored ectodomain cleavage of TGF-α and L-selectin. Cytotail-deleted mutants with any other substituting amino acid residues in place of Cys600 displayed similar function compared with tail-less C600Y TACE.
CONCLUSION: The cytotail plays an inhibitory role, which becomes evident when it is removed from an enzyme with another mutation that affects the enzyme function.
Collapse
Affiliation(s)
- Xiaojin Li
- Xiaojin Li, Liliana Pérez, Huizhou Fan, Department of Physiology and Biophysics, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, United States
| | | | | |
Collapse
|
187
|
The unfolded protein response controls induction and activation of ADAM17/TACE by severe hypoxia and ER stress. Oncogene 2011; 31:3621-34. [DOI: 10.1038/onc.2011.522] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
188
|
Lorenzen I, Trad A, Grötzinger J. Multimerisation of A disintegrin and metalloprotease protein-17 (ADAM17) is mediated by its EGF-like domain. Biochem Biophys Res Commun 2011; 415:330-6. [PMID: 22033402 DOI: 10.1016/j.bbrc.2011.10.056] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 10/11/2011] [Indexed: 11/19/2022]
Abstract
A disintegrin and metalloprotease protein 17 (ADAM17) is a transmembrane zinc dependent metalloprotease. The catalytic activity of the enzyme results in the shedding of a broad range of membrane proteins. The release of the corresponding ectodomains induces a switch in various physiological and pathophysiological processes. So far there is not much information about the molecular mechanism of ADAM17 activation available. As for other transmembrane proteases, multimerisation may play a critical role in the activation and function of ADAM17. The present work demonstrates that ADAM17 indeed exists as a multimer in the cell membrane and that this multimerisation is mediated by its EGF-like domain.
Collapse
Affiliation(s)
- Inken Lorenzen
- Biochemisches Institut der Christian-Albrechts-Universität Kiel, Olshausenstr. 40, 24118 Kiel, Germany.
| | | | | |
Collapse
|
189
|
Scott AJ, O'Dea KP, O'Callaghan D, Williams L, Dokpesi JO, Tatton L, Handy JM, Hogg PJ, Takata M. Reactive oxygen species and p38 mitogen-activated protein kinase mediate tumor necrosis factor α-converting enzyme (TACE/ADAM-17) activation in primary human monocytes. J Biol Chem 2011; 286:35466-35476. [PMID: 21865167 DOI: 10.1074/jbc.m111.277434] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor α-converting enzyme (TACE) is responsible for the shedding of cell surface TNF. Studies suggest that reactive oxygen species (ROS) mediate up-regulation of TACE activity by direct oxidization or modification of the protein. However, these investigations have been largely based upon nonphysiological stimulation of promonocytic cell lines which may respond and process TACE differently from primary cells. Furthermore, investigators have relied upon TACE substrate shedding as a surrogate for activity quantification. We addressed these concerns, employing a direct, cell-based fluorometric assay to investigate the regulation of TACE catalytic activity on freshly isolated primary human monocytes during LPS stimulation. We hypothesized that ROS mediate up-regulation of TACE activity indirectly, by activation of intracellular signaling pathways. LPS up-regulated TACE activity rapidly (within 30 min) without changing cell surface TACE expression. Scavenging of ROS or inhibiting their production by flavoprotein oxidoreductases significantly attenuated LPS-induced TACE activity up-regulation. Exogenous ROS (H(2)O(2)) also up-regulated TACE activity with similar kinetics and magnitude as LPS. H(2)O(2)- and LPS-induced TACE activity up-regulation were effectively abolished by a variety of selective p38 MAPK inhibitors. Activation of p38 was redox-sensitive as H(2)O(2) caused p38 phosphorylation, and ROS scavenging significantly reduced LPS-induced phospho-p38 expression. Inhibition of the p38 substrate, MAPK-activated protein kinase 2, completely attenuated TACE activity up-regulation, whereas inhibition of ERK had little effect. Lastly, inhibition of cell surface oxidoreductases prevented TACE activity up-regulation distal to p38 activation. In conclusion, our data indicate that in primary human monocytes, ROS mediate LPS-induced up-regulation of TACE activity indirectly through activation of the p38 signaling pathway.
Collapse
Affiliation(s)
- Alasdair J Scott
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Kieran P O'Dea
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - David O'Callaghan
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Lynn Williams
- Kennedy Institute of Rheumatology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Justina O Dokpesi
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Louise Tatton
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Jonathan M Handy
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom
| | - Philip J Hogg
- Lowy Cancer Research Centre, University of New South Wales, Sydney 2052, Australia
| | - Masao Takata
- Section of Anaesthetics, Pain Medicine, and Intensive Care, Faculty of Medicine, Chelsea and Westminster Hospital, London SW10 9NH, United Kingdom.
| |
Collapse
|
190
|
Guma M, Stepniak D, Shaked H, Spehlmann ME, Shenouda S, Cheroutre H, Vicente-Suarez I, Eckmann L, Kagnoff MF, Karin M. Constitutive intestinal NF-κB does not trigger destructive inflammation unless accompanied by MAPK activation. ACTA ACUST UNITED AC 2011; 208:1889-900. [PMID: 21825016 PMCID: PMC3171091 DOI: 10.1084/jem.20110242] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Constitutive NF-κB activation in IECs induces inflammatory cytokines and chemokines in the lamina propria, but does not result in overt tissue damage unless acute inflammatory insults are present, causing TNF-dependent destruction and barrier disruption. Nuclear factor (NF)-κB, activated by IκB kinase (IKK), is a key regulator of inflammation, innate immunity, and tissue integrity. NF-κB and one of its main activators and transcriptional targets, tumor necrosis factor (TNF), are up-regulated in many inflammatory diseases that are accompanied by tissue destruction. The etiology of many inflammatory diseases is poorly understood, but often depends on genetic factors and environmental triggers that affect NF-κB and related pathways. It is unknown, however, whether persistent NF-κB activation is sufficient for driving symptomatic chronic inflammation and tissue damage. To address this question, we generated IKKβ(EE)IEC mice, which express a constitutively active form of IKKβ in intestinal epithelial cell (IECs). IKKβ(EE)IEC mice exhibit NF-κB activation in IECs and express copious amounts of inflammatory chemokines, but only small amounts of TNF. Although IKKβ(EE)IEC mice exhibit inflammatory cell infiltration in the lamina propria (LP) of their small intestine, they do not manifest tissue damage. Yet, upon challenge with relatively mild immune and microbial stimuli, IKKβ(EE)IEC mice succumb to destructive acute inflammation accompanied by enterocyte apoptosis, intestinal barrier disruption, and bacterial translocation. Inflammation is driven by massive TNF production, which requires additional activation of p38 and extracellular-signal–regulated kinase mitogen-activated protein kinases (MAPKs).
Collapse
Affiliation(s)
- Monica Guma
- Laboratory of Gene Regulation and Signal Transduction, Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Thorp E, Vaisar T, Subramanian M, Mautner L, Blobel C, Tabas I. Shedding of the Mer tyrosine kinase receptor is mediated by ADAM17 protein through a pathway involving reactive oxygen species, protein kinase Cδ, and p38 mitogen-activated protein kinase (MAPK). J Biol Chem 2011; 286:33335-44. [PMID: 21828049 DOI: 10.1074/jbc.m111.263020] [Citation(s) in RCA: 245] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mer tyrosine kinase (MerTK) is an integral membrane protein that is preferentially expressed by phagocytic cells, where it promotes efferocytosis and inhibits inflammatory signaling. Proteolytic cleavage of MerTK at an unidentified site leads to shedding of its soluble ectodomain (soluble MER; sMER), which can inhibit thrombosis in mice and efferocytosis in vitro. Herein, we show that MerTK is cleaved at proline 485 in murine macrophages. Site-directed deletion of 6 amino acids spanning proline 485 rendered MerTK resistant to proteolysis and suppression of efferocytosis by cleavage-inducing stimuli. LPS is a known inducer of MerTK cleavage, and the intracellular signaling pathways required for this action are unknown. LPS/TLR4-mediated generation of sMER required disintegrin and metalloproteinase ADAM17 and was independent of Myd88, instead requiring TRIF adaptor signaling. LPS-induced cleavage was suppressed by deficiency of NADPH oxidase 2 (Nox2) and PKCδ. The addition of the antioxidant N-acetyl cysteine inhibited PKCδ, and silencing of PKCδ inhibited MAPK p38, which was also required. In a mouse model of endotoxemia, we discovered that LPS induced plasma sMER, and this was suppressed by Adam17 deficiency. Thus, a TRIF-mediated pattern recognition receptor signaling cascade requires NADPH oxidase to activate PKCδ and then p38, culminating in ADAM17-mediated proteolysis of MerTK. These findings link innate pattern recognition receptor signaling to proteolytic inactivation of MerTK and generation of sMER and uncover targets to test how MerTK cleavage affects efferocytosis efficiency and inflammation resolution in vivo.
Collapse
Affiliation(s)
- Edward Thorp
- Departments of Medicine, Pathology and Cell Biology, and Physiology, and Cellular Biophysics, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | |
Collapse
|
192
|
Hilliard VC, Frey MR, Dempsey PJ, Peek RM, Polk DB. TNF-α converting enzyme-mediated ErbB4 transactivation by TNF promotes colonic epithelial cell survival. Am J Physiol Gastrointest Liver Physiol 2011; 301:G338-46. [PMID: 21617117 PMCID: PMC3154600 DOI: 10.1152/ajpgi.00057.2011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Disruption of intestinal epithelial homeostasis, including enhanced apoptosis, is a hallmark of inflammatory bowel disease (IBD). We have recently shown that tumor necrosis factor (TNF) increases the kinase activity of ErbB4, a member of the epidermal growth factor receptor family that is elevated in mucosa of IBD patients and that promotes colon epithelial cell survival. In this study, we tested the hypothesis that TNF transactivates ErbB4 through TNF-α converting enzyme (TACE)-mediated ligand release and that this transactivation is necessary to protect colonic epithelial cells from cytokine-induced apoptosis. Using neutralizing antibodies, we show that heparin-binding EGF-like growth factor (HB-EGF) is required for ErbB4 phosphorylation in response to TNF. Pharmacological or genetic inhibition of the metalloprotease TACE, which mediates HB-EGF release from cells, blocked TNF-induced ErbB4 activation. MEK, but not Src or p38, was also required for transactivation. TACE activity and ligand binding were required for ErbB4-mediated antiapoptotic signaling; whereas mouse colon epithelial cells expressing ErbB4 were resistant to TNF-induced apoptosis, TACE inhibition or blockade of ErbB4 ligand binding reversed the survival advantage. We conclude that TNF transactivates ErbB4 through TACE-dependent HB-EGF release, thus protecting colon epithelial cells from cytokine-induced apoptosis. These findings have important implications for understanding how ErbB4 protects the colon from apoptosis-induced tissue injury in inflammatory conditions such as IBD.
Collapse
Affiliation(s)
| | - Mark R. Frey
- Departments of 2Pediatrics and ,6Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine and The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California; and
| | - Peter J. Dempsey
- 3Department of Pediatrics and Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Richard M. Peek
- 4Medicine, and ,5Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee;
| | - D. Brent Polk
- Departments of 2Pediatrics and ,6Biochemistry and Molecular Biology, University of Southern California Keck School of Medicine and The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, California; and
| |
Collapse
|
193
|
Scheller J, Chalaris A, Garbers C, Rose-John S. ADAM17: a molecular switch to control inflammation and tissue regeneration. Trends Immunol 2011; 32:380-7. [PMID: 21752713 DOI: 10.1016/j.it.2011.05.005] [Citation(s) in RCA: 408] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/30/2011] [Accepted: 05/04/2011] [Indexed: 11/29/2022]
Abstract
A disintegrin and metalloproteinase 17 (ADAM17), also known as tumor necrosis factor-α converting enzyme (TACE), is a membrane-bound enzyme that cleaves cell surface proteins, such as cytokines (e.g. TNFα), cytokine receptors (e.g. IL-6R and TNF-R), ligands of ErbB (e.g. TGFα and amphiregulin) and adhesion proteins (e.g. L-selectin and ICAM-1). Here we examine how ectodomain shedding of these molecules can alter their biology and impact on immune and inflammatory responses and cancer development. Gene targeting of Adam17 is embryonic lethal, highlighting the importance of ectodomain shedding during development. Tissue-specific deletion, or hypomorphic knock-in, of Adam17 demonstrates an in vivo role for ADAM17 in controlling inflammation and tissue regeneration. The potential of ADAM17 as therapeutic target is also discussed.
Collapse
Affiliation(s)
- Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | |
Collapse
|
194
|
Moreno RD, Urriola-Muñoz P, Lagos-Cabré R. The emerging role of matrix metalloproteases of the ADAM family in male germ cell apoptosis. SPERMATOGENESIS 2011; 1:195-208. [PMID: 22319668 DOI: 10.4161/spmg.1.3.17894] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 08/27/2011] [Accepted: 08/29/2011] [Indexed: 02/06/2023]
Abstract
Constitutive germ cell apoptosis during mammalian spermatogenesis is a key process for controlling sperm output and to eliminate damaged or unwanted cells. An increase or decrease in the apoptosis rate has deleterious consequences and leads to low sperm production. Apoptosis in spermatogenesis has been widely studied, but the mechanism by which it is induced under physiological or pathological conditions has not been clarified. We have recently identified the metalloprotease ADAM17 (TACE) as a putative physiological inducer of germ cell apoptosis. The mechanisms involved in regulating the shedding of the ADAM17 extracellular domain are still far from being understood, although they are important in order to understand cell-cell communications. Here, we review the available data regarding apoptosis during mammalian spermatogenesis and the localization of ADAM proteins in the male reproductive tract. We propose an integrative working model where ADAM17, p38 MAPK, protein kinase C (PKC) and the tyrosine kinase c-Abl participate in the physiological signalling cascade inducing apoptosis in germ cells. In our model, we also propose a role for the Sertoli cell in regulating the Fas/FasL system in order to induce the extrinsic pathway of apoptosis in germ cells. This working model could be applied to further understand constitutive apoptosis in spermatogenesis and in pathological conditions (e.g., varicocele) or following environmental toxicants exposure (e.g., genotoxicity or xenoestrogens).
Collapse
Affiliation(s)
- Ricardo D Moreno
- Departamento de Fisiología; Pontificia Universidad Católica de Chile; Santiago, Chile
| | | | | |
Collapse
|
195
|
Wauman J, De Ceuninck L, Vanderroost N, Lievens S, Tavernier J. RNF41 (Nrdp1) controls type 1 cytokine receptor degradation and ectodomain shedding. J Cell Sci 2011; 124:921-32. [PMID: 21378310 PMCID: PMC3115735 DOI: 10.1242/jcs.078055] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cytokines, such as interferons, erythropoietin, leptin and most interleukins, signal through type 1 cytokine receptors and activate the canonical JAK–STAT pathway. Aberrant cytokine signalling underlies numerous pathologies and adequate, temporary receptor activation is therefore under tight control. Negative-feedback mechanisms are very well studied, but cellular sensitivity also depends on the number of receptors exposed at the cell surface. This is determined by the equilibrium between receptor synthesis and transport to the plasma membrane, internalisation and recycling, degradation and ectodomain shedding, but the molecular basis of how cells establish steady state receptor levels is poorly understood. Here, we report that ring finger protein 41 (RNF41, also known as E3 ubiquitin-protein ligase Nrdp1) interacts with JAK2-associated cytokine receptor complexes and modulates their cell surface exposure and signalling. Moreover, ectopic expression of RNF41 affected turnover of leptin, leukaemia inhibitory factor and interleukin-6 receptor in a dual way: it blocked intracellular cathepsin-L-dependent receptor cleavage and concomitantly enhanced receptor shedding by metalloproteases of the ADAM family. Receptor degradation and shedding are thus interconnected phenomena with a single protein, RNF41, determining the balance.
Collapse
Affiliation(s)
- Joris Wauman
- Department of Medical Protein Research, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Albert Baertsoenkaai 3, B-9000 Ghent, Belgium
| | | | | | | | | |
Collapse
|
196
|
Duffy MJ, Mullooly M, O'Donovan N, Sukor S, Crown J, Pierce A, McGowan PM. The ADAMs family of proteases: new biomarkers and therapeutic targets for cancer? Clin Proteomics 2011; 8:9. [PMID: 21906355 PMCID: PMC3170276 DOI: 10.1186/1559-0275-8-9] [Citation(s) in RCA: 153] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 06/09/2011] [Indexed: 12/14/2022] Open
Abstract
The ADAMs are transmembrane proteins implicated in proteolysis and cell adhesion. Forty gene members of the family have been identified, of which 21 are believed to be functional in humans. As proteases, their main substrates are the ectodomains of other transmembrane proteins. These substrates include precursor forms of growth factors, cytokines, growth factor receptors, cytokine receptors and several different types of adhesion molecules. Although altered expression of specific ADAMs has been implicated in different diseases, their best-documented role is in cancer formation and progression. ADAMs shown to play a role in cancer include ADAM9, ADAM10, ADAM12, ADAM15 and ADAM17. Two of the ADAMs, i.e., ADAM10 and 17 appear to promote cancer progression by releasing HER/EGFR ligands. The released ligands activate HER/EGFR signalling that culminates in increased cell proliferation, migration and survival. Consistent with a causative role in cancer, several ADAMs are emerging as potential cancer biomarkers for aiding cancer diagnosis and predicting patient outcome. Furthermore, a number of selective ADAM inhibitors, especially against ADAM10 and ADAM17, have been shown to have anti-cancer effects. At least one of these inhibitors is now undergoing clinical trials in patients with breast cancer.
Collapse
Affiliation(s)
- Michael J Duffy
- Department of Pathology and Laboratory Medicine, St. Vincent's University Hospital, Dublin 4, Ireland
- UCD School of Medicine and Medical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Maeve Mullooly
- Department of Pathology and Laboratory Medicine, St. Vincent's University Hospital, Dublin 4, Ireland
- UCD School of Medicine and Medical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Norma O'Donovan
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Sumainizah Sukor
- UCD School of Medicine and Medical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
- Department of Medical Oncology, St Vincent's University Hospital, Dublin 4, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent's University Hospital, Dublin 4, Ireland
| | - Aisling Pierce
- Department of Pathology and Laboratory Medicine, St. Vincent's University Hospital, Dublin 4, Ireland
- UCD School of Medicine and Medical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| | - Patricia M McGowan
- Department of Pathology and Laboratory Medicine, St. Vincent's University Hospital, Dublin 4, Ireland
- UCD School of Medicine and Medical Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
197
|
Cytotrienin A, a translation inhibitor that induces ectodomain shedding of TNF receptor 1 via activation of ERK and p38 MAP kinase. Eur J Pharmacol 2011; 667:113-9. [PMID: 21663740 DOI: 10.1016/j.ejphar.2011.05.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/02/2011] [Accepted: 05/22/2011] [Indexed: 12/31/2022]
Abstract
Cytotrienin A, a member of the triene-ansamycin family, was initially identified to be an inducer of apoptosis and recently shown to be an inhibitor of translation that interferes with eukaryotic elongation factor 1A function. In human lung carcinoma A549 cells, cytotrienin A was found to inhibit more strongly the cell-surface expression of intercellular adhesion molecule-1 (ICAM-1) induced by tumor necrosis factor (TNF)-α than the expression induced by interleukin (IL)-1α. Cytotrienin A induced the ectodomain shedding of TNF receptor 1 by TNF-α-converting enzyme (TACE). The TACE inhibitor TAPI-2 antagonized the selective inhibitory effect of cytotrienin A on inhibitor of nuclear factor-κB-α (IκBα) degradation as well as ICAM-1 expression in TNF-α-stimulated cells. The MEK inhibitor U0126 and the p38 MAP kinase inhibitor SB203580, but not the JNK inhibitor SP600125, prevented the ectodomain shedding of TNF receptor 1 induced by cytotrienin A and reversed the inhibitory effects of cytotrienin A on the TNF-α-induced IκBα degradation. In the presence of both U0126 and SB203580, cytotrienin A inhibited TNF-α- and IL-1α-induced ICAM-1 expression at almost equivalent concentrations. Thus, our present results demonstrate that cytotrienin A is a translation inhibitor that triggers ribotoxic stress response and selectively inhibits the TNF-α-induced ICAM-1 expression by inducing the ectodomain shedding of TNF receptor 1 via the activation of ERK and p38 MAP kinase.
Collapse
|
198
|
Deng W, Srinivasan S, Zheng X, Putkey JA, Li R. Interaction of calmodulin with L-selectin at the membrane interface: implication on the regulation of L-selectin shedding. J Mol Biol 2011; 411:220-33. [PMID: 21664913 DOI: 10.1016/j.jmb.2011.05.041] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/21/2011] [Accepted: 05/26/2011] [Indexed: 12/18/2022]
Abstract
The calmodulin (CaM) hypothesis of ectodomain shedding stipulates that CaM, an intracellular Ca²⁺-dependent regulatory protein, associates with the cytoplasmic domain of L-selectin to regulate ectodomain shedding of L-selectin on the other side of the plasma membrane. To understand the underlying molecular mechanism, we have characterized the interactions of CaM with two peptides derived from human L-selectin. The peptide ARR18 corresponds to the entire cytoplasmic domain of L-selectin (residues Ala317-Tyr334 in the mature protein), and CLS corresponds to residues Lys280-Tyr334, which contains the entire transmembrane and cytoplasmic domains of l-selectin. Monitoring the interaction by fluorescence spectroscopy and other biophysical techniques, we found that CaM can bind to ARR18 in aqueous solutions or the L-selectin cytoplasmic domain of CLS reconstituted in the phosphatidylcholine bilayer, both with an affinity of approximately 2 μM. The association is calcium independent and dynamic and involves both lobes of CaM. In a phospholipid bilayer, the positively charged L-selectin cytoplasmic domain of CLS is associated with anionic phosphatidylserine (PS) lipids at the membrane interface through electrostatic interactions. Under conditions where the PS content mimics that in the inner leaflet of the cell plasma membrane, the interaction between CaM and CLS becomes undetectable. These results suggest that the association of CaM with L-selectin in the cell can be influenced by the membrane bilayer and that anionic lipids may modulate ectodomain shedding of transmembrane receptors.
Collapse
Affiliation(s)
- Wei Deng
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | | | | | | | | |
Collapse
|
199
|
Lichtenthaler SF, Haass C, Steiner H. Regulated intramembrane proteolysis--lessons from amyloid precursor protein processing. J Neurochem 2011; 117:779-96. [PMID: 21413990 DOI: 10.1111/j.1471-4159.2011.07248.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Regulated intramembrane proteolysis (RIP) controls the communication between cells and the extracellular environment. RIP is essential in the nervous system, but also in other tissues. In the RIP process, a membrane protein typically undergoes two consecutive cleavages. The first one results in the shedding of its ectodomain. The second one occurs within its transmembrane domain, resulting in secretion of a small peptide and the release of the intracellular domain into the cytosol. The proteolytic cleavage fragments act as versatile signaling molecules or are further degraded. An increasing number of membrane proteins undergo RIP. These include growth factors, cytokines, cell adhesion proteins, receptors, viral proteins and signal peptides. A dysregulation of RIP is found in diseases, such as leukemia and Alzheimer's disease. One of the first RIP substrates discovered was the amyloid precursor protein (APP). RIP processing of APP controls the generation of the amyloid β-peptide, which is believed to cause Alzheimer's disease. Focusing on APP as the best-studied RIP substrate, this review describes the function and mechanism of the APP RIP proteases with the goal to elucidate cellular mechanisms and common principles of the RIP process in general.
Collapse
Affiliation(s)
- Stefan F Lichtenthaler
- DZNE-German Center for Neurodegenerative Diseases, Adolf-Butenandt-Institute, Biochemistry, Ludwig-Maximilians-University, Munich, Germany
| | | | | |
Collapse
|
200
|
Cousin H, Abbruzzese G, Kerdavid E, Gaultier A, Alfandari D. Translocation of the cytoplasmic domain of ADAM13 to the nucleus is essential for Calpain8-a expression and cranial neural crest cell migration. Dev Cell 2011; 20:256-63. [PMID: 21316592 DOI: 10.1016/j.devcel.2010.12.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 11/01/2010] [Accepted: 12/06/2010] [Indexed: 12/24/2022]
Abstract
ADAMs are transmembrane metalloproteases that control cell behavior by cleaving both cell adhesion and signaling molecules. The cytoplasmic domain of ADAMs can regulate the proteolytic activity by controlling the subcellular localization and/or the activation of the protease domain. Here, we show that the cytoplasmic domain of ADAM13 is cleaved and translocates into the nucleus. Preventing this translocation renders the protein incapable of promoting cranial neural crest (CNC) cell migration in vivo, without affecting its proteolytic activity. In addition, the cytoplasmic domain of ADAM13 regulates the expression of multiple genes in CNC, including the protease Calpain8-a. Restoring the expression of Calpain8-a is sufficient to rescue CNC migration in the absence of the ADAM13 cytoplasmic domain. This study shows that the cytoplasmic domain of ADAM metalloproteases can perform essential functions in the nucleus of cells and may contribute substantially to the overall function of the protein.
Collapse
Affiliation(s)
- Hélène Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| | | | | | | | | |
Collapse
|