151
|
Abstract
HER2 and CDK4/6 are undoubted two most important biological targets for breast cancer. Anti-HER2 treatments enhance objective response and progression-free survival/disease-free survival as well as overall survival. Three CDK4/6 inhibitors consistently improve objective response and progression-free survival; however, overall survival data are waited. Optimization of chemotherapy and endocrine strategies remains an unmet need. Check point inhibitor-based immunotherapy combined with chemotherapy is a promising field, especially for triple-negative breast cancer.
Collapse
Affiliation(s)
- Xichun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032 China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Wei Huang
- Roche Product Development in Asia Pacific.5F, Tower C, Parkview Green, No.9, Dongdaqiao Road, Chaoyang District, Beijing, 100020 People’s Republic of China
| | - Minhao Fan
- Hutchison MediPharma Limited, Building 4 917 Halei Road Zhangjiang Hi-Tech Park, Shanghai, 201203 China
| |
Collapse
|
152
|
Abu-Zhayia ER, Khoury-Haddad H, Guttmann-Raviv N, Serruya R, Jarrous N, Ayoub N. A role of human RNase P subunits, Rpp29 and Rpp21, in homology directed-repair of double-strand breaks. Sci Rep 2017; 7:1002. [PMID: 28432356 PMCID: PMC5430778 DOI: 10.1038/s41598-017-01185-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/22/2017] [Indexed: 12/21/2022] Open
Abstract
DNA damage response (DDR) is needed to repair damaged DNA for genomic integrity preservation. Defective DDR causes accumulation of deleterious mutations and DNA lesions that can lead to genomic instabilities and carcinogenesis. Identifying new players in the DDR, therefore, is essential to advance the understanding of the molecular mechanisms by which cells keep their genetic material intact. Here, we show that the core protein subunits Rpp29 and Rpp21 of human RNase P complex are implicated in DDR. We demonstrate that Rpp29 and Rpp21 depletion impairs double-strand break (DSB) repair by homology-directed repair (HDR), but has no deleterious effect on the integrity of non-homologous end joining. We also demonstrate that Rpp29 and Rpp21, but not Rpp14, Rpp25 and Rpp38, are rapidly and transiently recruited to laser-microirradiated sites. Rpp29 and Rpp21 bind poly ADP-ribose moieties and are recruited to DNA damage sites in a PARP1-dependent manner. Remarkably, depletion of the catalytic H1 RNA subunit diminishes their recruitment to laser-microirradiated regions. Moreover, RNase P activity is augmented after DNA damage in a PARP1-dependent manner. Altogether, our results describe a previously unrecognized function of the RNase P subunits, Rpp29 and Rpp21, in fine-tuning HDR of DSBs.
Collapse
Affiliation(s)
- Enas R Abu-Zhayia
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Hanan Khoury-Haddad
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Noga Guttmann-Raviv
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Raphael Serruya
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel
| | - Nayef Jarrous
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University-Hadassah Medical School, 91120, Jerusalem, Israel.
| | - Nabieh Ayoub
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
153
|
Gadducci A, Guerrieri ME. PARP inhibitors alone and in combination with other biological agents in homologous recombination deficient epithelial ovarian cancer: From the basic research to the clinic. Crit Rev Oncol Hematol 2017; 114:153-165. [PMID: 28477743 DOI: 10.1016/j.critrevonc.2017.04.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/15/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022] Open
Abstract
Hereditary epithelial ovarian cancer [EOC] in germline BRCA mutation (gBRCAm) carriers has a distinct clinical behavior characterized by younger age, high- grade serous histology, advanced stage, visceral distribution of disease, high response to platinum and other non-platinum agents and better clinical outcome. Sporadic EOC with homologous recombination deficiency [HDR] but no gBRCAm has the same biological and clinical behavior as EOC in gBRCAm carriers ("BRCAness"phenotype). Biomarkers are in development to enable an accurate definition of molecular features of BRCAness phenotype, and trials are warranted to determine whether such HDR signature will predict sensitivity to PARP inhibitors in sporadic EOC. Moreover, the link between PARP inhibition and angiogenesis suppression, the immunologic properties of EOC in gBRCAm carriers, the HRD induced by PI3K inhibition in EOC cells in vitro strongly support novel clinical trials testing the combination of PARP inhibitors with other biological agents.
Collapse
Affiliation(s)
- Angiolo Gadducci
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Italy.
| | - Maria Elena Guerrieri
- Department of Clinical and Experimental Medicine, Division of Gynecology and Obstetrics, University of Pisa, Italy
| |
Collapse
|
154
|
Mikhailov VF, Shulenina LV, Vasilyeva IM, Startsev MI, Zasukhina GD. The miRNA as human cell gene activity regulator after ionizing radiation. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417020077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
155
|
Incorvaia L, Passiglia F, Rizzo S, Galvano A, Listȶ A, Barraco N, Maragliano R, Calò V, Natoli C, Ciaccio M, Bazan V, Russo A. "Back to a false normality": new intriguing mechanisms of resistance to PARP inhibitors. Oncotarget 2017; 8:23891-23904. [PMID: 28055979 PMCID: PMC5410353 DOI: 10.18632/oncotarget.14409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/23/2016] [Indexed: 01/07/2023] Open
Abstract
Several evidences have shown that BRCA mutations increased tumor-cells sensitivity to PARP inhibitors by synthetic lethality leading to an accelerated development of several compounds targeting the PARP enzymes system as anticancer agents for clinical setting. Most of such compounds have been investigated in ovarian and breast cancer, showing promising efficacy in BRCA-mutated patients. Recently clinical studies of PARP-inhibitors have been extended across different tumor types harboring BRCA-mutations, including also "BRCA-like" sporadic tumors with homologous recombination deficiency (HRD). This review summarizes the biological background underlying PARP-inhibition, reporting the results of the most relevant clinical trials carried out in patients treated with PARP inhibitors alone or in combination with chemotherapy. Molecular mechanisms responsible for the occurrence of both primary and acquired resistance have been elucidated, in order to support the development of new treatment strategies.
Collapse
Affiliation(s)
- Lorena Incorvaia
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Francesc Passiglia
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Sergio Rizzo
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Angela Listȶ
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Nadia Barraco
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Rossella Maragliano
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Valentina Calò
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Clara Natoli
- Department of Medical, Oral and Biotechnological Sciences, Centre of Ageing Sciences and Translational Medicine - CESI-MeT University “G. D'Annunzio”, Chieti, Italy
| | - Marcello Ciaccio
- Section of Clinical Biochemistry and Clinical Molecular Medicine, Department of Biopathology and Medical Biotechnology, University of Palermo - U.O.C. Laboratory Medicine - CoreLab, Policlinico University Hospital, Palermo, Italy
| | - Viviana Bazan
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
156
|
Lee HC, Her NG, Kang D, Jung SH, Shin J, Lee M, Bae IH, Kim YN, Park HJ, Ko YG, Lee JS. Radiation-inducible miR-770-5p sensitizes tumors to radiation through direct targeting of PDZ-binding kinase. Cell Death Dis 2017; 8:e2693. [PMID: 28333152 PMCID: PMC5386522 DOI: 10.1038/cddis.2017.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 01/09/2017] [Accepted: 02/22/2017] [Indexed: 11/17/2022]
Abstract
Radiotherapy represents the most effective non-surgical modality in cancer treatment. MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression, and are involved in many biological processes and diseases. To identify miRNAs that influence the radiation response, we performed miRNA array analysis using MCF7 cells at 2, 8, and 24 h post irradiation. We demonstrated that miR-770-5p is a novel radiation-inducible miRNA. When miR-770-5p was overexpressed, relative cell number was reduced due to increased apoptosis in MCF7 and A549 cells. Transcriptomic and bioinformatic analyses revealed that PDZ-binding kinase (PBK) might be a possible target of miR-770-5p for regulation of radiosensitivity. PBK regulation mediated by direct targeting of miR-770-5p was demonstrated using luciferase reporter assays along with wild-type and mutant PBK-3′untranslated region constructs. Radiation sensitivity increased and decreased in miR-770-5p- and anti-miR-770-5p-transfected cells, respectively. Consistent with this result, transfection of short interfering RNA against PBK inhibited cell proliferation, while ectopic expression of PBK restored cell survival from miR-770-5p-induced cell death. In addition, miR-770-5p suppressed tumor growth, and miR-770-5p and PBK levels were inversely correlated in xenograft model mice. Altogether, these data demonstrated that miR-770-5p might be a useful therapeutic target miRNA that sensitizes tumors to radiation via negative regulation of PBK.
Collapse
Affiliation(s)
- Hyung Chul Lee
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, Korea
| | - Nam-Gu Her
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Donghee Kang
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, Korea
| | - Seung Hee Jung
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, Korea
| | - Jinwook Shin
- Department of Microbiology, Inha University College of Medicine, Incheon, Korea
| | - Minyoung Lee
- Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - In Hwa Bae
- Division of Basic Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, Korea
| | - Young-Nyun Kim
- Division of Cancer Biology, Research Institute, National Cancer Center, Goyang, Korea
| | - Heon Joo Park
- Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, Korea.,Department of Microbiology, Inha University College of Medicine, Incheon, Korea
| | - Young-Gyu Ko
- Division of Life Sciences, Korea University, Seoul, Korea
| | - Jae-Seon Lee
- Department of Molecular Medicine, Inha University College of Medicine, Incheon, Korea.,Hypoxia-related Disease Research Center, Inha University College of Medicine, Incheon, Korea
| |
Collapse
|
157
|
Crippa E, Folini M, Pennati M, Zaffaroni N, Pierotti MA, Gariboldi M. miR-342 overexpression results in a synthetic lethal phenotype in BRCA1-mutant HCC1937 breast cancer cells. Oncotarget 2017; 7:18594-604. [PMID: 26919240 PMCID: PMC4951312 DOI: 10.18632/oncotarget.7617] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/11/2016] [Indexed: 12/02/2022] Open
Abstract
Expression of miR-342 has been strongly correlated with estrogen receptor (ER) status in breast cancer, where it is highest in ER-positive and lowest in triple-negative tumors. We investigated the effects of miR-342 transfection in the triple-negative breast cancer cell lines MDA-MB-231 and HCC1937, the latter carrying a germ-line BRCA1 mutation. Reconstitution of miR-342 led to caspase-dependent induction of apoptosis only in HCC1937 cells, while overexpression of wild-type BRCA1 in HCC1937 cells counteracted miR-342-mediated induction of apoptosis, suggesting that miR-342 overexpression and the lack of functional BRCA1 result in a synthetic lethal phenotype. Moreover, siRNA-mediated depletion of BRCA1 in MDA-MB-231 cells expressing the wild-type protein led to apoptosis upon transfection with miR-342. Using an in silico approach and a luciferase reporter system, we identified and functionally validated the Baculoviral IAP repeat-containing 6 gene (BIRC6), which encodes the anti-apoptotic factor Apollon/BRUCE, as a target of miR-342. In our model, BIRC6 likely acts as a determinant of the miRNA-dependent induction of apoptosis in BRCA1-mutant HCC1937 cells. Together, our findings suggest a tumor-suppressive function of miR-342 that could be exploited in the treatment of a subset of BRCA1-mutant hereditary breast cancers.
Collapse
Affiliation(s)
- Elisabetta Crippa
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Marco Folini
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marzia Pennati
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Nadia Zaffaroni
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco A Pierotti
- Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | - Manuela Gariboldi
- Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Molecular Genetics of Cancer, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| |
Collapse
|
158
|
Dong N, Wang W, Tian J, Xie Z, Lv B, Dai J, Jiang R, Huang D, Fang S, Tian J, Li H, Yu B. MicroRNA-182 prevents vascular smooth muscle cell dedifferentiation via FGF9/PDGFRβ signaling. Int J Mol Med 2017; 39:791-798. [PMID: 28259995 PMCID: PMC5360430 DOI: 10.3892/ijmm.2017.2905] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 01/20/2017] [Indexed: 11/06/2022] Open
Abstract
The abnormal phenotypic transformation of vascular smooth muscle cells (SMCs) causes various proliferative vascular diseases. MicroRNAs (miRNAs or miRs) have been established to play important roles in SMC biology and phenotypic modulation. This study revealed that the expression of miR‑182 was markedly altered during rat vascular SMC phenotypic transformation in vitro. We aimed to investigate the role of miR‑182 in the vascular SMC phenotypic switch and to determine the potential molecular mechanisms involved. The expression of miR‑182 gene was significantly downregulated in cultured SMCs during dedifferentiation from a contractile to a synthetic phenotype. Conversely, the upregulation of miR‑182 increased the expression of SMC-specific contractile genes, such as α-smooth muscle actin, smooth muscle 22α and calponin. Additionally, miR‑182 overexpression potently inhibited SMC proliferation and migration under both basal conditions and under platelet-derived growth factor-BB stimulation. Furthermore, we identified fibroblast growth factor 9 (FGF9) as the target gene of miR‑182 for the phenotypic modulation of SMCs mediated through platelet-derived growth factor receptor β (PDGFRβ) signaling. These data suggest that miR‑182 may be a novel SMC phenotypic marker and a modulator that may be used to prevent SMC dedifferentiation via FGF9/PDGFRβ signaling.
Collapse
Affiliation(s)
- Nana Dong
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Wei Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jinwei Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Zulong Xie
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bo Lv
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jiannan Dai
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Rui Jiang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Dan Huang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Shaohong Fang
- Key Laboratory of Myocardial Ischemia, Ministry of Education, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Jiangtian Tian
- Key Laboratory of Myocardial Ischemia, Ministry of Education, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hulun Li
- Key Laboratory of Myocardial Ischemia, Ministry of Education, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
159
|
Kim Y, Kim A, Sharip A, Sharip A, Jiang J, Yang Q, Xie Y. Reverse the Resistance to PARP Inhibitors. Int J Biol Sci 2017; 13:198-208. [PMID: 28255272 PMCID: PMC5332874 DOI: 10.7150/ijbs.17240] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 09/09/2016] [Indexed: 12/24/2022] Open
Abstract
One of the DNA repair machineries is activated by Poly (ADP-ribose) Polymerase (PARP) enzyme. Particularly, this enzyme is involved in repair of damages to single-strand DNA, thus decreasing the chances of generating double-strand breaks in the genome. Therefore, the concept to block PARP enzymes by PARP inhibitor (PARPi) was appreciated in cancer treatment. PARPi has been designed and tested for many years and became a potential supplement for the conventional chemotherapy. However, increasing evidence indicates the appearance of the resistance to this treatment. Specifically, cancer cells may acquire new mutations or events that overcome the positive effect of these drugs. This paper describes several molecular mechanisms of PARPi resistance which were reported most recently, and summarizes some strategies to reverse this type of drug resistance.
Collapse
Affiliation(s)
- Yevgeniy Kim
- Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000, Republic of Kazakhstan
| | - Aleksei Kim
- Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000, Republic of Kazakhstan
| | - Ainur Sharip
- Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000, Republic of Kazakhstan
| | - Aigul Sharip
- Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000, Republic of Kazakhstan
| | - Juhong Jiang
- Department of Pathology, the First Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qing Yang
- Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000, Republic of Kazakhstan
| | - Yingqiu Xie
- Department of Biology, Nazarbayev University, School of Science and Technology, Astana, 010000, Republic of Kazakhstan
| |
Collapse
|
160
|
Pavlakis E, Tonchev AB, Kaprelyan A, Enchev Y, Stoykova A. Interaction between transcription factors PAX6/PAX6-5a and specific members of miR-183-96-182 cluster, may contribute to glioma progression in glioblastoma cell lines. Oncol Rep 2017; 37:1579-1592. [DOI: 10.3892/or.2017.5411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 01/02/2017] [Indexed: 11/06/2022] Open
|
161
|
Smith LD, Leme de Calais F, Raponi M, Mellone M, Buratti E, Blaydes JP, Baralle D. Novel splice-switching oligonucleotide promotes BRCA1 aberrant splicing and susceptibility to PARP inhibitor action. Int J Cancer 2017; 140:1564-1570. [PMID: 27997688 DOI: 10.1002/ijc.30574] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 11/10/2016] [Accepted: 12/05/2016] [Indexed: 01/02/2023]
Abstract
Tumors carrying hereditary mutations in BRCA1, which attenuate the BRCA1 DNA damage repair pathway, are more susceptible to dual treatment with PARP inhibitors and DNA damaging therapeutics. Conversely, breast cancer tumors with nonmutated functional BRCA1 are less sensitive to PARP inhibition. We describe a method that triggers susceptibility to PARP inhibition in BRCA1-functional tumor cells. BRCA1 exon 11 is a key for the function of BRCA1 in DNA damage repair. Analysis of the BRCA1 exon 11 splicing mechanism identified a key region within this exon which, when deleted, induced exon 11 skipping. An RNA splice-switching oligonucleotide (SSO) developed to target this region was shown to artificially stimulate skipping of exon 11 in endogenous BRCA1 pre-mRNA. SSO transfection rendered wild-type BRCA1 expressing cell lines more susceptible to PARP inhibitor treatment, as demonstrated by a reduction in cell survival at all SSO concentrations tested. Combined SSO and PARP inhibitor treatment increased γH2AX expression indicating that SSO-dependent skipping of BRCA1 exon 11 was able to promote DSBs and therefore synthetic lethality. In conclusion, this SSO provides a new potential therapeutic strategy for targeting BRCA1-functional breast cancer by enhancing the effect of PARP inhibitors.
Collapse
Affiliation(s)
- Lindsay D Smith
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Flávia Leme de Calais
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Michela Raponi
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Massimiliano Mellone
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Padriciano, 99 34149, Trieste, Italy
| | - Jeremy P Blaydes
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Diana Baralle
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
162
|
Zhang L, Bluhm AM, Chen KJ, Larkey NE, Burrows SM. Performance of nano-assembly logic gates with a DNA multi-hairpin motif. NANOSCALE 2017; 9:1709-1720. [PMID: 28090611 DOI: 10.1039/c6nr07814a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
DNA nano-assemblies have far-reaching implications for molecular computers. Boolean logic gates made from DNA respond to specific combinations of chemical or molecular inputs. In complex samples an assortment of other chemicals and molecules may interfere with the gate's recognition and response mechanisms. For logic gates to accept an increasing number of inputs, while maintaining selectivity, their design must only respond when specific input combinations are available simultaneously. Here we present proof-of-principle for a fluorescent-based nano-assembly logic gate for three inputs. Central to the gate's design is a multi-hairpin motif that distinguishes it from other works in this area. The multi-hairpin motif facilitates a larger and increasing number of inputs and a place to generate FRET-based signal enhancement. We will show the nano-assembly logic gate worked in aqueous buffer and in crude MCF-7 cell lysate. We will demonstrate the gate's selectivity against off-analyte cocktails. Finally, multi-hairpin motifs with different chemical and physical properties were evaluated to test their logic capabilities. Future work will demonstrate the gate's ability to visually identify specific combinations of oligonucleotides called small non-coding RNAs (ncRNAs) in cells. This nano-assembly logic gate for small ncRNA has far reaching cellular computation and single-cell analysis applicability. The gate can be used for basic cellular analysis, computing and observing the unique molecular expression patterns in tumor microenvironments, and advancing the field of therapeutics.
Collapse
Affiliation(s)
- Lulu Zhang
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - Annie M Bluhm
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - Kuan-Jen Chen
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - Nicholas E Larkey
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| | - Sean M Burrows
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, USA.
| |
Collapse
|
163
|
Fang Y, Zhang L, Li Z, Li Y, Huang C, Lu X. MicroRNAs in DNA Damage Response, Carcinogenesis, and Chemoresistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 333:1-49. [DOI: 10.1016/bs.ircmb.2017.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
164
|
Wang L, Jiang H, Li W, Jia C, Zhang H, Sun Y, Chen X, Song X. Overexpression of TP53 mutation-associated microRNA-182 promotes tumor cell proliferation and migration in head and neck squamous cell carcinoma. Arch Oral Biol 2017; 73:105-112. [DOI: 10.1016/j.archoralbio.2016.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/14/2023]
|
165
|
An X, Sarmiento C, Tan T, Zhu H. Regulation of multidrug resistance by microRNAs in anti-cancer therapy. Acta Pharm Sin B 2017; 7:38-51. [PMID: 28119807 PMCID: PMC5237711 DOI: 10.1016/j.apsb.2016.09.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/30/2016] [Accepted: 07/06/2016] [Indexed: 12/31/2022] Open
Abstract
Multidrug resistance (MDR) remains a major clinical obstacle to successful cancer treatment. Although diverse mechanisms of MDR have been well elucidated, such as dysregulation of drugs transporters, defects of apoptosis and autophagy machinery, alterations of drug metabolism and drug targets, disrupti on of redox homeostasis, the exact mechanisms of MDR in a specific cancer patient and the cross-talk among these different mechanisms and how they are regulated are poorly understood. MicroRNAs (miRNAs) are a new class of small noncoding RNAs that could control the global activity of the cell by post-transcriptionally regulating a large variety of target genes and proteins expression. Accumulating evidence shows that miRNAs play a key regulatory role in MDR through modulating various drug resistant mechanisms mentioned above, thereby holding much promise for developing novel and more effective individualized therapies for cancer treatment. This review summarizes the various MDR mechanisms and mainly focuses on the role of miRNAs in regulating MDR in cancer treatment.
Collapse
Affiliation(s)
- Xin An
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Cesar Sarmiento
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Tao Tan
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Corresponding authors..
| | - Hua Zhu
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
- Corresponding authors..
| |
Collapse
|
166
|
Yu J, Lei R, Zhuang X, Li X, Li G, Lev S, Segura MF, Zhang X, Hu G. MicroRNA-182 targets SMAD7 to potentiate TGFβ-induced epithelial-mesenchymal transition and metastasis of cancer cells. Nat Commun 2016; 7:13884. [PMID: 27996004 PMCID: PMC5187443 DOI: 10.1038/ncomms13884] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/09/2016] [Indexed: 12/13/2022] Open
Abstract
The transforming growth factor β (TGFβ) pathway plays critical roles during cancer cell epithelial-mesenchymal transition (EMT) and metastasis. SMAD7 is both a transcriptional target and a negative regulator of TGFβ signalling, thus mediating a negative feedback loop that may potentially restrain TGFβ responses of cancer cells. Here, however, we show that TGFβ treatment induces SMAD7 transcription but not its protein level in a panel of cancer cells. Mechanistic studies reveal that TGFβ activates the expression of microRNA-182 (miR-182), which suppresses SMAD7 protein. miR-182 silencing leads to SMAD7 upregulation on TGFβ treatment and prevents TGFβ-induced EMT and invasion of cancer cells. Overexpression of miR-182 promotes breast tumour invasion and TGFβ-induced osteoclastogenesis for bone metastasis. Furthermore, miR-182 expression inversely correlates with SMAD7 protein in human tumour samples. Therefore, our data reveal the miR-182-mediated disruption of TGFβ self-restraint and provide a mechanism to explain the unleashed TGFβ responses in metastatic cancer cells. SMAD7 is a transcriptional target and a negative regulator of TGFβ signalling forming a negative feedback loop. Here the authors show that in cancer cells TGFβ activates the expression of microRNA-182 that suppresses SMAD7 protein, promoting TGFβ-mediated breast tumour invasion and bone metastasis.
Collapse
Affiliation(s)
- Jingyi Yu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Rong Lei
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xueqian Zhuang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxun Li
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Gang Li
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Sima Lev
- Molecular Cell Biology Department, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miguel F Segura
- Department of Pathology, New York University School of Medicine, New York, New York 10016, USA
| | - Xue Zhang
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Guohong Hu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences &Shanghai Jiao Tong University School of Medicine, University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
167
|
Liu Y, Qiang W, Xu X, Dong R, Karst AM, Liu Z, Kong B, Drapkin RI, Wei JJ. Role of miR-182 in response to oxidative stress in the cell fate of human fallopian tube epithelial cells. Oncotarget 2016; 6:38983-98. [PMID: 26472020 PMCID: PMC4770751 DOI: 10.18632/oncotarget.5493] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 09/29/2015] [Indexed: 12/11/2022] Open
Abstract
High grade serous ovarian carcinoma (HGSC) is a DNA instable tumor and its precursor is commonly found originating from the fimbriated end of the fallopian tube secretory epithelial (FTSE) cells. The local stresses via ovulation and related inflammation are risks for HGSC. In this study, we examined the cellular and molecular responses of FTSE cells to stress. We found that excess intracellular reactive oxygen species (ROS) in normal FTSE cells upregulated a subset of microRNA expression (defined as ROSmiRs). Most ROSmiRs' expression and function were influenced and regulated by p53, and together they drove the cells into stress-induced premature senescence (SIPS). However, ROS-induced miR-182 is regulated by β-catenin, not by p53. In normal FTSE cells, miR-182 overexpression triggers cellular senescence by p53-mediated upregulation of p21. Conversely, in cells with p53 mutations, miR-182 overexpression no longer enhances p21 but functions as an “Onco-miR”. p53 dysfunction is a prerequisite for miR-182-mediated tumorigenesis. In addition, we found that human follicular fluid could significantly induce intracellular ROS in normal FTSE cells. These findings suggest that ROS and p53 mutations may trigger a series of events, beginning with overexpressing miR-182 by ROS and β-catenin, impairing the DNA damage response, promoting DNA instability, bypassing senescence and eventually leading to DNA instable tumors in FTSE cells.
Collapse
Affiliation(s)
- Yugang Liu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Wenan Qiang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xiaofei Xu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ruifen Dong
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alison M Karst
- The Division of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Zhaojian Liu
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Ronny I Drapkin
- The Division of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jian-Jun Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
168
|
He M, Zhou W, Li C, Guo M. MicroRNAs, DNA Damage Response, and Cancer Treatment. Int J Mol Sci 2016; 17:ijms17122087. [PMID: 27973455 PMCID: PMC5187887 DOI: 10.3390/ijms17122087] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/23/2016] [Accepted: 12/07/2016] [Indexed: 02/07/2023] Open
Abstract
As a result of various stresses, lesions caused by DNA-damaging agents occur constantly in each cell of the human body. Generally, DNA damage is recognized and repaired by the DNA damage response (DDR) machinery, and the cells survive. When repair fails, the genomic integrity of the cell is disrupted—a hallmark of cancer. In addition, the DDR plays a dual role in cancer development and therapy. Cancer radiotherapy and chemotherapy are designed to eliminate cancer cells by inducing DNA damage, which in turn can promote tumorigenesis. Over the past two decades, an increasing number of microRNAs (miRNAs), small noncoding RNAs, have been identified as participating in the processes regulating tumorigenesis and responses to cancer treatment with radiation therapy or genotoxic chemotherapies, by modulating the DDR. The purpose of this review is to summarize the recent findings on how miRNAs regulate the DDR and discuss the therapeutic functions of miRNAs in cancer in the context of DDR regulation.
Collapse
Affiliation(s)
- Mingyang He
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Weiwei Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Chuang Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
169
|
Martinez-Ruiz H, Illa-Bochaca I, Omene C, Hanniford D, Liu Q, Hernando E, Barcellos-Hoff MH. A TGFβ-miR-182-BRCA1 axis controls the mammary differentiation hierarchy. Sci Signal 2016; 9:ra118. [PMID: 27923913 DOI: 10.1126/scisignal.aaf5402] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Maintenance of mammary functional capacity during cycles of proliferation and regression depends on appropriate cell fate decisions of mammary progenitor cells to populate an epithelium consisting of secretory luminal cells and contractile myoepithelial cells. It is well established that transforming growth factor-β (TGFβ) restricts mammary epithelial cell proliferation and that sensitivity to TGFβ is decreased in breast cancer. We show that TGFβ also exerts control of mammary progenitor self-renewal and lineage commitment decisions by stringent regulation of breast cancer associated 1 (BRCA1), which controls stem cell self-renewal and lineage commitment. Either genetic depletion of Tgfb1 or transient blockade of TGFβ increased self-renewal of mammary progenitor cells in mice, cultured primary mammary epithelial cells, and also skewed lineage commitment toward the myoepithelial fate. TGFβ stabilized the abundance of BRCA1 by reducing the abundance of microRNA-182 (miR-182). Ectopic expression of BRCA1 or antagonism of miR-182 in cultured TGFβ-deficient mammary epithelial cells restored luminal lineage commitment. These findings reveal that TGFβ modulation of BRCA1 directs mammary epithelial cell fate and, because stem or progenitor cells are thought to be the cell of origin for aggressive breast cancer subtypes, suggest that TGFβ dysregulation during tumorigenesis may promote distinct breast cancer subtypes.
Collapse
Affiliation(s)
- Haydeliz Martinez-Ruiz
- Department of Radiation Oncology, New York University School of Medicine, 450 East 29th Street, New York, NY 10016, USA
| | - Irineu Illa-Bochaca
- Department of Radiation Oncology, New York University School of Medicine, 450 East 29th Street, New York, NY 10016, USA
| | - Coral Omene
- Department of Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Douglas Hanniford
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Qi Liu
- Department of Radiation Oncology, University of California, San Francisco, 2840 Sutter Street, San Francisco, CA 94143, USA
| | - Eva Hernando
- Department of Pathology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, New York University School of Medicine, 450 East 29th Street, New York, NY 10016, USA. .,Department of Radiation Oncology, University of California, San Francisco, 2840 Sutter Street, San Francisco, CA 94143, USA
| |
Collapse
|
170
|
Wang S, Ji J, Song J, Li X, Han S, Lian W, Cao C, Zhang X, Li M. MicroRNA-182 promotes pancreatic cancer cell proliferation and migration by targeting β-TrCP2. Acta Biochim Biophys Sin (Shanghai) 2016; 48:1085-1093. [PMID: 27797718 DOI: 10.1093/abbs/gmw105] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/21/2016] [Accepted: 08/19/2016] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is an aggressive malignancy. The median survival rate remains low, indicating that the identification of novel biomarkers and therapeutic targets is critical. Here, we examined the role of microRNA-182 (miR-182) in pancreatic cancer development. Analysis of human pancreatic cancer specimens and cell lines showed that miR-182 is overexpressed in pancreatic cancer and promotes tumor proliferation and invasion. β-TrCP2 was confirmed as a direct target of miR-182. Silencing of β-TrCP2 increased the levels of β-catenin, which is similar to miR-182 overexpression. Ectopic expression of β-TrCP2 inhibited the miR-182-induced activation of β-catenin signaling. The oncogenic effect of miR-182 and its reversal by β-TrCP2 were confirmed in vivo This study suggests that β-TrCP and miR-182 may be possible biomarkers and targets for early detection and treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Shi Wang
- Department of Interventional Radiology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Jiansong Ji
- Interventional Radiology Department of Zhejiang University Lishui Hospital, Lishui 323000, China
| | - Jingjing Song
- Interventional Radiology Department of Zhejiang University Lishui Hospital, Lishui 323000, China
| | - Xue Li
- Department of Interventional Radiology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Shilong Han
- Department of Interventional Radiology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Weishuai Lian
- Department of Interventional Radiology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Chuanwu Cao
- Department of Interventional Radiology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Xiaoping Zhang
- Department of Interventional Radiology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
- Institute of Medical Intervention Engineering, Tongji University, Shanghai 200073, China
| | - Maoquan Li
- Department of Interventional Radiology, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
- Institute of Medical Intervention Engineering, Tongji University, Shanghai 200073, China
| |
Collapse
|
171
|
Natarajan V. Regulation of DNA repair by non-coding miRNAs. Noncoding RNA Res 2016; 1:64-68. [PMID: 30159412 PMCID: PMC6096415 DOI: 10.1016/j.ncrna.2016.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 10/25/2016] [Accepted: 10/25/2016] [Indexed: 12/19/2022] Open
Abstract
DNA repair is an important signaling mechanism that is necessary to maintain genomic stability. Various types of DNA repair proteins are involved in the repair of different types of DNA damage. However, most of the DNA repair proteins are modified post-translation in order to activate their repair function, such as, ubiquitination, phosphorylation, acetylation, etc. Similarly, DNA repair proteins are also regulated by posttranscriptional modifications. Non-coding microRNAs (miRNAs) induced posttranscriptional regulation of mRNAs has gained attention in recent years. MiRNA-induced regulation of DNA repair proteins is of great interest, owing to its potential role in cancer therapy. In this review, we have summarized the role of different miRNAs in the regulation of various types of DNA repair proteins, which are essential for the maintenance of genomic stability.
Collapse
Key Words
- ATM, ataxia-telangiectasia mutated
- ATR, ataxia-telangiectasia mutated related
- BER, base excision repair
- DNA damage
- DNA repair
- DSB repair
- DSB, double strand break
- FA, Fanconi anemia
- Genomic instability
- HR, homologous recombination
- MIS, micro-instability syndrome
- NER
- NER, nucleotide excision repair
- NHEJ, non-homologous end joining
- TLS, translesion synthesis
- miRNAs
Collapse
Affiliation(s)
- Venkateswaran Natarajan
- Diagnostic Molecular Oncology Centre, Department of Pathology, National University Hospital, Singapore
| |
Collapse
|
172
|
Majidinia M, Yousefi B. DNA damage response regulation by microRNAs as a therapeutic target in cancer. DNA Repair (Amst) 2016; 47:1-11. [DOI: 10.1016/j.dnarep.2016.09.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/12/2022]
|
173
|
Zhao L, So CWE. PARP-inhibitor-induced synthetic lethality for acute myeloid leukemia treatment. Exp Hematol 2016; 44:902-7. [PMID: 27473567 DOI: 10.1016/j.exphem.2016.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 10/21/2022]
Abstract
Genomic instability is one of the most common and critical characteristics of cancer cells. The combined effect of replication stress and DNA damage repair defects associated with various oncogenic events drives genomic instability and disease progression. However, these DNA repair defects found in cancer cells can also provide unique therapeutic opportunities and form the basis of synthetic lethal targeting of solid tumors carrying BRCA mutations. Although the idea of utilizing synthetic lethality as a therapy strategy has been gaining momentum in various solid tumors, its application in leukemia still largely lags behind. In this article, we review recent advances in understanding the roles of the DNA damage response in acute myeloid leukemia and examine the potential therapeutic avenues of using poly (ADP-ribose) polymerase (PARP) inhibitors in AML treatment.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Cell Transformation, Neoplastic/genetics
- Clinical Trials as Topic
- DNA Damage
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Leukemic/drug effects
- Genomic Instability
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Oxidative Stress/drug effects
- PTEN Phosphohydrolase/metabolism
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
- Signal Transduction/drug effects
- Synthetic Lethal Mutations/drug effects
- Transcription, Genetic
Collapse
Affiliation(s)
- Lu Zhao
- Leukaemia and Stem Cell Biology Group. Department of Haematological Medicine, King's College London, London, UK
| | - Chi Wai Eric So
- Leukaemia and Stem Cell Biology Group. Department of Haematological Medicine, King's College London, London, UK.
| |
Collapse
|
174
|
Huang X, Taeb S, Jahangiri S, Korpela E, Cadonic I, Yu N, Krylov SN, Fokas E, Boutros PC, Liu SK. miR-620 promotes tumor radioresistance by targeting 15-hydroxyprostaglandin dehydrogenase (HPGD). Oncotarget 2016; 6:22439-51. [PMID: 26068950 PMCID: PMC4673174 DOI: 10.18632/oncotarget.4210] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 05/22/2015] [Indexed: 12/22/2022] Open
Abstract
MicroRNA contribute to tumor radiation resistance, which is an important clinical problem, and thus we are interested in identifying and characterizing their function. We demonstrate that miR-620 contributes to radiation resistance in cancer cells by increasing proliferation, and decreasing the G2/M block. We identify the hydroxyprostaglandin dehydrogenase 15-(nicotinamide adenine dinucleotide) (HPGD/15-PGDH) tumor suppressor gene as a direct miR-620 target, which results in increased prostaglandin E2 (PGE2) levels. Furthermore, we show that siRNA targeting of HPGD or administration of exogenous PGE2 recapitulates radioresistance. Targeting of the EP2 receptor that responds to PGE2 using pharmacological or genetic approaches, abrogates radioresistance. Tumor xenograft experiments confirm that miR-620 increases proliferation and tumor radioresistance in vivo. Regulation of PGE2 levels via targeting of HPGD by miR-620 is an innovative manner by which a microRNA can induce radiation resistance.
Collapse
Affiliation(s)
- Xiaoyong Huang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Samira Taeb
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Sahar Jahangiri
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Elina Korpela
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Ivan Cadonic
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Nancy Yu
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Emmanouil Fokas
- CRUK/MRC Oxford Institute for Radiation Oncology, Gray Laboratories, Department of Oncology, University of Oxford, Oxford, UK
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Ontario Institute for Cancer Research, University of Toronto, Toronto, Canada
| | - Stanley K Liu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
175
|
Stover EH, Konstantinopoulos PA, Matulonis UA, Swisher EM. Biomarkers of Response and Resistance to DNA Repair Targeted Therapies. Clin Cancer Res 2016; 22:5651-5660. [PMID: 27678458 DOI: 10.1158/1078-0432.ccr-16-0247] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 11/16/2022]
Abstract
Drugs targeting DNA damage repair (DDR) pathways are exciting new agents in cancer therapy. Many of these drugs exhibit synthetic lethality with defects in DNA repair in cancer cells. For example, ovarian cancers with impaired homologous recombination DNA repair show increased sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. Understanding the activity of different DNA repair pathways in individual tumors, and the correlations between DNA repair function and drug response, will be critical to patient selection for DNA repair targeted agents. Genomic and functional assays of DNA repair pathway activity are being investigated as potential biomarkers of response to targeted therapies. Furthermore, alterations in DNA repair function generate resistance to DNA repair targeted agents, and DNA repair states may predict intrinsic or acquired drug resistance. In this review, we provide an overview of DNA repair targeted agents currently in clinical trials and the emerging biomarkers of response and resistance to these agents: genetic and genomic analysis of DDR pathways, genomic signatures of mutational processes, expression of DNA repair proteins, and functional assays for DNA repair capacity. We review biomarkers that may predict response to selected DNA repair targeted agents, including PARP inhibitors, inhibitors of the DNA damage sensors ATM and ATR, and inhibitors of nonhomologous end joining. Finally, we introduce emerging categories of drugs targeting DDR and new strategies for integrating DNA repair targeted therapies into clinical practice, including combination regimens. Generating and validating robust biomarkers will optimize the efficacy of DNA repair targeted therapies and maximize their impact on cancer treatment. Clin Cancer Res; 22(23); 5651-60. ©2016 AACR.
Collapse
|
176
|
MiR-182-5p protects inner ear hair cells from cisplatin-induced apoptosis by inhibiting FOXO3a. Cell Death Dis 2016; 7:e2362. [PMID: 27607577 PMCID: PMC5059852 DOI: 10.1038/cddis.2016.246] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 06/14/2016] [Accepted: 07/13/2016] [Indexed: 01/01/2023]
Abstract
Cisplatin is widely used for chemotherapy of a variety of malignancies. However, the clinical application of cisplatin is hampered by the resultant irreversible hearing loss due to hair cell apoptosis. To date, no practical regimen to resolve this has been developed. Meanwhile, the role of microRNA in protecting hair cells from cisplatin-induced apoptosis in the inner ear has not been extensively investigated. In this study, we monitored miR-183, -96, and -182 turnover in the cochlea during cisplatin treatment in vitro. We found that overexpression of miR-182, but not miR-183 and -96, improved hair cell survival after 3 μM cisplatin treatment in vitro. We demonstrated that overexpression of miR-182 repressed the intrinsic apoptotic pathway by inhibiting the translation of FOXO3a. Our study offers a new therapeutic target for alleviating cisplatin-induced hair cell apoptosis in a rapid and tissue-specific manner.
Collapse
|
177
|
Murata S, Zhang C, Finch N, Zhang K, Campo L, Breuer EK. Predictors and Modulators of Synthetic Lethality: An Update on PARP Inhibitors and Personalized Medicine. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2346585. [PMID: 27642590 PMCID: PMC5013223 DOI: 10.1155/2016/2346585] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/28/2016] [Indexed: 12/18/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have proven to be successful agents in inducing synthetic lethality in several malignancies. Several PARP inhibitors have reached clinical trial testing for treatment in different cancers, and, recently, Olaparib (AZD2281) has gained both United States Food and Drug Administration (USFDA) and the European Commission (EC) approval for use in BRCA-mutated advanced ovarian cancer treatment. The need to identify biomarkers, their interactions in DNA damage repair pathways, and their potential utility in identifying patients who are candidates for PARP inhibitor treatment is well recognized. In this review, we detail many of the biomarkers that have been investigated for their ability to predict both PARP inhibitor sensitivity and resistance in preclinical studies as well as the results of several clinical trials that have tested the safety and efficacy of different PARP inhibitor agents in BRCA and non-BRCA-mutated cancers.
Collapse
Affiliation(s)
- Stephen Murata
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Catherine Zhang
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Nathan Finch
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Kevin Zhang
- Department of Otorhinolaryngology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Loredana Campo
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Eun-Kyoung Breuer
- Department of Radiation Oncology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
178
|
Up- regulation of miR-328-3p sensitizes non-small cell lung cancer to radiotherapy. Sci Rep 2016; 6:31651. [PMID: 27530148 PMCID: PMC4987701 DOI: 10.1038/srep31651] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 07/22/2016] [Indexed: 02/08/2023] Open
Abstract
MicroRNAs (miRNAs) are believed to be resistant against radiotherapy in certain types of cancers. The aim of our study was to determine the clinical application of miRNAs in non-small cell lung cancer (NSCLC). Sixty NSCLC tissue samples and adjacent histologically normal tissues were obtained for miRNAs microarray analysis and validated by RT-qPCR. Correlation between miRNA expression level and clinicopathological features was evaluated. Our study examined the influence of changed miRNA expression on the damaged DNA and its associated radio sensitivity. Luciferase assay was performed to determine potential effects on the targeted gene. Our study identified fifteen altered miRNAs in which miR-328-3p was down regulated in NSCLC tumour tissue as compared to normal tissues. Down-expression of miR-328-3p was positively associated with an enhanced lymph node metastasis, advanced clinical stage and a shortened survival rate. miR-328-3p expression was decreased in A549 cells compared to other NSCLC cell lines. Up-regulation of miR-328-3p demonstrated a survival inhibition effect in A549 and restored NSCLC cells' sensitivity to radio therapy. An increased miR-328-3p expression promoted irradiation-induced DNA damage in cells. γ-H2AX was identified as the direct target of miR-328-3p. Over-expressed miR-328-3p can improve the radiosensitvity of cells by altering the DNA damage/repair signalling pathways in NSCLC.
Collapse
|
179
|
Liu F, Zhang W, You X, Liu Y, Li Y, Wang Z, Wang Y, Zhang X, Ye L. The oncoprotein HBXIP promotes glucose metabolism reprogramming via downregulating SCO2 and PDHA1 in breast cancer. Oncotarget 2016; 6:27199-213. [PMID: 26309161 PMCID: PMC4694983 DOI: 10.18632/oncotarget.4508] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/17/2015] [Indexed: 12/03/2022] Open
Abstract
The glucose metabolism reprogramming is a hallmark of cancer. The oncoprotein hepatitis B X-interacting protein (HBXIP) functions in the development of breast cancer. In this study, we supposed that HBXIP might be involved in the glucose metabolism reprogramming in breast cancer. We showed that HBXIP led to increases in generation of intracellular glucose and lactate, as well as decreases in generation of reactive oxygen species. Expression of synthesis of cytochrome c oxidase 2 (SCO2) and pyruvate dehydrogenase alpha 1 (PDHA1), two factors of metabolic switch from oxidative phosphorylation to aerobic glycolysis, was suppressed by HBXIP. In addition, miR-183/182 and miR-96 directly inhibited the expression of SCO2 and PDHA1 through targeting their mRNA coding sequences (CDSs), respectively. Interestingly, HBXIP elevated the miR-183/96/182 cluster expression through hypoxia-inducible factor 1α (HIF1α). The stability of HIF1α was enhanced by HBXIP through disassociating interaction of von Hippel-Lindau protein (pVHL) with HIF1α. Moreover, miR-183 increased the levels of HIF1α protein through directly targeting CDS of VHL mRNA, forming a feedback loop of HIF1α/miR-183/pVHL/HIF1α. In function, HBXIP-elevated miR-183/96/182 cluster enhanced the glucose metabolism reprogramming in vitro. HBXIP-triggered glucose metabolism reprogramming promoted the growth of breast cancer in vivo. Thus, we conclude that the oncoprotein HBXIP enhances glucose metabolism reprogramming through suppressing SCO2 and PDHA1 in breast cancer.
Collapse
Affiliation(s)
- Fabao Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Weiying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Xiaona You
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Yunxia Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Yinghui Li
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Zhen Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Yue Wang
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Xiaodong Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, P.R. China
| |
Collapse
|
180
|
Chiang CH, Chu PY, Hou MF, Hung WC. MiR-182 promotes proliferation and invasion and elevates the HIF-1α-VEGF-A axis in breast cancer cells by targeting FBXW7. Am J Cancer Res 2016; 6:1785-1798. [PMID: 27648365 PMCID: PMC5004079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023] Open
Abstract
The feature of imperfect complementary effect of miRNAs to mRNAs implies that miRNAs may simultaneously target different mRNAs to affect multiple aspects of tumorigenesis. In our previous results, we demonstrated that miR-182 was over-expressed in breast cancer cell lines and clinical tumor tissues and its up-regulation increased tumorigenicity and invasiveness by repressing a tumor suppressor RECK. In this study, we showed that overexpression miR-182 regulated actin distribution and filopodia formation to increase invasiveness of breast cancer cells. In addition, miR-182 enhanced cell cycle progression and proliferation. We further identified the E3 ubiquitin-protein ligase FBXW7 as a target gene of miR-182. We also demonstrated that miR-182-overexpressing cells were highly sensitive to hypoxia. Under hypoxic condition, HIF-1α and VEGF-A proteins were significantly upregulated in these cells. In addition, the conditioned medium of miR-182-overexpressing cells contained more VEGF-A than the control cells and induced angiogenesis more efficiently in vitro. All these effects could be counteracted by ectopic expression of FBXW7 in cells or neutralization of VEGF-A in the conditioned media by specific antibody. Finally, our data showed that miR-182 expression was inversely correlated with FBXW7 in breast tumor tissues. In conclusion, our study explores a novel mechanism by which miR-182 elevates HIF-1α expression to promote breast cancer progression.
Collapse
Affiliation(s)
- Chi-Hsiang Chiang
- National Institute of Cancer Research, National Health Research InstitutesTainan, Taiwan, Republic of China
| | - Pei-Yi Chu
- Department of Pathology, Show Chwan Memorial HospitalChanghua City, Taiwan
| | - Ming-Feng Hou
- Department of Surgery, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan, Republic of China
- Department of Surgery, Kaohsiung Municipal Hsiao Kang HospitalKaohsiung, Taiwan, Republic of China
- Cancer Center, Kaohsiung Medical University HospitalKaohsiung, Taiwan, Republic of China
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research InstitutesTainan, Taiwan, Republic of China
- Cancer Center, Kaohsiung Medical University HospitalKaohsiung, Taiwan, Republic of China
- Institute of Medicine, College of Medicine, Kaohsiung Medical UniversityKaohsiung, Taiwan, Republic of China
| |
Collapse
|
181
|
Wang YQ, Wang PY, Wang YT, Yang GF, Zhang A, Miao ZH. An Update on Poly(ADP-ribose)polymerase-1 (PARP-1) Inhibitors: Opportunities and Challenges in Cancer Therapy. J Med Chem 2016; 59:9575-9598. [PMID: 27416328 DOI: 10.1021/acs.jmedchem.6b00055] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly(ADP-ribose)polymerase-1 (PARP-1) is a critical DNA repair enzyme in the base excision repair pathway. Inhibitors of this enzyme comprise a new type of anticancer drug that selectively kills cancer cells by targeting homologous recombination repair defects. Since 2010, important advances have been achieved in PARP-1 inhibitors. Specifically, the approval of olaparib in 2014 for the treatment of ovarian cancer with BRCA mutations validated PARP-1 as an anticancer target and established its clinical importance in cancer therapy. Here, we provide an update on PARP-1 inhibitors, focusing on breakthroughs in their clinical applications and investigations into relevant mechanisms of action, biomarkers, and drug resistance. We also provide an update on the design strategies and the structural types of PARP-1 inhibitors. Opportunities and challenges in PARP-1 inhibitors for cancer therapy will be discussed based on the above advances.
Collapse
Affiliation(s)
- Ying-Qing Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Ping-Yuan Wang
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Pudong, Shanghai 201203, China.,Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, China
| | - Yu-Ting Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University , Wuhan 430079, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, and Synthetic Organic & Medicinal Chemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Lu, Building 3, Room 426, Pudong, Shanghai 201203, China
| | - Ze-Hong Miao
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , Shanghai 201203, China
| |
Collapse
|
182
|
Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J Hum Genet 2016; 62:15-24. [PMID: 27439682 DOI: 10.1038/jhg.2016.89] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/11/2016] [Accepted: 06/13/2016] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that regulate the function of target genes at the post-transcriptional phase. miRNAs are considered to have roles in the development, progression and metastasis of cancer. Recent studies have indicated that particular miRNA signatures are correlated with tumor aggressiveness, response to drug therapy and patient outcome in breast cancer. On the other hand, in routine clinical practice, the treatment regimens for breast cancer are determined based on the intrinsic subtype of the primary tumor. Previous studies have shown that miRNA expression profiles of each intrinsic subtypes of breast cancer differ. In hormone receptor-positive/human epidermal growth factor receptor 2 (HER2)-negative breast cancer, miRNA expressions are found to be correlated with endocrine therapy resistance, progesterone receptor expression and heat shock protein activity. Some miRNAs are associated with resistance to HER2-targeted therapy and HER3 expression in HER2-positive breast cancer. In triple-negative breast cancer, miRNA expressions are found to be associated with BRCA mutations, immune system, epithelial-mesenchymal transition, cancer stem cell properties and androgen receptor expression. As it has been clarified that the expression levels and functions of miRNA differ among the various subtypes of breast cancer, and it is necessary to take account of the characteristics of each breast cancer subtype during research into the roles of miRNA in breast cancer. In addition, the discovery of the roles played by miRNAs in breast cancer might provide new opportunities for the development of novel strategies for diagnosing and treating breast cancer.
Collapse
|
183
|
Mueller AK, Lindner K, Hummel R, Haier J, Watson DI, Hussey DJ. MicroRNAs and Their Impact on Radiotherapy for Cancer. Radiat Res 2016; 185:668-677. [PMID: 27223830 DOI: 10.1667/rr14370.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Resistance to radiation is considered to be an important reason for local failure after radiotherapy and tumor recurrence. However, the exact mechanisms of tumor resistance remain poorly understood. Current investigations of microRNAs as potential diagnostic and therapeutic tools for cancer treatment have shown promising results. With respect to radiotherapy resistance and response, there is now emerging evidence that microRNAs modulate key cellular pathways that mediate response to radiation. These data suggest that microRNAs might have significant potential as targets for the development of new therapeutic strategies to overcome radioresistance in cancer. This review summarizes the current literature pertinent to the influence of microRNAs in the response to radiotherapy for cancer treatment, with an emphasis on microRNAs as novel diagnostic and prognostic markers, as well as their potential to alter radiosensitivity.
Collapse
Affiliation(s)
| | | | - Richard Hummel
- a University Hospital of Muenster, 48149 Muenster, Germany
| | - Jörg Haier
- b Comprehensive Cancer Centre Muenster, University of Muenster, 48149 Muenster, Germany; and
| | - David I Watson
- c Flinders Medical Centre, Bedfork Park SA 5042, Australia
| | | |
Collapse
|
184
|
Gheysarzadeh A, Yazdanparast R. STAT5 reactivation by catechin modulates H2O 2-induced apoptosis through miR-182/FOXO1 pathway in SK-N-MC cells. Cell Biochem Biophys 2016; 71:649-56. [PMID: 25231457 DOI: 10.1007/s12013-014-0244-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
It has been suggested that oxidative stress-induced apoptosis is a major contributing factor in the pathogenesis of Alzheimer's and Parkinson's diseases. However, the molecular mechanism of the oxidative stress-associated apoptosis is far to be elucidated. Herein, we investigated whether STAT5, which is involved in many signaling pathways, is affected by oxidative stress. Previously, it has been shown that STAT5 is a direct activator of miR-182 which is in turn a robust inhibitor of FOXO1. Our results showed that oxidative stress inactivated STAT5 may be in a JAK2-independent manner. Thus, under oxidative stress and miR-182 down-regulation, FOXO1 has the opportunity to be translated leading to FOXO1 over-expression. Finally, pro-apoptotic gene targets of FOXO1 e.g., Bim and Bax are up-regulated leading to apoptosis. To further confirm such events, we also demonstrated that Catechin, a well-known natural antioxidant, partially restored both the STAT5 activation and miR-182 expression resulting in cell survival. To the best of our knowledge, this is the first study demonstrating that STAT5/miRNA-182 negatively regulates FOXO1 in response to oxidative stress.
Collapse
Affiliation(s)
- Ali Gheysarzadeh
- Institute of Biochemistry and Biophysics, University of Tehran, P. O. Box 13145-1384, Tehran, Iran
| | | |
Collapse
|
185
|
Identification of BRCA1 Deficiency Using Multi-Analyte Estimation of BRCA1 and Its Repressors in FFPE Tumor Samples from Patients with Triple Negative Breast Cancer. PLoS One 2016; 11:e0153113. [PMID: 27077368 PMCID: PMC4831669 DOI: 10.1371/journal.pone.0153113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/23/2016] [Indexed: 12/21/2022] Open
Abstract
PURPOSE Apart from germ-line BRCA1-mutated breast cancers, a significant proportion of women with sporadic triple negative breast cancer (TNBC) sub-type are known to harbour varying levels of BRCA1-dysfuction. There is currently no established diagnostic method to identify these patients. METHODS The analysis was performed on 183 primary breast cancer tumor specimens from our longitudinal case-series archived as formalin-fixed-paraffin-embedded (FFPE) blocks comprising 71 TNBCs and 112 Hormone receptor positive HER2 negative (HR+HER2-) tumors. Transcript levels of BRCA1 and two of its repressors ID4 and microRNA182 were determined by TaqMan quantitative PCR. BRCA1 protein was detected immunohistochemically with the MS110 antibody. RESULTS The representation of BRCA1 and its repressor ID4 as a ratio led to improved separation of TNBCs from HR+HER2- compared to either measure by itself. We then dichotomised the continuous distribution of each of the three measurements (Protein, MIRNA and transcript:repressor ratio) into categories of deficient (0) and adequate (1). A composite BRCA1 Deficiency Score (BDS) was computed by the addition of the score for all three measures. Samples deficient on 2 or more measures were deemed to be BRCA1 deficient; and 40% of all TNBCs met this criterion. CONCLUSION We propose here a simple multi-level assay of BRCA1 deficiency using the BRCA1:ID4 ratio as a critical parameter that can be performed on FFPE samples in clinical laboratories by the estimation of only 3 bio-markers. The ease of testing will hopefully encourage adoption and clinical validation.
Collapse
|
186
|
Sajadimajd S, Yazdanparast R, Akram S. Involvement of Numb-mediated HIF-1α inhibition in anti-proliferative effect of PNA-antimiR-182 in trastuzumab-sensitive and -resistant SKBR3 cells. Tumour Biol 2016; 37:5413-26. [PMID: 26563369 DOI: 10.1007/s13277-015-4297-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 10/20/2015] [Indexed: 12/21/2022] Open
Abstract
Trastuzumab is a humanized monoclonal antibody against the human epidermal growth factor receptor 2 (HER2) that is overexpressed in about 25 % of breast cancer patients. However, primary and/or acquired resistance to trastuzumab develops in most affected persons. In this study, we explored the functional role of miR-182 inhibition with aiming the sensitization of SKBR3 cells to trastuzumab. Cell viability, apoptosis, colony formation, and migration capacities of SKBR3(S) (sensitive) and SKBR3(R) (resistant) cells were assessed to determine the anti-proliferative effects of PNA-antimiR-182. In addition, the expression levels of miR-182, mRNA of FOXO1, and Bim as well as the protein levels of HER2 and Notch1 signaling factors were evaluated by stem-loop RT-qPCR, RT-qPCR, and Western blot, respectively. The results indicated that miR-182 might play a causal role in the mechanism of trastuzumab. In line with that, PNA-antimiR-182 inhibited synergistically the viability of both the sensitive and resistant cell groups. Furthermore, the inhibitory effect of PNA-anitmiR-182 on migration in SKBR3 cells was more than the induction of apoptosis. In addition, PNA-antimiR-182 reduced the levels of NICD, Hes1, HIF-1α, and p-Akt in both cell groups, while it augmented the intracellular content of FOXO1 and Numb suppressor proteins. In other words, PNA-antimiR-182-mediated upregulation of Numb was associated with downregulation of HIF-1α and Hes1. Consequently, downregulation of miR-182 might find therapeutical value for overcoming trastuzumab resistance. Graphical Abstract The crosstalk between HER2 and Notch1 signaling pathway is mediated by miR-182.
Collapse
Affiliation(s)
- Soraya Sajadimajd
- Institute of Biochemistry and Biophysics, University of Tehran, P. O. Box 13145-1384, Tehran, Iran
| | - Razieh Yazdanparast
- Institute of Biochemistry and Biophysics, University of Tehran, P. O. Box 13145-1384, Tehran, Iran.
| | - Sadeghirizi Akram
- Institute of Biochemistry and Biophysics, University of Tehran, P. O. Box 13145-1384, Tehran, Iran
| |
Collapse
|
187
|
Alvarez C, Aravena A, Tapia T, Rozenblum E, Solís L, Corvalán A, Camus M, Alvarez M, Munroe D, Maass A, Carvallo P. Different Array CGH profiles within hereditary breast cancer tumors associated to BRCA1 expression and overall survival. BMC Cancer 2016; 16:219. [PMID: 26979459 PMCID: PMC4791866 DOI: 10.1186/s12885-016-2261-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 03/08/2016] [Indexed: 12/20/2022] Open
Abstract
Background Array CGH analysis of breast tumors has contributed to the identification of different genomic profiles in these tumors. Loss of DNA repair by BRCA1 functional deficiency in breast cancer has been proposed as a relevant contribution to breast cancer progression for tumors with no germline mutation. Identifying the genomic alterations taking place in BRCA1 not expressing tumors will lead us to a better understanding of the cellular functions affected in this heterogeneous disease. Moreover, specific genomic alterations may contribute to the identification of potential therapeutic targets and offer a more personalized treatment to breast cancer patients. Methods Forty seven tumors from hereditary breast cancer cases, previously analyzed for BRCA1 expression, and screened for germline BRCA1 and 2 mutations, were analyzed by Array based Comparative Genomic Hybridization (aCGH) using Agilent 4x44K arrays. Overall survival was established for tumors in different clusters using Log-rank (Mantel-Cox) Test. Gene lists obtained from aCGH analysis were analyzed for Gene Ontology enrichment using GOrilla and DAVID tools. Results Genomic profiling of the tumors showed specific alterations associated to BRCA1 or 2 mutation status, and BRCA1 expression in the tumors, affecting relevant cellular processes. Similar cellular functions were found affected in BRCA1 not expressing and BRCA1 or 2 mutated tumors. Hierarchical clustering classified hereditary breast tumors in four major, groups according to the type and amount of genomic alterations, showing one group with a significantly poor overall survival (p = 0.0221). Within this cluster, deletion of PLEKHO1, GDF11, DARC, DAG1 and CD63 may be associated to the worse outcome of the patients. Conclusions These results support the fact that BRCA1 lack of expression in tumors should be used as a marker for BRCAness and to select these patients for synthetic lethality approaches such as treatment with PARP inhibitors. In addition, the identification of specific alterations in breast tumors associated with poor survival, immune response or with a BRCAness phenotype will allow the use of a more personalized treatment in these patients.
Collapse
Affiliation(s)
- Carolina Alvarez
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrés Aravena
- Mathomics, Center for Mathematical Modeling (UMI 2807 CNRS) and Center for Genome Regulation (Fondap 15090007), University of Chile, Santiago, Chile.,Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Istanbul, 34134, Turkey
| | - Teresa Tapia
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ester Rozenblum
- Laboratory of Molecular Technology Advanced Technology Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD, USA
| | - Luisa Solís
- Department of Anatomo-Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro Corvalán
- Department of Anatomo-Pathology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mauricio Camus
- Cancer Center, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - David Munroe
- Laboratory of Molecular Technology Advanced Technology Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, MD, USA
| | - Alejandro Maass
- Mathomics, Center for Mathematical Modeling (UMI 2807 CNRS) and Center for Genome Regulation (Fondap 15090007), University of Chile, Santiago, Chile.,Department of Mathematical Engineering, University of Chile, Santiago, Chile
| | - Pilar Carvallo
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
188
|
Salvador MA, Birnbaum D, Charafe-Jauffret E, Ginestier C. Breast cancer stem cells programs: enter the (non)-code. Brief Funct Genomics 2016; 15:186-99. [PMID: 26955842 DOI: 10.1093/bfgp/elw003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Breast tumors exhibit a hierarchical cellular organization driven by several subpopulations of cancer stem cells (CSCs). These breast CSC subpopulations are able to infinitely self-renew and to differentiate, giving rise to tumor heterogeneity. Accumulating evidence show that breast CSCs resist conventional therapies and i`nitiate tumor relapse. The development of anti-CSCs therapies may therefore greatly improve patient survival. A better elucidation of molecular circuitries involved in stemness would offer new relevant targets. Noncoding RNAs, especially microRNAs and long noncoding RNAs, are regulators of cell identity and are notably found deregulated in breast CSCs. This review will focus on noncoding RNAs involved in CSCs biology during breast cancer initiation, maintenance, therapeutic resistance and metastatic progression. Potential clinical applications using noncoding RNAs as biomarkers or therapies will be discussed.
Collapse
|
189
|
Valenti F, Ganci F, Fontemaggi G, Sacconi A, Strano S, Blandino G, Di Agostino S. Gain of function mutant p53 proteins cooperate with E2F4 to transcriptionally downregulate RAD17 and BRCA1 gene expression. Oncotarget 2016; 6:5547-66. [PMID: 25650659 PMCID: PMC4467386 DOI: 10.18632/oncotarget.2587] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/10/2014] [Indexed: 11/25/2022] Open
Abstract
Genomic instability (IN) is a common feature of many human cancers. The TP53 tumour suppressor gene is mutated in approximately half of human cancers. Here, we show that BRCA1 and RAD17 genes, whose derived proteins play a pivotal role in DNA damage repair, are transcriptional targets of gain-of-function mutant p53 proteins. Indeed, high levels of mutp53 protein facilitate DNA damage accumulation and severely impair BRCA1 and RAD17 expression in proliferating cancer cells. The recruitment of mutp53/E2F4 complex onto specific regions of BRCA1 and RAD17 promoters leads to the inhibition of their expression. BRCA1 and RAD17 mRNA expression is reduced in HNSCC patients carrying TP53 mutations when compared to those bearing wt-p53 gene. Furthermore, the analysis of gene expression databases for breast cancer patients reveals that low expression of DNA repair genes correlates significantly with reduced relapse free survival of patients carrying TP53 gene mutations. Collectively, these findings highlight the direct involvement of transcriptionally active gain of function mutant p53 proteins in genomic instability through the impairment of DNA repair mechanisms.
Collapse
Affiliation(s)
- Fabio Valenti
- Translational Oncogenomic Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Federica Ganci
- Translational Oncogenomic Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Giulia Fontemaggi
- Translational Oncogenomic Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Andrea Sacconi
- Translational Oncogenomic Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Sabrina Strano
- Molecular Chemoprevention Group, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Giovanni Blandino
- Translational Oncogenomic Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome 00144, Italy
| | - Silvia Di Agostino
- Translational Oncogenomic Unit, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome 00144, Italy
| |
Collapse
|
190
|
Jacob J, Favicchio R, Karimian N, Mehrabi M, Harding V, Castellano L, Stebbing J, Giamas G. LMTK3 escapes tumour suppressor miRNAs via sequestration of DDX5. Cancer Lett 2016; 372:137-46. [PMID: 26739063 DOI: 10.1016/j.canlet.2015.12.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 12/13/2022]
Abstract
Lemur tyrosine kinase-3 (LMTK3) plays an important role in cancer progression and is associated with breast, lung, gastric and colorectal cancer. MicroRNAs (miRNAs) are small endogenous non-coding RNAs that typically repress target genes at post-transcriptional level and have an important role in tumorigenesis. By performing a miRNA expression profile, we identified a subset of miRNAs modulated by LMTK3. We show that LMTK3 induces miR-34a, miR-196-a2 and miR-182 levels by interacting with DEAD-box RNA helicase p68 (DDX5). LMTK3 binds via DDX5 to the pri-miRNA of these three mature miRNAs, thereby sequestrating them from further processing. Ectopic expression of miR-34a and miR-182 in LMTK3-overexpressing cell lines (MCF7-LMTK3 and MDA-MB-231-LMTK3) inhibits breast cancer proliferation, invasion and migration. Interestingly, miR-34a and miR-182 directly bind to the 3'UTR of LMTK3 mRNA and consequently inhibit both its stability and translation, acting as tumour suppressor-like miRNAs. In aggregate, we show that LMTK3 is involved in miRNA biogenesis through modulation of the Microprocessor complex, inducing miRNAs that target LMTK3 itself.
Collapse
Affiliation(s)
- Jimmy Jacob
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK.
| | - Rosy Favicchio
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Negin Karimian
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Maryam Mehrabi
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Victoria Harding
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Leandro Castellano
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Justin Stebbing
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Georgios Giamas
- Department of Surgery and Cancer, Division of Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK.
| |
Collapse
|
191
|
Yang Y, Dai C, Cai Z, Hou A, Cheng D, Wu G, Li J, Cui J, Xu D. The Pathway Analysis of Micrornas Regulated Drug-Resistant Responses in HeLa Cells. IEEE Trans Nanobioscience 2016; 15:113-8. [DOI: 10.1109/tnb.2016.2539365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
192
|
Abstract
It is emerging that the pathways that process newly transcribed RNA molecules also regulate the response to DNA damage at multiple levels. Here, we discuss recent insights into how RNA processing pathways participate in DNA damage recognition, signaling, and repair, selectively influence the expression of genome-stabilizing proteins, and resolve deleterious DNA/RNA hybrids (R-loops) formed during transcription and RNA processing. The importance of these pathways for the DNA damage response (DDR) is underscored by the growing appreciation that defects in these regulatory connections may be connected to the genome instability involved in several human diseases, including cancer.
Collapse
Affiliation(s)
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK.
| |
Collapse
|
193
|
Liu Y, Li Y, Lu X. Regulators in the DNA damage response. Arch Biochem Biophys 2016; 594:18-25. [PMID: 26882840 DOI: 10.1016/j.abb.2016.02.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/11/2016] [Accepted: 02/12/2016] [Indexed: 01/05/2023]
Abstract
Maintenance of genome integrity is essential for the proper function of all cells and organisms. In response to both endogenous and exogenous DNA damaging agents, mammalian cells have evolved a delicate system to sense DNA damage, stop cell cycle progression, modulate cell metabolism, repair damaged DNA, and induce programmed cell death if the damage is too severe. This coordinated global signaling network, namely the DNA damage response (DDR), ensures the genome stability under DNA damaging stress. A variety of regulators have been shown to modulate the activity and levels of key proteins in the DDR, including kinases, phosphatases, ubiquitin ligases, deubiquitinases, and other protein modifying enzymes. Epigenetic regulators, particularly microRNAs and long noncoding RNAs, have been emerging as an important payer of regulation in addition to canonical DNA damage signaling proteins. In this review, we will discuss the functional interaction between the regulators and their targets in the DDR.
Collapse
Affiliation(s)
- Yunhua Liu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Yujing Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Xiongbin Lu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
194
|
Lai TH, Ewald B, Zecevic A, Liu C, Sulda M, Papaioannou D, Garzon R, Blachly JS, Plunkett W, Sampath D. HDAC Inhibition Induces MicroRNA-182, which Targets RAD51 and Impairs HR Repair to Sensitize Cells to Sapacitabine in Acute Myelogenous Leukemia. Clin Cancer Res 2016; 22:3537-49. [PMID: 26858310 DOI: 10.1158/1078-0432.ccr-15-1063] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 01/27/2016] [Indexed: 12/31/2022]
Abstract
PURPOSE The double-strand breaks elicited by sapacitabine, a clinically active nucleoside analogue prodrug, are repaired by RAD51 and the homologous recombination repair (HR) pathway, which could potentially limit its toxicity. We investigated the mechanism by which histone deacetylase (HDAC) inhibitors targeted RAD51 and HR to sensitize acute myelogenous leukemia (AML) cells to sapacitabine. EXPERIMENTAL DESIGN Chromatin immunoprecipitation identified the role of HDACs in silencing miR-182 in AML. Immunoblotting, gene expression, overexpression, or inhibition of miR-182 and luciferase assays established that miR-182 directly targeted RAD51. HR reporter assays, apoptotic assays, and colony-forming assays established that the miR-182, as well as the HDAC inhibition-mediated decreases in RAD51 inhibited HR repair and sensitized cells to sapacitabine. RESULTS The gene repressors, HDAC1 and HDAC2, became recruited to the promoter of miR-182 to silence its expression in AML. HDAC inhibition induced miR-182 in AML cell lines and primary AML blasts. miR-182 targeted RAD51 protein both in luciferase assays and in AML cells. Overexpression of miR-182, as well as HDAC inhibition-mediated induction of miR-182 were linked to time- and dose-dependent decreases in the levels of RAD51, an inhibition of HR, increased levels of residual damage, and decreased survival after exposure to double-strand damage-inducing agents. CONCLUSIONS Our findings define the mechanism by which HDAC inhibition induces miR-182 to target RAD51 and highlights a novel pharmacologic strategy that compromises the ability of AML cells to conduct HR, thereby sensitizing AML cells to DNA-damaging agents that activate HR as a repair and potential resistance mechanism. Clin Cancer Res; 22(14); 3537-49. ©2016 AACR.
Collapse
Affiliation(s)
- Tsung-Huei Lai
- Division of Hematology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Brett Ewald
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Alma Zecevic
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Chaomei Liu
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Melanie Sulda
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Dimitrios Papaioannou
- Division of Hematology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - Ramiro Garzon
- Division of Hematology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - James S Blachly
- Division of Hematology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| | - William Plunkett
- Department of Experimental Therapeutics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas.
| | - Deepa Sampath
- Division of Hematology, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio.
| |
Collapse
|
195
|
MicroRNAs as early toxicity signatures of doxorubicin in human-induced pluripotent stem cell-derived cardiomyocytes. Arch Toxicol 2016; 90:3087-3098. [PMID: 26842497 PMCID: PMC5104806 DOI: 10.1007/s00204-016-1668-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/13/2016] [Indexed: 02/06/2023]
Abstract
An in depth investigation at the genomic level is needed to identify early human-relevant cardiotoxicity biomarkers that are induced by drugs and environmental toxicants. The main objective of this study was to investigate the role of microRNAs (miRNAs) as cardiotoxicity biomarkers using human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (CMs) that were exposed to doxorubicin (DOX) as a "gold standard" cardiotoxicant. hiPSC-CMs were exposed to 156 nM DOX for 2 days or for 6 days of repeated exposure, followed by drug washout and incubation in drug-free culture medium up to day 14 after the onset of exposure. The induced miRNAs were profiled using miRNA microarrays, and the analysis of the data was performed using the miRWalk 2.0 and DAVID bioinformatics tools. DOX induced early deregulation of 14 miRNAs (10 up-regulated and 4 down-regulated) and persistent up-regulation of 5 miRNAs during drug washout. Computational miRNA gene target predictions suggested that several DOX-responsive miRNAs might regulate the mRNA expression of genes involved in cardiac contractile function. The hiPSC-CMs exposed to DOX in a range from 39 to 156 nM did not show a significant release of the cytotoxicity marker lactate dehydrogenase (LDH) compared to controls. Quantitative real-time PCR analyses confirmed the early deregulation of miR-187-3p, miR-182-5p, miR-486-3p, miR-486-5p, miR-34a-3p, miR-4423-3p, miR-34c-3p, miR-34c-5p and miR-1303, and also the prolonged up-regulation of miR-182-5p, miR-4423-3p and miR-34c-5p. Thus, we identified and validated miRNAs showing differential DOX-responsive expression before the occurrence of cytotoxicity markers such as LDH, and these miRNAs also demonstrated the significant involvement in heart failure in patients and animal models. These results suggest that the DOX-induced deregulated miRNAs in human CMs may be used as early sensitive cardiotoxicity biomarkers for screening potential drugs and environmental cardiotoxicants with a similar mechanism of action.
Collapse
|
196
|
Gu Y, Zhang M, Peng F, Fang L, Zhang Y, Liang H, Zhou W, Ao L, Guo Z. The BRCA1/2-directed miRNA signature predicts a good prognosis in ovarian cancer patients with wild-type BRCA1/2. Oncotarget 2016; 6:2397-406. [PMID: 25537514 PMCID: PMC4385859 DOI: 10.18632/oncotarget.2963] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/10/2015] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer patients carrying alterations (i.e., germline mutations, somatic mutations, hypermethylations and/or deletions) of BRCA1 or BRCA2 (BRCA1/2) have a better prognosis than BRCA1/2 alteration non-carriers. However, patients with wild-type BRCA1/2 may also have a favorable prognosis as a result of other mechanisms that remain poorly elucidated, such as the deregulation of miRNAs. We therefore sought to identify BRCA1/2-directed miRNA signatures that have prognostic value in ovarian cancer patients with wild-type BRCA1/2 and study how the deregulation of miRNAs impacts the prognosis of patients treated with platinum-based chemotherapy. By analyzing multidimensional datasets of ovarian cancer patients from the TCGA data portal, we identified three miRNAs (hsa-miR-146a, hsa-miR-148a and hsa-miR-545) that target BRCA1/2 and were associated with overall survival and progression-free survival in patients with wild-type BRCA1/2. By analyzing the expression profiles and Gene Ontology functional enrichment, we found that carriers of BRCA1/2 alterations and patients with miRNA deregulation shared a common mechanism, regulation of the DNA repair-related pathways, that affects the prognosis of ovarian cancer patients. Our work highlights that a proportion of patients with wild-type BRCA1/2 ovarian cancers benefit from platinum-based chemotherapy and that the patients who benefit could be predicted from BRCA1/2-directed miRNA signature.
Collapse
Affiliation(s)
- Yunyan Gu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mengmeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Fuduan Peng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lei Fang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuanyuan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Haihai Liang
- Department of Pharmacology, Harbin Medical University, Harbin, China
| | - Wenbin Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Lu Ao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, China
| | - Zheng Guo
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Department of Bioinformatics, Fujian Medical University, Fuzhou, China
| |
Collapse
|
197
|
Platinum and PARP Inhibitor Resistance Due to Overexpression of MicroRNA-622 in BRCA1-Mutant Ovarian Cancer. Cell Rep 2016; 14:429-439. [PMID: 26774475 DOI: 10.1016/j.celrep.2015.12.046] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/19/2015] [Accepted: 12/04/2015] [Indexed: 11/24/2022] Open
Abstract
High-grade serous ovarian carcinomas (HGSOCs) with BRCA1/2 mutations exhibit improved outcome and sensitivity to double-strand DNA break (DSB)-inducing agents (i.e., platinum and poly(ADP-ribose) polymerase inhibitors [PARPis]) due to an underlying defect in homologous recombination (HR). However, resistance to platinum and PARPis represents a significant barrier to the long-term survival of these patients. Although BRCA1/2-reversion mutations are a clinically validated resistance mechanism, they account for less than half of platinum-resistant BRCA1/2-mutated HGSOCs. We uncover a resistance mechanism by which a microRNA, miR-622, induces resistance to PARPis and platinum in BRCA1 mutant HGSOCs by targeting the Ku complex and restoring HR-mediated DSB repair. Physiologically, miR-622 inversely correlates with Ku expression during the cell cycle, suppressing non-homologous end-joining and facilitating HR-mediated DSB repair in S phase. Importantly, high expression of miR-622 in BRCA1-deficient HGSOCs is associated with worse outcome after platinum chemotherapy, indicating microRNA-mediated resistance through HR rescue.
Collapse
|
198
|
Abstract
The discovery of small regulatory noncoding RNAs revolutionized our thinking on gene regulation. The class of microRNAs (miRs), a group of small noncoding RNAs (20-22 nt in length) that bind imperfectly to the 3'-untranslated region of target mRNA, has been insistently implicated in several pathological conditions including cancer. Indeed, major hallmarks of cancer, such as cell differentiation, cell proliferation, cell cycle, cell survival, and cell invasion, has been described as being regulated by miRs. Recent studies have also implicated miRs in cancer drug resistance. Regardless of the several studies done until now, drug resistance still is a burden for cancer therapy and patients' outcome, often resulting in more aggressive tumors that tend to metastasize to distant organs. Hence, with this review, we aim to summarize the miRs that influence molecular pathways that are involved in cancer drug resistance, such as drug metabolism, drug influx/efflux, DNA damage response (DDR), epithelial-to-mesenchymal transition (EMT), and cancer stem cells.
Collapse
Affiliation(s)
- Bruno Costa Gomes
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Edificio CEDOC II, Room 2.22-2.23, Lisbon, 1150-008, Portugal
| | - José Rueff
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Edificio CEDOC II, Room 2.22-2.23, Lisbon, 1150-008, Portugal
| | - António Sebastião Rodrigues
- Centre for Toxicogenomics and Human Health, Genetics, Oncology and Human Toxicology, NOVA Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Rua Câmara Pestana 6, Edificio CEDOC II, Room 2.22-2.23, Lisbon, 1150-008, Portugal.
| |
Collapse
|
199
|
Ávila-Arroyo S, Nuñez GS, García-Fernández LF, Galmarini CM. Synergistic Effect of Trabectedin and Olaparib Combination Regimen in Breast Cancer Cell Lines. J Breast Cancer 2015; 18:329-38. [PMID: 26770239 PMCID: PMC4705084 DOI: 10.4048/jbc.2015.18.4.329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/06/2015] [Indexed: 01/01/2023] Open
Abstract
Purpose Trabectedin induces synthetic lethality in tumor cells carrying defects in homologous recombinant DNA repair. We evaluated the effect of concomitant inhibition of nucleotide-excision repair and poly (ADP-ribose) polymerase (PARP) activity with trabectedin and PARP inhibitors, respectively, and whether the synthetic lethality effect had the potential for a synergistic effect in breast cancer cell lines. Additionally, we investigated if this approach remained effective in BRCA1-positive breast tumor cells. Methods We have evaluated the in vitro synergistic effect of combinations of trabectedin and three different PARP inhibitors (veliparib, olaparib, and iniparib) in four breast cancer cell lines, each presenting a different BRCA1 genetic background. Antiproliferative activity, DNA damage, cell cycle perturbations and poly(ADP-ribosyl)ation were assessed by MTT assay, comet assay, flow cytometry and western blot, respectively. Results The combination of trabectedin and olaparib was synergistic in all the breast cancer cell lines tested. Our data indicated that the synergy persisted regardless of the BRCA1 status of the tumor cells. Combination treatment was associated with a strong accumulation of double-stranded DNA breaks, G2/M arrest, and apoptotic cell death. Synergistic effects were not observed when trabectedin was combined with veliparib or iniparib. Conclusion Collectively, our results indicate that the combination of trabectedin and olaparib induces an artificial synthetic lethality effect that can be used to kill breast cancer cells, independent of BRCA1 status.
Collapse
Affiliation(s)
- Sonia Ávila-Arroyo
- Cell Biology and Pharmacogenomics Department, PharmaMar S.A., Madrid, Spain
| | | | | | - Carlos M Galmarini
- Cell Biology and Pharmacogenomics Department, PharmaMar S.A., Madrid, Spain
| |
Collapse
|
200
|
Lo PK, Wolfson B, Zhou X, Duru N, Gernapudi R, Zhou Q. Noncoding RNAs in breast cancer. Brief Funct Genomics 2015; 15:200-21. [PMID: 26685283 DOI: 10.1093/bfgp/elv055] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The mammalian transcriptome has recently been revealed to encompass a large number of noncoding RNAs (ncRNAs) that play a variety of important regulatory roles in gene expression and other biological processes. MicroRNAs (miRNAs), the best studied of the short noncoding RNAs (sncRNAs), have been extensively characterized with regard to their biogenesis, function and importance in tumorigenesis. Another class of sncRNAs called piwi-interacting RNAs (piRNAs) has also gained attention recently in cancer research owing to their critical role in stem cell regulation. Long noncoding RNAs (lncRNAs) of >200 nucleotides in length have recently emerged as key regulators of developmental processes, including mammary gland development. lncRNA dysregulation has also been implicated in the development of various cancers, including breast cancer. In this review, we describe and discuss the roles of sncRNAs (including miRNAs and piRNAs) and lncRNAs in the initiation and progression of breast tumorigenesis, with a focus on outlining the molecular mechanisms of oncogenic and tumor-suppressor ncRNAs. Moreover, the current and potential future applications of ncRNAs to clinical breast cancer research are also discussed, with an emphasis on ncRNA-based diagnosis, prognosis and future therapeutics.
Collapse
|