151
|
Chavoshi S, Egorova O, Lacdao IK, Farhadi S, Sheng Y, Saridakis V. Identification of Kaposi Sarcoma Herpesvirus (KSHV) vIRF1 Protein as a Novel Interaction Partner of Human Deubiquitinase USP7. J Biol Chem 2016; 291:6281-91. [PMID: 26786098 DOI: 10.1074/jbc.m115.710632] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 12/25/2022] Open
Abstract
Viral interferon regulatory factor 1 (vIRF1), a Kaposi sarcoma herpesvirus protein, destabilizes p53 by inhibiting p53 acetylation and Hdm2 phosphorylation. This leads to increased ubiquitination and degradation of p53 by Hdm2, which cripples the cellular p53-mediated antiviral response. Ubiquitin-specific protease 7 (USP7) deubiquitinates p53 and Hdm2 and regulates their stability. We identified an EGPS consensus sequence in vIRF1, which is identical to that found in Epstein-Barr virus nuclear antigen 1 (EBNA1) that interacts with the N-terminal domain of USP7 (USP7-NTD). GST pulldown assays demonstrated that vIRF1 interacts with USP7-NTD via its EGPS motif. NMR heteronuclear single quantum correlation (HSQC) analysis revealed chemical perturbations after titration of USP7-NTD with vIRF1 (44)SPGEGPSGTG(53) peptide. In contrast, these perturbations were reduced with a mutant vIRF1 peptide, (44)SPGEGPAGTG(53). Fluorescence polarization analysis indicated that the vIRF1 peptide interacted with USP7-NTD with a Kd of 2.0 μm. The crystal structure of the USP7-NTD·vIRF1 peptide complex revealed an identical mode of binding as that of the EBNA1 peptide to USP7-NTD. We also showed that USP7 interacts with vIRF1 in U2OS cells. Decreased levels of p53, but not Hdm2 or ataxia telangiectasia-mutated (ATM), were seen after expression of vIRF1, but not with a vIRF1 mutant protein. Our results support a new role for vIRF1 through deregulation of the deubiquitinating enzyme USP7 to inhibit p53-mediated antiviral responses.
Collapse
Affiliation(s)
- Sara Chavoshi
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Olga Egorova
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Ira Kay Lacdao
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Sahar Farhadi
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Yi Sheng
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | - Vivian Saridakis
- From the Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
152
|
Abstract
This review examines the small molecules described over the past decade as inhibitors of any of the approximately 100 human deubiquitinating enzymes (DUBs). Structures from patent publications as well as from the primary literature are included. Inhibitors of two viral DUBs are also described since these proteases share structural similarity with one of the human DUB sub-families. The structure, function and disease associations of certain DUBs are presented. The evolution of the screening assays used to identify and characterise new inhibitors is discussed. Several emerging trends in the series are highlighted and the ‘drug-likeness’ of the various inhibitors is analysed. Large pharmaceutical company collaborations have drawn attention to this field, and these recent advances are discussed in the context of the wider range of therapeutically important DUB targets.
Collapse
Affiliation(s)
- Mark Kemp
- MISSION Therapeutics, Babraham Research Campus, Cambridge, United Kingdom
| |
Collapse
|
153
|
Harrigan J, Jacq X. Monitoring Target Engagement of Deubiquitylating Enzymes Using Activity Probes: Past, Present, and Future. Methods Mol Biol 2016; 1449:395-410. [PMID: 27613052 PMCID: PMC7120244 DOI: 10.1007/978-1-4939-3756-1_26] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Deubiquitylating enzymes or DUBs are a class of enzymes that selectively remove the polypeptide posttranslational modification ubiquitin from a number of substrates. Approximately 100 DUBs exist in human cells and are involved in key regulatory cellular processes, which drive many disease states, making them attractive therapeutic targets. Several aspects of DUB biology have been studied through genetic knock-out or knock-down, genomic, or proteomic studies. However, investigation of enzyme activation and regulation requires additional tools to monitor cellular and physiological dynamics. A comparison between genetic ablation and dominant-negative target validation with pharmacological inhibition often leads to striking discrepancies. Activity probes have been used to profile classes of enzymes, including DUBs, and allow functional and dynamic properties to be assigned to individual proteins. The ability to directly monitor DUB activity within a native biological system is essential for understanding the physiological and pathological role of individual DUBs. We will discuss the evolution of DUB activity probes, from in vitro assay development to their use in monitoring DUB activity in cells and in animal tissues, as well as recent progress and prospects for assessing DUB inhibition in vivo.
Collapse
Affiliation(s)
- Jeanine Harrigan
- MISSION Therapeutics Limited, Moneta, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Xavier Jacq
- MISSION Therapeutics Limited, Moneta, Babraham Research Campus, Cambridge, CB22 3AT, UK.
| |
Collapse
|
154
|
Kashiwaba SI, Kanao R, Masuda Y, Kusumoto-Matsuo R, Hanaoka F, Masutani C. USP7 Is a Suppressor of PCNA Ubiquitination and Oxidative-Stress-Induced Mutagenesis in Human Cells. Cell Rep 2015; 13:2072-80. [PMID: 26673319 DOI: 10.1016/j.celrep.2015.11.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/27/2015] [Accepted: 11/02/2015] [Indexed: 11/16/2022] Open
Abstract
Mono-ubiquitinated PCNA activates error-prone DNA polymerases; therefore, strict regulation of PCNA mono-ubiquitination is crucial in avoiding undesired mutagenesis. In this study, we used an in vitro assay system to identify USP7 as a deubiquitinating enzyme of mono-ubiquitinated PCNA. Suppression of USP1, a previously identified PCNA deubiquitinase, or USP7 increased UV- and H2O2-induced PCNA mono-ubiquitination in a distinct and additive manner, suggesting that USP1 and USP7 make different contributions to PCNA deubiquitination in human cells. Cell-cycle-synchronization analyses revealed that USP7 suppression increased H2O2-induced PCNA ubiquitination throughout interphase, whereas USP1 suppression specifically increased ubiquitination in S-phase cells. UV-induced mutagenesis was elevated in USP1-suppressed cells, whereas H2O2-induced mutagenesis was elevated in USP7-suppressed cells. These results suggest that USP1 suppresses UV-induced mutations produced in a manner involving DNA replication, whereas USP7 suppresses H2O2-induced mutagenesis involving cell-cycle-independent processes such as DNA repair.
Collapse
Affiliation(s)
- Shu-ichiro Kashiwaba
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Rie Kanao
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Yuji Masuda
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan; Department of Toxicogenomics, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Rika Kusumoto-Matsuo
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Fumio Hanaoka
- Faculty of Science, Gakushuin University, Tokyo 171-8588, Japan
| | - Chikahide Masutani
- Department of Genome Dynamics, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
| |
Collapse
|
155
|
Bianchi-Smiraglia A, Wawrzyniak JA, Bagati A, Marvin EK, Ackroyd J, Moparthy S, Bshara W, Fink EE, Foley CE, Morozevich GE, Berman AE, Shewach DS, Nikiforov MA. Pharmacological targeting of guanosine monophosphate synthase suppresses melanoma cell invasion and tumorigenicity. Cell Death Differ 2015; 22:1858-64. [PMID: 25909885 PMCID: PMC4648332 DOI: 10.1038/cdd.2015.47] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 12/20/2022] Open
Abstract
Malignant melanoma possesses one of the highest metastatic potentials among human cancers. Acquisition of invasive phenotypes is a prerequisite for melanoma metastases. Elucidation of the molecular mechanisms underlying melanoma invasion will greatly enhance the design of novel agents for melanoma therapeutic intervention. Here, we report that guanosine monophosphate synthase (GMPS), an enzyme required for the de novo biosynthesis of GMP, has a major role in invasion and tumorigenicity of cells derived from either BRAF(V600E) or NRAS(Q61R) human metastatic melanomas. Moreover, GMPS levels are increased in metastatic human melanoma specimens compared with primary melanomas arguing that GMPS is an attractive candidate for anti-melanoma therapy. Accordingly, for the first time we demonstrate that angustmycin A, a nucleoside-analog inhibitor of GMPS produced by Streptomyces hygroscopius efficiently suppresses melanoma cell invasion in vitro and tumorigenicity in immunocompromised mice. Our data identify GMPS as a powerful driver of melanoma cell invasion and warrant further investigation of angustmycin A as a novel anti-melanoma agent.
Collapse
Affiliation(s)
- A Bianchi-Smiraglia
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - J A Wawrzyniak
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - A Bagati
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - E K Marvin
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - J Ackroyd
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - S Moparthy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - W Bshara
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - E E Fink
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - C E Foley
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - G E Morozevich
- Orekhovich Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - A E Berman
- Orekhovich Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - D S Shewach
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - M A Nikiforov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
156
|
Structural Insights into WD-Repeat 48 Activation of Ubiquitin-Specific Protease 46. Structure 2015; 23:2043-54. [DOI: 10.1016/j.str.2015.08.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 07/27/2015] [Accepted: 08/04/2015] [Indexed: 11/18/2022]
|
157
|
Hao YH, Fountain MD, Fon Tacer K, Xia F, Bi W, Kang SHL, Patel A, Rosenfeld JA, Le Caignec C, Isidor B, Krantz ID, Noon SE, Pfotenhauer JP, Morgan TM, Moran R, Pedersen RC, Saenz MS, Schaaf CP, Potts PR. USP7 Acts as a Molecular Rheostat to Promote WASH-Dependent Endosomal Protein Recycling and Is Mutated in a Human Neurodevelopmental Disorder. Mol Cell 2015; 59:956-69. [PMID: 26365382 DOI: 10.1016/j.molcel.2015.07.033] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/07/2015] [Accepted: 07/30/2015] [Indexed: 12/01/2022]
Abstract
Endosomal protein recycling is a fundamental cellular process important for cellular homeostasis, signaling, and fate determination that is implicated in several diseases. WASH is an actin-nucleating protein essential for this process, and its activity is controlled through K63-linked ubiquitination by the MAGE-L2-TRIM27 ubiquitin ligase. Here, we show that the USP7 deubiquitinating enzyme is an integral component of the MAGE-L2-TRIM27 ligase and is essential for WASH-mediated endosomal actin assembly and protein recycling. Mechanistically, USP7 acts as a molecular rheostat to precisely fine-tune endosomal F-actin levels by counteracting TRIM27 auto-ubiquitination/degradation and preventing overactivation of WASH through directly deubiquitinating it. Importantly, we identify de novo heterozygous loss-of-function mutations of USP7 in individuals with a neurodevelopmental disorder, featuring intellectual disability and autism spectrum disorder. These results provide unanticipated insights into endosomal trafficking, illuminate the cooperativity between an ubiquitin ligase and a deubiquitinating enzyme, and establish a role for USP7 in human neurodevelopmental disease.
Collapse
Affiliation(s)
- Yi-Heng Hao
- Departments of Physiology, Pharmacology, and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Michael D Fountain
- Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Klementina Fon Tacer
- Departments of Physiology, Pharmacology, and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sung-Hae L Kang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes 44093, France
| | - Ian D Krantz
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah E Noon
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jean P Pfotenhauer
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Thomas M Morgan
- Division of Medical Genetics and Genomic Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Rocio Moran
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Robert C Pedersen
- Department of Pediatrics, Tripler Army Medical Center, Honolulu, HI 96859, USA
| | - Margarita S Saenz
- Clinical Genetics and Metabolism, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Christian P Schaaf
- Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| | - Patrick Ryan Potts
- Departments of Physiology, Pharmacology, and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
158
|
Phillips AH, Corn JE. Using protein motion to read, write, and erase ubiquitin signals. J Biol Chem 2015; 290:26437-44. [PMID: 26354440 DOI: 10.1074/jbc.r115.653675] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotes use a tiny protein called ubiquitin to send a variety of signals, most often by post-translationally attaching ubiquitins to substrate proteins and to each other, thereby forming polyubiquitin chains. A combination of biophysical, biochemical, and biological studies has shown that complex macromolecular dynamics are central to many aspects of ubiquitin signaling. This review focuses on how equilibrium fluctuations and coordinated motions of ubiquitin itself, the ubiquitin conjugation machinery, and deubiquitinating enzymes enable activity and regulation on many levels, with implications for how such a tiny protein can send so many signals.
Collapse
Affiliation(s)
- Aaron H Phillips
- From the Innovative Genomics Initiative, University of California, Berkeley, California 94702
| | - Jacob E Corn
- From the Innovative Genomics Initiative, University of California, Berkeley, California 94702
| |
Collapse
|
159
|
Pozhidaeva AK, Mohni KN, Dhe-Paganon S, Arrowsmith CH, Weller SK, Korzhnev DM, Bezsonova I. Structural Characterization of Interaction between Human Ubiquitin-specific Protease 7 and Immediate-Early Protein ICP0 of Herpes Simplex Virus-1. J Biol Chem 2015. [PMID: 26224631 DOI: 10.1074/jbc.m115.664805] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Human ubiquitin-specific protease 7 (USP7) is a deubiquitinating enzyme that prevents protein degradation by removing polyubiquitin chains from its substrates. It regulates the stability of a number of human transcription factors and tumor suppressors and plays a critical role in the development of several types of cancer, including prostate and small cell lung cancer. In addition, human USP7 is targeted by several viruses of the Herpesviridae family and is required for effective herpesvirus infection. The USP7 C-terminal region (C-USP7) contains five ubiquitin-like domains (UBL1-5) that interact with several USP7 substrates. Although structures of the USP7 C terminus bound to its substrates could provide vital information for understanding USP7 substrate specificity, no such data has been available to date. In this work we have demonstrated that the USP7 ubiquitin-like domains can be studied in isolation by solution NMR spectroscopy, and we have determined the structure of the UBL1 domain. Furthermore, we have employed NMR and viral plaque assays to probe the interaction between the C-USP7 and HSV-1 immediate-early protein ICP0 (infected cell protein 0), which is essential for efficient lytic infection and virus reactivation from latency. We have shown that depletion of the USP7 in HFF-1 cells negatively affects the efficiency of HSV-1 lytic infection. We have also found that USP7 directly binds ICP0 via its C-terminal UBL1-2 domains and mapped the USP7-binding site for ICP0. Therefore, this study represents a first step toward understanding the molecular mechanism of C-USP7 specificity toward its substrates and may provide the basis for future development of novel antiviral and anticancer therapies.
Collapse
Affiliation(s)
- Alexandra K Pozhidaeva
- From the Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut 06030
| | - Kareem N Mohni
- the Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee 37232
| | - Sirano Dhe-Paganon
- the Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, and
| | - Cheryl H Arrowsmith
- the Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Sandra K Weller
- From the Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut 06030
| | - Dmitry M Korzhnev
- From the Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut 06030
| | - Irina Bezsonova
- From the Department of Molecular Biology and Biophysics, University of Connecticut Health, Farmington, Connecticut 06030,
| |
Collapse
|
160
|
Hanpude P, Bhattacharya S, Dey AK, Maiti TK. Deubiquitinating enzymes in cellular signaling and disease regulation. IUBMB Life 2015; 67:544-55. [PMID: 26178252 DOI: 10.1002/iub.1402] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/17/2015] [Indexed: 12/27/2022]
Abstract
Protein post-translational modification by ubiquitin represents a complex signaling system that regulates many cellular events including proteostasis to intercellular communications. Deubiquitinating enzymes (DUBs) that specifically disassemble Ub-chains or regulate ubiquitin homeostasis reside as a central component in ubiquitin signaling. Human genome encodes almost 100 DUBs and majority of them are not well characterized. Considerable progress has been made in the understanding of enzymatic mechanism; however, their cellular substrate specificity and regulation are largely unknown. Involvement of DUBs in disease regulation has been depicted since its discovery and several attempts have been made for evaluating DUBs as a drug target. In this review, we have updated briefly a new insight of DUBs activity, their cellular role, disease regulation, and therapeutic potential.
Collapse
Affiliation(s)
- Pranita Hanpude
- Laboratory of Proteomics and Cellular Signaling, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Bhakri Village, Faridabad, India
| | - Sushmita Bhattacharya
- Laboratory of Proteomics and Cellular Signaling, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Bhakri Village, Faridabad, India
| | - Amit Kumar Dey
- Laboratory of Proteomics and Cellular Signaling, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Bhakri Village, Faridabad, India
| | - Tushar Kanti Maiti
- Laboratory of Proteomics and Cellular Signaling, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Bhakri Village, Faridabad, India
| |
Collapse
|
161
|
Piao J, Tashiro A, Nishikawa M, Aoki Y, Moriyoshi E, Hattori A, Kakeya H. Expression, purification and enzymatic characterization of a recombinant human ubiquitin-specific protease 47. J Biochem 2015; 158:477-84. [DOI: 10.1093/jb/mvv063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 05/17/2015] [Indexed: 11/14/2022] Open
|
162
|
Deubiquitination of Ci/Gli by Usp7/HAUSP Regulates Hedgehog Signaling. Dev Cell 2015; 34:58-72. [PMID: 26120032 DOI: 10.1016/j.devcel.2015.05.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/18/2015] [Accepted: 05/19/2015] [Indexed: 01/20/2023]
Abstract
Hedgehog (Hh) signaling plays essential roles in animal development and tissue homeostasis, and its misregulation causes congenital diseases and cancers. Regulation of the ubiquitin/proteasome-mediated proteolysis of Ci/Gli transcription factors is central to Hh signaling, but whether deubiquitinase is involved in this process remains unknown. Here, we show that Hh stimulates the binding of a ubiquitin-specific protease Usp7 to Ci, which positively regulates Hh signaling activity through inhibiting Ci ubiquitination and degradation mediated by both Slimb-Cul1 and Hib-Cul3 E3 ligases. Furthermore, we find that Usp7 forms a complex with GMP-synthetase (GMPS) to promote Hh pathway activity. Finally, we show that the mammalian counterpart of Usp7, HAUSP, positively regulates Hh signaling by modulating Gli ubiquitination and stability. Our findings reveal a conserved mechanism by which Ci/Gli is stabilized by a deubiquitination enzyme and identify Usp7/HUASP as a critical regulator of Hh signaling and potential therapeutic target for Hh-related cancers.
Collapse
|
163
|
Ostapenko D, Burton JL, Solomon MJ. The Ubp15 deubiquitinase promotes timely entry into S phase in Saccharomyces cerevisiae. Mol Biol Cell 2015; 26:2205-16. [PMID: 25877870 PMCID: PMC4462939 DOI: 10.1091/mbc.e14-09-1400] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 12/22/2022] Open
Abstract
The anaphase-promoting complex in partnership with its activator, Cdh1, is an E3 ubiquitin ligase responsible for targeting cell cycle proteins during G1 phase. In the budding yeast Saccharomyces cerevisiae, Cdh1 associates with the deubiquitinating enzyme Ubp15, but the significance of this interaction is unclear. To better understand the physiological role(s) of Ubp15, we examined cell cycle phenotypes of cells lacking Ubp15. We found that ubp15∆ cells exhibited delayed progression from G1 into S phase and increased sensitivity to the DNA synthesis inhibitor hydroxyurea. Both phenotypes of ubp15∆ cells were rescued by additional copies of the S-phase cyclin gene CLB5. Clb5 is an unstable protein targeted for proteasome-mediated degradation by several pathways. We found that during G1 phase, the APC(Cdh1)-mediated degradation of Clb5 was accelerated in ubp15∆ cells. Ubp15 interacted with Clb5 independent of Cdh1 and deubiquitinated Clb5 in a reconstituted system. Thus deubiquitination by Ubp15 counteracts APC activity toward cyclin Clb5 to allow Clb5 accumulation and a timely entry into S phase.
Collapse
Affiliation(s)
- Denis Ostapenko
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| | - Janet L Burton
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| | - Mark J Solomon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114
| |
Collapse
|
164
|
Sahtoe DD, Sixma TK. Layers of DUB regulation. Trends Biochem Sci 2015; 40:456-67. [PMID: 26073511 DOI: 10.1016/j.tibs.2015.05.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 11/15/2022]
Abstract
Proteolytic enzymes, such as (iso-)peptidases, are potentially hazardous for cells. To neutralize their potential danger, tight control of their activities has evolved. Deubiquitylating enzymes (DUBs) are isopeptidases involved in eukaryotic ubiquitylation. They reverse ubiquitin signals by hydrolyzing ubiquitin adducts, giving them control over all aspects of ubiquitin biology. The importance of DUB function is underscored by their frequent deregulation in human disease, making these enzymes potential drug targets. Here, we review the different layers of DUB enzyme regulation. We discuss how post-translational modification (PTM), regulatory domains within DUBs, and incorporation of DUBs into macromolecular complexes contribute to their activity. We conclude that most DUBs are likely to use a combination of these basic regulatory mechanisms.
Collapse
Affiliation(s)
- Danny D Sahtoe
- Division of Biochemistry and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
165
|
Crystal Structure of USP7 Ubiquitin-like Domains with an ICP0 Peptide Reveals a Novel Mechanism Used by Viral and Cellular Proteins to Target USP7. PLoS Pathog 2015; 11:e1004950. [PMID: 26046769 PMCID: PMC4457826 DOI: 10.1371/journal.ppat.1004950] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/11/2015] [Indexed: 01/01/2023] Open
Abstract
Herpes simplex virus-1 immediate-early protein ICP0 activates viral genes during early stages of infection, affects cellular levels of multiple host proteins and is crucial for effective lytic infection. Being a RING-type E3 ligase prone to auto-ubiquitination, ICP0 relies on human deubiquitinating enzyme USP7 for protection against 26S proteasomal mediated degradation. USP7 is involved in apoptosis, epigenetics, cell proliferation and is targeted by several herpesviruses. Several USP7 partners, including ICP0, GMPS, and UHRF1, interact through its C-terminal domain (CTD), which contains five ubiquitin-like (Ubl) structures. Despite the fact that USP7 has emerged as a drug target for cancer therapy, structural details of USP7 regulation and the molecular mechanism of interaction at its CTD have remained elusive. Here, we mapped the binding site between an ICP0 peptide and USP7 and determined the crystal structure of the first three Ubl domains bound to the ICP0 peptide, which showed that ICP0 binds to a loop on Ubl2. Sequences similar to the USP7-binding site in ICP0 were identified in GMPS and UHRF1 and shown to bind USP7-CTD through Ubl2. In addition, co-immunoprecipitation assays in human cells comparing binding to USP7 with and without a Ubl2 mutation, confirmed the importance of the Ubl2 binding pocket for binding ICP0, GMPS and UHRF1. Therefore we have identified a novel mechanism of USP7 recognition that is used by both viral and cellular proteins. Our structural information was used to generate a model of near full-length USP7, showing the relative position of the ICP0/GMPS/UHRF1 binding pocket and the structural basis by which it could regulate enzymatic activity. USP7 is a cellular protein that binds and stabilizes many proteins involved in multiple pathways that regulate oncogenesis and as such is recognized as a potential target for cancer therapy. In addition, USP7 is targeted by several viral proteins in order to promote cell survival and viral infection. One such protein is the ICP0 protein of herpes simplex virus 1, which must bind USP7 in order to manipulate the cell in ways that enable efficient viral infection. Here we use a structural approach to define the mechanism of the USP7-ICP0 peptide interaction, revealing a novel binding site on USP7. We then used this information to identify two cellular proteins, GMPS and UHRF1, that also bind USP7 through this binding site. Therefore we have identified a new mechanism by which both viral and cellular proteins can target USP7. This information will be useful for the development of strategies to block specific protein interactions with USP7.
Collapse
|
166
|
Molecular mechanism for USP7-mediated DNMT1 stabilization by acetylation. Nat Commun 2015; 6:7023. [PMID: 25960197 PMCID: PMC4432644 DOI: 10.1038/ncomms8023] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/25/2015] [Indexed: 12/25/2022] Open
Abstract
DNMT1 is an important epigenetic regulator that plays a key role in the maintenance of DNA methylation. Here we determined the crystal structure of DNMT1 in complex with USP7 at 2.9 Å resolution. The interaction between the two proteins is primarily mediated by an acidic pocket in USP7 and Lysine residues within DNMT1's KG linker. This intermolecular interaction is required for USP7-mediated stabilization of DNMT1. Acetylation of the KG linker Lysine residues impair DNMT1–USP7 interaction and promote the degradation of DNMT1. Treatment with HDAC inhibitors results in an increase in acetylated DNMT1 and decreased total DNMT1 protein. This negative correlation is observed in differentiated neuronal cells and pancreatic cancer cells. Our studies reveal that USP7-mediated stabilization of DNMT1 is regulated by acetylation and provide a structural basis for the design of inhibitors, targeting the DNMT1–USP7 interaction surface for therapeutic applications. DNMT1 is a methyl-transferase involved in maintaining tissue-specific patterns of DNA methylation. Here the authors solve the structure of a DNMT1-USP7 complex and demonstrate the mechanism by which DNMT1 stability is regulated through acetylation by preventing association with the deubiquitinase USP7.
Collapse
|
167
|
Collaud S, Tischler V, Atanassoff A, Wiedl T, Komminoth P, Oehlschlegel C, Weder W, Soltermann A. Lung neuroendocrine tumors: correlation of ubiquitinylation and sumoylation with nucleo-cytosolic partitioning of PTEN. BMC Cancer 2015; 15:74. [PMID: 25884169 PMCID: PMC4350902 DOI: 10.1186/s12885-015-1084-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 02/12/2015] [Indexed: 11/24/2022] Open
Abstract
Background The tumor suppressor phosphatase and tensin homolog (PTEN) is a pleiotropic enzyme, inhibiting phosphatidyl-inositol-3 kinase (PI3K) signaling in the cytosol and stabilizing the genome in the nucleus. Nucleo-cytosolic partitioning is dependent on the post-translational modifications ubiquitinylation and sumoylation. This cellular compartmentalization of PTEN was investigated in lung neuroendocrine tumors (lung NET). Methods Tumor tissues from 192 lung NET patients (surgical specimens = 183, autopsies = 9) were investigated on tissue microarrays. PTEN was H-scored by two investigators in nucleus and cytosol using the monoclonal antibody 6H2.1. Results were correlated with immunoreactivity for USP7 (herpes virus-associated ubiquitin-specific protease 7) and SUMO2/3 (small ubiquitin-related modifier protein 2/3) as well as PTEN and p53 FISH gene status. Clinico-pathologic data including overall survival, proliferation rate and diagnostic markers (synaptophysin, chromogranin A, Mib-1, TTF-1) were recorded. Results The multicentre cohort included 58 typical carcinoids (TC), 42 atypical carcinoids (AC), 32 large cell neuroendocrine carcinomas (LCNEC) and 60 small cell lung carcinomas (SCLC). Carcinoids were smaller in size and had higher synaptophysin and chromogranin A, but lower TTF-1 expressions. Patients with carcinoids were predominantly female and 10 years younger than patients with LCNEC/SCLC. In comparison to the carcinoids, LCNEC/SCLC tumors presented a stronger loss of nuclear and cytosolic PTEN associated with a loss of PTEN and p53. Concomitantly, a loss of nuclear USP7 but increase of nuclear and cytosolic SUMO2/3 was found. Loss of nuclear and cytosolic PTEN, loss of nuclear USP7 and increase of cytosolic SUMO2/3 thus correlated with poor survival. Among carcinoids, loss of cytosolic PTEN was predominantly found in TTF1-negative larger tumors of male patients. Among SCLC, loss of both cytosolic and nuclear PTEN but not proliferation rate or tumor size delineated a subgroup with poorer survival (all p-values <0.05). Conclusions Cellular ubiquitinylation and sumoylation likely influence the functional PTEN loss in high grade lung NET. Both nuclear and cytosolic PTEN immunoreactivity should be considered for correlation with clinico-pathologic parameters.
Collapse
Affiliation(s)
- Stéphane Collaud
- Division of Thoracic Surgery, University Hospital, Zurich, Switzerland.
| | - Verena Tischler
- Institute of Surgical Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091, Zurich, Switzerland.
| | - Andrej Atanassoff
- Institute of Surgical Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091, Zurich, Switzerland.
| | - Thomas Wiedl
- Division of Thoracic Surgery, University Hospital, Zurich, Switzerland.
| | - Paul Komminoth
- Institute of Pathology, Triemli Hospital, Zurich, Switzerland.
| | | | - Walter Weder
- Division of Thoracic Surgery, University Hospital, Zurich, Switzerland.
| | - Alex Soltermann
- Institute of Surgical Pathology, University Hospital Zurich, Schmelzbergstrasse 12, CH-8091, Zurich, Switzerland.
| |
Collapse
|
168
|
Sahtoe DD, van Dijk WJ, El Oualid F, Ekkebus R, Ovaa H, Sixma TK. Mechanism of UCH-L5 activation and inhibition by DEUBAD domains in RPN13 and INO80G. Mol Cell 2015; 57:887-900. [PMID: 25702870 PMCID: PMC4352763 DOI: 10.1016/j.molcel.2014.12.039] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/16/2014] [Accepted: 12/24/2014] [Indexed: 12/15/2022]
Abstract
Deubiquitinating enzymes (DUBs) control vital processes in eukaryotes by hydrolyzing ubiquitin adducts. Their activities are tightly regulated, but the mechanisms remain elusive. In particular, the DUB UCH-L5 can be either activated or inhibited by conserved regulatory proteins RPN13 and INO80G, respectively. Here we show how the DEUBAD domain in RPN13 activates UCH-L5 by positioning its C-terminal ULD domain and crossover loop to promote substrate binding and catalysis. The related DEUBAD domain in INO80G inhibits UCH-L5 by exploiting similar structural elements in UCH-L5 to promote a radically different conformation, and employs molecular mimicry to block ubiquitin docking. In this process, large conformational changes create small but highly specific interfaces that mediate activity modulation of UCH-L5 by altering the affinity for substrates. Our results establish how related domains can exploit enzyme conformational plasticity to allosterically regulate DUB activity. These allosteric sites may present novel insights for pharmaceutical intervention in DUB activity. The RPN13 DEUBAD domain activates UCH-L5 by positioning its CL and ULD domain The INO80G DEUBAD domain inhibits UCH-L5 by blocking ubiquitin binding The FRF hairpin in the DEUBAD domain of INO80G drives UCH-L5 inhibition DEUBAD domains regulate UCH-L5 activity by tuning UCH-L5 substrate affinity
Collapse
Affiliation(s)
- Danny D Sahtoe
- Division of Biochemistry and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Willem J van Dijk
- Division of Biochemistry and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Farid El Oualid
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; UbiQ, Science Park 408, 1098XH Amsterdam, the Netherlands
| | - Reggy Ekkebus
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Huib Ovaa
- Division of Cell Biology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
169
|
Murine coronavirus ubiquitin-like domain is important for papain-like protease stability and viral pathogenesis. J Virol 2015; 89:4907-17. [PMID: 25694594 DOI: 10.1128/jvi.00338-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 02/06/2023] Open
Abstract
UNLABELLED Ubiquitin-like domains (Ubls) now are recognized as common elements adjacent to viral and cellular proteases; however, their function is unclear. Structural studies of the papain-like protease (PLP) domains of coronaviruses (CoVs) revealed an adjacent Ubl domain in severe acute respiratory syndrome CoV, Middle East respiratory syndrome CoV, and the murine CoV, mouse hepatitis virus (MHV). Here, we tested the effect of altering the Ubl adjacent to PLP2 of MHV on enzyme activity, viral replication, and pathogenesis. Using deletion and substitution approaches, we identified sites within the Ubl domain, residues 785 to 787 of nonstructural protein 3, which negatively affect protease activity, and valine residues 785 and 787, which negatively affect deubiquitinating activity. Using reverse genetics, we engineered Ubl mutant viruses and found that AM2 (V787S) and AM3 (V785S) viruses replicate efficiently at 37°C but generate smaller plaques than wild-type (WT) virus, and AM2 is defective for replication at higher temperatures. To evaluate the effect of the mutation on protease activity, we purified WT and Ubl mutant PLP2 and found that the proteases exhibit similar specific activities at 25°C. However, the thermal stability of the Ubl mutant PLP2 was significantly reduced at 30°C, thereby reducing the total enzymatic activity. To determine if the destabilizing mutation affects viral pathogenesis, we infected C57BL/6 mice with WT or AM2 virus and found that the mutant virus is highly attenuated, yet it replicates sufficiently to elicit protective immunity. These studies revealed that modulating the Ubl domain adjacent to the PLP reduces protease stability and viral pathogenesis, revealing a novel approach to coronavirus attenuation. IMPORTANCE Introducing mutations into a protein or virus can have either direct or indirect effects on function. We asked if changes in the Ubl domain, a conserved domain adjacent to the coronavirus papain-like protease, altered the viral protease activity or affected viral replication or pathogenesis. Our studies using purified wild-type and Ubl mutant proteases revealed that mutations in the viral Ubl domain destabilize and inactivate the adjacent viral protease. Furthermore, we show that a CoV encoding the mutant Ubl domain is unable to replicate at high temperature or cause lethal disease in mice. Our results identify the coronavirus Ubl domain as a novel modulator of viral protease stability and reveal manipulating the Ubl domain as a new approach for attenuating coronavirus replication and pathogenesis.
Collapse
|
170
|
Abstract
Deubiquitinases (DUBs) play important roles and therefore are potential drug targets in various diseases including cancer and neurodegeneration. In this review, we recapitulate structure-function studies of the most studied DUBs including USP7, USP22, CYLD, UCHL1, BAP1, A20, as well as ataxin 3 and connect them to regulatory mechanisms and their growing protein interaction networks. We then describe DUBs that have been associated with endocrine carcinogenesis with a focus on prostate, ovarian, and thyroid cancer, pheochromocytoma, and adrenocortical carcinoma. The goal is enhancing our understanding of the connection between dysregulated DUBs and cancer to permit the design of therapeutics and to establish biomarkers that could be used in diagnosis and prognosis.
Collapse
Affiliation(s)
- Roland Pfoh
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| | - Ira Kay Lacdao
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| | - Vivian Saridakis
- Department of BiologyYork University, 4700 Keele Street, Toronto, Ontario, Canada, M3J1P3
| |
Collapse
|
171
|
Abstract
USP7 is a protein deubiquitinase with an essential role in development. Here, we provide evidence that USP7 regulates the activity of Polycomb repressive complex 1 (PRC1) in coordination with SCML2. There are six versions of PRC1 defined by the association of one of the PCGF homologues (PCGF1 to PCGF6) with the common catalytic subunit RING1B. First, we show that SCML2, a Polycomb group protein that associates with PRC1.2 (containing PCGF2/MEL18) and PRC1.4 (containing PCGF4/BMI1), modulates the localization of USP7 and bridges USP7 with PRC1.4, allowing for the stabilization of BMI1. Chromatin immunoprecipitation (ChIP) experiments demonstrate that USP7 is found at SCML2 and BMI1 target genes. Second, inhibition of USP7 leads to a reduction in the level of ubiquitinated histone H2A (H2Aub), the catalytic product of PRC1 and key for its repressive activity. USP7 regulates the posttranslational status of RING1B and BMI1, a specific component of PRC1.4. Thus, not only does USP7 stabilize PRC1 components, its catalytic activity is also necessary to maintain a functional PRC1, thereby ensuring appropriate levels of repressive H2Aub.
Collapse
|
172
|
Ohayon S, Refua M, Brik A. Rapid optimization of labeled ubiquitinated peptides for monitoring deubiquitinases activities. Org Biomol Chem 2015; 13:8182-6. [DOI: 10.1039/c5ob01142f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new synthetic approach is reported which enables the rapid synthesis of labeled-ubiquitinated peptides to facilitate optimization of deubiquitinases substrates.
Collapse
Affiliation(s)
- Shimrit Ohayon
- Schulich Faculty of Chemistry
- Technion-Israel Institute of Technology
- Haifa
- Israel
| | - Maya Refua
- Department of Chemistry
- Ben-Gurion University of the Negev
- Beer-Sheva
- Israel
| | - Ashraf Brik
- Schulich Faculty of Chemistry
- Technion-Israel Institute of Technology
- Haifa
- Israel
| |
Collapse
|
173
|
Yan M, Wolberger C. Uncovering the role of Sgf73 in maintaining SAGA deubiquitinating module structure and activity. J Mol Biol 2014; 427:1765-78. [PMID: 25526805 DOI: 10.1016/j.jmb.2014.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/04/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
The SAGA (Spt-Ada-Gcn5 acetyltransferase) complex performs multiple functions in transcription activation including deubiquitinating histone H2B, which is mediated by a subcomplex called the deubiquitinating module (DUBm). The yeast DUBm comprises a catalytic subunit, Ubp8, and three additional subunits, Sgf11, Sus1 and Sgf73, all of which are required for DUBm activity. A portion of the non-globular Sgf73 subunit lies between the Ubp8 catalytic domain and the ZnF-UBP domain and has been proposed to contribute to deubiquitinating activity by maintaining the catalytic domain in an active conformation. We report structural and solution studies of the DUBm containing two different Sgf73 point mutations that disrupt deubiquitinating activity. We find that the Sgf73 mutations abrogate deubiquitinating activity by impacting the Ubp8 ubiquitin-binding fingers region and they have an unexpected effect on the overall folding and stability of the DUBm complex. Taken together, our data suggest a role for Sgf73 in maintaining both the organization and the ubiquitin-binding conformation of Ubp8, thereby contributing to overall DUBm activity.
Collapse
Affiliation(s)
- Ming Yan
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
174
|
The DUSP-Ubl domain of USP4 enhances its catalytic efficiency by promoting ubiquitin exchange. Nat Commun 2014; 5:5399. [PMID: 25404403 PMCID: PMC4243247 DOI: 10.1038/ncomms6399] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 09/26/2014] [Indexed: 01/02/2023] Open
Abstract
Ubiquitin-specific protease USP4 is emerging as an important regulator of cellular pathways, including the TGF-β response, NF-κB signalling and splicing, with possible roles in cancer. Here we show that USP4 has its catalytic triad arranged in a productive conformation. Nevertheless, it requires its N-terminal DUSP–Ubl domain to achieve full catalytic turnover. Pre-steady-state kinetics measurements reveal that USP4 catalytic domain activity is strongly inhibited by slow dissociation of ubiquitin after substrate hydrolysis. The DUSP–Ubl domain is able to enhance ubiquitin dissociation, hence promoting efficient turnover. In a mechanism that requires all USP4 domains, binding of the DUSP–Ubl domain promotes a change of a switching loop near the active site. This ‘allosteric regulation of product discharge’ provides a novel way of regulating deubiquitinating enzymes that may have relevance for other enzyme classes. Ubiquitin-specific protease USP4 regulates several cellular signalling pathways. Here, Clerici et al. show that the DUSP–Ubl domain of USP4 is required for full catalytic activity, by enhancing the release of ubiquitin from the catalytic site after substrate hydrolysis.
Collapse
|
175
|
Abstract
The clinical successes of proteasome inhibitors for the treatment of cancer have highlighted the therapeutic potential of targeting this protein degradation system. However, proteasome inhibitors prevent the degradation of numerous proteins, which may cause adverse effects. Increased specificity could be achieved by inhibiting the components of the ubiquitin-proteasome system that target specific subsets of proteins for degradation. F-box proteins are the substrate-targeting subunits of SKP1-CUL1-F-box protein (SCF) ubiquitin ligase complexes. Through the degradation of a plethora of diverse substrates, SCF ubiquitin ligases control a multitude of processes at the cellular and organismal levels, and their dysregulation is implicated in many pathologies. SCF ubiquitin ligases are characterized by their high specificity for substrates, and these ligases therefore represent promising drug targets. However, the potential for therapeutic manipulation of SCF complexes remains an underdeveloped area. This Review explores and discusses potential strategies to target SCF-mediated biological processes to treat human diseases.
Collapse
Affiliation(s)
- Jeffrey R Skaar
- 1] Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA. [2]
| | - Julia K Pagan
- 1] Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA. [2]
| | - Michele Pagano
- 1] Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, SRB 1107, New York, New York 10016, USA. [2] Howard Hughes Medical Institute
| |
Collapse
|
176
|
Abstract
The diverse roles of deubiquitinating enzymes, or DUBs, in determining the fate of specific proteins continue to unfold. Concurrent with the revelation of DUBs as potential therapeutic targets are publications of small molecule inhibitors of these enzymes. In this review, we summarize these molecules and their associated data and suggest additional experiments to further validate and characterize these compounds. We believe the field of drug discovery against DUBs is still in its infancy, but advances in assay development, biophysical techniques, and screening libraries hold promise for identifying suitable agents that could advance into the clinic.
Collapse
Affiliation(s)
- Chudi Ndubaku
- Department of Discovery Chemistry, Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | | |
Collapse
|
177
|
He J, Zhu Q, Wani G, Sharma N, Han C, Qian J, Pentz K, Wang QE, Wani AA. Ubiquitin-specific protease 7 regulates nucleotide excision repair through deubiquitinating XPC protein and preventing XPC protein from undergoing ultraviolet light-induced and VCP/p97 protein-regulated proteolysis. J Biol Chem 2014; 289:27278-27289. [PMID: 25118285 DOI: 10.1074/jbc.m114.589812] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin specific protease 7 (USP7) is a known deubiquitinating enzyme for tumor suppressor p53 and its downstream regulator, E3 ubiquitin ligase Mdm2. Here we report that USP7 regulates nucleotide excision repair (NER) via deubiquitinating xeroderma pigmentosum complementation group C (XPC) protein, a critical damage recognition factor that binds to helix-distorting DNA lesions and initiates NER. XPC is ubiquitinated during the early stage of NER of UV light-induced DNA lesions. We demonstrate that transiently compromising cellular USP7 by siRNA and chemical inhibition leads to accumulation of ubiquitinated forms of XPC, whereas complete USP7 deficiency leads to rapid ubiquitin-mediated XPC degradation upon UV irradiation. We show that USP7 physically interacts with XPC in vitro and in vivo. Overexpression of wild-type USP7, but not its catalytically inactive or interaction-defective mutants, reduces the ubiquitinated forms of XPC. Importantly, USP7 efficiently deubiquitinates XPC-ubiquitin conjugates in deubiquitination assays in vitro. We further show that valosin-containing protein (VCP)/p97 is involved in UV light-induced XPC degradation in USP7-deficient cells. VCP/p97 is readily recruited to DNA damage sites and colocalizes with XPC. Chemical inhibition of the activity of VCP/p97 ATPase causes an increase in ubiquitinated XPC on DNA-damaged chromatin. Moreover, USP7 deficiency severely impairs the repair of cyclobutane pyrimidine dimers and, to a lesser extent, affects the repair of 6-4 photoproducts. Taken together, our findings uncovered an important role of USP7 in regulating NER via deubiquitinating XPC and by preventing its VCP/p97-regulated proteolysis.
Collapse
Affiliation(s)
- Jinshan He
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Qianzheng Zhu
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210.
| | - Gulzar Wani
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Nidhi Sharma
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Chunhua Han
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Jiang Qian
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Kyle Pentz
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Qi-En Wang
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210
| | - Altaf A Wani
- Department of Radiology, The Ohio State University, Columbus, Ohio 43210; Department of Molecular and Cellular Biochemistry, and The Ohio State University, Columbus, Ohio 43210; James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, Ohio 43210.
| |
Collapse
|
178
|
van Loosdregt J, Coffer PJ. Post-translational modification networks regulating FOXP3 function. Trends Immunol 2014; 35:368-78. [PMID: 25047417 DOI: 10.1016/j.it.2014.06.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 06/23/2014] [Accepted: 06/23/2014] [Indexed: 01/01/2023]
Abstract
Forkhead box (FOX)P3 is a requisite transcription factor for the development and maintenance of immunosuppressive function of regulatory T (Treg) cells, and therefore for immune homeostasis. Post-translational modifications (PTMs) can transiently alter the functionality of transcription factors, and recent evidence reveals that FOXP3 can be regulated by various PTMs including acetylation, ubiquitination, and phosphorylation. Here, we review the current understanding of how these modifications control FOXP3, including regulation of DNA binding, transactivation potential, and proteasomal degradation. We place these findings in the context of the biology of Treg cells, and discuss both limitations in translating biochemical findings into in vivo functions and the opportunities presented by a better understanding of the molecular mechanisms that can transiently control FOXP3 activity in response to environmental cues.
Collapse
Affiliation(s)
- Jorg van Loosdregt
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J Coffer
- Division of Pediatrics, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Cell Biology, University Medical Center Utrecht, Utrecht, The Netherlands; Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
179
|
Harper S, Gratton HE, Cornaciu I, Oberer M, Scott D, Emsley J, Dreveny I. Structure and catalytic regulatory function of ubiquitin specific protease 11 N-terminal and ubiquitin-like domains. Biochemistry 2014; 53:2966-78. [PMID: 24724799 PMCID: PMC4020902 DOI: 10.1021/bi500116x] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 03/31/2014] [Indexed: 12/17/2022]
Abstract
The ubiquitin specific protease 11 (USP11) is implicated in DNA repair, viral RNA replication, and TGFβ signaling. We report the first characterization of the USP11 domain architecture and its role in regulating the enzymatic activity. USP11 consists of an N-terminal "domain present in USPs" (DUSP) and "ubiquitin-like" (UBL) domain, together referred to as DU domains, and the catalytic domain harboring a second UBL domain. Crystal structures of the DU domains show a tandem arrangement with a shortened β-hairpin at the two-domain interface and altered surface characteristics compared to the homologues USP4 and USP15. A conserved VEVY motif is a signature feature at the two-domain interface that shapes a potential protein interaction site. Small angle X-ray scattering and gel filtration experiments are consistent with the USP11DU domains and full-length USP11 being monomeric. Unexpectedly, we reveal, through kinetic assays of a series of deletion mutants, that the catalytic activity of USP11 is not regulated through intramolecular autoinhibition or activation by the N-terminal DU or UBL domains. Moreover, ubiquitin chain cleavage assays with all eight linkages reveal a preference for Lys(63)-, Lys(6)-, Lys(33)-, and Lys(11)-linked chains over Lys(27)-, Lys(29)-, and Lys(48)-linked and linear chains consistent with USP11's function in DNA repair pathways that is mediated by the protease domain. Our data support a model whereby USP11 domains outside the catalytic core domain serve as protein interaction or trafficking modules rather than a direct regulatory function of the proteolytic activity. This highlights the diversity of USPs in substrate recognition and regulation of ubiquitin deconjugation.
Collapse
Affiliation(s)
- Stephen Harper
- Centre for Biomolecular Sciences, University of Nottingham, University
Park Campus, Nottingham, NG7 2RD, United Kingdom
| | - Hayley E. Gratton
- Centre for Biomolecular Sciences, University of Nottingham, University
Park Campus, Nottingham, NG7 2RD, United Kingdom
| | - Irina Cornaciu
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstraße
50/3, A-8010 Graz, Austria
| | - Monika Oberer
- Institute
of Molecular Biosciences, University of
Graz, Humboldtstraße
50/3, A-8010 Graz, Austria
| | - David
J. Scott
- School
of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, LE12 5RD, United Kingdom
| | - Jonas Emsley
- Centre for Biomolecular Sciences, University of Nottingham, University
Park Campus, Nottingham, NG7 2RD, United Kingdom
| | - Ingrid Dreveny
- Centre for Biomolecular Sciences, University of Nottingham, University
Park Campus, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
180
|
Shrestha RK, Ronau JA, Davies CW, Guenette RG, Strieter ER, Paul LN, Das C. Insights into the mechanism of deubiquitination by JAMM deubiquitinases from cocrystal structures of the enzyme with the substrate and product. Biochemistry 2014; 53:3199-217. [PMID: 24787148 PMCID: PMC4033627 DOI: 10.1021/bi5003162] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
AMSH, a conserved zinc metallo deubiquitinase,
controls downregulation
and degradation of cell-surface receptors mediated by the endosomal
sorting complexes required for transport (ESCRT) machinery. It displays
high specificity toward the Lys63-linked polyubiquitin chain, which
is used as a signal for ESCRT-mediated endosomal–lysosomal
sorting of receptors. Herein, we report the crystal structures of
the catalytic domain of AMSH orthologue Sst2 from fission yeast, its
ubiquitin (product)-bound form, and its Lys63-linked diubiquitin (substrate)-bound
form at 1.45, 1.7, and 2.3 Å, respectively. The structures reveal
that the P-side product fragment maintains nearly all the contacts
with the enzyme as seen with the P portion (distal ubiquitin) of the
Lys63-linked diubiquitin substrate, with additional coordination of
the Gly76 carboxylate group of the product with the active-site Zn2+. One of the product-bound structures described herein is
the result of an attempt to cocrystallize the diubiquitin substrate
bound to an active site mutant presumed to render the enzyme inactive,
instead yielding a cocrystal structure of the enzyme bound to the
P-side ubiquitin fragment of the substrate (distal ubiquitin). This
fragment was generated in situ from the residual
activity of the mutant enzyme. In this structure, the catalytic water
is seen placed between the active-site Zn2+ and the carboxylate
group of Gly76 of ubiquitin, providing what appears to be a snapshot
of the active site when the product is about to depart. Comparison
of this structure with that of the substrate-bound form suggests the
importance of dynamics of a flexible flap near the active site in
catalysis. The crystal structure of the Thr319Ile mutant of the catalytic
domain of Sst2 provides insight into structural basis of microcephaly
capillary malformation syndrome. Isothermal titration calorimetry
yields a dissociation constant (KD) of
10.2 ± 0.6 μM for the binding of ubiquitin to the enzyme,
a value comparable to the KM of the enzyme
catalyzing hydrolysis of the Lys63-linked diubiquitin substrate (∼20
μM). These results, together with the previously reported observation
that the intracellular concentration of free ubiquitin (∼20
μM) exceeds that of Lys63-linked polyubiquitin chains, imply
that the free, cytosolic form of the enzyme remains inhibited by being
tightly bound to free ubiquitin. We propose that when AMSH associates
with endosomes, inhibition would be relieved because of ubiquitin
binding domains present on its endosomal binding partners that would
shift the balance toward better recognition of polyubiquitin chains
via the avidity effect.
Collapse
Affiliation(s)
- Rashmi K Shrestha
- Department of Chemistry, Purdue University , 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | | | | | | | | | | | | |
Collapse
|
181
|
Early adipogenesis is regulated through USP7-mediated deubiquitination of the histone acetyltransferase TIP60. Nat Commun 2014; 4:2656. [PMID: 24141283 DOI: 10.1038/ncomms3656] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 09/23/2013] [Indexed: 01/27/2023] Open
Abstract
Transcriptional coregulators, including the acetyltransferase Tip60, have a key role in complex cellular processes such as differentiation. Whereas post-translational modifications have emerged as an important mechanism to regulate transcriptional coregulator activity, the identification of the corresponding demodifying enzymes has remained elusive. Here we show that the expression of the Tip60 protein, which is essential for adipocyte differentiation, is regulated through polyubiquitination on multiple residues. USP7, a dominant deubiquitinating enzyme in 3T3-L1 adipocytes and mouse adipose tissue, deubiquitinates Tip60 both in intact cells and in vitro and increases Tip60 protein levels. Furthermore, inhibition of USP7 expression and activity decreases adipogenesis. Transcriptome analysis reveals several cell cycle genes to be co-regulated by both Tip60 and USP7. Knockdown of either factor results in impaired mitotic clonal expansion, an early step in adipogenesis. These results reveal deubiquitination of a transcriptional coregulator to be a key mechanism in the regulation of early adipogenesis.
Collapse
|
182
|
NAKANISHI ATSUKO, KITAGISHI YASUKO, OGURA YASUNORI, MATSUDA SATORU. The tumor suppressor PTEN interacts with p53 in hereditary cancer. Int J Oncol 2014; 44:1813-9. [DOI: 10.3892/ijo.2014.2377] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 03/26/2014] [Indexed: 11/05/2022] Open
|
183
|
Villamil MA, Liang Q, Zhuang Z. The WD40-repeat protein-containing deubiquitinase complex: catalysis, regulation, and potential for therapeutic intervention. Cell Biochem Biophys 2014; 67:111-26. [PMID: 23797609 DOI: 10.1007/s12013-013-9637-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Ubiquitination has emerged as an essential signaling mechanism in eukaryotes. Deubiquitinases (DUBs) counteract the activities of the ubiquitination machinery and provide another level of control in cellular ubiquitination. Not surprisingly, DUBs are subjected to stringent regulations. Besides regulation by the noncatalytic domains present in the DUB sequences, DUB-interacting proteins are increasingly realized as essential regulators for DUB activity and function. This review focuses on DUBs that are associated with WD40-repeat proteins. Many human ubiquitin-specific proteases (USPs) were found to interact with WD40-repeat proteins, but little is known as to how this interaction regulates the activity and function of USPs. In recent years, significant progress has been made in understanding a prototypical WD40-repeat protein-containing DUB complex that comprises USP1 and USP1-associated factor 1 (UAF1). It has been shown that UAF1 activates USP1 through a potential active-site modulation, and the complex formation between USP1 and UAF1 is regulated by serine phosphorylation. Recently, human USPs have been recognized as a promising target class for inhibitor discovery. Small molecule inhibitors targeting several human USPs have been reported. USP1 is involved in two major DNA damage response pathways, DNA translesion synthesis and the Fanconi anemia pathway. Inhibiting the USP1/UAF1 deubiquitinase complex represents a new strategy to potentiate cancer cells to DNA-crosslinking agents and to overcome resistance that has plagued clinical cancer chemotherapy. The progress in inhibitor discovery against USPs and the WD40-repeat protein-containing USP complex will be discussed.
Collapse
Affiliation(s)
- Mark A Villamil
- Department of Chemistry and Biochemistry, University of Delaware, 214A Drake Hall, Newark, DE 19716, USA
| | | | | |
Collapse
|
184
|
Nicholson B, Kumar S, Agarwal S, Eddins MJ, Marblestone JG, Wu J, Kodrasov MP, LaRocque JP, Sterner DE, Mattern MR. Discovery of Therapeutic Deubiquitylase Effector Molecules. ACTA ACUST UNITED AC 2014; 19:989-99. [DOI: 10.1177/1087057114527312] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/14/2014] [Indexed: 12/28/2022]
Abstract
The approval of proteasome inhibitors bortezomib and carfilzomib and the E3 ligase antagonist thalidomide and its analogs, lenalidomide and pomalidomide, validates the ubiquitin–proteasome pathway as a source of novel drugs for treating cancer and, potentially, a variety of devastating illnesses, including inflammation, cardiovascular disease, and neurodegenerative disease. All elements of this critical regulatory pathway—the proteasome itself, E3 ligases (which conjugate ubiquitin to target proteins), and deubiquitylating enzymes (which deconjugate ubiquitin, reversing ligase action)—are potential therapeutic targets, and all have been worked on extensively during the past decade. No deubiquitylase inhibitors or activators have yet progressed to clinical trial, however, despite compelling target validation and several years of high-throughput screening and preclinical development of hits by numerous pharmaceutical companies, biotechnology organizations, and academic groups. The appropriateness of deubiquitylases as therapeutic targets in many disease areas is reviewed, followed by evidence that selective inhibitors of these cysteine proteases can be discovered. Because the lack of progress in drug-discovery efforts with deubiquitylases suggests a need for improved discovery methodologies, currently available platforms and strategies are analyzed, and improved or completely novel, unrelated approaches are considered in terms of their likelihood of producing clinically viable effectors of deubiquitylases.
Collapse
Affiliation(s)
| | | | | | | | | | - J. Wu
- Progenra, Inc., Malvern, PA, USA
| | | | | | | | | |
Collapse
|
185
|
Molland K, Zhou Q, Mesecar AD. A 2.2 Å resolution structure of the USP7 catalytic domain in a new space group elaborates upon structural rearrangements resulting from ubiquitin binding. Acta Crystallogr F Struct Biol Commun 2014; 70:283-7. [PMID: 24598911 PMCID: PMC3944686 DOI: 10.1107/s2053230x14002519] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/04/2014] [Indexed: 01/09/2023] Open
Abstract
A sparse-matrix screen for new crystallization conditions for the USP7 catalytic domain (USP7CD) led to the identification of a condition in which crystals grow reproducibly in 24-48 h. Variation of the halide metal, growth temperature and seed-stock concentration resulted in a shift in space group from P21 with two molecules in the asymmetric unit to C2 with one molecule in the asymmetric unit. Representative structures from each space group were determined to 2.2 Å resolution and these structures support previous findings that the catalytic triad and switching loop are likely to be in unproductive conformations in the absence of ubiquitin (Ub). Importantly, the new structures reveal previously unobserved electron density for blocking loop 1 (BL1) residues 410-419. The new structures indicate a distinct rearrangement of the USP7 BL1 compared with its position in the presence of bound Ub.
Collapse
Affiliation(s)
- Katrina Molland
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Qing Zhou
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Andrew D. Mesecar
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
- The Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
186
|
Wolberger C. Mechanisms for regulating deubiquitinating enzymes. Protein Sci 2014; 23:344-53. [PMID: 24403057 DOI: 10.1002/pro.2415] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 12/26/2022]
Abstract
Ubiquitination is a reversible post-translational modification that plays a dynamic role in regulating most eukaryotic processes. Deubiquitinating enzymes (DUBs), which hydrolyze the isopeptide or peptide linkages joining ubiquitin to substrate lysines or N-termini, therefore play a key role in ubiquitin signaling. Cells employ multiple mechanisms to regulate DUB activity and thus ensure the appropriate biological response. Recent structural studies have shed light on several different mechanisms by which DUB activity and specificity is regulated.
Collapse
Affiliation(s)
- Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry and the Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| |
Collapse
|
187
|
Reddy BA, van der Knaap JA, Bot AGM, Mohd-Sarip A, Dekkers DHW, Timmermans MA, Martens JWM, Demmers JAA, Verrijzer CP. Nucleotide biosynthetic enzyme GMP synthase is a TRIM21-controlled relay of p53 stabilization. Mol Cell 2014; 53:458-70. [PMID: 24462112 DOI: 10.1016/j.molcel.2013.12.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 09/20/2013] [Accepted: 12/16/2013] [Indexed: 12/31/2022]
Abstract
Nucleotide biosynthesis is fundamental to normal cell proliferation as well as to oncogenesis. Tumor suppressor p53, which prevents aberrant cell proliferation, is destabilized through ubiquitylation by MDM2. Ubiquitin-specific protease 7 (USP7) plays a dualistic role in p53 regulation and has been proposed to deubiquitylate either p53 or MDM2. Here, we show that guanosine 5'-monophosphate synthase (GMPS) is required for USP7-mediated stabilization of p53. Normally, most GMPS is sequestered in the cytoplasm, separated from nuclear USP7 and p53. In response to genotoxic stress or nucleotide deprivation, GMPS becomes nuclear and facilitates p53 stabilization by promoting its transfer from MDM2 to a GMPS-USP7 deubiquitylation complex. Intriguingly, cytoplasmic sequestration of GMPS requires ubiquitylation by TRIM21, a ubiquitin ligase associated with autoimmune disease. These results implicate a classic nucleotide biosynthetic enzyme and a ubiquitin ligase, better known for its role in autoimmune disease, in p53 control.
Collapse
Affiliation(s)
- B Ashok Reddy
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Jan A van der Knaap
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Alice G M Bot
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Adone Mohd-Sarip
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Dick H W Dekkers
- Proteomics Centre, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Mieke A Timmermans
- Department of Medical Oncology, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - John W M Martens
- Department of Medical Oncology, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Proteomics Centre, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands
| | - C Peter Verrijzer
- Department of Biochemistry and Centre for Biomedical Genetics, Erasmus University Medical Centre, P.O. Box 1738, 3000 DR, Rotterdam, The Netherlands.
| |
Collapse
|
188
|
Oliver JC, Gudihal R, Burgner JW, Pedley AM, Zwierko AT, Davisson VJ, Linger RS. Conformational changes involving ammonia tunnel formation and allosteric control in GMP synthetase. Arch Biochem Biophys 2014; 545:22-32. [PMID: 24434004 DOI: 10.1016/j.abb.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/27/2013] [Accepted: 01/06/2014] [Indexed: 11/17/2022]
Abstract
GMP synthetase is the glutamine amidotransferase that catalyzes the final step in the guanylate branch of de novo purine biosynthesis. Conformational changes are required to efficiently couple distal active sites in the protein; however, the nature of these changes has remained elusive. Structural information derived from both limited proteolysis and sedimentation velocity experiments support the hypothesis of nucleotide-induced loop- and domain-closure in the protein. These results were combined with information from sequence conservation and precedents from other glutamine amidotransferases to develop the first structural model of GMPS in a closed, active state. In analyzing this Catalytic model, an interdomain salt bridge was identified residing in the same location as seen in other triad glutamine amidotransferases. Using mutagenesis and kinetic analysis, the salt bridge between H186 and E383 was shown to function as a connection between the two active sites. Mutations at these residues uncoupled the two half-reactions of the enzyme. The chemical events of nucleotide binding initiate a series of conformational changes that culminate in the establishment of a tunnel for ammonia as well as an activated glutaminase catalytic site. The results of this study provide a clearer understanding of the allostery of GMPS, where, for the first time, key substrate binding and interdomain contacts are modeled and analyzed.
Collapse
Affiliation(s)
- Justin C Oliver
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Ravidra Gudihal
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - John W Burgner
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, United States
| | - Anthony M Pedley
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Alexander T Zwierko
- Department of Pharmaceutical and Administrative Sciences, University of Charleston, Charleston, WV 25304, United States
| | - V Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Rebecca S Linger
- Department of Pharmaceutical and Administrative Sciences, University of Charleston, Charleston, WV 25304, United States.
| |
Collapse
|
189
|
Morotti A, Panuzzo C, Crivellaro S, Pergolizzi B, Familiari U, Berger AH, Saglio G, Pandolfi PP. BCR-ABL disrupts PTEN nuclear-cytoplasmic shuttling through phosphorylation-dependent activation of HAUSP. Leukemia 2013; 28:1326-33. [DOI: 10.1038/leu.2013.370] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 11/24/2013] [Accepted: 11/26/2013] [Indexed: 12/30/2022]
|
190
|
Huang OW, Cochran AG. Regulation of deubiquitinase proteolytic activity. Curr Opin Struct Biol 2013; 23:806-11. [DOI: 10.1016/j.sbi.2013.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 06/29/2013] [Accepted: 07/19/2013] [Indexed: 11/29/2022]
|
191
|
Abstract
The minichromosome maintenance (MCM) complex, which plays multiple important roles in DNA replication, is loaded onto chromatin following mitosis, remains on chromatin until the completion of DNA synthesis, and then is unloaded by a poorly defined mechanism that involves the MCM binding protein (MCM-BP). Here we show that MCM-BP directly interacts with the ubiquitin-specific protease USP7, that this interaction occurs predominantly on chromatin, and that MCM-BP can tether USP7 to MCM proteins. Detailed biochemical and structure analyses of the USP7-MCM-BP interaction showed that the (155)PSTS(158) MCM-BP sequence mediates critical interactions with the TRAF domain binding pocket of USP7. Analysis of the effects of USP7 knockout on DNA replication revealed that lack of USP7 results in slowed progression through late S phase without globally affecting the fork rate or origin usage. Lack of USP7 also resulted in increased levels of MCM proteins on chromatin, and investigation of the cause of this increase revealed a defect in the dissociation of MCM proteins from chromatin in mid- to late S phase. This role of USP7 mirrors the previously described role for MCM-BP in MCM complex unloading and suggests that USP7 works with MCM-BP to unload MCM complexes from chromatin at the end of S phase.
Collapse
|
192
|
Clague MJ, Barsukov I, Coulson JM, Liu H, Rigden DJ, Urbé S. Deubiquitylases from genes to organism. Physiol Rev 2013; 93:1289-315. [PMID: 23899565 DOI: 10.1152/physrev.00002.2013] [Citation(s) in RCA: 354] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ubiquitylation is a major posttranslational modification that controls most complex aspects of cell physiology. It is reversed through the action of a large family of deubiquitylating enzymes (DUBs) that are emerging as attractive therapeutic targets for a number of disease conditions. Here, we provide a comprehensive analysis of the complement of human DUBs, indicating structural motifs, typical cellular copy numbers, and tissue expression profiles. We discuss the means by which specificity is achieved and how DUB activity may be regulated. Generically DUB catalytic activity may be used to 1) maintain free ubiquitin levels, 2) rescue proteins from ubiquitin-mediated degradation, and 3) control the dynamics of ubiquitin-mediated signaling events. Functional roles of individual DUBs from each of five subfamilies in specific cellular processes are highlighted with an emphasis on those linked to pathological conditions where the association is supported by whole organism models. We then specifically consider the role of DUBs associated with protein degradative machineries and the influence of specific DUBs upon expression of receptors and channels at the plasma membrane.
Collapse
Affiliation(s)
- Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, and Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | | | |
Collapse
|
193
|
Oliver JC, Linger RS, Chittur SV, Davisson VJ. Substrate activation and conformational dynamics of guanosine 5'-monophosphate synthetase. Biochemistry 2013; 52:5225-35. [PMID: 23841499 DOI: 10.1021/bi3017075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutamine amidotransferases catalyze the amination of a wide range of molecules using the amide nitrogen of glutamine. The family provides numerous examples for study of multi-active-site regulation and interdomain communication in proteins. Guanosine 5'-monophosphate synthetase (GMPS) is one of three glutamine amidotransferases in de novo purine biosynthesis and is responsible for the last step in the guanosine branch of the pathway, the amination of xanthosine 5'-monophosphate (XMP). In several amidotransferases, the intramolecular path of ammonia from glutamine to substrate is understood; however, the crystal structure of GMPS only hinted at the details of such transfer. Rapid kinetics studies provide insight into the mechanism of the substrate-induced changes in this complex enzyme. Rapid mixing of GMPS with substrates also manifests absorbance changes that report on the kinetics of formation of a reactive intermediate as well as steps in the process of rapid transfer of ammonia to this intermediate. Isolation and use of the adenylylated nucleotide intermediate allowed the study of the amido transfer reaction distinct from the ATP-dependent reaction. Changes in intrinsic tryptophan fluorescence upon mixing of enzyme with XMP suggest a conformational change upon substrate binding, likely the ordering of a highly conserved loop in addition to global domain motions. In the GMPS reaction, all forward rates before product release appear to be faster than steady-state turnover, implying that release is likely rate-limiting. These studies establish the functional role of a substrate-induced conformational change in the GMPS catalytic cycle and provide a kinetic context for the formation of an ammonia channel linking the distinct active sites.
Collapse
Affiliation(s)
- Justin C Oliver
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | | | |
Collapse
|
194
|
Welin M, Lehtiö L, Johansson A, Flodin S, Nyman T, Trésaugues L, Hammarström M, Gräslund S, Nordlund P. Substrate specificity and oligomerization of human GMP synthetase. J Mol Biol 2013; 425:4323-33. [PMID: 23816837 DOI: 10.1016/j.jmb.2013.06.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/20/2013] [Accepted: 06/21/2013] [Indexed: 10/26/2022]
Abstract
Guanine monophosphate (GMP) synthetase is a bifunctional two-domain enzyme. The N-terminal glutaminase domain generates ammonia from glutamine and the C-terminal synthetase domain aminates xanthine monophosphate (XMP) to form GMP. Mammalian GMP synthetases (GMPSs) contain a 130-residue-long insert in the synthetase domain in comparison to bacterial proteins. We report here the structure of a eukaryotic GMPS. Substrate XMP was bound in the crystal structure of the human GMPS enzyme. XMP is bound to the synthetase domain and covered by a LID motif. The enzyme forms a dimer in the crystal structure with subunit orientations entirely different from the bacterial counterparts. The inserted sub-domain is shown to be involved in substrate binding and dimerization. Furthermore, the structural basis for XMP recognition is revealed as well as a potential allosteric site. Enzymes in the nucleotide metabolism typically display an increased activity in proliferating cells due to the increased need for nucleotides. Many drugs used as immunosuppressants and for treatment of cancer and viral diseases are indeed nucleobase- and nucleoside-based compounds, which are acting on or are activated by enzymes in this pathway. The information obtained from the crystal structure of human GMPS might therefore aid in understanding interactions of nucleoside-based drugs with GMPS and in structure-based design of GMPS-specific inhibitors.
Collapse
Affiliation(s)
- Martin Welin
- Structural Genomics Consortium, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Reversible inactivation of deubiquitinases by reactive oxygen species in vitro and in cells. Nat Commun 2013; 4:1568. [PMID: 23463011 PMCID: PMC3615374 DOI: 10.1038/ncomms2532] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/21/2013] [Indexed: 12/12/2022] Open
Abstract
In eukaryotes, deubiquitinases (DUBs) remove ubiquitin conjugates from diverse substrates, altering their stabilities, localizations or activities. Here we show that many DUBs of the USP and UCH subfamilies can be reversibly inactivated upon oxidation by reactive oxygen species in vitro and in cells. Oxidation occurs preferentially on the catalytic cysteine, abrogating the isopeptide-cleaving activity without affecting these enzymes’ affinity to ubiquitin. Sensitivity to oxidative inhibition is associated with DUB activation wherein the active site cysteine is converted to a deprotonated state prone to oxidation. We demonstrate that this redox regulation is essential for mono-ubiquitination of proliferating-cell nuclear antigen in response to oxidative DNA damage, which initiates a DNA damage-tolerance programme. These findings establish a novel mechanism of DUB regulation that may be integrated with other redox-dependent signalling circuits to govern cellular adaptation to oxidative stress, a process intimately linked to aging and cancer. Deubiquitinases regulate protein stability, localization and activity, and yet the mechanisms controlling their activity remain poorly understood. Lee et al. show that these enzymes are reversibly inhibited by reactive oxygen species through oxidation of catalytic cysteine residues.
Collapse
|
196
|
Ching W, Koyuncu E, Singh S, Arbelo-Roman C, Hartl B, Kremmer E, Speiseder T, Meier C, Dobner T. A ubiquitin-specific protease possesses a decisive role for adenovirus replication and oncogene-mediated transformation. PLoS Pathog 2013; 9:e1003273. [PMID: 23555268 PMCID: PMC3610741 DOI: 10.1371/journal.ppat.1003273] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 02/11/2013] [Indexed: 11/17/2022] Open
Abstract
Adenoviral replication depends on viral as well as cellular proteins. However, little is known about cellular proteins promoting adenoviral replication. In our screens to identify such proteins, we discovered a cellular component of the ubiquitin proteasome pathway interacting with the central regulator of adenoviral replication. Our binding assays mapped a specific interaction between the N-terminal domains of both viral E1B-55K and USP7, a deubiquitinating enzyme. RNA interference-mediated downregulation of USP7 severely reduced E1B-55K protein levels, but more importantly negatively affected adenoviral replication. We also succeeded in resynthesizing an inhibitor of USP7, which like the knockdown background reduced adenoviral replication. Further assays revealed that not only adenoviral growth, but also adenoviral oncogene-driven cellular transformation relies on the functions of USP7. Our data provide insights into an intricate mechanistic pathway usurped by an adenovirus to promote its replication and oncogenic functions, and at the same time open up possibilities for new antiviral strategies. Adenoviral infections can result in severe outcomes leading to mortality especially in children undergoing immunosuppressive therapies. Unfortunately, no specific anti-adenoviral treatments are available to treat disseminated adenoviral infections. We have set out to identify host factors promoting adenoviral growth and could identify the cellular protein Ubiquitin-specific protease 7 (USP7) being central to adenoviral infection. Here we show that USP7 interacts with the viral protein E1B-55K, a central regulator of adenoviral replication and adenoviral oncogene-mediated cellular transformation. We demonstrate that USP7 ensures stability and/or proper expression levels of adenoviral proteins at early and late time points of infection. Consistent with this, small-molecule inhibitors of USP7 showed efficient reduction of capsid protein levels and viral progeny numbers. Thus, USP7 inhibition might be a useful treatment option in the context of disseminated adenoviral infections. Moreover, we were also able to show that adenoviral oncogene-mediated cellular transformation can be hampered by USP7 disruption. In summary, this study shows that two different adenoviral disease mechanisms can be inhibited by targeting one host cellular factor.
Collapse
Affiliation(s)
- Wilhelm Ching
- Department of Molecular Virology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Cheng C, Niu C, Yang Y, Wang Y, Lu M. Expression of HAUSP in gliomas correlates with disease progression and survival of patients. Oncol Rep 2013; 29:1730-6. [PMID: 23483195 PMCID: PMC3658813 DOI: 10.3892/or.2013.2342] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/18/2013] [Indexed: 12/11/2022] Open
Abstract
The human herpesvirus-associated ubiquitin-specific protease (HAUSP) deubiquitinating enzyme has been shown to regulate many proteins involved in the cell cycle, as well as tumor suppressors and oncogenes. However, the expression pattern of HAUSP in glioma patients is still unclear. The purpose of the present study was to investigate the expression pattern and prognostic significance of HAUSP in patients with glioma. Eighty glioma specimens and 10 normal control samples were obtained. Immunohistochemical assay, quantitative real-time PCR and western blot analysis were carried out to explore the expression of HAUSP. Additionally, the association of HAUSP expression with clinicopathological parameters and the survival of glioma patients were analyzed. Our results showed that HAUSP expression levels were increased from grade I to grade IV in the tumors of the glioma patients. Moreover, the survival rate of patients with HAUSP-positive tumors was lower when compared to that of patients with HAUSP-negative tumors. We further confirmed that high expression of HAUSP was a significant and independent prognostic indicator in glioma by multivariate analysis. Our data provide convincing evidence for the first time that the overexpression of HAUSP at the gene and protein levels is correlated with poor outcome in patients with glioma in China. HAUSP may play an important oncogenic role in glioma progression, and it is a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Chuandong Cheng
- Department of Neurosurgery, Anhui Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui 230001, PR China
| | | | | | | | | |
Collapse
|
198
|
Giovinazzi S, Morozov VM, Summers MK, Reinhold WC, Ishov AM. USP7 and Daxx regulate mitosis progression and taxane sensitivity by affecting stability of Aurora-A kinase. Cell Death Differ 2013; 20:721-31. [PMID: 23348568 DOI: 10.1038/cdd.2012.169] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A large number of patients are resistant to taxane-based chemotherapy. Functional mitotic checkpoints are essential for taxane sensitivity. Thus, mitotic regulators are potential markers for therapy response and could be targeted for anticancer therapy. In this study, we identified a novel function of ubiquitin (Ub)-specific processing protease-7 (USP7) that interacts and cooperates with protein death domain-associated protein (Daxx) in the regulation of mitosis and taxane resistance. Depletion of USP7 impairs mitotic progression, stabilizes cyclin B and reduces stability of the mitotic E3 Ub ligase, checkpoint with forkhead and Ring-finger (CHFR). Consequently, cells with depleted USP7 accumulate Aurora-A kinase, a CHFR substrate, thus elevating multipolar mitoses. We further show that these effects are independent of the USP7 substrate p53. Thus, USP7 and Daxx are necessary to regulate proper execution of mitosis, partially via regulation of CHFR and Aurora-A kinase stability. Results from colony formation assay, in silico analysis across the NCI60 platform and in breast cancer patients suggest that USP7 levels inversely correlate with response to taxanes, pointing at the USP7 protein as a potential predictive factor for taxane response in cancer patients. In addition, we demonstrated that inhibition of Aurora-A attenuates USP7-mediated taxane resistance, suggesting that combinatorial drug regimens of Taxol and Aurora-A inhibitors may improve the outcome of chemotherapy response in cancer patients resistant to taxane treatment. Finally, our study offers novel insights on USP7 inhibition as cancer therapy.
Collapse
Affiliation(s)
- S Giovinazzi
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
199
|
|
200
|
Bozza WP, Liang Q, Gong P, Zhuang Z. Transient kinetic analysis of USP2-catalyzed deubiquitination reveals a conformational rearrangement in the K48-linked diubiquitin substrate. Biochemistry 2012; 51:10075-86. [PMID: 23211065 DOI: 10.1021/bi3009104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deubiquitination has emerged as an essential regulatory mechanism of a number of cellular processes. An in-depth understanding of deubiquitinating enzyme (DUB) catalysis, particularly the mode of ubiquitin binding and the individual steps in the DUB catalytic turnover, is imperative for exploiting DUBs for therapeutic intervention. In this work, we present a transient kinetic study of USP2 in hydrolyzing a model substrate Ub-AMC and a physiological substrate K48-linked diubiquitin. We conducted stopped-flow fluorescence analyses of the binding of mono- and diubiquitin to an inactive USP2 mutant and unveiled interesting differences in the binding kinetics between the two substrates. While a simple one-step binding of monoubiquitin to USP2 was observed, a biphasic binding was evident for diubiquitin. We further followed the deubiquitination reaction of Ub-AMC and K48-linked IQF-diubiquitin by USP2 using stopped-flow florescence under a single-turnover condition. Global fitting of the reaction traces revealed differences in the microscopic rate constants between Ub-AMC and the physiological diubiquitin substrate. Our binding and single-turnover data support a conformational rearrangement of the diubiquitin substrate in USP2-catalyzed deubiquitination. This finding is significant given the recent finding that the K48-linked diubiquitin is dynamic in its conformation. Our results provide useful insights into the mechanism of how USP recognizes ubiquitin moieties in a chain structure, which is important for understanding USP catalysis and developing inhibitors against USPs.
Collapse
Affiliation(s)
- William P Bozza
- Department of Chemistry and Biochemistry, 214A Drake Hall, University of Delaware, Newark, DE 19716, USA
| | | | | | | |
Collapse
|