151
|
Kelch BA. Review: The lord of the rings: Structure and mechanism of the sliding clamp loader. Biopolymers 2017; 105:532-46. [PMID: 26918303 DOI: 10.1002/bip.22827] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/15/2016] [Accepted: 02/23/2016] [Indexed: 12/15/2022]
Abstract
Sliding clamps are ring-shaped polymerase processivity factors that act as master regulators of cellular replication by coordinating multiple functions on DNA to ensure faithful transmission of genetic and epigenetic information. Dedicated AAA+ ATPase machines called clamp loaders actively place clamps on DNA, thereby governing clamp function by controlling when and where clamps are used. Clamp loaders are also important model systems for understanding the basic principles of AAA+ mechanism and function. After nearly 30 years of study, the ATP-dependent mechanism of opening and loading of clamps is now becoming clear. Here I review the structural and mechanistic aspects of the clamp loading process, as well as comment on questions that will be addressed by future studies. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 532-546, 2016.
Collapse
Affiliation(s)
- Brian A Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605
| |
Collapse
|
152
|
Control of Genome Integrity by RFC Complexes; Conductors of PCNA Loading onto and Unloading from Chromatin during DNA Replication. Genes (Basel) 2017; 8:genes8020052. [PMID: 28134787 PMCID: PMC5333041 DOI: 10.3390/genes8020052] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/21/2017] [Indexed: 11/23/2022] Open
Abstract
During cell division, genome integrity is maintained by faithful DNA replication during S phase, followed by accurate segregation in mitosis. Many DNA metabolic events linked with DNA replication are also regulated throughout the cell cycle. In eukaryotes, the DNA sliding clamp, proliferating cell nuclear antigen (PCNA), acts on chromatin as a processivity factor for DNA polymerases. Since its discovery, many other PCNA binding partners have been identified that function during DNA replication, repair, recombination, chromatin remodeling, cohesion, and proteolysis in cell-cycle progression. PCNA not only recruits the proteins involved in such events, but it also actively controls their function as chromatin assembles. Therefore, control of PCNA-loading onto chromatin is fundamental for various replication-coupled reactions. PCNA is loaded onto chromatin by PCNA-loading replication factor C (RFC) complexes. Both RFC1-RFC and Ctf18-RFC fundamentally function as PCNA loaders. On the other hand, after DNA synthesis, PCNA must be removed from chromatin by Elg1-RFC. Functional defects in RFC complexes lead to chromosomal abnormalities. In this review, we summarize the structural and functional relationships among RFC complexes, and describe how the regulation of PCNA loading/unloading by RFC complexes contributes to maintaining genome integrity.
Collapse
|
153
|
Ode KL, Ukai H, Susaki EA, Narumi R, Matsumoto K, Hara J, Koide N, Abe T, Kanemaki MT, Kiyonari H, Ueda HR. Knockout-Rescue Embryonic Stem Cell-Derived Mouse Reveals Circadian-Period Control by Quality and Quantity of CRY1. Mol Cell 2017; 65:176-190. [DOI: 10.1016/j.molcel.2016.11.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/24/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
|
154
|
Martín R, Portantier M, Chica N, Nyquist-Andersen M, Mata J, Lopez-Aviles S. A PP2A-B55-Mediated Crosstalk between TORC1 and TORC2 Regulates the Differentiation Response in Fission Yeast. Curr Biol 2016; 27:175-188. [PMID: 28041796 PMCID: PMC5266790 DOI: 10.1016/j.cub.2016.11.037] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 09/20/2016] [Accepted: 11/14/2016] [Indexed: 12/20/2022]
Abstract
Extracellular cues regulate cell fate, and this is mainly achieved through the engagement of specific transcriptional programs. The TORC1 and TORC2 complexes mediate the integration of nutritional cues to cellular behavior, but their interplay is poorly understood. Here, we use fission yeast to investigate how phosphatase activity participates in this interplay during the switch from proliferation to sexual differentiation. We find that loss of PP2A-B55Pab1 enhances the expression of differentiation-specific genes and leads to premature conjugation. pab1 deletion brings about a transcriptional profile similar to TORC1 inactivation, and deletion of pab1 overcomes the repression of differentiation genes in cells overexpressing TORC1. Importantly, we show that this effect is mediated by an increased TORC2-AKT (Gad8) signaling. Under nutrient-rich conditions, PP2A-B55Pab1 dephosphorylates Gad8 Ser546, repressing its activity. Conversely, TORC1 inactivation upon starvation leads to the inactivation of PP2A-B55Pab1 through the Greatwall-Endosulfin pathway. This results in the activation of Gad8 and the commitment to differentiation. Thus, PP2A-B55Pab1 enables a crosstalk between the two TOR complexes that controls cell-fate decisions in response to nutrient availability. PP2A-B55Pab1 regulates the differentiation response of fission yeast cells PP2A-B55Pab1 enables a crosstalk between TORC1 and TORC2 TORC1 favors PP2A-B55Pab1 activity to prevent the hyperphosphorylation of Gad8 TORC1 inactivation leads to PP2A-B55Pab1 inhibition, activation of Gad8, and differentiation
Collapse
Affiliation(s)
- Ruth Martín
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway
| | - Marina Portantier
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway
| | - Nathalia Chica
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway
| | - Mari Nyquist-Andersen
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Building O, Downing Site, Cambridge CB2 1QW, UK
| | - Sandra Lopez-Aviles
- The Biotechnology Centre of Oslo, University of Oslo, Gaustadalléen 21, Oslo 0349, Norway.
| |
Collapse
|
155
|
Huang F, Abmayr SM, Workman JL. Limiting PCNA-unloading at the G1/S transition. Cell Cycle 2016; 15:3001-3002. [PMID: 27463534 DOI: 10.1080/15384101.2016.1214036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Fu Huang
- a Institute of Biological Chemistry, Academia Sinica , Taipei , Taiwan
| | - Susan M Abmayr
- b Stowers Institute for Medical Research , Kansas City , MO , USA.,c Department of Anatomy and Cell Biology , University of Kansas Medical Center , Kansas City , KS , USA
| | - Jerry L Workman
- b Stowers Institute for Medical Research , Kansas City , MO , USA
| |
Collapse
|
156
|
Shkedy D, Singh N, Shemesh K, Amir A, Geiger T, Liefshitz B, Harari Y, Kupiec M. Regulation of Elg1 activity by phosphorylation. Cell Cycle 2016; 14:3689-97. [PMID: 26177013 DOI: 10.1080/15384101.2015.1068475] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
ELG1 is a conserved gene with important roles in the maintenance of genome stability. Elg1's activity prevents gross chromosomal rearrangements, maintains proper telomere length regulation, helps repairing DNA damage created by a number of genotoxins and participates in sister chromatid cohesion. Elg1 is evolutionarily conserved, and its Fanconi Anemia-related mammalian ortholog (also known as ATAD5) is embryonic lethal when lost in mice and acts as a tumor suppressor in mice and humans. Elg1 encodes a protein that forms an RFC-like complex that unloads the replicative clamp, PCNA, from DNA, mainly in its SUMOylated form. We have identified 2 different regions in yeast Elg1 that undergo phosphorylation. Phosphorylation of one of them, S112, is dependent on the ATR yeast ortholog, Mec1, and probably is a direct target of this kinase. We show that phosphorylation of Elg1 is important for its role at telomeres. Mutants unable to undergo phosphorylation suppress the DNA damage sensitivity of Δrad5 mutants, defective for an error-free post-replicational bypass pathway. This indicates a role of phosphorylation in the regulation of DNA repair. Our results open the way to investigate the mechanisms by which the activity of Elg1 is regulated during DNA replication and in response to DNA damage.
Collapse
Affiliation(s)
- Dganit Shkedy
- a Department of Molecular Microbiology and Biotechnology ; Tel Aviv University ; Ramat Aviv , Israel
| | - Nishant Singh
- a Department of Molecular Microbiology and Biotechnology ; Tel Aviv University ; Ramat Aviv , Israel
| | - Keren Shemesh
- a Department of Molecular Microbiology and Biotechnology ; Tel Aviv University ; Ramat Aviv , Israel
| | - Ayelet Amir
- a Department of Molecular Microbiology and Biotechnology ; Tel Aviv University ; Ramat Aviv , Israel
| | - Tamar Geiger
- b Department of Human Molecular Genetics and Biochemistry ; Sackler Faculty of Medicine; Tel Aviv University ; Ramat Aviv , Israel
| | - Batia Liefshitz
- a Department of Molecular Microbiology and Biotechnology ; Tel Aviv University ; Ramat Aviv , Israel
| | - Yaniv Harari
- a Department of Molecular Microbiology and Biotechnology ; Tel Aviv University ; Ramat Aviv , Israel
| | - Martin Kupiec
- a Department of Molecular Microbiology and Biotechnology ; Tel Aviv University ; Ramat Aviv , Israel
| |
Collapse
|
157
|
Abstract
Each time a cell duplicates, the whole genome must be accurately copied and distributed. The enormous amount of DNA in eukaryotic cells requires a high level of coordination between polymerases and other DNA and chromatin-interacting proteins to ensure timely and accurate DNA replication and chromatin formation. PCNA forms a ring that encircles the DNA. It serves as a processivity factor for DNA polymerases and as a landing platform for different proteins that interact with DNA and chromatin. It thus serves as a signaling hub and influences the rate and accuracy of DNA replication, the r-formation of chromatin in the wake of the moving fork and the proper segregation of the sister chromatids. Four different, conserved, protein complexes are in charge of loading/unloading PCNA and similar molecules onto DNA. Replication factor C (RFC) is the canonical complex in charge of loading PCNA, the replication clamp, during S-phase. The Rad24, Ctf18 and Elg1 proteins form complexes similar to RFC, with particular functions in the cell's nucleus. Here we summarize our current knowledge about the roles of these important factors in yeast.
Collapse
Affiliation(s)
- Martin Kupiec
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
158
|
Replication-Associated Recombinational Repair: Lessons from Budding Yeast. Genes (Basel) 2016; 7:genes7080048. [PMID: 27548223 PMCID: PMC4999836 DOI: 10.3390/genes7080048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/05/2016] [Accepted: 08/09/2016] [Indexed: 12/23/2022] Open
Abstract
Recombinational repair processes multiple types of DNA lesions. Though best understood in the repair of DNA breaks, recombinational repair is intimately linked to other situations encountered during replication. As DNA strands are decorated with many types of blocks that impede the replication machinery, a great number of genomic regions cannot be duplicated without the help of recombinational repair. This replication-associated recombinational repair employs both the core recombination proteins used for DNA break repair and the specialized factors that couple replication with repair. Studies from multiple organisms have provided insights into the roles of these specialized factors, with the findings in budding yeast being advanced through use of powerful genetics and methods for detecting DNA replication and repair intermediates. In this review, we summarize recent progress made in this organism, ranging from our understanding of the classical template switch mechanisms to gap filling and replication fork regression pathways. As many of the protein factors and biological principles uncovered in budding yeast are conserved in higher eukaryotes, these findings are crucial for stimulating studies in more complex organisms.
Collapse
|
159
|
Chin CF, Tan K, Onishi M, Chew Y, Augustine B, Lee WR, Yeong FM. Timely Endocytosis of Cytokinetic Enzymes Prevents Premature Spindle Breakage during Mitotic Exit. PLoS Genet 2016; 12:e1006195. [PMID: 27447488 PMCID: PMC4957831 DOI: 10.1371/journal.pgen.1006195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 06/23/2016] [Indexed: 11/30/2022] Open
Abstract
Cytokinesis requires the spatio-temporal coordination of membrane deposition and primary septum (PS) formation at the division site to drive acto-myosin ring (AMR) constriction. It has been demonstrated that AMR constriction invariably occurs only after the mitotic spindle disassembly. It has also been established that Chitin Synthase II (Chs2p) neck localization precedes mitotic spindle disassembly during mitotic exit. As AMR constriction depends upon PS formation, the question arises as to how chitin deposition is regulated so as to prevent premature AMR constriction and mitotic spindle breakage. In this study, we propose that cells regulate the coordination between spindle disassembly and AMR constriction via timely endocytosis of cytokinetic enzymes, Chs2p, Chs3p, and Fks1p. Inhibition of endocytosis leads to over accumulation of cytokinetic enzymes during mitotic exit, which accelerates the constriction of the AMR, and causes spindle breakage that eventually could contribute to monopolar spindle formation in the subsequent round of cell division. Intriguingly, the mitotic spindle breakage observed in endocytosis mutants can be rescued either by deleting or inhibiting the activities of, CHS2, CHS3 and FKS1, which are involved in septum formation. The findings from our study highlight the importance of timely endocytosis of cytokinetic enzymes at the division site in safeguarding mitotic spindle integrity during mitotic exit. The cytokinesis machinery that is required for physical separation of mother-daughter cells during mitosis is highly conserved from yeast to humans. In budding yeast, cytokinesis is achieved via timely delivery of cytokinetic enzymes to the division site that eventually triggers the constriction of AMR. It has been previously demonstrated that cytokinesis invariably occurs after the disassembly of the mitotic spindle. Intriguingly, Chs2p that is responsible for laying down the primary septum has been shown to localize to the division site before mitotic spindle disassembly. In this study, we show that mitotic spindle integrity upon sister chromatid separation is dependent on the continuous endocytosis of cytokinetic enzymes. Failure in the internalization of cytokinetic proteins during mitotic exit causes premature AMR constriction that eventually contributes to the shearing of mitotic spindle. Consequently, cells fail to re-establish a bipolar spindle in the subsequent round of cell division cycle. Our findings provide insights into how the levels of secreted proteins at the division site impacts cytokinesis. We believe this regulation mechanism might be conserved in higher eukaryotic cells as a secreted protein, hemicentin, has been shown recently to be involved in regulating cytokinesis in both Caenorhabditis elegans and mouse embryos.
Collapse
Affiliation(s)
- Cheen Fei Chin
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kaiquan Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Masayuki Onishi
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - YuanYuan Chew
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Beryl Augustine
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Ren Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Foong May Yeong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- * E-mail:
| |
Collapse
|
160
|
Johnson C, Gali VK, Takahashi TS, Kubota T. PCNA Retention on DNA into G2/M Phase Causes Genome Instability in Cells Lacking Elg1. Cell Rep 2016; 16:684-95. [PMID: 27373149 PMCID: PMC4956615 DOI: 10.1016/j.celrep.2016.06.030] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/28/2016] [Accepted: 06/03/2016] [Indexed: 12/05/2022] Open
Abstract
Loss of the genome maintenance factor Elg1 causes serious genome instability that leads to cancer, but the underlying mechanism is unknown. Elg1 forms the major subunit of a replication factor C-like complex, Elg1-RLC, which unloads the ring-shaped polymerase clamp PCNA from DNA during replication. Here, we show that prolonged retention of PCNA on DNA into G2/M phase is the major cause of genome instability in elg1Δ yeast. Overexpression-induced accumulation of PCNA on DNA causes genome instability. Conversely, disassembly-prone PCNA mutants that relieve PCNA accumulation rescue the genome instability of elg1Δ cells. Covalent modifications to the retained PCNA make only a minor contribution to elg1Δ genome instability. By engineering cell-cycle-regulated ELG1 alleles, we show that abnormal accumulation of PCNA on DNA during S phase causes moderate genome instability and its retention through G2/M phase exacerbates genome instability. Our results reveal that PCNA unloading by Elg1-RLC is critical for genome maintenance.
Collapse
Affiliation(s)
- Catherine Johnson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Vamsi K Gali
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - Tatsuro S Takahashi
- Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Takashi Kubota
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| |
Collapse
|
161
|
Kawasoe Y, Tsurimoto T, Nakagawa T, Masukata H, Takahashi TS. MutSα maintains the mismatch repair capability by inhibiting PCNA unloading. eLife 2016; 5. [PMID: 27402201 PMCID: PMC4942255 DOI: 10.7554/elife.15155] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 05/26/2016] [Indexed: 12/03/2022] Open
Abstract
Eukaryotic mismatch repair (MMR) utilizes single-strand breaks as signals to target the strand to be repaired. DNA-bound PCNA is also presumed to direct MMR. The MMR capability must be limited to a post-replicative temporal window during which the signals are available. However, both identity of the signal(s) involved in the retention of this temporal window and the mechanism that maintains the MMR capability after DNA synthesis remain unclear. Using Xenopus egg extracts, we discovered a mechanism that ensures long-term retention of the MMR capability. We show that DNA-bound PCNA induces strand-specific MMR in the absence of strand discontinuities. Strikingly, MutSα inhibited PCNA unloading through its PCNA-interacting motif, thereby extending significantly the temporal window permissive to strand-specific MMR. Our data identify DNA-bound PCNA as the signal that enables strand discrimination after the disappearance of strand discontinuities, and uncover a novel role of MutSα in the retention of the post-replicative MMR capability. DOI:http://dx.doi.org/10.7554/eLife.15155.001 To pass on genetic information from one generation to the next, the DNA in a cell must be precisely copied. DNA is made of two strands and genetic information is encoded by sequences of molecules called bases in the strands. The bases from one strand form pairs with complementary bases on the other strand. However, errors in the copying process result in unmatched pairs of bases. Such errors are corrected by a repair system called mismatch repair. When DNA is copied, the two strands are separated and used as templates to make new complementary strands. This means that errors only arise on the new strands. Mismatch repair must therefore target the new strands to maintain the original information encoded by the template DNA. The repair needs to happen before the copying process is complete because the template strands and the new strands become indistinguishable afterwards. However, it is not clear how the two processes communicate with each other. Previous studies have identified a ring-shaped molecule called the replication clamp – which is essential for the copying process – as a prime candidate for the molecule responsible for this communication. This molecule binds to the DNA to promote the copying process, and afterwards it is removed from the DNA by other molecules. Furthermore, a group of proteins called the MutSα complex, which recognizes unmatched bases in DNA molecules, physically interacts with the replication clamp. Kawasoe et al. used eggs from African clawed frogs to study how the replication clamp connects the copying process and mismatch repair in more detail. The experiments show that when the replication clamp is bound to the DNA, it is able to direct mismatch repair to a specific DNA strand. When MutSα recognizes unmatched bases, it prevents the replication clamp from being removed from the DNA. By doing so, MutSα prevents the information about the new DNA strand from being lost until mismatch repair has taken place. These findings reveal new interactions between DNA copying and the correction of errors by mismatch repair. The next steps will be to understand how MutSα is able to keep the replication clamp on the DNA and to clarify its role in protecting DNA from gaining mutations. DOI:http://dx.doi.org/10.7554/eLife.15155.002
Collapse
Affiliation(s)
| | - Toshiki Tsurimoto
- Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka, Japan
| | - Takuro Nakagawa
- Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hisao Masukata
- Graduate School of Science, Osaka University, Toyonaka, Japan
| | | |
Collapse
|
162
|
Feng W, Guo Y, Huang J, Deng Y, Zang J, Huen MSY. TRAIP regulates replication fork recovery and progression via PCNA. Cell Discov 2016; 2:16016. [PMID: 27462463 PMCID: PMC4923944 DOI: 10.1038/celldisc.2016.16] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/23/2016] [Indexed: 12/24/2022] Open
Abstract
PCNA is a central scaffold that coordinately assembles replication and repair machineries at DNA replication forks for faithful genome duplication. Here, we describe TRAIP (RNF206) as a novel PCNA-interacting factor that has important roles during mammalian replicative stress responses. We show that TRAIP encodes a nucleolar protein that migrates to stalled replication forks, and that this is accomplished by its targeting of PCNA via an evolutionarily conserved PIP box on its C terminus. Accordingly, inactivation of TRAIP or its interaction with the PCNA clamp compromised replication fork recovery and progression, and leads to chromosome instability. Together, our findings establish TRAIP as a component of the mammalian replicative stress response network, and implicate the TRAIP-PCNA axis in recovery of stalled replication forks.
Collapse
Affiliation(s)
- Wanjuan Feng
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China; Centre for Cancer Research, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| | - Yingying Guo
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| | - Jun Huang
- Life Sciences Institute, Zhejiang University, Zhejiang, China
| | - Yiqun Deng
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Jianye Zang
- School of Life Sciences, University of Science of Technology of China , Hefei, China
| | - Michael Shing-Yan Huen
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China; Centre for Cancer Research, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong S.A.R., China
| |
Collapse
|
163
|
Cipolla L, Maffia A, Bertoletti F, Sabbioneda S. The Regulation of DNA Damage Tolerance by Ubiquitin and Ubiquitin-Like Modifiers. Front Genet 2016; 7:105. [PMID: 27379156 PMCID: PMC4904029 DOI: 10.3389/fgene.2016.00105] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/25/2016] [Indexed: 11/13/2022] Open
Abstract
DNA replication is an extremely complex process that needs to be executed in a highly accurate manner in order to propagate the genome. This task requires the coordination of a number of enzymatic activities and it is fragile and prone to arrest after DNA damage. DNA damage tolerance provides a last line of defense that allows completion of DNA replication in the presence of an unrepaired template. One of such mechanisms is called post-replication repair (PRR) and it is used by the cells to bypass highly distorted templates caused by damaged bases. PRR is extremely important for the cellular life and performs the bypass of the damage both in an error-free and in an error-prone manner. In light of these two possible outcomes, PRR needs to be tightly controlled in order to prevent the accumulation of mutations leading ultimately to genome instability. Post-translational modifications of PRR proteins provide the framework for this regulation with ubiquitylation and SUMOylation playing a pivotal role in choosing which pathway to activate, thus controlling the different outcomes of damage bypass. The proliferating cell nuclear antigen (PCNA), the DNA clamp for replicative polymerases, plays a central role in the regulation of damage tolerance and its modification by ubiquitin, and SUMO controls both the error-free and error-prone branches of PRR. Furthermore, a significant number of polymerases are involved in the bypass of DNA damage possess domains that can bind post-translational modifications and they are themselves target for ubiquitylation. In this review, we will focus on how ubiquitin and ubiquitin-like modifications can regulate the DNA damage tolerance systems and how they control the recruitment of different proteins to the replication fork.
Collapse
Affiliation(s)
- Lina Cipolla
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia Italia
| | - Antonio Maffia
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia Italia
| | - Federica Bertoletti
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia Italia
| | - Simone Sabbioneda
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia Italia
| |
Collapse
|
164
|
Radulovic M, Baqader NO, Stoeber K, Godovac-Zimmermann J. Spatial Cross-Talk between Oxidative Stress and DNA Replication in Human Fibroblasts. J Proteome Res 2016; 15:1907-38. [PMID: 27142241 DOI: 10.1021/acs.jproteome.6b00101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MS-based proteomics has been applied to a differential network analysis of the nuclear-cytoplasmic subcellular distribution of proteins between cell-cycle arrest: (a) at the origin activation checkpoint for DNA replication, or (b) in response to oxidative stress. Significant changes were identified for 401 proteins. Cellular response combines changes in trafficking and in total abundance to vary the local compartmental abundances that are the basis of cellular response. Appreciable changes for both perturbations were observed for 245 proteins, but cross-talk between oxidative stress and DNA replication is dominated by 49 proteins that show strong changes for both. Many nuclear processes are influenced by a spatial switch involving the proteins {KPNA2, KPNB1, PCNA, PTMA, SET} and heme/iron proteins HMOX1 and FTH1. Dynamic spatial distribution data are presented for proteins involved in caveolae, extracellular matrix remodelling, TGFβ signaling, IGF pathways, emerin complexes, mitochondrial protein import complexes, spliceosomes, proteasomes, and so on. The data indicate that for spatially heterogeneous cells cross-compartmental communication is integral to their system biology, that coordinated spatial redistribution for crucial protein networks underlies many functional changes, and that information on dynamic spatial redistribution of proteins is essential to obtain comprehensive pictures of cellular function. We describe how spatial data of the type presented here can provide priorities for further investigation of crucial features of high-level spatial coordination across cells. We suggest that the present data are related to increasing indications that much of subcellular protein transport is constitutive and that perturbation of these constitutive transport processes may be related to cancer and other diseases. A quantitative, spatially resolved nucleus-cytoplasm interaction network is provided for further investigations.
Collapse
Affiliation(s)
- Marko Radulovic
- Division of Medicine, University College London, Center for Nephrology , Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.,Insitute of Oncology and Radiology , Pasterova 14, 11000 Belgrade, Serbia
| | - Noor O Baqader
- Division of Medicine, University College London, Center for Nephrology , Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| | - Kai Stoeber
- Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London , University Street, London WC1E 6JJ, United Kingdom
| | - Jasminka Godovac-Zimmermann
- Division of Medicine, University College London, Center for Nephrology , Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom
| |
Collapse
|
165
|
Huang F, Saraf A, Florens L, Kusch T, Swanson SK, Szerszen LT, Li G, Dutta A, Washburn MP, Abmayr SM, Workman JL. The Enok acetyltransferase complex interacts with Elg1 and negatively regulates PCNA unloading to promote the G1/S transition. Genes Dev 2016; 30:1198-210. [PMID: 27198229 PMCID: PMC4888840 DOI: 10.1101/gad.271429.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/29/2016] [Indexed: 11/24/2022]
Abstract
KAT6 histone acetyltransferases (HATs) are highly conserved in eukaryotes and are involved in cell cycle regulation. However, information regarding their roles in regulating cell cycle progression is limited. Here, we report the identification of subunits of the Drosophila Enok complex and demonstrate that all subunits are important for its HAT activity. We further report a novel interaction between the Enok complex and the Elg1 proliferating cell nuclear antigen (PCNA)-unloader complex. Depletion of Enok in S2 cells resulted in a G1/S cell cycle block, and this block can be partially relieved by depleting Elg1. Furthermore, depletion of Enok reduced the chromatin-bound levels of PCNA in both S2 cells and early embryos, suggesting that the Enok complex may interact with the Elg1 complex and down-regulate its PCNA-unloading function to promote the G1/S transition. Supporting this hypothesis, depletion of Enok also partially rescued the endoreplication defects in Elg1-depleted nurse cells. Taken together, our study provides novel insights into the roles of KAT6 HATs in cell cycle regulation through modulating PCNA levels on chromatin.
Collapse
Affiliation(s)
- Fu Huang
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Anita Saraf
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Laurence Florens
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Thomas Kusch
- Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Selene K Swanson
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Leanne T Szerszen
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Ge Li
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Arnob Dutta
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Michael P Washburn
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| |
Collapse
|
166
|
Kaneko Y, Daitoku H, Komeno C, Fukamizu A. CTF18 interacts with replication protein A in response to replication stress. Mol Med Rep 2016; 14:367-72. [PMID: 27175616 DOI: 10.3892/mmr.2016.5262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Accepted: 05/03/2016] [Indexed: 11/06/2022] Open
Abstract
Replication stress response is a protective mechanism against defects in chromosome replication for maintaining genome integrity in eukaryotic cells. An alternative clamp loader complex termed chromosome transmission fidelity protein 18 and replication factor C (CTF18‑RFC) has been shown to act as a positive regulator of two types of replication stress response: S‑phase checkpoint signaling and translesion DNA synthesis. However, it remains largely unknown how CTF18‑RFC responds to replication stress and is recruited to stalled replication forks. The present study demonstrated that endogenous CTF18 forms a physical complex with a single‑stranded DNA‑binding protein replication protein A (RPA) in mammalian cells. Using an in situ proximity ligation assay (PLA), it was demonstrated that the interaction between CTF18 and RPA occurs in chromatin when replication stress is elicited by treatment with hydroxyurea during S phase. Similar results were obtained after exposure to ultraviolet irradiation, which triggers translesion DNA synthesis. Furthermore, the PLA demonstrated that the kinetics of the interaction between CTF18 and RPA was positively correlated with that of checkpoint kinase 1 phosphorylation, which is an indicator of activation of the ATM and Rad3‑related pathway. These findings provide novel insights into the molecular mechanism underlying the participation of CTF18‑RFC in the regulation of replication stress response.
Collapse
Affiliation(s)
- Yuta Kaneko
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Hiroaki Daitoku
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Chihiro Komeno
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| | - Akiyoshi Fukamizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305‑8577, Japan
| |
Collapse
|
167
|
García-Rodríguez N, Wong RP, Ulrich HD. Functions of Ubiquitin and SUMO in DNA Replication and Replication Stress. Front Genet 2016; 7:87. [PMID: 27242895 PMCID: PMC4865505 DOI: 10.3389/fgene.2016.00087] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/27/2016] [Indexed: 12/14/2022] Open
Abstract
Complete and faithful duplication of its entire genetic material is one of the essential prerequisites for a proliferating cell to maintain genome stability. Yet, during replication DNA is particularly vulnerable to insults. On the one hand, lesions in replicating DNA frequently cause a stalling of the replication machinery, as most DNA polymerases cannot cope with defective templates. This situation is aggravated by the fact that strand separation in preparation for DNA synthesis prevents common repair mechanisms relying on strand complementarity, such as base and nucleotide excision repair, from working properly. On the other hand, the replication process itself subjects the DNA to a series of hazardous transformations, ranging from the exposure of single-stranded DNA to topological contortions and the generation of nicks and fragments, which all bear the risk of inducing genomic instability. Dealing with these problems requires rapid and flexible responses, for which posttranslational protein modifications that act independently of protein synthesis are particularly well suited. Hence, it is not surprising that members of the ubiquitin family, particularly ubiquitin itself and SUMO, feature prominently in controlling many of the defensive and restorative measures involved in the protection of DNA during replication. In this review we will discuss the contributions of ubiquitin and SUMO to genome maintenance specifically as they relate to DNA replication. We will consider cases where the modifiers act during regular, i.e., unperturbed stages of replication, such as initiation, fork progression, and termination, but also give an account of their functions in dealing with lesions, replication stalling and fork collapse.
Collapse
|
168
|
Maleva Kostovska I, Wang J, Bogdanova N, Schürmann P, Bhuju S, Geffers R, Dürst M, Liebrich C, Klapdor R, Christiansen H, Park-Simon TW, Hillemanns P, Plaseska-Karanfilska D, Dörk T. Rare ATAD5 missense variants in breast and ovarian cancer patients. Cancer Lett 2016; 376:173-7. [PMID: 27045477 DOI: 10.1016/j.canlet.2016.03.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/12/2022]
Abstract
ATAD5/ELG1 is a protein crucially involved in replication and maintenance of genome stability. ATAD5 has recently been identified as a genomic risk locus for both breast and ovarian cancer through genome-wide association studies. We aimed to investigate the spectrum of coding ATAD5 germ-line mutations in hospital-based series of patients with triple-negative breast cancer or serous ovarian cancer compared with healthy controls. The ATAD5 coding and adjacent splice site regions were analyzed by targeted next-generation sequencing of DNA samples from 273 cancer patients, including 114 patients with triple-negative breast cancer and 159 patients with serous epithelial ovarian cancer, and from 276 healthy females. Among 42 different variants identified, twenty-two were rare missense substitutions, of which 14 were classified as pathogenic by at least one in silico prediction tool. Three of four novel missense substitutions (p.S354I, p.H974R and p.K1466N) were predicted to be pathogenic and were all identified in ovarian cancer patients. Overall, rare missense variants with predicted pathogenicity tended to be enriched in ovarian cancer patients (14/159) versus controls (11/276) (p = 0.05, 2df). While truncating germ-line variants in ATAD5 were not detected, it remains possible that several rare missense variants contribute to genetic susceptibility toward epithelial ovarian carcinomas.
Collapse
Affiliation(s)
- Ivana Maleva Kostovska
- Clinics of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany; Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, Macedonia
| | - Jing Wang
- Clinics of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany
| | - Natalia Bogdanova
- Clinics of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany; Clinics of Radiation Oncology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany
| | - Peter Schürmann
- Clinics of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany
| | - Sabin Bhuju
- Genome Analytics Group, Helmholtz Center for Infectious Diseases, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Robert Geffers
- Genome Analytics Group, Helmholtz Center for Infectious Diseases, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | - Matthias Dürst
- Department of Gynecology, Jena University Hospital - Friedrich Schiller University Jena, Bachstraße 18, D-07743 Jena, Germany
| | - Clemens Liebrich
- Clinics of Obstetrics and Gynecology, Sauerbruchstraße 7, D-38440 Wolfsburg, Germany
| | - Rüdiger Klapdor
- Clinics of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany
| | - Hans Christiansen
- Clinics of Radiation Oncology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany
| | - Tjoung-Won Park-Simon
- Clinics of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany
| | - Peter Hillemanns
- Clinics of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany
| | - Dijana Plaseska-Karanfilska
- Research Centre for Genetic Engineering and Biotechnology "Georgi D. Efremov", Macedonian Academy of Sciences and Arts, Krste Misirkov 2, 1000 Skopje, Macedonia
| | - Thilo Dörk
- Clinics of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Straße 1, D-30625 Hannover, Germany.
| |
Collapse
|
169
|
Natsume T, Kiyomitsu T, Saga Y, Kanemaki MT. Rapid Protein Depletion in Human Cells by Auxin-Inducible Degron Tagging with Short Homology Donors. Cell Rep 2016; 15:210-218. [PMID: 27052166 DOI: 10.1016/j.celrep.2016.03.001] [Citation(s) in RCA: 434] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/28/2016] [Accepted: 02/24/2016] [Indexed: 01/31/2023] Open
Abstract
Studying the role of essential proteins is dependent upon a method for rapid inactivation, in order to study the immediate phenotypic consequences. Auxin-inducible degron (AID) technology allows rapid depletion of proteins in animal cells and fungi, but its application to human cells has been limited by the difficulties of tagging endogenous proteins. We have developed a simple and scalable CRISPR/Cas-based method to tag endogenous proteins in human HCT116 and mouse embryonic stem (ES) cells by using donor constructs that harbor synthetic short homology arms. Using a combination of AID tagging with CRISPR/Cas, we have generated conditional alleles of essential nuclear and cytoplasmic proteins in HCT116 cells, which can then be depleted very rapidly after the addition of auxin to the culture medium. This approach should greatly facilitate the functional analysis of essential proteins, particularly those of previously unknown function.
Collapse
Affiliation(s)
- Toyoaki Natsume
- Center of Frontier Research, National Institute of Genetics, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Tomomi Kiyomitsu
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yumiko Saga
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan; Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masato T Kanemaki
- Center of Frontier Research, National Institute of Genetics, Research Organization of Information and Systems, Yata 1111, Mishima, Shizuoka 411-8540, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan; Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|
170
|
Urulangodi M, Sebesta M, Menolfi D, Szakal B, Sollier J, Sisakova A, Krejci L, Branzei D. Local regulation of the Srs2 helicase by the SUMO-like domain protein Esc2 promotes recombination at sites of stalled replication. Genes Dev 2016; 29:2067-80. [PMID: 26443850 PMCID: PMC4604347 DOI: 10.1101/gad.265629.115] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In this study, Urulangodi et al. demonstrate that a SUMO-mediated regulatory mechanism enables recombination-mediated DNA damage tolerance (DDT) specifically at sites of compromised replication forks. By using a combination of genetic, biochemical, and molecular approaches, they identified a SUMO-like domain (SLD)-containing protein, Esc2, that allows optimal recruitment of the Rad51 recombinase at sites of perturbed replication, thus advancing our understanding of DDT and the pathways that support genome integrity. Accurate completion of replication relies on the ability of cells to activate error-free recombination-mediated DNA damage bypass at sites of perturbed replication. However, as anti-recombinase activities are also recruited to replication forks, how recombination-mediated damage bypass is enabled at replication stress sites remained puzzling. Here we uncovered that the conserved SUMO-like domain-containing Saccharomyces cerevisiae protein Esc2 facilitates recombination-mediated DNA damage tolerance by allowing optimal recruitment of the Rad51 recombinase specifically at sites of perturbed replication. Mechanistically, Esc2 binds stalled replication forks and counteracts the anti-recombinase Srs2 helicase via a two-faceted mechanism involving chromatin recruitment and turnover of Srs2. Importantly, point mutations in the SUMO-like domains of Esc2 that reduce its interaction with Srs2 cause suboptimal levels of Rad51 recruitment at damaged replication forks. In conclusion, our results reveal how recombination-mediated DNA damage tolerance is locally enabled at sites of replication stress and globally prevented at undamaged replicating chromosomes.
Collapse
Affiliation(s)
- Madhusoodanan Urulangodi
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Marek Sebesta
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), 20139 Milan, Italy; National Centre for Biomolecular Research, Masaryk University, CZ-62500 Brno, Czech Republic
| | - Demis Menolfi
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Barnabas Szakal
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Julie Sollier
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| | - Alexandra Sisakova
- Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, CZ-656 91 Brno, Czech Republic
| | - Lumir Krejci
- National Centre for Biomolecular Research, Masaryk University, CZ-62500 Brno, Czech Republic; Department of Biology, Masaryk University, CZ-62500 Brno, Czech Republic; International Clinical Research Center, Center for Biomolecular and Cellular Engineering, St. Anne's University Hospital Brno, CZ-656 91 Brno, Czech Republic
| | - Dana Branzei
- FIRC (Fondazione Italiana per la Ricerca sul Cancro) Institute of Molecular Oncology (IFOM), 20139 Milan, Italy
| |
Collapse
|
171
|
Ghosh A, Ghosh S, Dasgupta D, Ghosh A, Datta S, Sikdar N, Datta S, Chowdhury A, Banerjee S. Hepatitis B Virus X Protein Upregulates hELG1/ ATAD5 Expression through E2F1 in Hepatocellular Carcinoma. Int J Biol Sci 2016; 12:30-41. [PMID: 26722215 PMCID: PMC4679396 DOI: 10.7150/ijbs.12310] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/04/2015] [Indexed: 01/04/2023] Open
Abstract
The precise mechanism by which HBx protein of hepatitis B virus (HBV) impacts on hepato-carcinogenesis remain largely elusive despite strong evidences for its' involvement in the process. Here, we have investigated the role of HBx on expression of a novel gene hELG1/ATAD5, which is required for genome maintenance and its' importance in hepatocarcinogenesis. This study has for the first time showed that the expression of this gene was significantly higher in human cancer such as HBV-associated hepatocellular carcinoma (HCC) and in different HCC cell lines compared to normal liver. In addition, a significant elevation in ATAD5 expression was also found in HBx transfected HCC cell lines implicating HBx mediated transcriptional regulation on ATAD5. Using different deletion mutant constructs of putative promoter, the active promoter region was first identified here and subsequently the regulatory region of HBx was mapped by promoter-luciferase assay. But ChIP assay with anti-HBx antibody revealed that HBx was not physically present in ATAD5 transcription machinery whereas anti-E2F1 antibody showed the presence of E2F1 in the complex. Luciferase assay with E2F1 binding site mutant had further confirmed it. Moreover, both loss-and gain-of-function studies of ATAD5 showed that ATAD5 could enhance HBV production in transfected cells whereas knock down of ATAD5 increased the sensitivity of HCC cell line to chemotherapeutics 5-fluorouracil. Overall, this data suggests that a positive feedback loop regulation between ATAD5 and HBV contributed to both viral replication and chemo-resistance of HCC cells.
Collapse
Affiliation(s)
- Alip Ghosh
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Suchandrima Ghosh
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Debanjali Dasgupta
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Amit Ghosh
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Somenath Datta
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | | | - Simanti Datta
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Abhijit Chowdhury
- 3. Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Soma Banerjee
- 1. Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
172
|
Hoa NN, Akagawa R, Yamasaki T, Hirota K, Sasa K, Natsume T, Kobayashi J, Sakuma T, Yamamoto T, Komatsu K, Kanemaki MT, Pommier Y, Takeda S, Sasanuma H. Relative contribution of four nucleases, CtIP, Dna2, Exo1 and Mre11, to the initial step of DNA double-strand break repair by homologous recombination in both the chicken DT40 and human TK6 cell lines. Genes Cells 2015; 20:1059-76. [PMID: 26525166 DOI: 10.1111/gtc.12310] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 09/27/2015] [Indexed: 01/26/2023]
Abstract
Homologous recombination (HR) is initiated by double-strand break (DSB) resection, during which DSBs are processed by nucleases to generate 3' single-strand DNA. DSB resection is initiated by CtIP and Mre11 followed by long-range resection by Dna2 and Exo1 in Saccharomyces cerevisiae. To analyze the relative contribution of four nucleases, CtIP, Mre11, Dna2 and Exo1, to DSB resection, we disrupted genes encoding these nucleases in chicken DT40 cells. CtIP and Dna2 are required for DSB resection, whereas Exo1 is dispensable even in the absence of Dna2, which observation agrees with no developmental defect in Exo1-deficient mice. Despite the critical role of Mre11 in DSB resection in S. cerevisiae, loss of Mre11 only modestly impairs DSB resection in DT40 cells. To further test the role of CtIP and Mre11 in other species, we conditionally disrupted CtIP and MRE11 genes in the human TK6 B cell line. As with DT40 cells, CtIP contributes to DSB resection considerably more significantly than Mre11 in TK6 cells. Considering the critical role of Mre11 in HR, this study suggests that Mre11 is involved in a mechanism other than DSB resection. In summary, CtIP and Dna2 are sufficient for DSB resection to ensure efficient DSB repair by HR.
Collapse
Affiliation(s)
- Nguyen Ngoc Hoa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Remi Akagawa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomomi Yamasaki
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kouji Hirota
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Kentaro Sasa
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Toyoaki Natsume
- Centre for Frontier Research, National Institute of Genetics, ROIS, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
| | - Junya Kobayashi
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Kenshi Komatsu
- Department of Genome Repair Dynamics, Radiation Biology Center, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Masato T Kanemaki
- Centre for Frontier Research, National Institute of Genetics, ROIS, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.,Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka, 411-8540, Japan.,JST, PREST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Yoshida Konoe, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
173
|
Becker JR, Pons C, Nguyen HD, Costanzo M, Boone C, Myers CL, Bielinsky AK. Genetic Interactions Implicating Postreplicative Repair in Okazaki Fragment Processing. PLoS Genet 2015; 11:e1005659. [PMID: 26545110 PMCID: PMC4636136 DOI: 10.1371/journal.pgen.1005659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 10/19/2015] [Indexed: 01/28/2023] Open
Abstract
Ubiquitination of the replication clamp proliferating cell nuclear antigen (PCNA) at the conserved residue lysine (K)164 triggers postreplicative repair (PRR) to fill single-stranded gaps that result from stalled DNA polymerases. However, it has remained elusive as to whether cells engage PRR in response to replication defects that do not directly impair DNA synthesis. To experimentally address this question, we performed synthetic genetic array (SGA) analysis with a ubiquitination-deficient K164 to arginine (K164R) mutant of PCNA against a library of S. cerevisiae temperature-sensitive alleles. The SGA signature of the K164R allele showed a striking correlation with profiles of mutants deficient in various aspects of lagging strand replication, including rad27Δ and elg1Δ. Rad27 is the primary flap endonuclease that processes 5' flaps generated during lagging strand replication, whereas Elg1 has been implicated in unloading PCNA from chromatin. We observed chronic ubiquitination of PCNA at K164 in both rad27Δ and elg1Δ mutants. Notably, only rad27Δ cells exhibited a decline in cell viability upon elimination of PRR pathways, whereas elg1Δ mutants were not affected. We further provide evidence that K164 ubiquitination suppresses replication stress resulting from defective flap processing during Okazaki fragment maturation. Accordingly, ablation of PCNA ubiquitination increased S phase checkpoint activation, indicated by hyperphosphorylation of the Rad53 kinase. Furthermore, we demonstrate that alternative flap processing by overexpression of catalytically active exonuclease 1 eliminates PCNA ubiquitination. This suggests a model in which unprocessed flaps may directly participate in PRR signaling. Our findings demonstrate that PCNA ubiquitination at K164 in response to replication stress is not limited to DNA synthesis defects but extends to DNA processing during lagging strand replication.
Collapse
Affiliation(s)
- Jordan R. Becker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Carles Pons
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hai Dang Nguyen
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael Costanzo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Chad L. Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Anja-Katrin Bielinsky
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
174
|
Devrekanli A, Kanemaki MT. Conditional Budding Yeast Mutants with Temperature-Sensitive and Auxin-Inducible Degrons for Screening of Suppressor Genes. Methods Mol Biol 2015; 1369:257-78. [PMID: 26519318 DOI: 10.1007/978-1-4939-3145-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
The conditional control of protein expression is useful to characterize the function of proteins, especially of those that are essential for cell viability. Two degron-based systems, temperature-sensitive and auxin-inducible degrons, can be used to generate conditional mutants of budding yeast, simply by transforming appropriate cells with PCR-amplified DNA. We describe a protocol for the generation of temperature-sensitive and auxin-inducible degron mutants. We also show that a conditional mutant with few spontaneous revertants was generated by combining two degron systems for the Inn1 protein. Finally, we describe a suppressor screening method that uses the dual degron-Inn1 mutant to identify mutant proteins that suppress Inn1-K31A, which has a defect in cytokinesis.
Collapse
Affiliation(s)
- Asli Devrekanli
- Department of Molecular Biology and Genetics, Canik Basari University, Gürgenyatak Köyü, Samsun, 55080, Turkey.
| | - Masato T Kanemaki
- Center of Frontier Research, National Institute of Genetics, Research Organization of Information and Systems, SOKENDAI, Yata 1111, Mishima, Shizuoka, 411-8540, Japan. .,Department of Genetics, SOKENDAI, Mishima, Shizuoka, Japan. .,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
175
|
García-Rodríguez LJ, De Piccoli G, Marchesi V, Jones RC, Edmondson RD, Labib K. A conserved Polϵ binding module in Ctf18-RFC is required for S-phase checkpoint activation downstream of Mec1. Nucleic Acids Res 2015; 43:8830-8. [PMID: 26250113 PMCID: PMC4605302 DOI: 10.1093/nar/gkv799] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/24/2015] [Accepted: 07/27/2015] [Indexed: 12/13/2022] Open
Abstract
Defects during chromosome replication in eukaryotes activate a signaling pathway called the S-phase checkpoint, which produces a multifaceted response that preserves genome integrity at stalled DNA replication forks. Work with budding yeast showed that the 'alternative clamp loader' known as Ctf18-RFC acts by an unknown mechanism to activate the checkpoint kinase Rad53, which then mediates much of the checkpoint response. Here we show that budding yeast Ctf18-RFC associates with DNA polymerase epsilon, via an evolutionarily conserved 'Pol ϵ binding module' in Ctf18-RFC that is produced by interaction of the carboxyl terminus of Ctf18 with the Ctf8 and Dcc1 subunits. Mutations at the end of Ctf18 disrupt the integrity of the Pol ϵ binding module and block the S-phase checkpoint pathway, downstream of the Mec1 kinase that is the budding yeast orthologue of mammalian ATR. Similar defects in checkpoint activation are produced by mutations that displace Pol ϵ from the replisome. These findings indicate that the association of Ctf18-RFC with Pol ϵ at defective replication forks is a key step in activation of the S-phase checkpoint.
Collapse
Affiliation(s)
- Luis J García-Rodríguez
- Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | - Giacomo De Piccoli
- Division of Biomedical Cell Biology, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Vanessa Marchesi
- Cancer Research UK Manchester Institute, University of Manchester, Wilmslow Road, Manchester M20 4BX, UK
| | | | - Ricky D Edmondson
- Myeloma Institute for Research and Therapy, University of Arkansas for Medical Sciences, 4301 W Markham #776, Little Rock, AR 72205, USA
| | - Karim Labib
- MRC Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
176
|
Abstract
Maintenance of genome integrity is a fundamental requirement of all organisms. To address this, organisms have evolved extremely faithful modes of replication, DNA repair and chromosome segregation to combat the deleterious effects of an unstable genome. Nonetheless, a small amount of genome instability is the driver of evolutionary change and adaptation, and thus a low level of instability is permitted in populations. While defects in genome maintenance almost invariably reduce fitness in the short term, they can create an environment where beneficial mutations are more likely to occur. The importance of this fact is clearest in the development of human cancer, where genome instability is a well-established enabling characteristic of carcinogenesis. This raises the crucial question: what are the cellular pathways that promote genome maintenance and what are their mechanisms? Work in model organisms, in particular the yeast Saccharomyces cerevisiae, has provided the global foundations of genome maintenance mechanisms in eukaryotes. The development of pioneering genomic tools inS. cerevisiae, such as the systematic creation of mutants in all nonessential and essential genes, has enabled whole-genome approaches to identifying genes with roles in genome maintenance. Here, we review the extensive whole-genome approaches taken in yeast, with an emphasis on functional genomic screens, to understand the genetic basis of genome instability, highlighting a range of genetic and cytological screening modalities. By revealing the biological pathways and processes regulating genome integrity, these analyses contribute to the systems-level map of the yeast cell and inform studies of human disease, especially cancer.
Collapse
|
177
|
Abstract
DNA damage may compromise genome integrity and lead to cell death. Cells have evolved a variety of processes to respond to DNA damage including damage repair and tolerance mechanisms, as well as damage checkpoints. The DNA damage tolerance (DDT) pathway promotes the bypass of single-stranded DNA lesions encountered by DNA polymerases during DNA replication. This prevents the stalling of DNA replication. Two mechanistically distinct DDT branches have been characterized. One is translesion synthesis (TLS) in which a replicative DNA polymerase is temporarily replaced by a specialized TLS polymerase that has the ability to replicate across DNA lesions. TLS is mechanistically simple and straightforward, but it is intrinsically error-prone. The other is the error-free template switching (TS) mechanism in which the stalled nascent strand switches from the damaged template to the undamaged newly synthesized sister strand for extension past the lesion. Error-free TS is a complex but preferable process for bypassing DNA lesions. However, our current understanding of this pathway is sketchy. An increasing number of factors are being found to participate or regulate this important mechanism, which is the focus of this editorial.
Collapse
|
178
|
Genetic Networks Required to Coordinate Chromosome Replication by DNA Polymerases α, δ, and ε in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2015; 5:2187-97. [PMID: 26297725 PMCID: PMC4593000 DOI: 10.1534/g3.115.021493] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Three major DNA polymerases replicate the linear eukaryotic chromosomes. DNA polymerase α-primase (Pol α) and DNA polymerase δ (Pol δ) replicate the lagging-strand and Pol α and DNA polymerase ε (Pol ε) the leading-strand. To identify factors affecting coordination of DNA replication, we have performed genome-wide quantitative fitness analyses of budding yeast cells containing defective polymerases. We combined temperature-sensitive mutations affecting the three replicative polymerases, Pol α, Pol δ, and Pol ε with genome-wide collections of null and reduced function mutations. We identify large numbers of genetic interactions that inform about the roles that specific genes play to help Pol α, Pol δ, and Pol ε function. Surprisingly, the overlap between the genetic networks affecting the three DNA polymerases does not represent the majority of the genetic interactions identified. Instead our data support a model for division of labor between the different DNA polymerases during DNA replication. For example, our genetic interaction data are consistent with biochemical data showing that Pol ε is more important to the Pre-Loading complex than either Pol α or Pol δ. We also observed distinct patterns of genetic interactions between leading- and lagging-strand DNA polymerases, with particular genes being important for coupling proliferating cell nuclear antigen loading/unloading (Ctf18, Elg1) with nucleosome assembly (chromatin assembly factor 1, histone regulatory HIR complex). Overall our data reveal specialized genetic networks that affect different aspects of leading- and lagging-strand DNA replication. To help others to engage with these data we have generated two novel, interactive visualization tools, DIXY and Profilyzer.
Collapse
|
179
|
Necchi D, Pinto A, Tillhon M, Dutto I, Serafini MM, Lanni C, Govoni S, Racchi M, Prosperi E. Defective DNA repair and increased chromatin binding of DNA repair factors in Down syndrome fibroblasts. Mutat Res 2015; 780:15-23. [PMID: 26258283 DOI: 10.1016/j.mrfmmm.2015.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 06/13/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
Down syndrome (DS) is characterized by genetic instability, neurodegeneration, and premature aging. However, the molecular mechanisms leading to this phenotype are not yet well understood. Here, we report that DS fibroblasts from both fetal and adult donors show the presence of oxidative DNA base damage, such as dihydro-8-oxoguanine (8-oxodG), and activation of a DNA damage response (DDR), already during unperturbed growth conditions. DDR with checkpoint activation was indicated by histone H2AX and Chk2 protein phosphorylation, and by increased p53 protein levels. In addition, both fetal and adult DS fibroblasts were more sensitive to oxidative DNA damage induced by potassium bromate, and were defective in the removal of 8-oxodG, as compared with age-matched cells from control healthy donors. The analysis of core proteins participating in base excision repair (BER), such as XRCC1 and DNA polymerase β, showed that higher amounts of these factors were bound to chromatin in DS than in control cells, even in the absence of DNA damage. These findings occurred in concomitance with increased levels of phosphorylated XRCC1 detected in DS cells. These results indicate that DS cells exhibit a BER deficiency, which is associated with prolonged chromatin association of core BER factors.
Collapse
Affiliation(s)
- Daniela Necchi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy.
| | - Antonella Pinto
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Micol Tillhon
- Institute of Molecular Genetics of the National Research Council (CNR), 27100 Pavia, Italy
| | - Ilaria Dutto
- Institute of Molecular Genetics of the National Research Council (CNR), 27100 Pavia, Italy
| | | | - Cristina Lanni
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Stefano Govoni
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Marco Racchi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Ennio Prosperi
- Institute of Molecular Genetics of the National Research Council (CNR), 27100 Pavia, Italy.
| |
Collapse
|
180
|
Kubota T, Katou Y, Nakato R, Shirahige K, Donaldson AD. Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation. Cell Rep 2015. [PMID: 26212319 PMCID: PMC4534484 DOI: 10.1016/j.celrep.2015.06.066] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The sliding clamp PCNA is a crucial component of the DNA replication machinery. Timely PCNA loading and unloading are central for genome integrity and must be strictly coordinated with other DNA processing steps during replication. Here, we show that the S. cerevisiae Elg1 replication factor C-like complex (Elg1-RLC) unloads PCNA genome-wide following Okazaki fragment ligation. In the absence of Elg1, PCNA is retained on chromosomes in the wake of replication forks, rather than at specific sites. Degradation of the Okazaki fragment ligase Cdc9 leads to PCNA accumulation on chromatin, similar to the accumulation caused by lack of Elg1. We demonstrate that Okazaki fragment ligation is the critical prerequisite for PCNA unloading, since Chlorella virus DNA ligase can substitute for Cdc9 in yeast and simultaneously promotes PCNA unloading. Our results suggest that Elg1-RLC acts as a general PCNA unloader and is dependent upon DNA ligation during chromosome replication.
Collapse
Affiliation(s)
- Takashi Kubota
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| | - Yuki Katou
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Ryuichiro Nakato
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Katsuhiko Shirahige
- Research Center for Epigenetic Disease, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo 113-0032, Japan
| | - Anne D Donaldson
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| |
Collapse
|
181
|
Tanaka S, Miyazawa-Onami M, Iida T, Araki H. iAID: an improved auxin-inducible degron system for the construction of a 'tight' conditional mutant in the budding yeast Saccharomyces cerevisiae. Yeast 2015; 32:567-81. [PMID: 26081484 DOI: 10.1002/yea.3080] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 06/05/2015] [Accepted: 06/05/2015] [Indexed: 12/22/2022] Open
Abstract
Isolation of a 'tight' conditional mutant of a gene of interest is an effective way of studying the functions of essential genes. Strategies that use ubiquitin-mediated protein degradation to eliminate the product of a gene of interest, such as heat-inducible degron (td) and auxin-inducible degron (AID), are powerful methods for constructing conditional mutants. However, these methods do not work with some genes. Here, we describe an improved AID system (iAID) for isolating tight conditional mutants in the budding yeast Saccharomyces cerevisiae. In this method, transcriptional repression by the 'Tet-OFF' promoter is combined with proteolytic elimination of the target protein by the AID system. To provide examples, we describe the construction of tight mutants of the replication factors Dpb11 and Mcm10, dpb11-iAID, and mcm10-iAID. Because Dpb11 and Mcm10 are required for the initiation of DNA replication, their tight mutants are unable to enter S phase. This is the case for dpb11-iAID and mcm10-iAID cells after the addition of tetracycline and auxin. Both the 'Tet-OFF' promoter and the AID system have been shown to work in model eukaryotes other than budding yeast. Therefore, the iAID system is not only useful in budding yeast, but also can be applied to other model systems to isolate tight conditional mutants.
Collapse
Affiliation(s)
- Seiji Tanaka
- Division of Microbial Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan.,Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Mayumi Miyazawa-Onami
- Division of Microbial Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Tetsushi Iida
- Division of Cytogenetics, National Institute of Genetics, Mishima, Shizuoka, Japan.,Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| | - Hiroyuki Araki
- Division of Microbial Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan.,Department of Genetics, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka, Japan
| |
Collapse
|
182
|
Tong K, Skibbens RV. Pds5 regulators segregate cohesion and condensation pathways in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2015; 112:7021-6. [PMID: 25986377 PMCID: PMC4460518 DOI: 10.1073/pnas.1501369112] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cohesins are required both for the tethering together of sister chromatids (termed cohesion) and subsequent condensation into discrete structures-processes fundamental for faithful chromosome segregation into daughter cells. Differentiating between cohesin roles in cohesion and condensation would provide an important advance in studying chromatin metabolism. Pds5 is a cohesin-associated factor that is essential for both cohesion maintenance and condensation. Recent studies revealed that ELG1 deletion suppresses the temperature sensitivity of pds5 mutant cells. However, the mechanisms through which Elg1 may regulate cohesion and condensation remain unknown. Here, we report that ELG1 deletion from pds5-1 mutant cells results in a significant rescue of cohesion, but not condensation, defects. Based on evidence that Elg1 unloads the DNA replication clamp PCNA from DNA, we tested whether PCNA overexpression would similarly rescue pds5-1 mutant cell cohesion defects. The results indeed reveal that elevated levels of PCNA rescue pds5-1 temperature sensitivity and cohesion defects, but do not rescue pds5-1 mutant cell condensation defects. In contrast, RAD61 deletion rescues the condensation defect, but importantly, neither the temperature sensitivity nor cohesion defects exhibited by pds5-1 mutant cells. In combination, these findings reveal that cohesion and condensation are separable pathways and regulated in nonredundant mechanisms. These results are discussed in terms of a new model through which cohesion and condensation are spatially regulated.
Collapse
Affiliation(s)
- Kevin Tong
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015
| |
Collapse
|
183
|
McIntyre J, Woodgate R. Regulation of translesion DNA synthesis: Posttranslational modification of lysine residues in key proteins. DNA Repair (Amst) 2015; 29:166-79. [PMID: 25743599 PMCID: PMC4426011 DOI: 10.1016/j.dnarep.2015.02.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 01/30/2023]
Abstract
Posttranslational modification of proteins often controls various aspects of their cellular function. Indeed, over the past decade or so, it has been discovered that posttranslational modification of lysine residues plays a major role in regulating translesion DNA synthesis (TLS) and perhaps the most appreciated lysine modification is that of ubiquitination. Much of the recent interest in ubiquitination stems from the fact that proliferating cell nuclear antigen (PCNA) was previously shown to be specifically ubiquitinated at K164 and that such ubiquitination plays a key role in regulating TLS. In addition, TLS polymerases themselves are now known to be ubiquitinated. In the case of human polymerase η, ubiquitination at four lysine residues in its C-terminus appears to regulate its ability to interact with PCNA and modulate TLS. Within the past few years, advances in global proteomic research have revealed that many proteins involved in TLS are, in fact, subject to a previously underappreciated number of lysine modifications. In this review, we will summarize the known lysine modifications of several key proteins involved in TLS; PCNA and Y-family polymerases η, ι, κ and Rev1 and we will discuss the potential regulatory effects of such modification in controlling TLS in vivo.
Collapse
Affiliation(s)
- Justyna McIntyre
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawinskiego 5a, 02-106 Warsaw, Poland.
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA
| |
Collapse
|
184
|
Xu X, Blackwell S, Lin A, Li F, Qin Z, Xiao W. Error-free DNA-damage tolerance in Saccharomyces cerevisiae. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:43-50. [DOI: 10.1016/j.mrrev.2015.02.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/07/2015] [Accepted: 02/06/2015] [Indexed: 12/18/2022]
|
185
|
Chromatin remodeling factors Isw2 and Ino80 regulate checkpoint activity and chromatin structure in S phase. Genetics 2015; 199:1077-91. [PMID: 25701287 DOI: 10.1534/genetics.115.174730] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 02/13/2015] [Indexed: 12/19/2022] Open
Abstract
When cells undergo replication stress, proper checkpoint activation and deactivation are critical for genomic stability and cell survival and therefore must be highly regulated. Although mechanisms of checkpoint activation are well studied, mechanisms of checkpoint deactivation are far less understood. Previously, we reported that chromatin remodeling factors Isw2 and Ino80 attenuate the S-phase checkpoint activity in Saccharomyces cerevisiae, especially during recovery from hydroxyurea. In this study, we found that Isw2 and Ino80 have a more pronounced role in attenuating checkpoint activity during late S phase in the presence of methyl methanesulfonate (MMS). We therefore screened for checkpoint factors required for Isw2 and Ino80 checkpoint attenuation in the presence of MMS. Here we demonstrate that Isw2 and Ino80 antagonize checkpoint activators and attenuate checkpoint activity in S phase in MMS either through a currently unknown pathway or through RPA. Unexpectedly, we found that Isw2 and Ino80 increase chromatin accessibility around replicating regions in the presence of MMS through a novel mechanism. Furthermore, through growth assays, we provide additional evidence that Isw2 and Ino80 partially counteract checkpoint activators specifically in the presence of MMS. Based on these results, we propose that Isw2 and Ino80 attenuate S-phase checkpoint activity through a novel mechanism.
Collapse
|
186
|
Abstract
We have previously demonstrated that lagging-strand synthesis in budding yeast is coupled with chromatin assembly on newly synthesized DNA. Using a strain of S. cerevisiae in which DNA ligase I can be conditionally depleted, we can enrich and purify Okazaki fragments. We delineate a method to extract, end label, and visualize Okazaki fragments using denaturing agarose gel electrophoresis. Furthermore, we describe an ion-exchange chromatographic method for purification of fragments and preparation of strand-specific sequencing libraries. Deep sequencing of Okazaki fragments generates a comprehensive, genomic map of DNA synthesis, starting from a single asynchronous culture. Altogether this approach represents a tractable system to investigate key aspects of DNA replication and chromatin assembly.
Collapse
Affiliation(s)
- Duncan J. Smith
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | - Tejas Yadav
- Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Iestyn Whitehouse
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
187
|
Elg1, a central player in genome stability. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:267-79. [PMID: 25795125 DOI: 10.1016/j.mrrev.2014.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/15/2014] [Accepted: 11/17/2014] [Indexed: 11/20/2022]
Abstract
ELG1 is a conserved gene uncovered in a number of genetic screens in yeast aimed at identifying factors important in the maintenance of genome stability. Elg1's activity prevents gross chromosomal rearrangements, maintains proper telomere length regulation, helps repairing DNA damage created by a number of genotoxins and participates in sister chromatid cohesion. Elg1 is evolutionarily conserved, and its mammalian ortholog (also known as ATAD5) is embryonic lethal when lost in mice, acts as a tumor suppressor in mice and humans, exhibits physical interactions with components of the human Fanconi Anemia pathway and may be responsible for some of the phenotypes associated with neurofibromatosis. In this review, we summarize the information available on Elg1-related activities in yeast and mammals, and present models to explain how the different phenotypes observed in the absence of Elg1 activity are related.
Collapse
|
188
|
Abstract
Our understanding of the dynamics of replication fork-associated protein strand specificity is based largely on genetic or in vitro approaches. Yu et al. (2014) present eSPAN, a ChIP approach that reveals differences between protein abundance on nascent leading and lagging strands.
Collapse
Affiliation(s)
- Brian S Plosky
- Molecular Cell, Cell Press, 600 Technology Square, 5(th) Floor, Cambridge, MA 02139, USA.
| |
Collapse
|
189
|
Zanotti KJ, Maul RW, Castiblanco DP, Yang W, Choi YJ, Fox JT, Myung K, Saribasak H, Gearhart PJ. ATAD5 deficiency decreases B cell division and Igh recombination. THE JOURNAL OF IMMUNOLOGY 2014; 194:35-42. [PMID: 25404367 DOI: 10.4049/jimmunol.1401158] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mammalian ATPase family AAA domain-containing protein 5 (ATAD5) and its yeast homolog enhanced level of genomic instability 1 are responsible for unloading proliferating cell nuclear antigen from newly synthesized DNA. Prior work in HeLa and yeast cells showed that a decrease in ATAD5 protein levels resulted in accumulation of chromatin-bound proliferating cell nuclear antigen, slowed cell division, and increased genomic instability. In this study, B cells from heterozygous (Atad5(+/m)) mice were used to examine the effects of decreased cell proliferation on Ab diversity. ATAD5 haploinsufficiency did not change the frequency or spectrum of somatic hypermutation in Ab genes, indicating that DNA repair and error-prone DNA polymerase η usage were unaffected. However, immunized Atad5(+/m) mice had decreased serum IgG1 Abs, demonstrating a functional effect on class switch recombination. The mechanism of this altered immune response was then examined following ex vivo stimulation of splenic B cells, where Atad5(+/m) cells accumulated in the S phase of the cell cycle and had reduced proliferation compared with wild-type cells. These haploinsufficient cells underwent a significant decline in activation-induced deaminase expression, resulting in decreased switch region DNA double-strand breaks and interchromosomal translocations in the Igh locus. Class switch recombination to several isotypes was also reduced in Atad5(+/m) cells, although the types of end-joining pathways were not affected. These results describe a defect in DNA replication that affects Igh recombination via reduced cell division.
Collapse
Affiliation(s)
- Kimberly J Zanotti
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| | - Robert W Maul
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| | - Diana P Castiblanco
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| | - William Yang
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| | - Yong Jun Choi
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jennifer T Fox
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Kyungjae Myung
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Huseyin Saribasak
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| | - Patricia J Gearhart
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224; and
| |
Collapse
|
190
|
Etheridge TJ, Boulineau RL, Herbert A, Watson AT, Daigaku Y, Tucker J, George S, Jönsson P, Palayret M, Lando D, Laue E, Osborne MA, Klenerman D, Lee SF, Carr AM. Quantification of DNA-associated proteins inside eukaryotic cells using single-molecule localization microscopy. Nucleic Acids Res 2014; 42:e146. [PMID: 25106872 PMCID: PMC4231725 DOI: 10.1093/nar/gku726] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/09/2014] [Accepted: 07/28/2014] [Indexed: 12/25/2022] Open
Abstract
Development of single-molecule localization microscopy techniques has allowed nanometre scale localization accuracy inside cells, permitting the resolution of ultra-fine cell structure and the elucidation of crucial molecular mechanisms. Application of these methodologies to understanding processes underlying DNA replication and repair has been limited to defined in vitro biochemical analysis and prokaryotic cells. In order to expand these techniques to eukaryotic systems, we have further developed a photo-activated localization microscopy-based method to directly visualize DNA-associated proteins in unfixed eukaryotic cells. We demonstrate that motion blurring of fluorescence due to protein diffusivity can be used to selectively image the DNA-bound population of proteins. We designed and tested a simple methodology and show that it can be used to detect changes in DNA binding of a replicative helicase subunit, Mcm4, and the replication sliding clamp, PCNA, between different stages of the cell cycle and between distinct genetic backgrounds.
Collapse
Affiliation(s)
- Thomas J Etheridge
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Rémi L Boulineau
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Alex Herbert
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Adam T Watson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Yasukazu Daigaku
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Jem Tucker
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Sophie George
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - Peter Jönsson
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | | | - David Lando
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ernest Laue
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Mark A Osborne
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| | - David Klenerman
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Steven F Lee
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Sussex, UK
| |
Collapse
|
191
|
Prado F. Homologous recombination maintenance of genome integrity during DNA damage tolerance. Mol Cell Oncol 2014; 1:e957039. [PMID: 27308329 PMCID: PMC4905194 DOI: 10.4161/23723548.2014.957039] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/18/2014] [Accepted: 07/22/2014] [Indexed: 01/01/2023]
Abstract
The DNA strand exchange protein Rad51 provides a safe mechanism for the repair of DNA breaks using the information of a homologous DNA template. Homologous recombination (HR) also plays a key role in the response to DNA damage that impairs the advance of the replication forks by providing mechanisms to circumvent the lesion and fill in the tracks of single-stranded DNA that are generated during the process of lesion bypass. These activities postpone repair of the blocking lesion to ensure that DNA replication is completed in a timely manner. Experimental evidence generated over the last few years indicates that HR participates in this DNA damage tolerance response together with additional error-free (template switch) and error-prone (translesion synthesis) mechanisms through intricate connections, which are presented here. The choice between repair and tolerance, and the mechanism of tolerance, is critical to avoid increased mutagenesis and/or genome rearrangements, which are both hallmarks of cancer.
Collapse
Affiliation(s)
- Félix Prado
- Departamento de Biología Molecular; Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER) ; Consejo Superior de Investigaciones Científicas (CSIC) ; Seville, Spain
| |
Collapse
|
192
|
Yu C, Gan H, Han J, Zhou ZX, Jia S, Chabes A, Farrugia G, Ordog T, Zhang Z. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol Cell 2014; 56:551-63. [PMID: 25449133 DOI: 10.1016/j.molcel.2014.09.017] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/11/2014] [Accepted: 09/18/2014] [Indexed: 11/30/2022]
Abstract
In eukaryotic cells, DNA replication proceeds with continuous synthesis of leading-strand DNA and discontinuous synthesis of lagging-strand DNA. Here we describe a method, eSPAN (enrichment and sequencing of protein-associated nascent DNA), which reveals the genome-wide association of proteins with leading and lagging strands of DNA replication forks. Using this approach in budding yeast, we confirm the strand specificities of DNA polymerases delta and epsilon and show that the PCNA clamp is enriched at lagging strands compared with leading-strand replication. Surprisingly, at stalled forks, PCNA is unloaded specifically from lagging strands. PCNA unloading depends on the Elg1-containing alternative RFC complex, ubiquitination of PCNA, and the checkpoint kinases Mec1 and Rad53. Cells deficient in PCNA unloading exhibit increased chromosome breaks. Our studies provide a tool for studying replication-related processes and reveal a mechanism whereby checkpoint kinases regulate strand-specific unloading of PCNA from stalled replication forks to maintain genome stability.
Collapse
Affiliation(s)
- Chuanhe Yu
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Haiyun Gan
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Junhong Han
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Zhi-Xiong Zhou
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Shaodong Jia
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Gianrico Farrugia
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Tamas Ordog
- Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Zhiguo Zhang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA; Center for Individualized Medicine, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
193
|
Nishimura K, Kanemaki MT. Rapid Depletion of Budding Yeast Proteins via the Fusion of an Auxin-Inducible Degron (AID). ACTA ACUST UNITED AC 2014; 64:20.9.1-16. [PMID: 25181302 DOI: 10.1002/0471143030.cb2009s64] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The auxin-inducible degron (AID) system allows the rapid and reversible proteolysis of proteins of interest, and enables the generation of conditional mutants of budding yeast. The construction of budding yeast AID mutants is simple, and the effect of depletion of essential proteins on proliferation can be confirmed by analyzing their phenotype. In this protocol, we describe a procedure to generate AID mutants of budding yeast via a simple transformation using PCR-amplified DNA. We also describe methods to confirm the depletion of proteins of interest that are required for proliferation by serial-dilution and liquid-culture assays.
Collapse
Affiliation(s)
- Kohei Nishimura
- Center of Frontier Research, National Institute of Genetics, Research Organization of Information and Systems, Shizuoka, Japan
| | | |
Collapse
|
194
|
Freund G, Desplancq D, Stoessel A, Weinsanto R, Sibler AP, Robin G, Martineau P, Didier P, Wagner J, Weiss E. Generation of an intrabody-based reagent suitable for imaging endogenous proliferating cell nuclear antigen in living cancer cells. J Mol Recognit 2014; 27:549-58. [DOI: 10.1002/jmr.2378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 01/09/2023]
Affiliation(s)
- Guillaume Freund
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242; CNRS/Université de Strasbourg; Boulevard Sébastien Brant Illkirch France
| | - Dominique Desplancq
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242; CNRS/Université de Strasbourg; Boulevard Sébastien Brant Illkirch France
| | - Audrey Stoessel
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242; CNRS/Université de Strasbourg; Boulevard Sébastien Brant Illkirch France
| | - Robin Weinsanto
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242; CNRS/Université de Strasbourg; Boulevard Sébastien Brant Illkirch France
| | - Annie-Paule Sibler
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242; CNRS/Université de Strasbourg; Boulevard Sébastien Brant Illkirch France
| | - Gautier Robin
- Institut de Recherche en Cancérologie de Montpellier, U896; INSERM/Université Montpellier 1; Campus Val d'Aurelle Montpellier France
| | - Pierre Martineau
- Institut de Recherche en Cancérologie de Montpellier, U896; INSERM/Université Montpellier 1; Campus Val d'Aurelle Montpellier France
| | - Pascal Didier
- Faculté de Pharmacie, UMR 7213; CNRS/Université de Strasbourg; Route du Rhin Illkirch France
| | - Jérôme Wagner
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242; CNRS/Université de Strasbourg; Boulevard Sébastien Brant Illkirch France
| | - Etienne Weiss
- Ecole Supérieure de Biotechnologie de Strasbourg, UMR 7242; CNRS/Université de Strasbourg; Boulevard Sébastien Brant Illkirch France
| |
Collapse
|
195
|
Cazzalini O, Sommatis S, Tillhon M, Dutto I, Bachi A, Rapp A, Nardo T, Scovassi AI, Necchi D, Cardoso MC, Stivala LA, Prosperi E. CBP and p300 acetylate PCNA to link its degradation with nucleotide excision repair synthesis. Nucleic Acids Res 2014; 42:8433-48. [PMID: 24939902 PMCID: PMC4117764 DOI: 10.1093/nar/gku533] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The proliferating cell nuclear antigen (PCNA) protein serves as a molecular platform recruiting and coordinating the activity of factors involved in multiple deoxyribonucleic acid (DNA) transactions. To avoid dangerous genome instability, it is necessary to prevent excessive retention of PCNA on chromatin. Although PCNA functions during DNA replication appear to be regulated by different post-translational modifications, the mechanism regulating PCNA removal and degradation after nucleotide excision repair (NER) is unknown. Here we report that CREB-binding protein (CBP), and less efficiently p300, acetylated PCNA at lysine (Lys) residues Lys13,14,77 and 80, to promote removal of chromatin-bound PCNA and its degradation during NER. Mutation of these residues resulted in impaired DNA replication and repair, enhanced the sensitivity to ultraviolet radiation, and prevented proteolytic degradation of PCNA after DNA damage. Depletion of both CBP and p300, or failure to load PCNA on DNA in NER deficient cells, prevented PCNA acetylation and degradation, while proteasome inhibition resulted in accumulation of acetylated PCNA. These results define a CBP and p300-dependent mechanism for PCNA acetylation after DNA damage, linking DNA repair synthesis with removal of chromatin-bound PCNA and its degradation, to ensure genome stability.
Collapse
Affiliation(s)
- Ornella Cazzalini
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Sabrina Sommatis
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Micol Tillhon
- Institute of Molecular Genetics, National Research Council (CNR), Pavia 27100, Italy
| | - Ilaria Dutto
- Institute of Molecular Genetics, National Research Council (CNR), Pavia 27100, Italy
| | - Angela Bachi
- IFOM-FIRC Institute of Molecular Oncology, Milan 20100, Italy
| | - Alexander Rapp
- Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - Tiziana Nardo
- Institute of Molecular Genetics, National Research Council (CNR), Pavia 27100, Italy
| | - A Ivana Scovassi
- Institute of Molecular Genetics, National Research Council (CNR), Pavia 27100, Italy
| | - Daniela Necchi
- Department of Drug Sciences, University of Pavia, Pavia 27100, Italy
| | | | - Lucia A Stivala
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Ennio Prosperi
- Institute of Molecular Genetics, National Research Council (CNR), Pavia 27100, Italy
| |
Collapse
|
196
|
Binder JK, Douma LG, Ranjit S, Kanno DM, Chakraborty M, Bloom LB, Levitus M. Intrinsic stability and oligomerization dynamics of DNA processivity clamps. Nucleic Acids Res 2014; 42:6476-86. [PMID: 24728995 PMCID: PMC4041429 DOI: 10.1093/nar/gku255] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 03/14/2014] [Accepted: 03/17/2014] [Indexed: 11/29/2022] Open
Abstract
Sliding clamps are ring-shaped oligomeric proteins that are essential for processive deoxyribonucleic acid replication. Although crystallographic structures of several clamps have been determined, much less is known about clamp structure and dynamics in solution. Here, we characterized the intrinsic solution stability and oligomerization dynamics of the homodimeric Escherichia coli β and the homotrimeric Saccharomyces cerevisiae proliferating cell nuclear antigen (PCNA) clamps using single-molecule approaches. We show that E. coli β is stable in solution as a closed ring at concentrations three orders of magnitude lower than PCNA. The trimeric structure of PCNA results in slow subunit association rates and is largely responsible for the lower solution stability. Despite this large difference, the intrinsic lifetimes of the rings differ by only one order of magnitude. Our results show that the longer lifetime of the E. coli β dimer is due to more prominent electrostatic interactions that stabilize the subunit interfaces.
Collapse
Affiliation(s)
- Jennifer K Binder
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| | - Lauren G Douma
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Suman Ranjit
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| | - David M Kanno
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| | - Manas Chakraborty
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| | - Linda B Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Marcia Levitus
- Department of Chemistry and Biochemistry and Biodesign Institute, Arizona State University, Tempe, AZ 85287-5601, USA
| |
Collapse
|
197
|
Zech J, Dalgaard JZ. Replisome components--post-translational modifications and their effects. Semin Cell Dev Biol 2014; 30:144-53. [PMID: 24685613 DOI: 10.1016/j.semcdb.2014.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 03/10/2014] [Accepted: 03/23/2014] [Indexed: 12/22/2022]
Abstract
The process of DNA replication is highly regulated, but at the same time very dynamic. Once S-phase is initiated and replication elongation is occurring, the cells are committed to complete replication in order to ensure genome stability and survival. Many pathways exist to resolve situations where normal replisome progression is not possible. It is becoming more and more evident that post-translational modifications of replisome components play a key role in regulating these pathways which ensure fork progression. Here we review the known modifications of the progressing replisome and how these modifications are thought to affect DNA replication in unperturbed and perturbed S-phases.
Collapse
Affiliation(s)
- Juergen Zech
- Warwick Medical School, University of Warwick, Gibbert Hill Campus, CV47AL Coventry, UK
| | - Jacob Zeuthen Dalgaard
- Warwick Medical School, University of Warwick, Gibbert Hill Campus, CV47AL Coventry, UK.
| |
Collapse
|
198
|
Affinity proteomics reveals human host factors implicated in discrete stages of LINE-1 retrotransposition. Cell 2014; 155:1034-48. [PMID: 24267889 DOI: 10.1016/j.cell.2013.10.021] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/25/2013] [Accepted: 09/30/2013] [Indexed: 11/21/2022]
Abstract
LINE-1s are active human DNA parasites that are agents of genome dynamics in evolution and disease. These streamlined elements require host factors to complete their life cycles, whereas hosts have developed mechanisms to combat retrotransposition's mutagenic effects. As such, endogenous L1 expression levels are extremely low, creating a roadblock for detailed interactomic analyses. Here, we describe a system to express and purify highly active L1 RNP complexes from human suspension cell culture and characterize the copurified proteome, identifying 37 high-confidence candidate interactors. These data sets include known interactors PABPC1 and MOV10 and, with in-cell imaging studies, suggest existence of at least three types of compositionally and functionally distinct L1 RNPs. Among the findings, UPF1, a key nonsense-mediated decay factor, and PCNA, the polymerase-delta-associated sliding DNA clamp, were identified and validated. PCNA interacts with ORF2p via a PIP box motif; mechanistic studies suggest that this occurs during or immediately after target-primed reverse transcription.
Collapse
|
199
|
Gonzalez-Huici V, Szakal B, Urulangodi M, Psakhye I, Castellucci F, Menolfi D, Rajakumara E, Fumasoni M, Bermejo R, Jentsch S, Branzei D. DNA bending facilitates the error-free DNA damage tolerance pathway and upholds genome integrity. EMBO J 2014; 33:327-40. [PMID: 24473148 PMCID: PMC3983681 DOI: 10.1002/embj.201387425] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
DNA replication is sensitive to damage in the template. To bypass lesions and complete replication, cells activate recombination-mediated (error-free) and translesion synthesis-mediated (error-prone) DNA damage tolerance pathways. Crucial for error-free DNA damage tolerance is template switching, which depends on the formation and resolution of damage-bypass intermediates consisting of sister chromatid junctions. Here we show that a chromatin architectural pathway involving the high mobility group box protein Hmo1 channels replication-associated lesions into the error-free DNA damage tolerance pathway mediated by Rad5 and PCNA polyubiquitylation, while preventing mutagenic bypass and toxic recombination. In the process of template switching, Hmo1 also promotes sister chromatid junction formation predominantly during replication. Its C-terminal tail, implicated in chromatin bending, facilitates the formation of catenations/hemicatenations and mediates the roles of Hmo1 in DNA damage tolerance pathway choice and sister chromatid junction formation. Together, the results suggest that replication-associated topological changes involving the molecular DNA bender, Hmo1, set the stage for dedicated repair reactions that limit errors during replication and impact on genome stability.
Collapse
|
200
|
Shiomi Y, Nishitani H. Alternative replication factor C protein, Elg1, maintains chromosome stability by regulating PCNA levels on chromatin. Genes Cells 2013; 18:946-59. [PMID: 23937667 DOI: 10.1111/gtc.12087] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 07/01/2013] [Indexed: 12/16/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) is loaded on chromatin upon initiation of the S phase and acts as a platform for a large number of proteins involved in chromosome duplication at the replication fork. As duplication is completed, PCNA dissociates from chromatin, and thus, chromatin-bound PCNA levels are regulated during the cell cycle. Although the mechanism of PCNA loading has been extensively investigated, the unloading mechanism has remained unclear. Here, we show that Elg1, an alternative replication factor C protein, is required for the regulation of chromatin-bound PCNA levels. When Elg1 was depleted by small interfering RNA, chromatin-bound PCNA levels were extremely increased during the S phase. The number of PCNA foci, regions in the nucleus normally representing DNA replication sites, was increased and PCNA remained on chromatin after DNA replication. Various chromatin-associated protein levels on chromatin were affected, and chromatin loop size was increased. During mitosis, cells with aberrant chromosomes and lagging chromosomes were frequently detected. Our findings suggest that Elg1 has an important role in maintaining chromosome integrity by regulating PCNA levels on chromatin, thereby acting as a PCNA unloading factor.
Collapse
Affiliation(s)
- Yasushi Shiomi
- Graduate School of Life Science, University of Hyogo, Kamigori, Ako-gun, Hyogo, 678-1297, Japan
| | | |
Collapse
|