151
|
Coons LA, Hewitt SC, Burkholder AB, McDonnell DP, Korach KS. DNA Sequence Constraints Define Functionally Active Steroid Nuclear Receptor Binding Sites in Chromatin. Endocrinology 2017; 158:3212-3234. [PMID: 28977594 PMCID: PMC5659708 DOI: 10.1210/en.2017-00468] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/30/2017] [Indexed: 12/17/2022]
Abstract
Gene regulatory programs are encoded in the sequence of the DNA. Since the completion of the Human Genome Project, millions of gene regulatory elements have been identified in the human genome. Understanding how each of those sites functionally contributes to gene regulation, however, remains a challenge for nearly every field of biology. Transcription factors influence cell function by interpreting information contained within cis-regulatory elements in chromatin. Whereas chromatin immunoprecipitation-sequencing has been used to identify and map transcription factor-DNA interactions, it has been difficult to assign functionality to the binding sites identified. Thus, in this study, we probed the transcriptional activity, DNA-binding competence, and functional activity of select nuclear receptor mutants in cellular and animal model systems and used this information to define the sequence constraints of functional steroid nuclear receptor cis-regulatory elements. Analysis of the architecture within sNR chromatin interacting sites revealed that only a small fraction of all sNR chromatin-interacting events is associated with transcriptional output and that this functionality is restricted to elements that vary from the consensus palindromic elements by one or two nucleotides. These findings define the transcriptional grammar necessary to predict functionality from regulatory sequences, with a multitude of future implications.
Collapse
Affiliation(s)
- Laurel A Coons
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina 27709
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Sylvia C Hewitt
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Adam B Burkholder
- Integrative Bioinformatics, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Donald P McDonnell
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Kenneth S Korach
- Receptor Biology Section, Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
152
|
Integrative analysis of RNA polymerase II and transcriptional dynamics upon MYC activation. Genome Res 2017; 27:1658-1664. [PMID: 28904013 PMCID: PMC5630029 DOI: 10.1101/gr.226035.117] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 02/03/2023]
Abstract
Overexpression of the MYC transcription factor causes its widespread interaction with regulatory elements in the genome but leads to the up- and down-regulation of discrete sets of genes. The molecular determinants of these selective transcriptional responses remain elusive. Here, we present an integrated time-course analysis of transcription and mRNA dynamics following MYC activation in proliferating mouse fibroblasts, based on chromatin immunoprecipitation, metabolic labeling of newly synthesized RNA, extensive sequencing, and mathematical modeling. Transcriptional activation correlated with the highest increases in MYC binding at promoters. Repression followed a reciprocal scenario, with the lowest gains in MYC binding. Altogether, the relative abundance (henceforth, "share") of MYC at promoters was the strongest predictor of transcriptional responses in diverse cell types, predominating over MYC's association with the corepressor ZBTB17 (also known as MIZ1). MYC activation elicited immediate loading of RNA polymerase II (RNAPII) at activated promoters, followed by increases in pause-release, while repressed promoters showed opposite effects. Gains and losses in RNAPII loading were proportional to the changes in the MYC share, suggesting that repression by MYC may be partly indirect, owing to competition for limiting amounts of RNAPII. Secondary to the changes in RNAPII loading, the dynamics of elongation and pre-mRNA processing were also rapidly altered at MYC regulated genes, leading to the transient accumulation of partially or aberrantly processed mRNAs. Altogether, our results shed light on how overexpressed MYC alters the various phases of the RNAPII cycle and the resulting transcriptional response.
Collapse
|
153
|
Malik I, Qiu C, Snavely T, Kaplan CD. Wide-ranging and unexpected consequences of altered Pol II catalytic activity in vivo. Nucleic Acids Res 2017; 45:4431-4451. [PMID: 28119420 PMCID: PMC5416818 DOI: 10.1093/nar/gkx037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/13/2017] [Indexed: 01/28/2023] Open
Abstract
Here we employ a set of RNA Polymerase II (Pol II) activity mutants to determine the consequences of increased or decreased Pol II catalysis on gene expression in Saccharomyces cerevisiae. We find that alteration of Pol II catalytic rate, either fast or slow, leads to decreased Pol II occupancy and apparent reduction in elongation rate in vivo. However, we also find that determination of elongation rate in vivo by chromatin immunoprecipitation can be confounded by the kinetics and conditions of transcriptional shutoff in the assay. We identify promoter and template-specific effects on severity of gene expression defects for both fast and slow Pol II mutants. We show that mRNA half-lives for a reporter gene are increased in both fast and slow Pol II mutant strains and the magnitude of half-life changes correlate both with mutants' growth and reporter expression defects. Finally, we tested a model that altered Pol II activity sensitizes cells to nucleotide depletion. In contrast to model predictions, mutated Pol II retains normal sensitivity to altered nucleotide levels. Our experiments establish a framework for understanding the diversity of transcription defects derived from altered Pol II activity mutants, essential for their use as probes of transcription mechanisms.
Collapse
Affiliation(s)
- Indranil Malik
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Chenxi Qiu
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Thomas Snavely
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Craig D Kaplan
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
154
|
Gherardi S, Bovolenta M, Passarelli C, Falzarano MS, Pigini P, Scotton C, Neri M, Armaroli A, Osman H, Selvatici R, Gualandi F, Recchia A, Mora M, Bernasconi P, Maggi L, Morandi L, Ferlini A, Perini G. Transcriptional and epigenetic analyses of the DMD locus reveal novel cis‑acting DNA elements that govern muscle dystrophin expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1138-1147. [PMID: 28867298 DOI: 10.1016/j.bbagrm.2017.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/02/2017] [Accepted: 08/28/2017] [Indexed: 11/25/2022]
Abstract
The dystrophin gene (DMD) is the largest gene in the human genome, mapping on the Xp21 chromosome locus. It spans 2.2Mb and accounts for approximately 0,1% of the entire human genome. Mutations in this gene cause Duchenne and Becker Muscular Dystrophy, X-linked Dilated Cardiomyopathy, and other milder muscle phenotypes. Beside the remarkable number of reports describing dystrophin gene expression and the pathogenic consequences of the gene mutations in dystrophinopathies, the full scenario of the DMD transcription dynamics remains however, poorly understood. Considering that the full transcription of the DMD gene requires about 16h, we have investigated the activity of RNA Polymerase II along the entire DMD locus within the context of specific chromatin modifications using a variety of chromatin-based techniques. Our results unveil a surprisingly powerful processivity of the RNA polymerase II along the entire 2.2Mb of the DMD locus with just one site of pausing around intron 52. We also discovered epigenetic marks highlighting the existence of four novel cis‑DNA elements, two of which, located within intron 34 and exon 45, appear to govern the architecture of the DMD chromatin with implications on the expression levels of the muscle dystrophin mRNA. Overall, our findings provide a global view on how the entire DMD locus is dynamically transcribed by the RNA pol II and shed light on the mechanisms involved in dystrophin gene expression control, which can positively impact on the optimization of the novel ongoing therapeutic strategies for dystrophinopathies.
Collapse
Affiliation(s)
- Samuele Gherardi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Italy; Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; CIRI Health Sciences & Technologies (HST), Bologna, Italy
| | - Matteo Bovolenta
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Italy
| | - Chiara Passarelli
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Italy; Paediatric Hospital Bambino Gesù, Laboratory of Medical Genetics, Rome, Italy
| | - Maria Sofia Falzarano
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Italy
| | - Paolo Pigini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Chiara Scotton
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Italy
| | - Marcella Neri
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Italy
| | - Annarita Armaroli
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Italy
| | - Hana Osman
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Italy
| | - Rita Selvatici
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Italy
| | - Francesca Gualandi
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Italy
| | - Alessandra Recchia
- Department of Life Sciences, University of Modena & Reggio Emilia, Modena, Italy
| | - Marina Mora
- Neuromuscular Disease and Immunology Unit, Fondazione IRCCS Istituto Neurologico "C. Besta", Milan, Italy
| | - Pia Bernasconi
- Neuromuscular Disease and Immunology Unit, Fondazione IRCCS Istituto Neurologico "C. Besta", Milan, Italy
| | - Lorenzo Maggi
- Neuromuscular Disease and Immunology Unit, Fondazione IRCCS Istituto Neurologico "C. Besta", Milan, Italy
| | - Lucia Morandi
- Neuromuscular Disease and Immunology Unit, Fondazione IRCCS Istituto Neurologico "C. Besta", Milan, Italy
| | - Alessandra Ferlini
- Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Italy; Neuromuscular Unit, Great Ormond Street Hospital, University College London, UK.
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy; CIRI Health Sciences & Technologies (HST), Bologna, Italy.
| |
Collapse
|
155
|
Zhao Y, Wu J, Liangpunsakul S, Wang L. Long Non-coding RNA in Liver Metabolism and Disease: Current Status. LIVER RESEARCH 2017; 1:163-167. [PMID: 29576888 PMCID: PMC5863923 DOI: 10.1016/j.livres.2017.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) are comprised of RNA transcripts exceeding 200 nucleotides in length but lacking identifiable open reading frames (with rare exceptions). Herein, we highlight emerging evidence demonstrating that lncRNAs are critical regulators of liver metabolic function and diseases. We summarize current knowledges about dysregulated lncRNAs and outline the underlying molecular mechanisms by which lncRNAs control hepatic lipid ad glucose metabolism, as well as cholestatic liver disease. lncLSTR, Lnc18q22.2, SRA, HULC, MALAT1, lncLGR, MEG3, and H19, lncHR1, lnc-HC, APOA1-AS, DYNLRB2-2, and LeXis are included in the discussion.
Collapse
Affiliation(s)
- Yulan Zhao
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Jianguo Wu
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
| | - Suthat Liangpunsakul
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
- Roudebush Veterans Administration Medical Center, Indianapolis, IN
| | - Li Wang
- Department of Physiology and Neurobiology, and the Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269
- Veterans Affairs Connecticut Healthcare System, West Haven, CT 06516
- Department of Internal Medicine, Section of Digestive Diseases, Yale University, New Haven, CT 06520
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
156
|
Ferrero G, Miano V, Beccuti M, Balbo G, De Bortoli M, Cordero F. Dissecting the genomic activity of a transcriptional regulator by the integrative analysis of omics data. Sci Rep 2017; 7:8564. [PMID: 28819152 PMCID: PMC5561104 DOI: 10.1038/s41598-017-08754-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 07/13/2017] [Indexed: 12/19/2022] Open
Abstract
In the study of genomic regulation, strategies to integrate the data produced by Next Generation Sequencing (NGS)-based technologies in a meaningful ensemble are eagerly awaited and must continuously evolve. Here, we describe an integrative strategy for the analysis of data generated by chromatin immunoprecipitation followed by NGS which combines algorithms for data overlap, normalization and epigenetic state analysis. The performance of our strategy is illustrated by presenting the analysis of data relative to the transcriptional regulator Estrogen Receptor alpha (ERα) in MCF-7 breast cancer cells and of Glucocorticoid Receptor (GR) in A549 lung cancer cells. We went through the definition of reference cistromes for different experimental contexts, the integration of data relative to co-regulators and the overlay of chromatin states as defined by epigenetic marks in MCF-7 cells. With our strategy, we identified novel features of estrogen-independent ERα activity, including FoxM1 interaction, eRNAs transcription and a peculiar ontology of connected genes.
Collapse
Affiliation(s)
- Giulio Ferrero
- Center for Molecular Systems Biology, University of Turin, 10043, Orbassano, Turin, Italy.,Dept. of Computer Science, University of Turin, 10149, Turin, Italy.,Dept. of Biological and Clinical Sciences, University of Turin, 10043, Orbassano, Turin, Italy
| | - Valentina Miano
- Center for Molecular Systems Biology, University of Turin, 10043, Orbassano, Turin, Italy.,Dept. of Biological and Clinical Sciences, University of Turin, 10043, Orbassano, Turin, Italy
| | - Marco Beccuti
- Dept. of Computer Science, University of Turin, 10149, Turin, Italy
| | - Gianfranco Balbo
- Center for Molecular Systems Biology, University of Turin, 10043, Orbassano, Turin, Italy.,Dept. of Computer Science, University of Turin, 10149, Turin, Italy
| | - Michele De Bortoli
- Center for Molecular Systems Biology, University of Turin, 10043, Orbassano, Turin, Italy. .,Dept. of Biological and Clinical Sciences, University of Turin, 10043, Orbassano, Turin, Italy.
| | - Francesca Cordero
- Center for Molecular Systems Biology, University of Turin, 10043, Orbassano, Turin, Italy.,Dept. of Computer Science, University of Turin, 10149, Turin, Italy
| |
Collapse
|
157
|
Zheng ZL. Ras and Rho GTPase regulation of Pol II transcription: A shortcut model revisited. Transcription 2017; 8:268-274. [PMID: 28548879 DOI: 10.1080/21541264.2017.1321612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Transcriptional control is critical in relaying signals mediated by Ras and Rho family small GTPases to effect gene expression. In the classical model, signaling components such as MAP kinase target sequence-specific transcription factors, which in turn recruit RNA polymerase (Pol) II holoenzyme to the promoter and activate transcription. Findings in recent years have led to the proposal of a shortcut model in which the Mediator components of the Pol II holoenzyme are regulated by signaling pathways. A very recent finding shows that an evolutionarily conserved Rho GTPase signaling pathway can directly modulate the Pol II C-terminal domain (CTD) phosphorylation by inhibiting the CTD phosphatase in yeast and Arabidopsis. This shortcut model allows direct targeting of the Pol II CTD code and thus has an advantage over the classical model in bringing about rapid, large-scale changes in gene expression.
Collapse
Affiliation(s)
- Zhi-Liang Zheng
- a Department of Biological Sciences, Lehman College , City University of New York , Bronx , NY , USA.,b Plant Nutrient Signaling and Fruit Quality Improvement Laboratory, Citrus Research Institute , Southwest University , Beibei , Chongqing , China
| |
Collapse
|
158
|
Dynamic Change of Transcription Pausing through Modulating NELF Protein Stability Regulates Granulocytic Differentiation. Blood Adv 2017; 1:1358-1367. [PMID: 28868519 DOI: 10.1182/bloodadvances.2017008383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The NELF complex is a metazoan-specific factor essential for establishing transcription pausing. Although NELF has been implicated in cell fate regulation, the cellular regulation of NELF and its intrinsic role in specific lineage differentiation remains largely unknown. Using mammalian hematopoietic differentiation as a model system, here we identified a dynamic change of NELF-mediated transcription pausing as a novel mechanism regulating hematopoietic differentiation. We found a sharp decrease of NELF protein abundance upon granulocytic differentiation and a subsequent genome-wide reduction of transcription pausing. This loss of pausing coincides with activation of granulocyte-affiliated genes and diminished expression of progenitor markers. Functional studies revealed that sustained expression of NELF inhibits granulocytic differentiation, whereas NELF depletion in progenitor cells leads to premature differentiation towards the granulocytic lineage. Our results thus uncover a previously unrecognized regulation of transcription pausing by modulating NELF protein abundance to control cellular differentiation.
Collapse
|
159
|
Fukaya T, Lim B, Levine M. Rapid Rates of Pol II Elongation in the Drosophila Embryo. Curr Biol 2017; 27:1387-1391. [PMID: 28457866 DOI: 10.1016/j.cub.2017.03.069] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/26/2017] [Accepted: 03/28/2017] [Indexed: 01/21/2023]
Abstract
Elongation of RNA polymerase II (Pol II) is thought to be an important mechanism for regulating gene expression [1]. We measured the first wave of de novo transcription in living Drosophila embryos using dual-fluorescence detection of nascent transcripts containing 5' MS2 and 3' PP7 RNA stem loops. Pol II elongation rates of 2.4-3.0 kb/min were observed, approximately twice as fast as earlier estimates [2-6]. The revised rates permit substantial levels of zygotic gene activity prior to the mid-blastula transition. We also provide evidence that variable rates of elongation are not a significant source of differential gene activity, suggesting that transcription initiation and Pol II release are the key determinants of gene control in development.
Collapse
Affiliation(s)
- Takashi Fukaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Bomyi Lim
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
160
|
Rauwerda H, Pagano JFB, de Leeuw WC, Ensink W, Nehrdich U, de Jong M, Jonker M, Spaink HP, Breit TM. Transcriptome dynamics in early zebrafish embryogenesis determined by high-resolution time course analysis of 180 successive, individual zebrafish embryos. BMC Genomics 2017; 18:287. [PMID: 28399811 PMCID: PMC5387192 DOI: 10.1186/s12864-017-3672-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 03/29/2017] [Indexed: 02/08/2023] Open
Abstract
Background Recently, much progress has been made in the field of gene-expression in early embryogenesis. However, the dynamic behaviour of transcriptomes in individual embryos has hardly been studied yet and the time points at which pools of embryos are collected are usually still quite far apart. Here, we present a high-resolution gene-expression time series with 180 individual zebrafish embryos, obtained from nine different spawns, developmentally ordered and profiled from late blastula to mid-gastrula stage. On average one embryo per minute was analysed. The focus was on identification and description of the transcriptome dynamics of the expressed genes in this embryonic stage, rather than to biologically interpret profiles in cellular processes and pathways. Results In the late blastula to mid-gastrula stage, we found 6,734 genes being expressed with low variability and rather gradual changes. Ten types of dynamic behaviour were defined, such as genes with continuously increasing or decreasing expression, and all expressed genes were grouped into these types. Also, the exact expression starting and stopping points of several hundred genes during this developmental period could be pinpointed. Although the resolution of the experiment was so high, that we were able to clearly identify four known oscillating genes, no genes were observed with a peaking expression. Additionally, several genes showed expression at two or three distinct levels that strongly related to the spawn an embryo originated from. Conclusion Our unique experimental set-up of whole-transcriptome analysis of 180 individual embryos, provided an unparalleled in-depth insight into the dynamics of early zebrafish embryogenesis. The existence of a tightly regulated embryonic transcriptome program, even between individuals from different spawns is shown. We have made the expression profile of all genes available for domain experts. The fact that we were able to separate the different spawns by their gene-expression variance over all expressed genes, underlines the importance of spawn specificity, as well as the unexpectedly tight gene-expression regulation in early zebrafish embryogenesis. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3672-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Han Rauwerda
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Johanna F B Pagano
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim C de Leeuw
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Wim Ensink
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrike Nehrdich
- Institute Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Mark de Jong
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands.,Present address: GenomeScan B.V., Plesmanlaan, Leiden, The Netherlands
| | - Martijs Jonker
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Herman P Spaink
- Institute Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands
| | - Timo M Breit
- RNA Biology & Applied Bioinformatics research group, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands. .,Institute Biology Leiden, Faculty of Science, Leiden University, Leiden, The Netherlands. .,MAD/AB&RB, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
161
|
Pause & go: from the discovery of RNA polymerase pausing to its functional implications. Curr Opin Cell Biol 2017; 46:72-80. [PMID: 28363125 DOI: 10.1016/j.ceb.2017.03.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/06/2017] [Accepted: 03/07/2017] [Indexed: 12/25/2022]
Abstract
The synthesis of nascent RNA is a discontinuous process in which phases of productive elongation by RNA polymerase are interrupted by frequent pauses. Transcriptional pausing was first observed decades ago, but was long considered to be a special feature of transcription at certain genes. This view was challenged when studies using genome-wide approaches revealed that RNA polymerase II pauses at promoter-proximal regions in large sets of genes in Drosophila and mammalian cells. High-resolution genomic methods uncovered that pausing is not restricted to promoters, but occurs globally throughout gene-body regions, implying the existence of key-rate limiting steps in nascent RNA synthesis downstream of transcription initiation. Here, we outline the experimental breakthroughs that led to the discovery of pervasive transcriptional pausing, discuss its emerging roles and regulation, and highlight the importance of pausing in human development and disease.
Collapse
|
162
|
Transcriptional and post-transcriptional regulation of the ionizing radiation response by ATM and p53. Sci Rep 2017; 7:43598. [PMID: 28256581 PMCID: PMC5335570 DOI: 10.1038/srep43598] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/25/2017] [Indexed: 12/19/2022] Open
Abstract
In response to ionizing radiation (IR), cells activate a DNA damage response (DDR) pathway to re-program gene expression. Previous studies using total cellular RNA analyses have shown that the stress kinase ATM and the transcription factor p53 are integral components required for induction of IR-induced gene expression. These studies did not distinguish between changes in RNA synthesis and RNA turnover and did not address the role of enhancer elements in DDR-mediated transcriptional regulation. To determine the contribution of synthesis and degradation of RNA and monitor the activity of enhancer elements following exposure to IR, we used the recently developed Bru-seq, BruChase-seq and BruUV-seq techniques. Our results show that ATM and p53 regulate both RNA synthesis and stability as well as enhancer element activity following exposure to IR. Importantly, many genes in the p53-signaling pathway were coordinately up-regulated by both increased synthesis and RNA stability while down-regulated genes were suppressed either by reduced synthesis or stability. Our study is the first of its kind that independently assessed the effects of ionizing radiation on transcription and post-transcriptional regulation in normal human cells.
Collapse
|
163
|
Lohmann J, D'Huys O, Haynes ND, Schöll E, Gauthier DJ. Transient dynamics and their control in time-delay autonomous Boolean ring networks. Phys Rev E 2017; 95:022211. [PMID: 28297900 DOI: 10.1103/physreve.95.022211] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Indexed: 01/08/2023]
Abstract
Biochemical systems with switch-like interactions, such as gene regulatory networks, are well modeled by autonomous Boolean networks. Specifically, the topology and logic of gene interactions can be described by systems of continuous piecewise-linear differential equations, enabling analytical predictions of the dynamics of specific networks. However, most models do not account for time delays along links associated with spatial transport, mRNA transcription, and translation. To address this issue, we have developed an experimental test bed to realize a time-delay autonomous Boolean network with three inhibitory nodes, known as a repressilator, and use it to study the dynamics that arise as time delays along the links vary. We observe various nearly periodic oscillatory transient patterns with extremely long lifetime, which emerge in small network motifs due to the delay, and which are distinct from the eventual asymptotically stable periodic attractors. For repeated experiments with a given network, we find that stochastic processes give rise to a broad distribution of transient times with an exponential tail. In some cases, the transients are so long that it is doubtful the attractors will ever be approached in a biological system that has a finite lifetime. To counteract the long transients, we show experimentally that small, occasional perturbations applied to the time delays can force the trajectories to rapidly approach the attractors.
Collapse
Affiliation(s)
- Johannes Lohmann
- Department of Physics, Duke University, Durham, North Carolina 27708, USA.,Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Otti D'Huys
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Nicholas D Haynes
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany
| | - Daniel J Gauthier
- Department of Physics, Duke University, Durham, North Carolina 27708, USA.,Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
164
|
Schaukowitch K, Reese AL, Kim SK, Kilaru G, Joo JY, Kavalali ET, Kim TK. An Intrinsic Transcriptional Program Underlying Synaptic Scaling during Activity Suppression. Cell Rep 2017; 18:1512-1526. [PMID: 28178527 PMCID: PMC5524384 DOI: 10.1016/j.celrep.2017.01.033] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 11/15/2016] [Accepted: 01/14/2017] [Indexed: 11/15/2022] Open
Abstract
Homeostatic scaling allows neurons to maintain stable activity patterns by globally altering their synaptic strength in response to changing activity levels. Suppression of activity by the blocking of action potentials increases synaptic strength through an upregulation of surface α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. Although this synaptic upscaling was shown to require transcription, the molecular nature of the intrinsic transcription program underlying this process and its functional significance have been unclear. Using RNA-seq, we identified 73 genes that were specifically upregulated in response to activity suppression. In particular, Neuronal pentraxin-1 (Nptx1) increased within 6 hr of activity blockade, and knockdown of this gene blocked the increase in synaptic strength. Nptx1 induction is mediated by calcium influx through the T-type voltage-gated calcium channel, as well as two transcription factors, SRF and ELK1. Altogether, these results uncover a transcriptional program that specifically operates when neuronal activity is suppressed to globally coordinate the increase in synaptic strength.
Collapse
Affiliation(s)
- Katie Schaukowitch
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Austin L Reese
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Seung-Kyoon Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Gokhul Kilaru
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Jae-Yeol Joo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Ege T Kavalali
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Tae-Kyung Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
165
|
Scholes C, DePace AH, Sánchez Á. Combinatorial Gene Regulation through Kinetic Control of the Transcription Cycle. Cell Syst 2016; 4:97-108.e9. [PMID: 28041762 DOI: 10.1016/j.cels.2016.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/09/2016] [Accepted: 11/23/2016] [Indexed: 11/20/2022]
Abstract
Cells decide when, where, and to what level to express their genes by "computing" information from transcription factors (TFs) binding to regulatory DNA. How is the information contained in multiple TF-binding sites integrated to dictate the rate of transcription? The dominant conceptual and quantitative model is that TFs combinatorially recruit one another and RNA polymerase to the promoter by direct physical interactions. Here, we develop a quantitative framework to explore kinetic control, an alternative model in which combinatorial gene regulation can result from TFs working on different kinetic steps of the transcription cycle. Kinetic control can generate a wide range of analog and Boolean computations without requiring the input TFs to be simultaneously bound to regulatory DNA. We propose experiments that will illuminate the role of kinetic control in transcription and discuss implications for deciphering the cis-regulatory "code."
Collapse
Affiliation(s)
- Clarissa Scholes
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Álvaro Sánchez
- The Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142, USA.
| |
Collapse
|
166
|
Abstract
Recent years have seen a burst in the number of studies investigating tRNA biology. With the transition from a gene-centred to a genome-centred perspective, tRNAs and other RNA polymerase III transcripts surfaced as active regulators of normal cell physiology and disease. Novel strategies removing some of the hurdles that prevent quantitative tRNA profiling revealed that the differential exploitation of the tRNA pool critically affects the ability of the cell to balance protein homeostasis during normal and stress conditions. Furthermore, growing evidence indicates that the adaptation of tRNA synthesis to cellular dynamics can influence translation and mRNA stability to drive carcinogenesis and other pathological disorders. This review explores the contribution given by genomics, transcriptomics and epitranscriptomics to the discovery of emerging tRNA functions, and gives insights into some of the technical challenges that still limit our understanding of the RNA polymerase III transcriptional machinery.
Collapse
Affiliation(s)
- Andrea Orioli
- Center for Integrative Genomics, Université de Lausanne, Lausanne, VD 1015, Switzerland
| |
Collapse
|
167
|
Percharde M, Bulut-Karslioglu A, Ramalho-Santos M. Hypertranscription in Development, Stem Cells, and Regeneration. Dev Cell 2016; 40:9-21. [PMID: 27989554 DOI: 10.1016/j.devcel.2016.11.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/23/2016] [Accepted: 11/16/2016] [Indexed: 11/29/2022]
Abstract
Cells can globally upregulate their transcriptome during specific transitions, a phenomenon called hypertranscription. Evidence for hypertranscription dates back over 70 years but has gone largely ignored in the genomics era until recently. We discuss data supporting the notion that hypertranscription is a unifying theme in embryonic development, stem cell biology, regeneration, and cell competition. We review the history, methods for analysis, underlying mechanisms, and biological significance of hypertranscription.
Collapse
Affiliation(s)
- Michelle Percharde
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Aydan Bulut-Karslioglu
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Miguel Ramalho-Santos
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
168
|
C-terminal domain (CTD) phosphatase links Rho GTPase signaling to Pol II CTD phosphorylation in Arabidopsis and yeast. Proc Natl Acad Sci U S A 2016; 113:E8197-E8206. [PMID: 27911772 DOI: 10.1073/pnas.1605871113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rho GTPases, including the Rho, Cdc42, Rac, and ROP subfamilies, act as pivotal signaling switches in various growth and developmental processes. Compared with the well-defined role of cytoskeletal organization in Rho signaling, much less is known regarding transcriptional regulation. In a mutant screen for phenotypic enhancers of transgenic Arabidopsis plants expressing a constitutively active form of ROP2 (designated CA1-1), we identified RNA polymerase II (Pol II) C-terminal domain (CTD) phosphatase-like 1 (CPL1) as a transcriptional regulator of ROP2 signaling. We show that ROP2 activation inhibits CPL1 activity by promoting its degradation, leading to an increase in CTD Ser5 and Ser2 phosphorylation. We also observed similar modulation of CTD phosphorylation by yeast Cdc42 GTPase and enhanced degradation of the yeast CTD phosphatase Fcp1 by activated ROP2 signaling. Taken together, our results suggest that modulation of the Pol II CTD code by Rho GTPase signaling represents an evolutionarily conserved mechanism in both unicellular and multicellular eukaryotes.
Collapse
|
169
|
DeLaney E, Luse DS. Gdown1 Associates Efficiently with RNA Polymerase II after Promoter Clearance and Displaces TFIIF during Transcript Elongation. PLoS One 2016; 11:e0163649. [PMID: 27716820 PMCID: PMC5055313 DOI: 10.1371/journal.pone.0163649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/12/2016] [Indexed: 11/18/2022] Open
Abstract
Pausing during the earliest stage of transcript elongation by RNA polymerase II (Pol II) is a nearly universal control point in metazoan gene expression. The substoichiometric Pol II subunit Gdown1 facilitates promoter proximal pausing in vitro in extract-based transcription reactions, out-competes the initiation/elongation factor TFIIF for binding to free Pol II and co-localizes with paused Pol II in vivo. However, we have shown that Gdown1 cannot functionally associate with the Pol II preinitiation complex (PIC), which contains TFIIF. In the present study, we determined at what point after initiation Gdown1 can associate with Pol II and how rapidly this competition with TFIIF occurs. We show that, as with the PIC, Gdown1 cannot functionally load into open complexes or complexes engaged in abortive synthesis of very short RNAs. Gdown1 can load into early elongation complexes (EECs) with 5–9 nt RNAs, but efficient association with EECs does not take place until the point at which the upstream segment of the long initial transcription bubble reanneals. Tests of EECs assembled on a series of promoter variants confirm that this bubble collapse transition, and not transcript length, modulates Gdown1 functional affinity. Gdown1 displaces TFIIF effectively from all complexes downstream of the collapse transition, but this displacement is surprisingly slow: complete loss of TFIIF stimulation of elongation requires 5 min of incubation with Gdown1. The relatively slow functional loading of Gdown1 in the presence of TFIIF suggests that Gdown1 works in promoter-proximal pausing by locking in the paused state after elongation is already antagonized by other factors, including DSIF, NELF and possibly the first downstream nucleosome.
Collapse
Affiliation(s)
- Elizabeth DeLaney
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
| | - Donal S. Luse
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
170
|
Lee C, Sorensen EB, Lynch TR, Kimble J. C. elegans GLP-1/Notch activates transcription in a probability gradient across the germline stem cell pool. eLife 2016; 5:e18370. [PMID: 27705743 PMCID: PMC5094854 DOI: 10.7554/elife.18370] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 10/04/2016] [Indexed: 12/26/2022] Open
Abstract
C. elegans Notch signaling maintains a pool of germline stem cells within their single-celled mesenchymal niche. Here we investigate the Notch transcriptional response in germline stem cells using single-molecule fluorescence in situ hybridization coupled with automated, high-throughput quantitation. This approach allows us to distinguish Notch-dependent nascent transcripts in the nucleus from mature mRNAs in the cytoplasm. We find that Notch-dependent active transcription sites occur in a probabilistic fashion and, unexpectedly, do so in a steep gradient across the stem cell pool. Yet these graded nuclear sites create a nearly uniform field of mRNAs that extends beyond the region of transcriptional activation. Therefore, active transcription sites provide a precise view of where the Notch-dependent transcriptional complex is productively engaged. Our findings offer a new window into the Notch transcriptional response and demonstrate the importance of assaying nascent transcripts at active transcription sites as a readout for canonical signaling.
Collapse
Affiliation(s)
- ChangHwan Lee
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Erika B Sorensen
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Tina R Lynch
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| | - Judith Kimble
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, United States
- Department of Biochemistry, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
171
|
Yang Q, Liu X, Zhou T, Cook J, Nguyen K, Bai X. RNA polymerase II pausing modulates hematopoietic stem cell emergence in zebrafish. Blood 2016; 128:1701-10. [PMID: 27520065 PMCID: PMC5043126 DOI: 10.1182/blood-2016-02-697847] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 08/01/2016] [Indexed: 12/16/2022] Open
Abstract
The promoter-proximal pausing of RNA polymerase II (Pol II) plays a critical role in regulating metazoan gene transcription. Despite the prevalence of Pol II pausing across the metazoan genomes, little is known about the in vivo effect of Pol II pausing on vertebrate development. We use the emergence of hematopoietic stem cells (HSCs) in zebrafish embryos as a model to investigate the role of Pol II pausing in vertebrate organogenesis. Disrupting Pol II pausing machinery causes a severe reduction of HSC specification, a defect that can be effectively rescued by inhibiting Pol II elongation. In pausing-deficient embryos, the transforming growth factor β (TGFβ) signaling is elevated due to enhanced transcription elongation of key pathway genes, leading to HSC inhibition; in contrast, the interferon-γ (IFN-γ) signaling and its downstream effector Jak2/Stat3, which are required for HSC formation, are markedly attenuated owing to reduced chromatin accessibility on IFN-γ receptor genes. These findings reveal a novel transcription mechanism instructing HSC fate by pausing-mediated differential regulation of key signaling pathways.
Collapse
Affiliation(s)
- Qiwen Yang
- Laboratory of Molecular Genetics of Blood Development, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xiuli Liu
- Laboratory of Molecular Genetics of Blood Development, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ting Zhou
- Laboratory of Molecular Genetics of Blood Development, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jennifer Cook
- Laboratory of Molecular Genetics of Blood Development, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Kim Nguyen
- Laboratory of Molecular Genetics of Blood Development, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Xiaoying Bai
- Laboratory of Molecular Genetics of Blood Development, Cecil H. and Ida Green Center for Reproductive Biology Sciences and Division of Basic Reproductive Biology Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
172
|
Merkle R, Steiert B, Salopiata F, Depner S, Raue A, Iwamoto N, Schelker M, Hass H, Wäsch M, Böhm ME, Mücke O, Lipka DB, Plass C, Lehmann WD, Kreutz C, Timmer J, Schilling M, Klingmüller U. Identification of Cell Type-Specific Differences in Erythropoietin Receptor Signaling in Primary Erythroid and Lung Cancer Cells. PLoS Comput Biol 2016; 12:e1005049. [PMID: 27494133 PMCID: PMC4975441 DOI: 10.1371/journal.pcbi.1005049] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/05/2016] [Indexed: 01/23/2023] Open
Abstract
Lung cancer, with its most prevalent form non-small-cell lung carcinoma (NSCLC), is one of the leading causes of cancer-related deaths worldwide, and is commonly treated with chemotherapeutic drugs such as cisplatin. Lung cancer patients frequently suffer from chemotherapy-induced anemia, which can be treated with erythropoietin (EPO). However, studies have indicated that EPO not only promotes erythropoiesis in hematopoietic cells, but may also enhance survival of NSCLC cells. Here, we verified that the NSCLC cell line H838 expresses functional erythropoietin receptors (EPOR) and that treatment with EPO reduces cisplatin-induced apoptosis. To pinpoint differences in EPO-induced survival signaling in erythroid progenitor cells (CFU-E, colony forming unit-erythroid) and H838 cells, we combined mathematical modeling with a method for feature selection, the L1 regularization. Utilizing an example model and simulated data, we demonstrated that this approach enables the accurate identification and quantification of cell type-specific parameters. We applied our strategy to quantitative time-resolved data of EPO-induced JAK/STAT signaling generated by quantitative immunoblotting, mass spectrometry and quantitative real-time PCR (qRT-PCR) in CFU-E and H838 cells as well as H838 cells overexpressing human EPOR (H838-HA-hEPOR). The established parsimonious mathematical model was able to simultaneously describe the data sets of CFU-E, H838 and H838-HA-hEPOR cells. Seven cell type-specific parameters were identified that included for example parameters for nuclear translocation of STAT5 and target gene induction. Cell type-specific differences in target gene induction were experimentally validated by qRT-PCR experiments. The systematic identification of pathway differences and sensitivities of EPOR signaling in CFU-E and H838 cells revealed potential targets for intervention to selectively inhibit EPO-induced signaling in the tumor cells but leave the responses in erythroid progenitor cells unaffected. Thus, the proposed modeling strategy can be employed as a general procedure to identify cell type-specific parameters and to recommend treatment strategies for the selective targeting of specific cell types. A major challenge in the development of therapeutic interventions is the selective inhibition of a signal transduction pathway in one cell type such as a cancer cell leaving the other cell type such as a healthy cell as unaffected as possible. Here, we propose a new approach that combines mathematical modeling based on quantitative experimental data with statistical methods. We demonstrate based on simulated data that our approach can determine which parameters are the same and which parameters differ in two exemplary cell types. We compare a lung cancer cell line to the precursor cells of red blood cells. We show that the same signal transduction network induced by erythropoietin (EPO), a hormone that is frequently employed to treat anemia in cancer patients, regulates survival of both cell types. Based on our experimental data in combination with our computational approach, we identify seven cell type-specific differences in this signaling pathway. Our strategy allows predicting therapeutic targets that could be inhibited to interfere with survival of lung cancer cells while leaving production of red blood cells unaffected.
Collapse
Affiliation(s)
- Ruth Merkle
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Bernhard Steiert
- Institute of Physics, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Florian Salopiata
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Sofia Depner
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Andreas Raue
- Institute of Physics, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Nao Iwamoto
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Max Schelker
- Institute of Physics, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Helge Hass
- Institute of Physics, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Marvin Wäsch
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Martin E. Böhm
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Oliver Mücke
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Daniel B. Lipka
- Regulation of Cellular Differentiation Group, Division Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Christoph Plass
- Division Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Wolf D. Lehmann
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
| | - Clemens Kreutz
- Institute of Physics, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
| | - Jens Timmer
- Institute of Physics, University of Freiburg, Germany & BIOSS Centre for Biological Signalling Studies, University of Freiburg, Germany
- * E-mail: (JT); (MS); (UK)
| | - Marcel Schilling
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- * E-mail: (JT); (MS); (UK)
| | - Ursula Klingmüller
- Division Systems Biology of Signal Transduction, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- Translational Lung Research Center (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
- * E-mail: (JT); (MS); (UK)
| |
Collapse
|
173
|
Duarte FM, Fuda NJ, Mahat DB, Core LJ, Guertin MJ, Lis JT. Transcription factors GAF and HSF act at distinct regulatory steps to modulate stress-induced gene activation. Genes Dev 2016; 30:1731-46. [PMID: 27492368 PMCID: PMC5002978 DOI: 10.1101/gad.284430.116] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/11/2016] [Indexed: 12/24/2022]
Abstract
The coordinated regulation of gene expression at the transcriptional level is fundamental to development and homeostasis. Inducible systems are invaluable when studying transcription because the regulatory process can be triggered instantaneously, allowing the tracking of ordered mechanistic events. Here, we use precision run-on sequencing (PRO-seq) to examine the genome-wide heat shock (HS) response in Drosophila and the function of two key transcription factors on the immediate transcription activation or repression of all genes regulated by HS. We identify the primary HS response genes and the rate-limiting steps in the transcription cycle that GAGA-associated factor (GAF) and HS factor (HSF) regulate. We demonstrate that GAF acts upstream of promoter-proximally paused RNA polymerase II (Pol II) formation (likely at the step of chromatin opening) and that GAF-facilitated Pol II pausing is critical for HS activation. In contrast, HSF is dispensable for establishing or maintaining Pol II pausing but is critical for the release of paused Pol II into the gene body at a subset of highly activated genes. Additionally, HSF has no detectable role in the rapid HS repression of thousands of genes.
Collapse
Affiliation(s)
- Fabiana M Duarte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14835, USA
| | - Nicholas J Fuda
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14835, USA
| | - Dig B Mahat
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14835, USA
| | - Leighton J Core
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14835, USA
| | - Michael J Guertin
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14835, USA
| |
Collapse
|
174
|
Shan J, Zhang F, Sharkey J, Tang TA, Örd T, Kilberg MS. The C/ebp-Atf response element (CARE) location reveals two distinct Atf4-dependent, elongation-mediated mechanisms for transcriptional induction of aminoacyl-tRNA synthetase genes in response to amino acid limitation. Nucleic Acids Res 2016; 44:9719-9732. [PMID: 27471030 PMCID: PMC5175342 DOI: 10.1093/nar/gkw667] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/19/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022] Open
Abstract
The response to amino acid (AA) limitation of the entire aminoacyl-tRNA synthetase (ARS) gene family revealed that 16/20 of the genes encoding cytoplasmic-localized enzymes are transcriptionally induced by activating transcription factor 4 (Atf4) via C/ebp-Atf-Response-Element (CARE) enhancers. In contrast, only 4/19 of the genes encoding mitochondrial-localized ARSs were weakly induced. Most of the activated genes have a functional CARE near the transcription start site (TSS), but for others the CARE is downstream. Regardless of the location of CARE enhancer, for all ARS genes there was constitutive association of RNA polymerase II (Pol II) and the general transcription machinery near the TSS. However, for those genes with a downstream CARE, Atf4, C/ebp-homology protein (Chop), Pol II and TATA-binding protein exhibited enhanced recruitment to the CARE during AA limitation. Increased Atf4 binding regulated the association of elongation factors at both the promoter and the enhancer regions, and inhibition of cyclin-dependent kinase 9 (CDK9), that regulates these elongation factors, blocked induction of the AA-responsive ARS genes. Protein pull-down assays indicated that Atf4 directly interacts with CDK9 and its associated protein cyclin T1. The results demonstrate that AA availability modulates the ARS gene family through modulation of transcription elongation.
Collapse
Affiliation(s)
- Jixiu Shan
- Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Fan Zhang
- Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Jason Sharkey
- Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Tiffany A Tang
- Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Tönis Örd
- Estonian Biocentre, Riia 23, Tartu, 51010, Estonia
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
175
|
A single-molecule view of transcription reveals convoys of RNA polymerases and multi-scale bursting. Nat Commun 2016; 7:12248. [PMID: 27461529 PMCID: PMC4974459 DOI: 10.1038/ncomms12248] [Citation(s) in RCA: 202] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 06/15/2016] [Indexed: 12/15/2022] Open
Abstract
Live-cell imaging has revealed unexpected features of gene expression. Here using improved single-molecule RNA microscopy, we show that synthesis of HIV-1 RNA is achieved by groups of closely spaced polymerases, termed convoys, as opposed to single isolated enzymes. Convoys arise by a Mediator-dependent reinitiation mechanism, which generates a transient but rapid succession of polymerases initiating and escaping the promoter. During elongation, polymerases are spaced by few hundred nucleotides, and physical modelling suggests that DNA torsional stress may maintain polymerase spacing. We additionally observe that the HIV-1 promoter displays stochastic fluctuations on two time scales, which we refer to as multi-scale bursting. Each time scale is regulated independently: Mediator controls minute-scale fluctuation (convoys), while TBP-TATA-box interaction controls sub-hour fluctuations (long permissive/non-permissive periods). A cellular promoter also produces polymerase convoys and displays multi-scale bursting. We propose that slow, TBP-dependent fluctuations are important for phenotypic variability of single cells. HIV-1 viral gene expression stochastically switches between active and inactive states. Here, using improved single molecule RNA microscopy, the authors show that HIV-1 RNA stochastic transcription is achieved by groups of closely spaced polymerases, and is regulated by Mediator and TBP at different time scales.
Collapse
|
176
|
Palangat M, Larson DR. Single-gene dual-color reporter cell line to analyze RNA synthesis in vivo. Methods 2016; 103:77-85. [PMID: 27068658 PMCID: PMC7781226 DOI: 10.1016/j.ymeth.2016.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/07/2016] [Indexed: 10/22/2022] Open
Abstract
RNA synthesis occurs through the multi-step process of transcription which consists of initiation, elongation, termination, and cleavage of the nascent RNA. In recent years, post-initiation events have attracted considerable attention as regulatory steps in gene expression. In particular, changes in elongation rate have been proposed to alter RNA fate either through changes in RNA secondary structure or recruitment of trans-acting factors, but systematic approaches for perturbing and measuring elongation rate are currently lacking. Here, we describe a system for precisely measuring elongation dynamics for single nascent transcripts at a single gene locus in human cell lines. The system is based on observing the production of fluorescently labeled RNA stem loops which flank a region of interest. The region of interest can be altered using flp recombinases, thus allowing one to study the effects of cis-acting sequences on transcription rate. The dual-color RNAs which are made during this process are exported and translated, thus enabling visualization of each step in gene expression.
Collapse
Affiliation(s)
- Murali Palangat
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
177
|
Kirkconnell KS, Paulsen MT, Magnuson B, Bedi K, Ljungman M. Capturing the dynamic nascent transcriptome during acute cellular responses: The serum response. Biol Open 2016; 5:837-47. [PMID: 27230646 PMCID: PMC4920201 DOI: 10.1242/bio.019323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dynamic regulation of gene expression via signal transduction pathways is of fundamental importance during many biological processes such as cell state transitioning, cell cycle progression and stress responses. In this study we used serum stimulation as a cell response paradigm to apply the nascent RNA Bru-seq technique in order to capture early dynamic changes in the nascent transcriptome. Our data provides an unprecedented view of the dynamics of genome-wide transcription during the first two hours of serum stimulation in human fibroblasts. While some genes showed sustained induction or repression, other genes showed transient or delayed responses. Surprisingly, the dynamic patterns of induction and suppression of response genes showed a high degree of similarity, suggesting that these opposite outcomes are triggered by a common set of signals. As expected, early response genes such as those encoding components of the AP-1 transcription factor and those involved in the circadian clock were immediately but transiently induced. Surprisingly, transcription of important DNA damage response genes and histone genes were rapidly repressed. We also show that RNA polymerase II accelerates as it transcribes large genes and this was independent of whether the gene was induced or not. These results provide a unique genome-wide depiction of dynamic patterns of transcription of serum response genes and demonstrate the utility of Bru-seq to comprehensively capture rapid and dynamic changes of the nascent transcriptome.
Collapse
Affiliation(s)
- Killeen S Kirkconnell
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, MI 48109, USA Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michelle T Paulsen
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian Magnuson
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, MI 48109, USA Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karan Bedi
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Comprehensive Cancer Center, and Translational Oncology Program, University of Michigan, Ann Arbor, MI 48109, USA Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
178
|
Criscione SW, Theodosakis N, Micevic G, Cornish TC, Burns KH, Neretti N, Rodić N. Genome-wide characterization of human L1 antisense promoter-driven transcripts. BMC Genomics 2016; 17:463. [PMID: 27301971 PMCID: PMC4908685 DOI: 10.1186/s12864-016-2800-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 05/26/2016] [Indexed: 11/23/2022] Open
Abstract
Background Long INterspersed Element-1 (LINE-1 or L1) is the only autonomously active, transposable element in the human genome. L1 sequences comprise approximately 17 % of the human genome, but only the evolutionarily recent, human-specific subfamily is retrotransposition competent. The L1 promoter has a bidirectional orientation containing a sense promoter that drives the transcription of two proteins required for retrotransposition and an antisense promoter. The L1 antisense promoter can drive transcription of chimeric transcripts: 5’ L1 antisense sequences spliced to the exons of neighboring genes. Results The impact of L1 antisense promoter activity on cellular transcriptomes is poorly understood. To investigate this, we analyzed GenBank ESTs for messenger RNAs that initiate in the L1 antisense promoter. We identified 988 putative L1 antisense chimeric transcripts, 911 of which have not been previously reported. These appear to be alternative genic transcripts, sense-oriented with respect to gene and initiating near, but typically downstream of, the gene transcriptional start site. In multiple cell lines, L1 antisense promoters display enrichment for YY1 transcription factor and histone modifications associated with active promoters. Global run-on sequencing data support the activity of the L1 antisense promoter. We independently detected 124 L1 antisense chimeric transcripts using long read Pacific Biosciences RNA-seq data. Furthermore, we validated four chimeric transcripts by quantitative RT-PCR and Sanger sequencing and demonstrated that they are readily detectable in many normal human tissues. Conclusions We present a comprehensive characterization of human L1 antisense promoter-driven transcripts and provide substantial evidence that they are transcribed in a variety of human cell-types. Our findings reveal a new wide-reaching aspect of L1 biology by identifying antisense transcripts affecting as many as 4 % of all human genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2800-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Steven W Criscione
- Department of Molecular Biology, Cell Biology, and Biochemistry, Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA
| | - Nicholas Theodosakis
- Department of Pathology, Yale University, New Haven, CT, 06510, USA.,Department of Dermatology, Division of Dermatopathology, Yale University, New Haven, CT, 06510, USA
| | - Goran Micevic
- Department of Pathology, Yale University, New Haven, CT, 06510, USA.,Department of Dermatology, Division of Dermatopathology, Yale University, New Haven, CT, 06510, USA
| | - Toby C Cornish
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathleen H Burns
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,High Throughput (HiT) Biology Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nicola Neretti
- Department of Molecular Biology, Cell Biology, and Biochemistry, Center for Computational Molecular Biology, Brown University, Providence, RI, 02912, USA.
| | - Nemanja Rodić
- Department of Pathology, Yale University, New Haven, CT, 06510, USA. .,Department of Dermatology, Division of Dermatopathology, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
179
|
Day DS, Zhang B, Stevens SM, Ferrari F, Larschan EN, Park PJ, Pu WT. Comprehensive analysis of promoter-proximal RNA polymerase II pausing across mammalian cell types. Genome Biol 2016; 17:120. [PMID: 27259512 PMCID: PMC4893286 DOI: 10.1186/s13059-016-0984-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/12/2016] [Indexed: 01/02/2023] Open
Abstract
Background For many genes, RNA polymerase II stably pauses before transitioning to productive elongation. Although polymerase II pausing has been shown to be a mechanism for regulating transcriptional activation, the extent to which it is involved in control of mammalian gene expression and its relationship to chromatin structure remain poorly understood. Results Here, we analyze 85 RNA polymerase II chromatin immunoprecipitation (ChIP)-sequencing experiments from 35 different murine and human samples, as well as related genome-wide datasets, to gain new insights into the relationship between polymerase II pausing and gene regulation. Across cell and tissue types, paused genes (pausing index > 2) comprise approximately 60 % of expressed genes and are repeatedly associated with specific biological functions. Paused genes also have lower cell-to-cell expression variability. Increased pausing has a non-linear effect on gene expression levels, with moderately paused genes being expressed more highly than other paused genes. The highest gene expression levels are often achieved through a novel pause-release mechanism driven by high polymerase II initiation. In three datasets examining the impact of extracellular signals, genes responsive to stimulus have slightly lower pausing index on average than non-responsive genes, and rapid gene activation is linked to conditional pause-release. Both chromatin structure and local sequence composition near the transcription start site influence pausing, with divergent features between mammals and Drosophila. Most notably, in mammals pausing is positively correlated with histone H2A.Z occupancy at promoters. Conclusions Our results provide new insights into the contribution of RNA polymerase II pausing in mammalian gene regulation and chromatin structure. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0984-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daniel S Day
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.,Harvard/MIT Division of Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - Bing Zhang
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA. .,Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Sean M Stevens
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Francesco Ferrari
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, 02115, USA.
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA, 02115, USA. .,Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
180
|
Gibson BA, Zhang Y, Jiang H, Hussey KM, Shrimp JH, Lin H, Schwede F, Yu Y, Kraus WL. Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation. Science 2016; 353:45-50. [PMID: 27256882 DOI: 10.1126/science.aaf7865] [Citation(s) in RCA: 290] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/19/2016] [Indexed: 12/11/2022]
Abstract
Poly[adenosine diphosphate (ADP)-ribose] polymerases (PARPs) are a family of enzymes that modulate diverse biological processes through covalent transfer of ADP-ribose from the oxidized form of nicotinamide adenine dinucleotide (NAD(+)) onto substrate proteins. Here we report a robust NAD(+) analog-sensitive approach for PARPs, which allows PARP-specific ADP-ribosylation of substrates that is suitable for subsequent copper-catalyzed azide-alkyne cycloaddition reactions. Using this approach, we mapped hundreds of sites of ADP-ribosylation for PARPs 1, 2, and 3 across the proteome, as well as thousands of PARP-1-mediated ADP-ribosylation sites across the genome. We found that PARP-1 ADP-ribosylates and inhibits negative elongation factor (NELF), a protein complex that regulates promoter-proximal pausing by RNA polymerase II (Pol II). Depletion or inhibition of PARP-1 or mutation of the ADP-ribosylation sites on NELF-E promotes Pol II pausing, providing a clear functional link between PARP-1, ADP-ribosylation, and NELF. This analog-sensitive approach should be broadly applicable across the PARP family and has the potential to illuminate the ADP-ribosylated proteome and the molecular mechanisms used by individual PARPs to mediate their responses to cellular signals.
Collapse
Affiliation(s)
- Bryan A Gibson
- The Laboratory of Signaling and Gene Expression, Cecil H. and Ida Green Center for Reproductive Biology Sciences and The Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yajie Zhang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Hong Jiang
- Howard Hughes Medical Institute and Department of Chemistry, Cornell University, Ithaca, NY 14850, USA
| | | | - Jonathan H Shrimp
- Howard Hughes Medical Institute and Department of Chemistry, Cornell University, Ithaca, NY 14850, USA
| | - Hening Lin
- Howard Hughes Medical Institute and Department of Chemistry, Cornell University, Ithaca, NY 14850, USA
| | - Frank Schwede
- Biolog Life Science Institute, D-28199 Bremen, Germany
| | - Yonghao Yu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Lee Kraus
- The Laboratory of Signaling and Gene Expression, Cecil H. and Ida Green Center for Reproductive Biology Sciences and The Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
181
|
Booth GT, Wang IX, Cheung VG, Lis JT. Divergence of a conserved elongation factor and transcription regulation in budding and fission yeast. Genome Res 2016; 26:799-811. [PMID: 27197211 PMCID: PMC4889974 DOI: 10.1101/gr.204578.116] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/19/2016] [Indexed: 12/29/2022]
Abstract
Complex regulation of gene expression in mammals has evolved from simpler eukaryotic systems, yet the mechanistic features of this evolution remain elusive. Here, we compared the transcriptional landscapes of the distantly related budding and fission yeast. We adapted the Precision Run-On sequencing (PRO-seq) approach to map the positions of RNA polymerase active sites genome-wide in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Additionally, we mapped preferred sites of transcription initiation in each organism using PRO-cap. Unexpectedly, we identify a pause in early elongation, specific to S. pombe, that requires the conserved elongation factor subunit Spt4 and resembles promoter-proximal pausing in metazoans. PRO-seq profiles in strains lacking Spt4 reveal globally elevated levels of transcribing RNA Polymerase II (Pol II) within genes in both species. Messenger RNA abundance, however, does not reflect the increases in Pol II density, indicating a global reduction in elongation rate. Together, our results provide the first base-pair resolution map of transcription elongation in S. pombe and identify divergent roles for Spt4 in controlling elongation in budding and fission yeast.
Collapse
Affiliation(s)
- Gregory T Booth
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| | - Isabel X Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Vivian G Cheung
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853-2703, USA
| |
Collapse
|
182
|
Jimeno-González S, Reyes JC. Chromatin structure and pre-mRNA processing work together. Transcription 2016; 7:63-8. [PMID: 27028548 PMCID: PMC4984687 DOI: 10.1080/21541264.2016.1168507] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 03/14/2016] [Accepted: 03/14/2016] [Indexed: 10/22/2022] Open
Abstract
Chromatin is the natural context for transcription elongation. However, the elongating RNA polymerase II (RNAPII) is forced to pause by the positioned nucleosomes present in gene bodies. Here, we briefly discuss the current results suggesting that those pauses could serve as a mechanism to coordinate transcription elongation with pre-mRNA processing. Further, histone post-translational modifications have been found to regulate the recruitment of factors involved in pre-mRNA processing. This view highlights the important regulatory role of the chromatin context in the whole process of the mature mRNA synthesis.
Collapse
Affiliation(s)
- Silvia Jimeno-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - José C. Reyes
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| |
Collapse
|
183
|
McNamara RP, Bacon CW, D'Orso I. Transcription elongation control by the 7SK snRNP complex: Releasing the pause. Cell Cycle 2016; 15:2115-2123. [PMID: 27152730 DOI: 10.1080/15384101.2016.1181241] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ability for the eukaryotic cell to transcriptionally respond to various stimuli is critical for the overall homeostasis of the cell, and in turn, the organism. The human RNA polymerase II complex (Pol II), which is responsible for the transcription of protein-encoding genes and non-coding RNAs, is paused at promoter-proximal regions to ensure their rapid activation. In response to stimulation, Pol II pause release is facilitated by the action of positive transcription elongation factors such as the P-TEFb kinase. However, the majority of P-TEFb is held in a catalytically inactivate state, assembled into the 7SK small nuclear ribonucleoprotein (snRNP) complex, and must be dislodged to become catalytically active. In this review, we discuss mechanisms of 7SK snRNP recruitment to promoter-proximal regions and P-TEFb disassembly from the inhibitory snRNP to regulate 'on site' kinase activation and Pol II pause release.
Collapse
Affiliation(s)
- Ryan P McNamara
- a Department of Microbiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Curtis W Bacon
- a Department of Microbiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| | - Iván D'Orso
- a Department of Microbiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
184
|
Abstract
RNA polymerase II (Pol II) pausing at promoter-proximal regions is a highly regulated step in the transcription cycle. Pause release is facilitated by the P-TEFb kinase, which phosphorylates Pol II and negative elongation factors. Recent studies suggest that P-TEFb (as part of the inhibitory 7SK snRNP) is recruited to promoter-proximal regions through interaction with KAP1/TRIM28/TIF1β to facilitate 'on-site' kinase activation and transcription elongation. Here, I discuss features of this model and future challenges to further hone our understanding of transcriptional regulation including Pol II pausing and pause release.
Collapse
Affiliation(s)
- Iván D'Orso
- a Department of Microbiology , The University of Texas Southwestern Medical Center , Dallas , TX , USA
| |
Collapse
|
185
|
Abstract
The transcription cycle can be roughly divided into three stages: initiation, elongation, and termination. Understanding the molecular events that regulate all these stages requires a dynamic view of the underlying processes. The development of techniques to visualize and quantify transcription in single living cells has been essential in revealing the transcription kinetics. They have revealed that (a) transcription is heterogeneous between cells and (b) transcription can be discontinuous within a cell. In this review, we discuss the progress in our quantitative understanding of transcription dynamics in living cells, focusing on all parts of the transcription cycle. We present the techniques allowing for single-cell transcription measurements, review evidence from different organisms, and discuss how these experiments have broadened our mechanistic understanding of transcription regulation.
Collapse
Affiliation(s)
- Tineke L Lenstra
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892;
| | - Joseph Rodriguez
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892;
| | - Huimin Chen
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892;
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892;
| |
Collapse
|
186
|
Saldi T, Cortazar MA, Sheridan RM, Bentley DL. Coupling of RNA Polymerase II Transcription Elongation with Pre-mRNA Splicing. J Mol Biol 2016; 428:2623-2635. [PMID: 27107644 DOI: 10.1016/j.jmb.2016.04.017] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/27/2016] [Accepted: 04/12/2016] [Indexed: 01/07/2023]
Abstract
Pre-mRNA maturation frequently occurs at the same time and place as transcription by RNA polymerase II. The co-transcriptionality of mRNA processing has permitted the evolution of mechanisms that functionally couple transcription elongation with diverse events that occur on the nascent RNA. This review summarizes the current understanding of the relationship between transcriptional elongation through a chromatin template and co-transcriptional splicing including alternative splicing decisions that affect the expression of most human genes.
Collapse
Affiliation(s)
- Tassa Saldi
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA
| | - Michael A Cortazar
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA
| | - Ryan M Sheridan
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, P.O. Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
187
|
Mahat DB, Salamanca HH, Duarte FM, Danko CG, Lis JT. Mammalian Heat Shock Response and Mechanisms Underlying Its Genome-wide Transcriptional Regulation. Mol Cell 2016; 62:63-78. [PMID: 27052732 PMCID: PMC4826300 DOI: 10.1016/j.molcel.2016.02.025] [Citation(s) in RCA: 301] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/01/2016] [Accepted: 02/18/2016] [Indexed: 12/25/2022]
Abstract
The heat shock response (HSR) is critical for survival of all organisms. However, its scope, extent, and the molecular mechanism of regulation are poorly understood. Here we show that the genome-wide transcriptional response to heat shock in mammals is rapid and dynamic and results in induction of several hundred and repression of several thousand genes. Heat shock factor 1 (HSF1), the "master regulator" of the HSR, controls only a fraction of heat shock-induced genes and does so by increasing RNA polymerase II release from promoter-proximal pause. Notably, HSF2 does not compensate for the lack of HSF1. However, serum response factor appears to transiently induce cytoskeletal genes independently of HSF1. The pervasive repression of transcription is predominantly HSF1-independent and is mediated through reduction of RNA polymerase II pause release. Overall, mammalian cells orchestrate rapid, dynamic, and extensive changes in transcription upon heat shock that are largely modulated at pause release, and HSF1 plays a limited and specialized role.
Collapse
Affiliation(s)
- Dig B Mahat
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - H Hans Salamanca
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Fabiana M Duarte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA
| | - Charles G Danko
- Baker Institute for Animal Health, Cornell University, Ithaca, New York 14850, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14850, USA.
| |
Collapse
|
188
|
Genome-wide profiling of RNA polymerase transcription at nucleotide resolution in human cells with native elongating transcript sequencing. Nat Protoc 2016; 11:813-33. [PMID: 27010758 DOI: 10.1038/nprot.2016.047] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Many features of how gene transcription occurs in human cells remain unclear, mainly because of a lack of quantitative approaches to follow genome transcription with nucleotide precision in vivo. Here we present a robust genome-wide approach for studying RNA polymerase II (Pol II)-mediated transcription in human cells at single-nucleotide resolution by native elongating transcript sequencing (NET-seq). Elongating RNA polymerase and the associated nascent RNA are prepared by cell fractionation, avoiding immunoprecipitation or RNA labeling. The 3' ends of nascent RNAs are captured through barcode linker ligation and converted into a DNA sequencing library. The identity and abundance of the 3' ends are determined by high-throughput sequencing, which reveals the exact genomic locations of Pol II. Human NET-seq can be applied to the study of the full spectrum of Pol II transcriptional activities, including the production of unstable RNAs and transcriptional pausing. By using the protocol described here, a NET-seq library can be obtained from human cells in 5 d.
Collapse
|
189
|
Khan DH, Gonzalez C, Tailor N, Hamedani MK, Leygue E, Davie JR. Dynamic Histone Acetylation of H3K4me3 Nucleosome Regulates MCL1 Pre-mRNA Splicing. J Cell Physiol 2016; 231:2196-204. [PMID: 26864447 DOI: 10.1002/jcp.25337] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 01/01/2023]
Abstract
Pre-mRNA splicing is a cotranscriptional process affected by the chromatin architecture along the body of coding genes. Recruited to the pre-mRNA by splicing factors, histone deacetylases (HDACs) and K-acetyltransferases (KATs) catalyze dynamic histone acetylation along the gene. In colon carcinoma HCT 116 cells, HDAC inhibition specifically increased KAT2B occupancy as well as H3 and H4 acetylation of the H3K4 trimethylated (H3K4me3) nucleosome positioned over alternative exon 2 of the MCL1 gene, an event paralleled with the exclusion of exon 2. These results were reproduced in MDA-MB-231, but not in MCF7 breast adenocarcinoma cells. These later cells have much higher levels of demethylase KDM5B than either HCT 116 or MDA-MB-231 cells. We show that H3K4me3 steady-state levels and H3K4me3 occupancy at the end of exon 1 and over exon 2 of the MCL1 gene were lower in MCF7 than in MDA-MB-231 cells. Furthermore, in MCF7 cells, there was minimal effect of HDAC inhibition on H3/H4 acetylation and H3K4me3 levels along the MCL1 gene and no change in pre-mRNA splicing choice. These results show that, upon HDAC inhibition, the H3K4me3 mark plays a critical role in the exclusion of exon 2 from the MCL1 pre-mRNA. J. Cell. Physiol. 231: 2196-2204, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Dilshad H Khan
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Carolina Gonzalez
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nikesh Tailor
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Mohammad K Hamedani
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Etienne Leygue
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James R Davie
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
190
|
Nair SJ, Zhang X, Chiang HC, Jahid MJ, Wang Y, Garza P, April C, Salathia N, Banerjee T, Alenazi FS, Ruan J, Fan JB, Parvin JD, Jin VX, Hu Y, Li R. Genetic suppression reveals DNA repair-independent antagonism between BRCA1 and COBRA1 in mammary gland development. Nat Commun 2016; 7:10913. [PMID: 26941120 PMCID: PMC4785232 DOI: 10.1038/ncomms10913] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/29/2016] [Indexed: 12/14/2022] Open
Abstract
The breast cancer susceptibility gene BRCA1 is well known for its function in double-strand break (DSB) DNA repair. While BRCA1 is also implicated in transcriptional regulation, the physiological significance remains unclear. COBRA1 (also known as NELF-B) is a BRCA1-binding protein that regulates RNA polymerase II (RNAPII) pausing and transcription elongation. Here we interrogate functional interaction between BRCA1 and COBRA1 during mouse mammary gland development. Tissue-specific deletion of Cobra1 reduces mammary epithelial compartments and blocks ductal morphogenesis, alveologenesis and lactogenesis, demonstrating a pivotal role of COBRA1 in adult tissue development. Remarkably, these developmental deficiencies due to Cobra1 knockout are largely rescued by additional loss of full-length Brca1. Furthermore, Brca1/Cobra1 double knockout restores developmental transcription at puberty, alters luminal epithelial homoeostasis, yet remains deficient in homologous recombination-based DSB repair. Thus our genetic suppression analysis uncovers a previously unappreciated, DNA repair-independent function of BRCA1 in antagonizing COBRA1-dependent transcription programme during mammary gland development. COBRA1 is a BRCA1-binding protein and, as part of the negative elongation factor, regulates RNA polymerase II pausing and transcription elongation. Here, the authors show that tissue-specific deletion of mouse Cobra1 inhibits postnatal mammary gland development and that the mammary defects can be rescued by additional deletion of Brca1 in a DNA repair-independent manner.
Collapse
Affiliation(s)
- Sreejith J Nair
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Xiaowen Zhang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Huai-Chin Chiang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Md Jamiul Jahid
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Yao Wang
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Paula Garza
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Craig April
- Research and Development, Illumina, Inc., San Diego, California 92122, USA
| | - Neeraj Salathia
- Research and Development, Illumina, Inc., San Diego, California 92122, USA
| | - Tapahsama Banerjee
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Fahad S Alenazi
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Jianhua Ruan
- Department of Computer Science, The University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | - Jian-Bing Fan
- Research and Development, Illumina, Inc., San Diego, California 92122, USA
| | - Jeffrey D Parvin
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Victor X Jin
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Yanfen Hu
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | - Rong Li
- Department of Molecular Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| |
Collapse
|
191
|
Orioli A, Praz V, Lhôte P, Hernandez N. Human MAF1 targets and represses active RNA polymerase III genes by preventing recruitment rather than inducing long-term transcriptional arrest. Genome Res 2016; 26:624-35. [PMID: 26941251 PMCID: PMC4864463 DOI: 10.1101/gr.201400.115] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/24/2016] [Indexed: 12/04/2022]
Abstract
RNA polymerase III (Pol III) is tightly controlled in response to environmental cues, yet a genomic-scale picture of Pol III regulation and the role played by its repressor MAF1 is lacking. Here, we describe genome-wide studies in human fibroblasts that reveal a dynamic and gene-specific adaptation of Pol III recruitment to extracellular signals in an mTORC1-dependent manner. Repression of Pol III recruitment and transcription are tightly linked to MAF1, which selectively localizes at Pol III loci, even under serum-replete conditions, and increasingly targets transcribing Pol III in response to serum starvation. Combining Pol III binding profiles with EU-labeling and high-throughput sequencing of newly synthesized small RNAs, we show that Pol III occupancy closely reflects ongoing transcription. Our results exclude the long-term, unproductive arrest of Pol III on the DNA as a major regulatory mechanism and identify previously uncharacterized, differential coordination in Pol III binding and transcription under different growth conditions.
Collapse
Affiliation(s)
- Andrea Orioli
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Viviane Praz
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland; Swiss Institute of Bioinformatics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Philippe Lhôte
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| | - Nouria Hernandez
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
192
|
Differences in codon bias and GC content contribute to the balanced expression of TLR7 and TLR9. Proc Natl Acad Sci U S A 2016; 113:E1362-71. [PMID: 26903634 DOI: 10.1073/pnas.1518976113] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The innate immune system detects diverse microbial species with a limited repertoire of immune receptors that recognize nucleic acids. The cost of this immune surveillance strategy is the potential for inappropriate recognition of self-derived nucleic acids and subsequent autoimmune disease. The relative expression of two closely related receptors, Toll-like receptor (TLR) 7 and TLR9, is balanced to allow recognition of microbial nucleic acids while limiting recognition of self-derived nucleic acids. Situations that tilt this balance toward TLR7 promote inappropriate responses, including autoimmunity; therefore, tight control of expression is critical for proper homeostasis. Here we report that differences in codon bias limit TLR7 expression relative to TLR9. Codon optimization of Tlr7 increases protein levels as well as responses to ligands, but, unexpectedly, these changes only modestly affect translation. Instead, we find that much of the benefit attributed to codon optimization is actually the result of enhanced transcription. Our findings, together with other recent examples, challenge the dogma that codon optimization primarily increases translation. We propose that suboptimal codon bias, which correlates with low guanine-cytosine (GC) content, limits transcription of certain genes. This mechanism may establish low levels of proteins whose overexpression leads to particularly deleterious effects, such as TLR7.
Collapse
|
193
|
Fong N, Brannan K, Erickson B, Kim H, Cortazar MA, Sheridan RM, Nguyen T, Karp S, Bentley DL. Effects of Transcription Elongation Rate and Xrn2 Exonuclease Activity on RNA Polymerase II Termination Suggest Widespread Kinetic Competition. Mol Cell 2016; 60:256-67. [PMID: 26474067 DOI: 10.1016/j.molcel.2015.09.026] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/06/2015] [Accepted: 09/17/2015] [Indexed: 01/13/2023]
Abstract
The torpedo model of transcription termination asserts that the exonuclease Xrn2 attacks the 5'PO4-end exposed by nascent RNA cleavage and chases down the RNA polymerase. We tested this mechanism using a dominant-negative human Xrn2 mutant and found that it delayed termination genome-wide. Xrn2 nuclease inactivation caused strong termination defects downstream of most poly(A) sites and modest delays at some histone and U snRNA genes, suggesting that the torpedo mechanism is not limited to poly(A) site-dependent termination. A central untested feature of the torpedo model is that there is kinetic competition between the exonuclease and the pol II elongation complex. Using pol II rate mutants, we found that slow transcription robustly shifts termination upstream, and fast elongation extends the zone of termination further downstream. These results suggest that kinetic competition between elongating pol II and the Xrn2 exonuclease is integral to termination of transcription on most human genes.
Collapse
Affiliation(s)
- Nova Fong
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Kristopher Brannan
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Benjamin Erickson
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Hyunmin Kim
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Michael A Cortazar
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Ryan M Sheridan
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Tram Nguyen
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - Shai Karp
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA
| | - David L Bentley
- Deptartment of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, PO Box 6511, Aurora, CO 80045, USA.
| |
Collapse
|
194
|
Miano V, Ferrero G, Reineri S, Caizzi L, Annaratone L, Ricci L, Cutrupi S, Castellano I, Cordero F, De Bortoli M. Luminal long non-coding RNAs regulated by estrogen receptor alpha in a ligand-independent manner show functional roles in breast cancer. Oncotarget 2016; 7:3201-16. [PMID: 26621851 PMCID: PMC4823100 DOI: 10.18632/oncotarget.6420] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 11/16/2015] [Indexed: 01/12/2023] Open
Abstract
Estrogen Receptor alpha (ERα) activation by estrogenic hormones induces luminal breast cancer cell proliferation. However, ERα plays also important hormone-independent functions to maintain breast tumor cells epithelial phenotype. We reported previously by RNA-Seq that in MCF-7 cells in absence of hormones ERα down-regulation changes the expression of several genes linked to cellular development, representing a specific subset of estrogen-induced genes. Here, we report regulation of long non-coding RNAs from the same experimental settings. A list of 133 Apo-ERα-Regulated lncRNAs (AER-lncRNAs) was identified and extensively characterized using published data from cancer cell lines and tumor tissues, or experiments on MCF-7 cells. For several features, we ran validation using cell cultures or fresh tumor biopsies. AER-lncRNAs represent a specific subset, only marginally overlapping estrogen-induced transcripts, whose expression is largely restricted to luminal cells and which is able to perfectly classify breast tumor subtypes. The most abundant AER-lncRNA, DSCAM-AS1, is expressed in ERα+ breast carcinoma, but not in pre-neoplastic lesions, and correlates inversely with EMT markers. Down-regulation of DSCAM-AS1 recapitulated, in part, the effect of silencing ERα, i.e. growth arrest and induction of EMT markers. In conclusion, we report an ERα-dependent lncRNA set representing a novel luminal signature in breast cancer cells.
Collapse
Affiliation(s)
- Valentina Miano
- Center for Molecular Systems Biology, University of Turin, Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Giulio Ferrero
- Center for Molecular Systems Biology, University of Turin, Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Computer Science, University of Turin, Turin, Italy
| | - Stefania Reineri
- Center for Molecular Systems Biology, University of Turin, Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Bioindustry Park Silvano Fumero, Turin, Italy
| | - Livia Caizzi
- Center for Molecular Systems Biology, University of Turin, Turin, Italy
- Department of Molecular Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Laura Annaratone
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Laura Ricci
- Center for Molecular Systems Biology, University of Turin, Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Santina Cutrupi
- Center for Molecular Systems Biology, University of Turin, Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Francesca Cordero
- Center for Molecular Systems Biology, University of Turin, Turin, Italy
- Department of Computer Science, University of Turin, Turin, Italy
| | - Michele De Bortoli
- Center for Molecular Systems Biology, University of Turin, Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| |
Collapse
|
195
|
Lee K, Hsiung CCS, Huang P, Raj A, Blobel GA. Dynamic enhancer-gene body contacts during transcription elongation. Genes Dev 2016; 29:1992-7. [PMID: 26443845 PMCID: PMC4604340 DOI: 10.1101/gad.255265.114] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Enhancers govern transcription through multiple mechanisms, including the regulation of elongation by RNA polymerase II (RNAPII). We characterized the dynamics of looped enhancer contacts during synchronous transcription elongation. We found that many distal enhancers form stable contacts with their target promoters during the entire interval of elongation. Notably, we detected additional dynamic enhancer contacts throughout the gene bodies that track with elongating RNAPII and the leading edge of RNA synthesis. These results support a model in which the gene body changes its position relative to a stable enhancer-promoter complex, which has broad ramifications for enhancer function and architectural models of transcriptional elongation.
Collapse
Affiliation(s)
- Kiwon Lee
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Chris C-S Hsiung
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Peng Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Arjun Raj
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
196
|
Gudipaty SA, D’Orso I. Functional interplay between PPM1G and the transcription elongation machinery. RNA & DISEASE 2016; 3:e1215. [PMID: 27088130 PMCID: PMC4830430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Transcription elongation is a critical regulatory step in the gene expression cycle. One key regulator of the switch between transcription initiation and elongation is the P-TEFb kinase, which phosphorylates RNA polymerase II (Pol II) and several negative elongation factors to relieve the elongation block at paused promoters to facilitate productive elongation. Here, we highlight recent findings signifying the role of the PPM1G/PP2Cγ phosphatase in activating and maintaining the active transcription elongation state by regulating the availability of P-TEFb and blocking its assembly into the catalytic inactive 7SK small nuclear ribonucleoprotein (snRNP) complex.
Collapse
Affiliation(s)
| | - Iván D’Orso
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
197
|
Quantitative regulation of FLC via coordinated transcriptional initiation and elongation. Proc Natl Acad Sci U S A 2015; 113:218-23. [PMID: 26699513 DOI: 10.1073/pnas.1518369112] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The basis of quantitative regulation of gene expression is still poorly understood. In Arabidopsis thaliana, quantitative variation in expression of FLOWERING LOCUS C (FLC) influences the timing of flowering. In ambient temperatures, FLC expression is quantitatively modulated by a chromatin silencing mechanism involving alternative polyadenylation of antisense transcripts. Investigation of this mechanism unexpectedly showed that RNA polymerase II (Pol II) occupancy changes at FLC did not reflect RNA fold changes. Mathematical modeling of these transcriptional dynamics predicted a tight coordination of transcriptional initiation and elongation. This prediction was validated by detailed measurements of total and chromatin-bound FLC intronic RNA, a methodology appropriate for analyzing elongation rate changes in a range of organisms. Transcription initiation was found to vary ∼ 25-fold with elongation rate varying ∼ 8- to 12-fold. Premature sense transcript termination contributed very little to expression differences. This quantitative variation in transcription was coincident with variation in H3K36me3 and H3K4me2 over the FLC gene body. We propose different chromatin states coordinately influence transcriptional initiation and elongation rates and that this coordination is likely to be a general feature of quantitative gene regulation in a chromatin context.
Collapse
|
198
|
Day CR, Chen H, Coulon A, Meier JL, Larson DR. High-throughput single-molecule screen for small-molecule perturbation of splicing and transcription kinetics. Methods 2015; 96:59-68. [PMID: 26655523 DOI: 10.1016/j.ymeth.2015.11.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/23/2015] [Accepted: 11/27/2015] [Indexed: 12/27/2022] Open
Abstract
In eukaryotes, mRNA synthesis is catalyzed by RNA polymerase II and involves several distinct steps, including transcript initiation, elongation, cleavage, and transcript release. Splicing of RNA can occur during (co-transcriptional) or after (post-transcriptional) RNA synthesis. Thus, RNA synthesis and processing occurs through the concerted activity of dozens of enzymes, each of which is potentially susceptible to perturbation by small molecules. However, there are few, if any, high-throughput screening strategies for identifying drugs which perturb a specific step in RNA synthesis and processing. Here we have developed a high-throughput fluorescence microscopy approach in single cells to screen for inhibitors of specific enzymatic steps in RNA synthesis and processing. By utilizing the high affinity interaction between bacteriophage capsid proteins (MS2, PP7) and RNA stem loops, we are able to fluorescently label the intron and exon of a β-globin reporter gene in human cells. This approach allows one to measure the kinetics of transcription, splicing and release in both fixed and living cells using a tractable, genetically encoded assay in a stable cell line. We tested this reagent in a targeted screen of molecules that target chromatin readers and writers and identified three compounds that slow transcription elongation without changing transcription initiation.
Collapse
Affiliation(s)
- Christopher R Day
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Huimin Chen
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Antoine Coulon
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
199
|
Defective histone supply causes changes in RNA polymerase II elongation rate and cotranscriptional pre-mRNA splicing. Proc Natl Acad Sci U S A 2015; 112:14840-5. [PMID: 26578803 DOI: 10.1073/pnas.1506760112] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA polymerase II (RNAPII) transcription elongation is a highly regulated process that greatly influences mRNA levels as well as pre-mRNA splicing. Despite many studies in vitro, how chromatin modulates RNAPII elongation in vivo is still unclear. Here, we show that a decrease in the level of available canonical histones leads to more accessible chromatin with decreased levels of canonical histones and variants H2A.X and H2A.Z and increased levels of H3.3. With this altered chromatin structure, the RNAPII elongation rate increases, and the kinetics of pre-mRNA splicing is delayed with respect to RNAPII elongation. Consistent with the kinetic model of cotranscriptional splicing, the rapid RNAPII elongation induced by histone depletion promotes the skipping of variable exons in the CD44 gene. Indeed, a slowly elongating mutant of RNAPII was able to rescue this defect, indicating that the defective splicing induced by histone depletion is a direct consequence of the increased elongation rate. In addition, genome-wide analysis evidenced that histone reduction promotes widespread alterations in pre-mRNA processing, including intron retention and changes in alternative splicing. Our data demonstrate that pre-mRNA splicing may be regulated by chromatin structure through the modulation of the RNAPII elongation rate.
Collapse
|
200
|
Occupancy of RNA Polymerase II Phosphorylated on Serine 5 (RNAP S5P) and RNAP S2P on Varicella-Zoster Virus Genes 9, 51, and 66 Is Independent of Transcript Abundance and Polymerase Location within the Gene. J Virol 2015; 90:1231-43. [PMID: 26559844 DOI: 10.1128/jvi.02617-15] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 11/05/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Regulation of gene transcription in varicella-zoster virus (VZV), a ubiquitous human neurotropic alphaherpesvirus, requires coordinated binding of multiple host and virus proteins onto specific regions of the virus genome. Chromatin immunoprecipitation (ChIP) is widely used to determine the location of specific proteins along a genomic region. Since the size range of sheared virus DNA fragments governs the limit of accurate protein localization, particularly for compact herpesvirus genomes, we used a quantitative PCR (qPCR)-based assay to determine the efficiency of VZV DNA shearing before ChIP, after which the assay was used to determine the relationship between transcript abundance and the occupancy of phosphorylated RNA polymerase II (RNAP) on the gene promoter, body, and terminus of VZV genes 9, 51, and 66. The abundance of VZV gene 9, 51, and 66 transcripts in VZV-infected human fetal lung fibroblasts was determined by reverse transcription-linked quantitative PCR. Our results showed that the C-terminal domain of RNAP is hyperphosphorylated at serine 5 (S5(P)) on VZV genes 9, 51, and 66 independently of transcript abundance and the location within the virus gene at both 1 and 3 days postinfection (dpi). In contrast, phosphorylated serine 2 (S2(P))-modified RNAP was not detected at any virus gene location at 3 dpi and was detected at levels only slightly above background levels at 1 dpi. IMPORTANCE Regulation of herpesvirus gene transcription is an elaborate choreography between proteins and DNA that is revealed by chromatin immunoprecipitation (ChIP). We used a quantitative PCR-based assay to determine fragment size after DNA shearing, a critical parameter in ChIP assays, and exposed a basic difference in the mechanism of transcription between mammalian cells and VZV. We found that hyperphosphorylation at serine 5 of the C-terminal domain of RNAP along the lengths of VZV genes (the promoter, body, and transcription termination site) was independent of mRNA abundance. In contrast, little to no enrichment of serine 3 phosphorylation of RNAP was detected at these virus gene regions. This is distinct from the findings for RNAP at highly regulated host genes, where RNAP S5(P) occupancy decreased and S2(P) levels increased as the polymerase transited through the gene. Overall, these results suggest that RNAP associates with human and virus transcriptional units through different mechanisms.
Collapse
|