151
|
Cohen P, Strickson S. The role of hybrid ubiquitin chains in the MyD88 and other innate immune signalling pathways. Cell Death Differ 2017; 24:1153-1159. [PMID: 28475177 PMCID: PMC5520163 DOI: 10.1038/cdd.2017.17] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/28/2016] [Accepted: 12/02/2016] [Indexed: 12/17/2022] Open
Abstract
The adaptor protein MyD88 is required for signal transmission by toll-like receptors and receptors of the interleukin-1 family of cytokines. MyD88 signalling triggers the formation of Lys63-linked and Met1-linked ubiquitin (K63-Ub, M1-Ub) chains within minutes. The K63-Ub chains, which are formed by the E3 ubiquitin ligases TRAF6, Pellino1 and Pellino2, activate TAK1, the master kinase that switches on mitogen-activated protein (MAP) kinase cascades and initiates activation of the canonical IκB kinase (IKK) complex. The M1-Ub chains, which are formed by the linear ubiquitin chain assembly complex (LUBAC), bind to the NEMO (NF-κB essential modulator) component of the IKK complex and are required for TAK1 to activate IKKs, but not MAP kinases. An essential E3 ligase-independent role of TRAF6 is to recruit LUBAC into the MyD88 signalling complex, where it recognises preformed K63-Ub chains attached to protein components of these complexes, such as IRAK1 (IL-1 receptor-associated kinase), producing ubiquitin chains containing both types of linkage, termed K63/M1-Ub hybrids. The formation of K63/M1-Ub hybrids, which is a feature of several innate immune signalling pathways, permits the co-recruitment of proteins that interact with either K63-Ub or M1-Ub chains. Two likely roles for K63/M1-Ub hybrids are to facilitate the TAK1-dependent activation of the IKK complex and to prevent the hyperactivation of these kinases by recruiting A20 and A20-binding inhibitor of NF-κB1 (ABIN1). These proteins restrict activation of the TAK1 and IKK complexes, probably by competing with them for binding to K63/M1-Ub hybrids. The formation of K63/M1-Ub hybrids may also regulate the rate at which the ubiquitin linkages in these chains are hydrolysed. The IKK-catalysed phosphorylation of some of its substrates permits their recognition by the E3 ligase SCFβTRCP, leading to their Lys48-linked ubiquitylation and proteasomal degradation. Innate immune signalling is therefore controlled by the formation and destruction of three different types of ubiquitin linkage.
Collapse
Affiliation(s)
- Philip Cohen
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Sam Strickson
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
152
|
Lafont E, Kantari-Mimoun C, Draber P, De Miguel D, Hartwig T, Reichert M, Kupka S, Shimizu Y, Taraborrelli L, Spit M, Sprick MR, Walczak H. The linear ubiquitin chain assembly complex regulates TRAIL-induced gene activation and cell death. EMBO J 2017; 36:1147-1166. [PMID: 28258062 PMCID: PMC5412822 DOI: 10.15252/embj.201695699] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/30/2017] [Accepted: 02/13/2017] [Indexed: 01/08/2023] Open
Abstract
The linear ubiquitin chain assembly complex (LUBAC) is the only known E3 ubiquitin ligase which catalyses the generation of linear ubiquitin linkages de novo LUBAC is a crucial component of various immune receptor signalling pathways. Here, we show that LUBAC forms part of the TRAIL-R-associated complex I as well as of the cytoplasmic TRAIL-induced complex II In both of these complexes, HOIP limits caspase-8 activity and, consequently, apoptosis whilst being itself cleaved in a caspase-8-dependent manner. Yet, by limiting the formation of a RIPK1/RIPK3/MLKL-containing complex, LUBAC also restricts TRAIL-induced necroptosis. We identify RIPK1 and caspase-8 as linearly ubiquitinated targets of LUBAC following TRAIL stimulation. Contrary to its role in preventing TRAIL-induced RIPK1-independent apoptosis, HOIP presence, but not its activity, is required for preventing necroptosis. By promoting recruitment of the IKK complex to complex I, LUBAC also promotes TRAIL-induced activation of NF-κB and, consequently, the production of cytokines, downstream of FADD, caspase-8 and cIAP1/2. Hence, LUBAC controls the TRAIL signalling outcome from complex I and II, two platforms which both trigger cell death and gene activation.
Collapse
Affiliation(s)
- Elodie Lafont
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Chahrazade Kantari-Mimoun
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Peter Draber
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Diego De Miguel
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Torsten Hartwig
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Matthias Reichert
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Sebastian Kupka
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Yutaka Shimizu
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Lucia Taraborrelli
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Maureen Spit
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Martin R Sprick
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGMBH), Heidelberg, Germany
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
153
|
CYLD, A20 and OTULIN deubiquitinases in NF-κB signaling and cell death: so similar, yet so different. Cell Death Differ 2017; 24:1172-1183. [PMID: 28362430 DOI: 10.1038/cdd.2017.46] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 02/07/2023] Open
Abstract
Polyubiquitination of proteins has a pivotal role in the regulation of numerous cellular functions such as protein degradation, DNA repair and cell signaling. As deregulation of these processes can result in pathological conditions such as inflammatory diseases, neurodegeneration or cancer, tight regulation of the ubiquitin system is of tremendous importance. Ubiquitination by E3 ubiquitin ligases can be counteracted by the activity of several deubiquitinating enzymes (DUBs). CYLD, A20 and OTULIN have been implicated as key DUBs in the negative regulation of NF-κB transcription factor-mediated gene expression upon stimulation of cytokine receptors, antigen receptors and pattern recognition receptors, by removing distinct types of polyubiquitin chains from specific NF-κB signaling proteins. In addition, they control TNF-induced cell death signaling leading to apoptosis and necroptosis via similar mechanisms. In the case of A20, also catalytic-independent mechanisms of action have been demonstrated to have an important role. CYLD, A20 and OTULIN have largely overlapping substrates, suggesting at least partially redundant functions. However, mice deficient in one of the three DUBs show significant phenotypic differences, indicating also non-redundant functions. Here we discuss the activity and polyubiquitin chain-type specificity of CYLD, A20 and OTULIN, their specific role in NF-κB signaling and cell death, the molecular mechanisms that regulate their activity, their role in immune homeostasis and the association of defects in their activity with inflammation, autoimmunity and cancer.
Collapse
|
154
|
Internally tagged ubiquitin: a tool to identify linear polyubiquitin-modified proteins by mass spectrometry. Nat Methods 2017; 14:504-512. [DOI: 10.1038/nmeth.4228] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 02/13/2017] [Indexed: 12/23/2022]
|
155
|
Schlicher L, Brauns-Schubert P, Schubert F, Maurer U. SPATA2: more than a missing link. Cell Death Differ 2017; 24:1142-1147. [PMID: 28282038 DOI: 10.1038/cdd.2017.26] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/03/2017] [Accepted: 02/13/2017] [Indexed: 02/06/2023] Open
Abstract
The assembly of the TNFR1 signalling complex (TNF-RSC) depends on K63- and M1-linked ubiquitylation, promoting the recruitment of complex constituents and the stability of the complex. Ubiquitylation is a dynamic process, controlled by E3 ubiquitin ligases as well as deubiquitinases, such as CYLD and OTULIN. A novel molecule, SPATA2, which is crucial for recruiting and activating the deubiquitinase CYLD within the TNF-RSC, has now been identified by four different studies. Loss of SPATA2 was shown to result in increased TNF-, but also NOD2-mediated proinflammatory signalling. Importantly, SPATA2 is instrumental for TNF-induced cell death, and a closer look at these findings suggests that SPATA2 possibly has functions beyond promoting the activity of CYLD.
Collapse
Affiliation(s)
- Lisa Schlicher
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan Meier Strasse 17, Freiburg 79104, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Albertstrasse 19a, Freiburg 79104, Germany.,BIOSS, Centre for Biological Signaling Studies, Hebelstrasse 2, Freiburg 79104, Germany
| | - Prisca Brauns-Schubert
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan Meier Strasse 17, Freiburg 79104, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Albertstrasse 19a, Freiburg 79104, Germany.,BIOSS, Centre for Biological Signaling Studies, Hebelstrasse 2, Freiburg 79104, Germany
| | - Florian Schubert
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan Meier Strasse 17, Freiburg 79104, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Albertstrasse 19a, Freiburg 79104, Germany.,BIOSS, Centre for Biological Signaling Studies, Hebelstrasse 2, Freiburg 79104, Germany
| | - Ulrich Maurer
- Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Stefan Meier Strasse 17, Freiburg 79104, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University of Freiburg, Albertstrasse 19a, Freiburg 79104, Germany.,BIOSS, Centre for Biological Signaling Studies, Hebelstrasse 2, Freiburg 79104, Germany
| |
Collapse
|
156
|
Abstract
PURPOSE OF REVIEW The list of genes associated with systemic inflammatory diseases has been steadily growing because of the explosion of new genomic technologies. Significant advances in the past year have deepened our understanding of the molecular mechanisms linked to inflammation and elucidated insights on the efficacy of specific therapies for these and related conditions. We review the molecular pathogenesis of four recently characterized monogenic autoinflammatory diseases: haploinsufficiency of A20, otulipenia, a severe form of pyrin-associated disease, and a monogenic form of systemic juvenile idiopathic arthritis. RECENT FINDINGS The scope of autoinflammation has been broadened to include defects in deubiquitination and cellular redox homeostasis. At the clinical level, we discuss the biological rationale for treatment with cytokine inhibitors and colchicine in respective conditions and the use of interleukin-1 antagonism for diagnostic and therapeutic purposes in the management of undifferentiated autoinflammatory disorders. SUMMARY Gene discoveries coupled with studies of molecular function provide knowledge into the biology of inflammatory responses and form the basis for genomically informed therapies. Diseases of dysregulated ubiquitination constitute a novel category of human inflammatory disorders.
Collapse
|
157
|
Aksentijevich I, McDermott MF. Lessons from characterization and treatment of the autoinflammatory syndromes. Curr Opin Rheumatol 2017; 29:187-194. [PMID: 27906774 PMCID: PMC5823535 DOI: 10.1097/bor.0000000000000362] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
PURPOSE OF REVIEW The list of genes associated with systemic inflammatory diseases has been steadily growing because of the explosion of new genomic technologies. Significant advances in the past year have deepened our understanding of the molecular mechanisms linked to inflammation and elucidated insights on the efficacy of specific therapies for these and related conditions. We review the molecular pathogenesis of four recently characterized monogenic autoinflammatory diseases: haploinsufficiency of A20, otulipenia, a severe form of pyrin-associated disease, and a monogenic form of systemic juvenile idiopathic arthritis. RECENT FINDINGS The scope of autoinflammation has been broadened to include defects in deubiquitination and cellular redox homeostasis. At the clinical level, we discuss the biological rationale for treatment with cytokine inhibitors and colchicine in respective conditions and the use of interleukin-1 antagonism for diagnostic and therapeutic purposes in the management of undifferentiated autoinflammatory disorders. SUMMARY Gene discoveries coupled with studies of molecular function provide knowledge into the biology of inflammatory responses and form the basis for genomically informed therapies. Diseases of dysregulated ubiquitination constitute a novel category of human inflammatory disorders.
Collapse
Affiliation(s)
- Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, Bethesda, MD 20892
| | - Michael F. McDermott
- NIHR-Leeds Musculoskeletal Biomedical Research Unit (NIHR-LMBRU), Leeds Institute of Rheumatology and Molecular Medicine, St. James’s University Hospital, Leeds UK
| |
Collapse
|
158
|
Porcine Reproductive and Respiratory Syndrome Virus nsp1α Inhibits NF-κB Activation by Targeting the Linear Ubiquitin Chain Assembly Complex. J Virol 2017; 91:JVI.01911-16. [PMID: 27881655 DOI: 10.1128/jvi.01911-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/17/2016] [Indexed: 01/18/2023] Open
Abstract
Linear ubiquitination, a newly discovered posttranslational modification, is catalyzed by the linear ubiquitin chain assembly complex (LUBAC), which is composed of three subunits: one catalytic subunit HOIP and two accessory molecules, HOIL-1L and SHARPIN. Accumulating evidence suggests that linear ubiquitination plays a crucial role in innate immune signaling and especially in the activation of the NF-κB pathway by conjugating linear polyubiquitin chains to NF-κB essential modulator (NEMO, also called IKKγ), the regulatory subunit of the IKK complex. Porcine reproductive and respiratory syndrome virus (PRRSV), an Arterivirus that has devastated the swine industry worldwide, is an ideal model to study the host's disordered inflammatory responses after viral infection. Here, we found that LUBAC-induced NF-κB and proinflammatory cytokine expression can be inhibited in the early phase of PRRSV infection. Screening the PRRSV-encoded proteins showed that nonstructural protein 1α (nsp1α) suppresses LUBAC-mediated NF-κB activation and its CTE domain is required for the inhibition. Mechanistically, nsp1α binds to HOIP/HOIL-1L and impairs the interaction between HOIP and SHARPIN, thus reducing the LUBAC-dependent linear ubiquitination of NEMO. Moreover, PRRSV infection also blocks LUBAC complex formation and NEMO linear-ubiquitination, the important step for transducing NF-κB signaling. This unexpected finding demonstrates a previously unrecognized role of PRRSV nsp1α in modulating LUBAC signaling and explains an additional mechanism of immune modulation by PRRSV. IMPORTANCE Porcine reproductive and respiratory syndrome (PRRS) is one of the most important veterinary infectious diseases in countries with intensive swine industries. PRRS virus (PRRSV) infection usually suppresses proinflammatory cytokine expression in the early stage of infection, whereas it induces an inflammatory storm in the late stage. However, precisely how the virus is capable of doing so remains obscure. In this study, we found that by blocking the interaction of its catalytic subunit HOIP and accessory molecule SHARPIN, PRRSV can suppress NF-κB signal transduction in the early stage of infection. Our findings not only reveal a novel mechanism evolved by PRRSV to regulate inflammatory responses but also highlight the important role of linear ubiquitination modification during virus infection.
Collapse
|
159
|
He M, Zhou Z, Shah AA, Zou H, Tao J, Chen Q, Wan Y. The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. Cell Biosci 2016; 6:62. [PMID: 28031783 PMCID: PMC5168870 DOI: 10.1186/s13578-016-0127-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/05/2016] [Indexed: 02/05/2023] Open
Abstract
The addition of mono-ubiquitin or poly-ubiquitin chain to signaling proteins in response to DNA damage signal is thought to be a critical event that facilitates the recognition of DNA damage lesion site, the activation of checkpoint function, termination and checkpoint response and the recruitment of DNA repair proteins. Despite the ubiquitin modifiers, removal of ubiquitin from the functional proteins by the deubiquitinating enzymes (DUBs) plays an important role in orchestrating DNA damage response as well as DNA repair processes. Deregulated ubiquitination and deubiquitination could lead to genome instability that in turn causes tumorigenesis. Recent TCGA study has further revealed the connection between mutations in alteration of DUBs and various types of tumors. In addition, emerging drug design based on DUBs provides a new avenue for anti-cancer therapy. In this review, we will summarize the role of deubiquitination and specificity of DUBs, and highlight the recent discoveries of DUBs in the modulation of ubiquitin-mediated DNA damage response and DNA damage repair. We will furthermore discuss the DUBs involved in the tumorigenesis as well as interception of deubiquitination as a novel strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Mingjing He
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Anil A Shah
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Haojing Zou
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Jin Tao
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| |
Collapse
|
160
|
HogenEsch H, Sola M, Stearns TM, Silva KA, Kennedy VE, Sundberg JP. Angiogenesis in the skin of SHARPIN-deficient mice with chronic proliferative dermatitis. Exp Mol Pathol 2016; 101:303-307. [PMID: 27794420 DOI: 10.1016/j.yexmp.2016.05.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 01/16/2023]
Abstract
Angiogenesis is a common feature of pathological processes including wound healing, tumor formation, and chronic inflammation. Chronic inflammation can also be associated with dilation or proliferation of lymph vessels. We examined blood vessels and lymphatics and the expression of pro- and anti-angiogenic genes in the skin of SHARPIN-deficient mice which spontaneously develop a chronic proliferative dermatitis (cpdm). The number of blood vessels in the dermis of cpdm mice increased with age as the inflammation progressed. Lymphatics identified by labeling for LYVE1 and podoplanin were moderately dilated, but they were not increased in number. The expression of proangiogenic Vegfa, Flt1 and anti-angiogenic Sema3a mRNA was increased. VEGFA was primarily localized in keratinocytes of cpdm skin. There was also increased expression of Ece1 and Pdpn mRNA. Podoplanin was restricted to lymphatic endothelial cells in normal skin, but fibroblasts in cpdm skin also reacted with anti-podoplanin antibodies indicating that they were activated. The expression of other angiogenic and lymphangiogenic factors was not altered or decreased. These results indicate that cpdm mice may be a useful model to study the pathogenesis of angiogenesis in chronic inflammation.
Collapse
Affiliation(s)
- Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States; Purdue Institute for Immunology, Inflammation and Infectious Diseases, Purdue University, West Lafayette, IN 47907, United States; The Jackson Laboratory, Bar Harbor, ME 04609, United States.
| | - Mario Sola
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States
| | | | | | | | - John P Sundberg
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, United States; The Jackson Laboratory, Bar Harbor, ME 04609, United States
| |
Collapse
|
161
|
Abstract
Ubiquitin chains assembled via the N-terminal methionine (Met1 or linear ubiquitin), conjugated by the linear ubiquitin chain assembly complex (LUBAC), participate in NF-κΒ-dependent inflammatory signaling and immune responses. A recent report in Cell finds that OTULIN, a deubiquitinase that selectively cleaves Met1-linked ubiquitin chains, is essential for restraining inflammation in vivo.
Collapse
|
162
|
Elliott PR, Leske D, Hrdinka M, Bagola K, Fiil BK, McLaughlin SH, Wagstaff J, Volkmar N, Christianson JC, Kessler BM, Freund SMV, Komander D, Gyrd-Hansen M. SPATA2 Links CYLD to LUBAC, Activates CYLD, and Controls LUBAC Signaling. Mol Cell 2016; 63:990-1005. [PMID: 27591049 PMCID: PMC5031558 DOI: 10.1016/j.molcel.2016.08.001] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/14/2016] [Accepted: 07/28/2016] [Indexed: 01/06/2023]
Abstract
The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain, which binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF receptor 1 signaling complex and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and a regulatory component of LUBAC-mediated NF-κB signaling.
Collapse
Affiliation(s)
- Paul R Elliott
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Derek Leske
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Matous Hrdinka
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Katrin Bagola
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Berthe K Fiil
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Stephen H McLaughlin
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jane Wagstaff
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Norbert Volkmar
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - John C Christianson
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Benedikt M Kessler
- TDI Mass Spectrometry Laboratory, Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Stefan M V Freund
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Komander
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Mads Gyrd-Hansen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
163
|
Damgaard RB, Walker JA, Marco-Casanova P, Morgan NV, Titheradge HL, Elliott PR, McHale D, Maher ER, McKenzie ANJ, Komander D. The Deubiquitinase OTULIN Is an Essential Negative Regulator of Inflammation and Autoimmunity. Cell 2016; 166:1215-1230.e20. [PMID: 27523608 PMCID: PMC5002269 DOI: 10.1016/j.cell.2016.07.019] [Citation(s) in RCA: 243] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 05/20/2016] [Accepted: 07/13/2016] [Indexed: 01/31/2023]
Abstract
Methionine-1 (M1)-linked ubiquitin chains regulate the activity of NF-κB, immune homeostasis, and responses to infection. The importance of negative regulators of M1-linked chains in vivo remains poorly understood. Here, we show that the M1-specific deubiquitinase OTULIN is essential for preventing TNF-associated systemic inflammation in humans and mice. A homozygous hypomorphic mutation in human OTULIN causes a potentially fatal autoinflammatory condition termed OTULIN-related autoinflammatory syndrome (ORAS). Four independent OTULIN mouse models reveal that OTULIN deficiency in immune cells results in cell-type-specific effects, ranging from over-production of inflammatory cytokines and autoimmunity due to accumulation of M1-linked polyubiquitin and spontaneous NF-κB activation in myeloid cells to downregulation of M1-polyubiquitin signaling by degradation of LUBAC in B and T cells. Remarkably, treatment with anti-TNF neutralizing antibodies ameliorates inflammation in ORAS patients and rescues mouse phenotypes. Hence, OTULIN is critical for restraining life-threatening spontaneous inflammation and maintaining immune homeostasis.
Collapse
Affiliation(s)
- Rune Busk Damgaard
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jennifer A Walker
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Paola Marco-Casanova
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Hannah L Titheradge
- Department of Clinical Genetics, Birmingham Women's NHS Foundation Trust, Birmingham B15 2TG, UK; Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Paul R Elliott
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge and Cambridge NIHR Biomedical Research Centre, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK.
| | - Andrew N J McKenzie
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
164
|
Li J, Chai QY, Liu CH. The ubiquitin system: a critical regulator of innate immunity and pathogen-host interactions. Cell Mol Immunol 2016; 13:560-76. [PMID: 27524111 DOI: 10.1038/cmi.2016.40] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin system comprises enzymes that are responsible for ubiquitination and deubiquitination, as well as ubiquitin receptors that are capable of recognizing and deciphering the ubiquitin code, which act in coordination to regulate almost all host cellular processes, including host-pathogen interactions. In response to pathogen infection, the host innate immune system launches an array of distinct antimicrobial activities encompassing inflammatory signaling, phagosomal maturation, autophagy and apoptosis, all of which are fine-tuned by the ubiquitin system to eradicate the invading pathogens and to reduce concomitant host damage. By contrast, pathogens have evolved a cohort of exquisite strategies to evade host innate immunity by usurping the ubiquitin system for their own benefits. Here, we present recent advances regarding the ubiquitin system-mediated modulation of host-pathogen interplay, with a specific focus on host innate immune defenses and bacterial pathogen immune evasion.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi-Yao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
165
|
Deubiquitinases: Novel Therapeutic Targets in Immune Surveillance? Mediators Inflamm 2016; 2016:3481371. [PMID: 27597804 PMCID: PMC5002299 DOI: 10.1155/2016/3481371] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 06/01/2016] [Accepted: 07/04/2016] [Indexed: 11/22/2022] Open
Abstract
Inflammation is a protective response of the organism to tissue injury or infection. It occurs when the immune system recognizes Pathogen-Associated Molecular Patterns (PAMPs) or Damage-Associated Molecular Pattern (DAMPs) through the activation of Pattern Recognition Receptors. This initiates a variety of signalling events that conclude in the upregulation of proinflammatory molecules, which initiate an appropriate immune response. This response is tightly regulated since any aberrant activation of immune responses would have severe pathological consequences such as sepsis or chronic inflammatory and autoimmune diseases. Accumulative evidence shows that the ubiquitin system, and in particular ubiquitin-specific isopeptidases also known as deubiquitinases (DUBs), plays crucial roles in the control of these immune pathways. In this review we will give an up-to-date overview on the role of DUBs in the NF-κB pathway and inflammasome activation, two intrinsically related events triggered by activation of the membrane TLRs as well as the cytosolic NOD and NLR receptors. Modulation of DUB activity by small molecules has been proposed as a way to control dysregulation or overactivation of these key players of the inflammatory response. We will also discuss the advances and challenges of a potential use of DUBs as therapeutic targets in inflammatory pathologies.
Collapse
|
166
|
Abstract
Ubiquitin can form eight different linkage types of chains using the intrinsic Met 1 residue or one of the seven intrinsic Lys residues. Each linkage type of ubiquitin chain has a distinct three-dimensional topology, functioning as a tag to attract specific signaling molecules, which are so-called ubiquitin readers, and regulates various biological functions. Ubiquitin chains linked via Met 1 in a head-to-tail manner are called linear ubiquitin chains. Linear ubiquitination plays an important role in the regulation of cellular signaling, including the best-characterized tumor necrosis factor (TNF)-induced canonical nuclear factor-κB (NF-κB) pathway. Linear ubiquitin chains are specifically generated by an E3 ligase complex called the linear ubiquitin chain assembly complex (LUBAC) and hydrolyzed by a deubiquitinase (DUB) called ovarian tumor (OTU) DUB with linear linkage specificity (OTULIN). LUBAC linearly ubiquitinates critical molecules in the TNF pathway, such as NEMO and RIPK1. The linear ubiquitin chains are then recognized by the ubiquitin readers, including NEMO, which control the TNF pathway. Accumulating evidence indicates an importance of the LUBAC complex in the regulation of apoptosis, development, and inflammation in mice. In this article, I focus on the role of linear ubiquitin chains in adaptive immune responses with an emphasis on the TNF-induced signaling pathways.
Collapse
Affiliation(s)
- Fumiyo Ikeda
- Institute of Molecular Biotechnology (IMBA), Vienna, Austria
| |
Collapse
|
167
|
Abstract
Linear ubiquitination is a post‐translational protein modification recently discovered to be crucial for innate and adaptive immune signaling. The function of linear ubiquitin chains is regulated at multiple levels: generation, recognition, and removal. These chains are generated by the linear ubiquitin chain assembly complex (LUBAC), the only known ubiquitin E3 capable of forming the linear ubiquitin linkage de novo. LUBAC is not only relevant for activation of nuclear factor‐κB (NF‐κB) and mitogen‐activated protein kinases (MAPKs) in various signaling pathways, but importantly, it also regulates cell death downstream of immune receptors capable of inducing this response. Recognition of the linear ubiquitin linkage is specifically mediated by certain ubiquitin receptors, which is crucial for translation into the intended signaling outputs. LUBAC deficiency results in attenuated gene activation and increased cell death, causing pathologic conditions in both, mice, and humans. Removal of ubiquitin chains is mediated by deubiquitinases (DUBs). Two of them, OTULIN and CYLD, are constitutively associated with LUBAC. Here, we review the current knowledge on linear ubiquitination in immune signaling pathways and the biochemical mechanisms as to how linear polyubiquitin exerts its functions distinctly from those of other ubiquitin linkage types.
Collapse
Affiliation(s)
- Yutaka Shimizu
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Lucia Taraborrelli
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
168
|
Elton L, Carpentier I, Verhelst K, Staal J, Beyaert R. The multifaceted role of the E3 ubiquitin ligase HOIL-1: beyond linear ubiquitination. Immunol Rev 2016; 266:208-21. [PMID: 26085217 DOI: 10.1111/imr.12307] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ubiquitination controls and fine-tunes many signaling processes driving immunity, inflammation, and cancer. The E3 ubiquitin ligase HOIL-1 (heme-oxidized IRP2 ubiquitin ligase-1) is increasingly implicated in different signaling pathways and plays a vital role in immune regulation. HOIL-1 co operates with the E3 ubiquitin ligase HOIP (HOIL-1 interacting protein) to modify specific nuclear factor-κB (NF-κB) signaling proteins with linear M1-linked polyubiquitin chains. In addition, through its ability to also add K48-linked polyubiquitin chains to specific substrates, HOIL-1 has been linked with antiviral signaling, iron and xenobiotic metabolism, cell death, and cancer. HOIL-1 deficiency in humans leads to myopathy, amylopectinosis, auto-inflammation, and immunodeficiency associated with an increased frequency of bacterial infections. HOIL-1-deficient mice exhibit amylopectin-like deposits in the myocardium, pathogen-specific immunodeficiency, but minimal signs of hyper-inflammation. This review summarizes current knowledge on the mechanism of action of HOIL-1 and highlights recent advances regarding its role in health and disease.
Collapse
Affiliation(s)
- Lynn Elton
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Isabelle Carpentier
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Kelly Verhelst
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jens Staal
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Rudi Beyaert
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
169
|
Wagner SA, Satpathy S, Beli P, Choudhary C. SPATA2 links CYLD to the TNF-α receptor signaling complex and modulates the receptor signaling outcomes. EMBO J 2016; 35:1868-84. [PMID: 27307491 DOI: 10.15252/embj.201694300] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/31/2016] [Indexed: 11/09/2022] Open
Abstract
TNF-α is a key regulator of innate immune and proinflammatory responses. However, the composition of the TNF-α receptor-associated signaling complexes (TNF-RSC) and the architecture of the downstream signaling networks are incompletely understood. We employed quantitative mass spectrometry to demonstrate that TNF-α stimulation induces widespread protein phosphorylation and that the scope of phosphorylation expands in a temporal manner. TNF-α stimulation also induces rapid ubiquitylation of components of the TNF-RSC Temporal analysis of the TNF-RSC composition identified SPATA2 as a novel component of the TNF-RSC The predicted PUB domain in the N-terminus of SPATA2 interacts with the USP domain of CYLD, whereas the C-terminus of SPATA2 interacts with HOIP SPATA2 is required for recruitment of CYLD to the TNF-RSC Downregulation of SPATA2 augments transcriptional activation of NF-κB and inhibits TNF-α-induced necroptosis, pointing to an important function of SPATA2 in modulating the outcomes of TNF-α signaling. Taken together, our study draws a detailed map of TNF-α signaling, identifies SPATA2 as a novel component of TNF-α signaling, and provides a rich resource for further functional investigations.
Collapse
Affiliation(s)
- Sebastian A Wagner
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Department of Medicine, Hematology/Oncology, Goethe University School of Medicine, Frankfurt, Germany German Cancer Consortium (DKTK), Heidelberg, Germany German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shankha Satpathy
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petra Beli
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark Institute of Molecular Biology (IMB), Mainz, Germany
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
170
|
Fiskin E, Bionda T, Dikic I, Behrends C. Global Analysis of Host and Bacterial Ubiquitinome in Response to Salmonella Typhimurium Infection. Mol Cell 2016; 62:967-981. [PMID: 27211868 DOI: 10.1016/j.molcel.2016.04.015] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/08/2016] [Accepted: 04/12/2016] [Indexed: 12/14/2022]
Abstract
Ubiquitination serves as a critical signal in the host immune response to infection. Many pathogens have evolved strategies to exploit the ubiquitin (Ub) system to promote their own survival through a complex interplay between host defense machinery and bacterial virulence factors. Here we report dynamic changes in the global ubiquitinome of host epithelial cells and invading pathogen in response to Salmonella Typhimurium infection. The most significant alterations in the host ubiquitinome concern components of the actin cytoskeleton, NF-κB and autophagy pathways, and the Ub and RHO GTPase systems. Specifically, infection-induced ubiquitination promotes CDC42 activity and linear ubiquitin chain formation, both being required for NF-κB activation. Conversely, the bacterial ubiquitinome exhibited extensive ubiquitination of various effectors and several outer membrane proteins. Moreover, we reveal that bacterial Ub-modifying enzymes modulate a unique subset of host targets, affecting different stages of Salmonella infection.
Collapse
Affiliation(s)
- Evgenij Fiskin
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Tihana Bionda
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main, Germany; Department of Immunology and Medical Genetics, School of Medicine, University of Split, Soltanska 2, 21 000 Split, Croatia.
| | - Christian Behrends
- Institute of Biochemistry II, Goethe University School of Medicine, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
171
|
Lys63/Met1-hybrid ubiquitin chains are commonly formed during the activation of innate immune signalling. Biochem Biophys Res Commun 2016; 474:452-461. [PMID: 27133719 PMCID: PMC4880150 DOI: 10.1016/j.bbrc.2016.04.141] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 02/08/2023]
Abstract
We have reported previously that activation of the MyD88-signaling network rapidly induces the formation of hybrid ubiquitin chains containing both Lys63-linked and Met1-linked ubiquitin (Ub) oligomers, some of which are attached covalently to Interleukin Receptor Associated kinase 1. Here we show that Lys63/Met1-Ub hybrids are also formed rapidly when the TNFR1/TRADD, TLR3/TRIF- and NOD1/RIP2-signaling networks are activated, some of which are attached covalently to Receptor-Interacting Protein 1 (TNFR1 pathway) or Receptor-Interacting Protein 2 (NOD1 pathway). These observations suggest that the formation of Lys63/Met1-Ub hybrids are of general significance for the regulation of innate immune signaling systems, and their potential roles in vivo are discussed. We also report that TNFα induces the attachment of Met1-linked Ub chains directly to TNF receptor 1, which do not seem to be attached covalently to Lys63-linked or other types of ubiquitin chain. Ubiquitin chains containing both Lys63 and Met1 linkages are commonly formed during innate immune signaling. Lys63/Met1-hybrid chains become attached to RIP1 and RIP2 in the TNFR1 and NOD1 signaling networks, respectively. Potential advantages of Lys63/Met1-hybrids over separate ubiquitin chains are proposed. Met1-linked ubiquitin is attached to TNFR1 without formation of a hybrid ubiquitin chain.
Collapse
|
172
|
Abstract
Conjugation and deconjugation of ubiquitin and ubiquitin-like proteins (Ubls) to cellular proteins are highly regulated processes integral to cellular homeostasis. Most often, the C-termini of these small polypeptides are attached to lysine side chains of target proteins by an amide (isopeptide) linkage. Deubiquitinating enzymes (DUBs) and Ubl-specific proteases (ULPs) comprise a diverse group of proteases that recognize and remove ubiquitin and Ubls from their substrates. How DUBs and ULPs distinguish among different modifiers, or different polymeric forms of these modifiers, remains poorly understood. The specificity of ubiquitin/Ubl-deconjugating enzymes for particular substrates depends on multiple factors, ranging from the topography of specific substrate features, as in different polyubiquitin chain types, to structural elements unique to each enzyme. Here we summarize recent structural and biochemical studies that provide insights into mechanisms of substrate specificity among various DUBs and ULPs. We also discuss the unexpected specificities of non-eukaryotic proteases in these families.
Collapse
Affiliation(s)
- Judith A Ronau
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - John F Beckmann
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
- Department of Molecular, Cellular and Developmental Biology, Yale University, 266 Whitney Avenue, New Haven, CT 06520, USA
| |
Collapse
|
173
|
Abstract
Protein ubiquitination is a dynamic multifaceted post-translational modification involved in nearly all aspects of eukaryotic biology. Once attached to a substrate, the 76-amino acid protein ubiquitin is subjected to further modifications, creating a multitude of distinct signals with distinct cellular outcomes, referred to as the 'ubiquitin code'. Ubiquitin can be ubiquitinated on seven lysine (Lys) residues or on the N-terminus, leading to polyubiquitin chains that can encompass complex topologies. Alternatively or in addition, ubiquitin Lys residues can be modified by ubiquitin-like molecules (such as SUMO or NEDD8). Finally, ubiquitin can also be acetylated on Lys, or phosphorylated on Ser, Thr or Tyr residues, and each modification has the potential to dramatically alter the signaling outcome. While the number of distinctly modified ubiquitin species in cells is mind-boggling, much progress has been made to characterize the roles of distinct ubiquitin modifications, and many enzymes and receptors have been identified that create, recognize or remove these ubiquitin modifications. We here provide an overview of the various ubiquitin modifications present in cells, and highlight recent progress on ubiquitin chain biology. We then discuss the recent findings in the field of ubiquitin acetylation and phosphorylation, with a focus on Ser65-phosphorylation and its role in mitophagy and Parkin activation.
Collapse
Affiliation(s)
- Kirby N Swatek
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
174
|
Hrdinka M, Fiil BK, Zucca M, Leske D, Bagola K, Yabal M, Elliott PR, Damgaard RB, Komander D, Jost PJ, Gyrd-Hansen M. CYLD Limits Lys63- and Met1-Linked Ubiquitin at Receptor Complexes to Regulate Innate Immune Signaling. Cell Rep 2016; 14:2846-58. [PMID: 26997266 PMCID: PMC4819907 DOI: 10.1016/j.celrep.2016.02.062] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/28/2016] [Accepted: 02/12/2016] [Indexed: 12/23/2022] Open
Abstract
Innate immune signaling relies on the deposition of non-degradative polyubiquitin at receptor-signaling complexes, but how these ubiquitin modifications are regulated by deubiquitinases remains incompletely understood. Met1-linked ubiquitin (Met1-Ub) is assembled by the linear ubiquitin assembly complex (LUBAC), and this is counteracted by the Met1-Ub-specific deubiquitinase OTULIN, which binds to the catalytic LUBAC subunit HOIP. In this study, we report that HOIP also interacts with the deubiquitinase CYLD but that CYLD does not regulate ubiquitination of LUBAC components. Instead, CYLD limits extension of Lys63-Ub and Met1-Ub conjugated to RIPK2 to restrict signaling and cytokine production. Accordingly, Met1-Ub and Lys63-Ub were individually required for productive NOD2 signaling. Our study thus suggests that LUBAC, through its associated deubiquitinases, coordinates the deposition of not only Met1-Ub but also Lys63-Ub to ensure an appropriate response to innate immune receptor activation. CYLD associates with LUBAC via HOIP and limits signaling by NOD2 RIPK2 ubiquitination is regulated by CYLD and OTULIN CYLD trims Lys63 and Met1 linkages conjugated to RIPK2 Productive NOD2 signaling requires Lys63 and Met1 linkages
Collapse
Affiliation(s)
- Matous Hrdinka
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Berthe Katrine Fiil
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Mattia Zucca
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Derek Leske
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Katrin Bagola
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - Monica Yabal
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Paul R Elliott
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Rune Busk Damgaard
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Philipp J Jost
- III. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Mads Gyrd-Hansen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| |
Collapse
|
175
|
Kupka S, Reichert M, Draber P, Walczak H. Formation and removal of poly-ubiquitin chains in the regulation of tumor necrosis factor-induced gene activation and cell death. FEBS J 2016; 283:2626-39. [PMID: 26749412 DOI: 10.1111/febs.13644] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 12/21/2015] [Accepted: 01/05/2016] [Indexed: 12/17/2022]
Abstract
Tumor necrosis factor (TNF) is a potent cytokine known for its involvement in inflammation, repression of tumorigenesis and activation of immune cells. Consequently, accurate regulation of the TNF signaling pathway is crucial for preventing the potent noxious effects of TNF. These pathological conditions include chronic inflammation, septic shock, cachexia and cancer. The TNF signaling cascade utilizes a complex network of post-translational modifications to control the cellular response following its activation. Next to phosphorylation, the ubiquitination of signaling complex components is probably the most important modification. This process is mediated by a specialist class of enzymes, the ubiquitin ligases. Equally important is the class of dedicated ubiquitin-specific proteases, the deubiquitinases. Together with ubiquitin binding proteins, this ubiquitination-deubiquitination system enables the dynamics of signaling complexes. In TNF signaling, these dynamics translate into the precise regulation of the induction of gene activation or cell death. Here, we review and discuss current knowledge of TNF signaling regulation by the ubiquitin system.
Collapse
Affiliation(s)
- Sebastian Kupka
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Matthias Reichert
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Peter Draber
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, London, UK
| |
Collapse
|
176
|
Kalliolias GD, Ivashkiv LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol 2015; 12:49-62. [PMID: 26656660 DOI: 10.1038/nrrheum.2015.169] [Citation(s) in RCA: 905] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
TNF is a pleiotropic cytokine with important functions in homeostasis and disease pathogenesis. Recent discoveries have provided insights into TNF biology that introduce new concepts for the development of therapeutics for TNF-mediated diseases. The model of TNF receptor signalling has been extended to include linear ubiquitination and the formation of distinct signalling complexes that are linked with different functional outcomes, such as inflammation, apoptosis and necroptosis. Our understanding of TNF-induced gene expression has been enriched by the discovery of epigenetic mechanisms and concepts related to cellular priming, tolerization and induction of 'short-term transcriptional memory'. Identification of distinct homeostatic or pathogenic TNF-induced signalling pathways has introduced the concept of selectively inhibiting the deleterious effects of TNF while preserving its homeostatic bioactivities for therapeutic purposes. In this Review, we present molecular mechanisms underlying the roles of TNF in homeostasis and inflammatory disease pathogenesis, and discuss novel strategies to advance therapeutic paradigms for the treatment of TNF-mediated diseases.
Collapse
Affiliation(s)
- George D Kalliolias
- Arthritis &Tissue Degeneration Program and David Z. Rosensweig Center for Genomics Research, Hospital for Special Surgery, 535 E 70th Street, New York, New York 10021, USA
| | - Lionel B Ivashkiv
- Arthritis &Tissue Degeneration Program and David Z. Rosensweig Center for Genomics Research, Hospital for Special Surgery, 535 E 70th Street, New York, New York 10021, USA
| |
Collapse
|
177
|
Wertz IE, Newton K, Seshasayee D, Kusam S, Lam C, Zhang J, Popovych N, Helgason E, Schoeffler A, Jeet S, Ramamoorthi N, Kategaya L, Newman RJ, Horikawa K, Dugger D, Sandoval W, Mukund S, Zindal A, Martin F, Quan C, Tom J, Fairbrother WJ, Townsend M, Warming S, DeVoss J, Liu J, Dueber E, Caplazi P, Lee WP, Goodnow CC, Balazs M, Yu K, Kolumam G, Dixit VM. Phosphorylation and linear ubiquitin direct A20 inhibition of inflammation. Nature 2015; 528:370-5. [PMID: 26649818 DOI: 10.1038/nature16165] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 10/11/2015] [Indexed: 12/26/2022]
Abstract
Inactivation of the TNFAIP3 gene, encoding the A20 protein, is associated with critical inflammatory diseases including multiple sclerosis, rheumatoid arthritis and Crohn's disease. However, the role of A20 in attenuating inflammatory signalling is unclear owing to paradoxical in vitro and in vivo findings. Here we utilize genetically engineered mice bearing mutations in the A20 ovarian tumour (OTU)-type deubiquitinase domain or in the zinc finger-4 (ZnF4) ubiquitin-binding motif to investigate these discrepancies. We find that phosphorylation of A20 promotes cleavage of Lys63-linked polyubiquitin chains by the OTU domain and enhances ZnF4-mediated substrate ubiquitination. Additionally, levels of linear ubiquitination dictate whether A20-deficient cells die in response to tumour necrosis factor. Mechanistically, linear ubiquitin chains preserve the architecture of the TNFR1 signalling complex by blocking A20-mediated disassembly of Lys63-linked polyubiquitin scaffolds. Collectively, our studies reveal molecular mechanisms whereby A20 deubiquitinase activity and ubiquitin binding, linear ubiquitination, and cellular kinases cooperate to regulate inflammation and cell death.
Collapse
Affiliation(s)
- Ingrid E Wertz
- Discovery Oncology, Genentech, South San Francisco, California 94080, USA.,Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, USA
| | - Kim Newton
- Physiological Chemistry, Genentech, South San Francisco, California 94080, USA
| | - Dhaya Seshasayee
- Immunology, Genentech, South San Francisco, California 94080, USA
| | - Saritha Kusam
- Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, USA
| | - Cynthia Lam
- Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, USA
| | - Juan Zhang
- Immunology, Genentech, South San Francisco, California 94080, USA
| | - Nataliya Popovych
- Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, USA
| | - Elizabeth Helgason
- Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, USA
| | - Allyn Schoeffler
- Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, USA
| | - Surinder Jeet
- Immunology, Genentech, South San Francisco, California 94080, USA
| | | | - Lorna Kategaya
- Discovery Oncology, Genentech, South San Francisco, California 94080, USA.,Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, USA
| | - Robert J Newman
- Molecular Biology, Genentech, South San Francisco, California 94080, USA
| | - Keisuke Horikawa
- Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Debra Dugger
- Physiological Chemistry, Genentech, South San Francisco, California 94080, USA
| | - Wendy Sandoval
- Protein Chemistry, Genentech, South San Francisco, California 94080, USA
| | - Susmith Mukund
- Structural Biology, Genentech, South San Francisco, California 94080, USA
| | - Anuradha Zindal
- Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, USA
| | - Flavius Martin
- Immunology, Genentech, South San Francisco, California 94080, USA
| | - Clifford Quan
- Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, USA
| | - Jeffrey Tom
- Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, USA
| | - Wayne J Fairbrother
- Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, USA
| | - Michael Townsend
- Immunology, Genentech, South San Francisco, California 94080, USA
| | - Søren Warming
- Molecular Biology, Genentech, South San Francisco, California 94080, USA
| | - Jason DeVoss
- Immunology, Genentech, South San Francisco, California 94080, USA
| | - Jinfeng Liu
- Bioinformatics, Genentech, South San Francisco, California 94080, USA
| | - Erin Dueber
- Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, USA
| | - Patrick Caplazi
- Pathology, Genentech, South San Francisco, California 94080, USA
| | - Wyne P Lee
- Immunology, Genentech, South San Francisco, California 94080, USA
| | - Christopher C Goodnow
- Immunogenomics Laboratory, Immunology Division, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, New South Wales 2010, Sydney, Australia
| | - Mercedesz Balazs
- Immunology, Genentech, South San Francisco, California 94080, USA
| | - Kebing Yu
- Protein Chemistry, Genentech, South San Francisco, California 94080, USA
| | - Ganesh Kolumam
- Molecular Biology, Genentech, South San Francisco, California 94080, USA
| | - Vishva M Dixit
- Physiological Chemistry, Genentech, South San Francisco, California 94080, USA
| |
Collapse
|
178
|
Draber P, Kupka S, Reichert M, Draberova H, Lafont E, de Miguel D, Spilgies L, Surinova S, Taraborrelli L, Hartwig T, Rieser E, Martino L, Rittinger K, Walczak H. LUBAC-Recruited CYLD and A20 Regulate Gene Activation and Cell Death by Exerting Opposing Effects on Linear Ubiquitin in Signaling Complexes. Cell Rep 2015; 13:2258-72. [PMID: 26670046 PMCID: PMC4688036 DOI: 10.1016/j.celrep.2015.11.009] [Citation(s) in RCA: 245] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 10/12/2015] [Accepted: 10/29/2015] [Indexed: 01/09/2023] Open
Abstract
Ubiquitination and deubiquitination are crucial for assembly and disassembly of signaling complexes. LUBAC-generated linear (M1) ubiquitin is important for signaling via various immune receptors. We show here that the deubiquitinases CYLD and A20, but not OTULIN, are recruited to the TNFR1- and NOD2-associated signaling complexes (TNF-RSC and NOD2-SC), at which they cooperate to limit gene activation. Whereas CYLD recruitment depends on its interaction with LUBAC, but not on LUBAC’s M1-chain-forming capacity, A20 recruitment requires this activity. Intriguingly, CYLD and A20 exert opposing effects on M1 chain stability in the TNF-RSC and NOD2-SC. While CYLD cleaves M1 chains, and thereby sensitizes cells to TNF-induced death, A20 binding to them prevents their removal and, consequently, inhibits cell death. Thus, CYLD and A20 cooperatively restrict gene activation and regulate cell death via their respective activities on M1 chains. Hence, the interplay between LUBAC, M1-ubiquitin, CYLD, and A20 is central for physiological signaling through innate immune receptors. LUBAC directly recruits CYLD to the TNFR1 complex where it antagonizes M1 linkages M1-ubiquitin chains recruit A20, which, in turn, protects them from degradation CYLD and A20 inhibit gene activation but oppose each other in regulating cell death OTULIN controls LUBAC activity prior to stimulation but not in signaling complexes
Collapse
Affiliation(s)
- Peter Draber
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Sebastian Kupka
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Matthias Reichert
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Helena Draberova
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Elodie Lafont
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Diego de Miguel
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Lisanne Spilgies
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Silvia Surinova
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Lucia Taraborrelli
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Torsten Hartwig
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Eva Rieser
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK
| | - Luigi Martino
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Katrin Rittinger
- The Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Henning Walczak
- Centre for Cell Death, Cancer, and Inflammation (CCCI), UCL Cancer Institute, University College London, 72 Huntley Street, London WC1E 6DD, UK.
| |
Collapse
|
179
|
Elliott PR, Komander D. Regulation of Met1-linked polyubiquitin signalling by the deubiquitinase OTULIN. FEBS J 2015; 283:39-53. [PMID: 26503766 PMCID: PMC4765238 DOI: 10.1111/febs.13547] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Revised: 08/25/2015] [Accepted: 10/02/2015] [Indexed: 12/25/2022]
Abstract
Modification of proteins with Met1‐linked ‘linear’ ubiquitin chains has emerged as a key regulatory signal to control inflammatory signalling via the master regulator, the transcription factor nuclear factor κB (NF‐κB). While the assembly machinery, the linear ubiquitin chain assembly complex (LUBAC), and receptors for this ubiquitin chain type have been known for years, it was less clear which deubiquitinating enzymes (DUBs) hydrolyse Met1 linkages specifically. In 2013, two labs reported the previously unannotated protein FAM105B/OTULIN to be this missing Met1 linkage‐specific DUB. Structural studies have revealed how OTULIN achieves its remarkable specificity, employing a mechanism of ubiquitin‐assisted catalysis in which a glutamate residue on the substrate complements the active site of the enzyme. The specificity of OTULIN enables it to regulate global levels of Met1‐linked polyubiquitin in cells. This ability led to investigations of NF‐κB activation from new angles, and also revealed involvement of Met1‐polyubiquitin in Wnt signalling. Interestingly, OTULIN directly interacts with LUBAC, and this interaction is dynamic and can be regulated by OTULIN phosphorylation. This provides a new paradigm for how individual linkage types can be regulated by dedicated enzyme complexes mediating assembly and removal. Here we review what has been learned about OTULIN's mechanism, regulation and function, discuss the open questions in the field, and discuss how DUBs regulate the NF‐κB response.
Collapse
Affiliation(s)
- Paul R Elliott
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
180
|
Canning P, Ruan Q, Schwerd T, Hrdinka M, Maki JL, Saleh D, Suebsuwong C, Ray S, Brennan PE, Cuny GD, Uhlig HH, Gyrd-Hansen M, Degterev A, Bullock AN. Inflammatory Signaling by NOD-RIPK2 Is Inhibited by Clinically Relevant Type II Kinase Inhibitors. CHEMISTRY & BIOLOGY 2015; 22:1174-84. [PMID: 26320862 PMCID: PMC4579271 DOI: 10.1016/j.chembiol.2015.07.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/01/2015] [Accepted: 07/24/2015] [Indexed: 12/12/2022]
Abstract
RIPK2 mediates pro-inflammatory signaling from the bacterial sensors NOD1 and NOD2, and is an emerging therapeutic target in autoimmune and inflammatory diseases. We observed that cellular RIPK2 can be potently inhibited by type II inhibitors that displace the kinase activation segment, whereas ATP-competitive type I inhibition was only poorly effective. The most potent RIPK2 inhibitors were the US Food and Drug Administration-approved drugs ponatinib and regorafenib. Their mechanism of action was independent of NOD2 interaction and involved loss of downstream kinase activation as evidenced by lack of RIPK2 autophosphorylation. Notably, these molecules also blocked RIPK2 ubiquitination and, consequently, inflammatory nuclear factor κB signaling. In monocytes, the inhibitors selectively blocked NOD-dependent tumor necrosis factor production without affecting lipopolysaccharide-dependent pathways. We also determined the first crystal structure of RIPK2 bound to ponatinib, and identified an allosteric site for inhibitor development. These results highlight the potential for type II inhibitors to treat indications of RIPK2 activation as well as inflammation-associated cancers.
Collapse
Affiliation(s)
- Peter Canning
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Qui Ruan
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Tobias Schwerd
- Translational Gastroenterology Unit, Nuffield Department of Medicine and Department of Pediatrics, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Matous Hrdinka
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Jenny L Maki
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA
| | - Danish Saleh
- Medical Scientist Training Program and Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | - Soumya Ray
- Center for Neurologic Diseases, Department of Neurology, Brigham & Women's Hospital and Harvard Medical School, Cambridge, MA 02139, USA
| | - Paul E Brennan
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK; Target Discovery Institute, University of Oxford, NDM Research Building, Roosevelt Drive, Oxford OX3 7LD, UK
| | - Gregory D Cuny
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, USA
| | - Holm H Uhlig
- Translational Gastroenterology Unit, Nuffield Department of Medicine and Department of Pediatrics, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Mads Gyrd-Hansen
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Alexei Degterev
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111, USA.
| | - Alex N Bullock
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7DQ, UK.
| |
Collapse
|
181
|
Emmerich CH, Cohen P. Optimising methods for the preservation, capture and identification of ubiquitin chains and ubiquitylated proteins by immunoblotting. Biochem Biophys Res Commun 2015; 466:1-14. [PMID: 26325464 PMCID: PMC4709362 DOI: 10.1016/j.bbrc.2015.08.109] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022]
Abstract
Immunoblotting is a powerful technique for the semi-quantitative analysis of ubiquitylation events, and remains the most commonly used method to study this process due to its high specificity, speed, sensitivity and relatively low cost. However, the ubiquitylation of proteins is complex and, when the analysis is performed in an inappropriate manner, it can lead to the misinterpretation of results and to erroneous conclusions being reached. Here we discuss the advantages and disadvantages of the methods currently in use to analyse ubiquitin chains and protein ubiquitylation, and describe the procedures that we have found to be most useful for optimising the quality and reliability of the data that we have generated. We also highlight commonly encountered problems and the pitfalls inherent in some of these methods. Finally, we introduce a set of recommendations to help researchers obtain high quality data, especially those new to the field of ubiquitin signalling. The specific topics addressed in this article include sample preparation, the separation, detection and identification of particular ubiquitin chains by immunoblotting, and the analysis of ubiquitin chain topology through the combined use of ubiquitin-binding proteins and ubiquitin linkage-specific deubiquitylases.
Collapse
Affiliation(s)
- Christoph H Emmerich
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom.
| | - Philip Cohen
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, Sir James Black Centre, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom
| |
Collapse
|
182
|
Deubiquitylase OTUD3 regulates PTEN stability and suppresses tumorigenesis. Nat Cell Biol 2015; 17:1169-81. [PMID: 26280536 DOI: 10.1038/ncb3218] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 07/03/2015] [Indexed: 12/17/2022]
Abstract
PTEN is one of the most frequently mutated tumour suppressors and reduction in PTEN protein stability also plays a role in tumorigenesis. Although several ubiquitin ligases for PTEN have been identified, the deubiquitylase for de-polyubiquitylation and stabilization of PTEN is less defined. Here, we report OTUD3 as a deubiquitylase of PTEN. OTUD3 interacts with, de-polyubiquitylates and stabilizes PTEN. Depletion of OTUD3 leads to the activation of Akt signalling, induction of cellular transformation and cancer metastasis. OTUD3 transgenic mice exhibit higher levels of the PTEN protein and are less prone to tumorigenesis. Reduction of OTUD3 expression, concomitant with decreased PTEN abundance, correlates with human breast cancer progression. Furthermore, we identified loss-of-function OTUD3 mutations in human cancers, which either abolish OTUD3 catalytic activity or attenuate the interaction with PTEN. These findings demonstrate that OTUD3 is an essential regulator of PTEN and that the OTUD3-PTEN signalling axis plays a critical role in tumour suppression.
Collapse
|
183
|
Sasaki K, Iwai K. Roles of linear ubiquitinylation, a crucial regulator of NF-κB and cell death, in the immune system. Immunol Rev 2015; 266:175-89. [DOI: 10.1111/imr.12308] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Katsuhiro Sasaki
- Molecular and Cellular Physiology; Graduate School of Medicine; Kyoto University; Kyoto Japan
| | - Kazuhiro Iwai
- Molecular and Cellular Physiology; Graduate School of Medicine; Kyoto University; Kyoto Japan
| |
Collapse
|
184
|
Satpathy S, Wagner SA, Beli P, Gupta R, Kristiansen TA, Malinova D, Francavilla C, Tolar P, Bishop GA, Hostager BS, Choudhary C. Systems-wide analysis of BCR signalosomes and downstream phosphorylation and ubiquitylation. Mol Syst Biol 2015; 11:810. [PMID: 26038114 PMCID: PMC4501846 DOI: 10.15252/msb.20145880] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/30/2015] [Accepted: 05/06/2015] [Indexed: 12/02/2022] Open
Abstract
B-cell receptor (BCR) signaling is essential for the development and function of B cells; however, the spectrum of proteins involved in BCR signaling is not fully known. Here we used quantitative mass spectrometry-based proteomics to monitor the dynamics of BCR signaling complexes (signalosomes) and to investigate the dynamics of downstream phosphorylation and ubiquitylation signaling. We identify most of the previously known components of BCR signaling, as well as many proteins that have not yet been implicated in this system. BCR activation leads to rapid tyrosine phosphorylation and ubiquitylation of the receptor-proximal signaling components, many of which are co-regulated by both the modifications. We illustrate the power of multilayered proteomic analyses for discovering novel BCR signaling components by demonstrating that BCR-induced phosphorylation of RAB7A at S72 prevents its association with effector proteins and with endo-lysosomal compartments. In addition, we show that BCL10 is modified by LUBAC-mediated linear ubiquitylation, and demonstrate an important function of LUBAC in BCR-induced NF-κB signaling. Our results offer a global and integrated view of BCR signaling, and the provided datasets can serve as a valuable resource for further understanding BCR signaling networks.
Collapse
Affiliation(s)
- Shankha Satpathy
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sebastian A Wagner
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petra Beli
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rajat Gupta
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Trine A Kristiansen
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dessislava Malinova
- Division of Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London, UK
| | - Chiara Francavilla
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Pavel Tolar
- Division of Immune Cell Biology, MRC National Institute for Medical Research, Mill Hill, London, UK
| | - Gail A Bishop
- Department of Microbiology, Graduate Program in Immunology and Department of Internal Medicine, University of Iowa, Iowa City, IA, USA VAMC, Iowa City, IA, USA
| | - Bruce S Hostager
- Department of Pediatrics, University of Iowa, Iowa City, IA, USA
| | - Chunaram Choudhary
- Department of Proteomics, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
185
|
Nachbur U, Stafford CA, Bankovacki A, Zhan Y, Lindqvist LM, Fiil BK, Khakham Y, Ko HJ, Sandow JJ, Falk H, Holien JK, Chau D, Hildebrand J, Vince JE, Sharp PP, Webb AI, Jackman KA, Mühlen S, Kennedy CL, Lowes KN, Murphy JM, Gyrd-Hansen M, Parker MW, Hartland EL, Lew AM, Huang DCS, Lessene G, Silke J. A RIPK2 inhibitor delays NOD signalling events yet prevents inflammatory cytokine production. Nat Commun 2015; 6:6442. [PMID: 25778803 DOI: 10.1038/ncomms7442] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/29/2015] [Indexed: 12/22/2022] Open
Abstract
Intracellular nucleotide binding and oligomerization domain (NOD) receptors recognize antigens including bacterial peptidoglycans and initiate immune responses by triggering the production of pro-inflammatory cytokines through activating NF-κB and MAP kinases. Receptor interacting protein kinase 2 (RIPK2) is critical for NOD-mediated NF-κB activation and cytokine production. Here we develop and characterize a selective RIPK2 kinase inhibitor, WEHI-345, which delays RIPK2 ubiquitylation and NF-κB activation downstream of NOD engagement. Despite only delaying NF-κB activation on NOD stimulation, WEHI-345 prevents cytokine production in vitro and in vivo and ameliorates experimental autoimmune encephalomyelitis in mice. Our study highlights the importance of the kinase activity of RIPK2 for proper immune responses and demonstrates the therapeutic potential of inhibiting RIPK2 in NOD-driven inflammatory diseases.
Collapse
Affiliation(s)
- Ueli Nachbur
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Che A Stafford
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Aleksandra Bankovacki
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Yifan Zhan
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Lisa M Lindqvist
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Berthe K Fiil
- 1] Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark [2] Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Yelena Khakham
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Hyun-Ja Ko
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jarrod J Sandow
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Hendrik Falk
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia [3] Cancer Therapeutics CRC, Bundoora, Victoria 3083, Australia
| | - Jessica K Holien
- ACRF Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia
| | - Diep Chau
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Joanne Hildebrand
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - James E Vince
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Phillip P Sharp
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Andrew I Webb
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Katherine A Jackman
- The Florey Institute of Neuroscience and Mental Health, Melbourne Brain Centre, Austin Campus, 245 Burgundy Street, Heidelberg, Victoria 3084, Australia
| | - Sabrina Mühlen
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | - Catherine L Kennedy
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | - Kym N Lowes
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - James M Murphy
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Mads Gyrd-Hansen
- 1] Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark [2] Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Michael W Parker
- 1] ACRF Rational Drug Discovery Centre, St Vincent's Institute of Medical Research, 9 Princes Street, Fitzroy, Victoria 3065, Australia [2] Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Elizabeth L Hartland
- Department of Microbiology and Immunology, University of Melbourne, Victoria 3010, Australia
| | - Andrew M Lew
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - David C S Huang
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Guillaume Lessene
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - John Silke
- 1] The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia [2] Department of Medical Biology, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
186
|
Deubiquitinase-based analysis of ubiquitin chain architecture using Ubiquitin Chain Restriction (UbiCRest). Nat Protoc 2015; 10:349-361. [PMID: 25633630 DOI: 10.1038/nprot.2015.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein ubiquitination is a versatile protein modification that regulates virtually all cellular processes. This versatility originates from polyubiquitin chains, which can be linked in eight distinct ways. The combinatorial complexity of eight linkage types in homotypic (one chain type per polymer) and heterotypic (multiple linkage types per polymer) chains poses significant problems for biochemical analysis. Here we describe UbiCRest, in which substrates (ubiquitinated proteins or polyubiquitin chains) are treated with a panel of linkage-specific deubiquitinating enzymes (DUBs) in parallel reactions, followed by gel-based analysis. UbiCRest can be used to show that a protein is ubiquitinated, to identify which linkage type(s) are present on polyubiquitinated proteins and to assess the architecture of heterotypic polyubiquitin chains. DUBs used in UbiCRest can be obtained commercially; however, we include details for generating a toolkit of purified DUBs and for profiling their linkage preferences in vitro. UbiCRest is a qualitative method that yields insights into ubiquitin chain linkage types and architecture within hours, and it can be performed on western blotting quantities of endogenously ubiquitinated proteins.
Collapse
|
187
|
Iglesias-Gato D, Chuan YC, Jiang N, Svensson C, Bao J, Paul I, Egevad L, Kessler BM, Wikström P, Niu Y, Flores-Morales A. OTUB1 de-ubiquitinating enzyme promotes prostate cancer cell invasion in vitro and tumorigenesis in vivo. Mol Cancer 2015; 14:8. [PMID: 25623341 PMCID: PMC4320819 DOI: 10.1186/s12943-014-0280-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 12/22/2014] [Indexed: 02/05/2023] Open
Abstract
Background Ubiquitination is a highly dynamic and reversible process with a central role in cell homeostasis. Deregulation of several deubiquitinating enzymes has been linked to tumor development but their specific role in prostate cancer progression remains unexplored. Methods RNAi screening was used to investigate the role of the ovarian tumor proteases (OTU) family of deubiquitinating enzymes on the proliferation and invasion capacity of prostate cancer cells. RhoA activity was measured in relation with OTUB1 effects on prostate cancer cell invasion. Tumor xenograft mouse model with stable OTUB1 knockdown was used to investigate OTUB1 influence in tumor growth. Results Our RNAi screening identified OTUB1 as an important regulator of prostate cancer cell invasion through the modulation of RhoA activation. The effect of OTUB1 on RhoA activation is important for androgen-induced repression of p53 expression in prostate cancer cells. In localized prostate cancer tumors OTUB1 was found overexpressed as compared to normal prostatic epithelial cells. Prostate cancer xenografts expressing reduced levels of OTUB1 exhibit reduced tumor growth and reduced metastatic dissemination in vivo. Conclusions OTUB1 mediates prostate cancer cell invasion through RhoA activation and promotes tumorigenesis in vivo. Our results suggest that drugs targeting the catalytic activity of OTUB1 could potentially be used as therapeutics for metastatic prostate cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12943-014-0280-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Diego Iglesias-Gato
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Yin-Choy Chuan
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Ning Jiang
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark. .,Tianjin Institute of Urology, Tianjin Medical University, 300211, Tianjin, China.
| | - Charlotte Svensson
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Jing Bao
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark. .,Tianjin Institute of Urology, Tianjin Medical University, 300211, Tianjin, China.
| | - Indranil Paul
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| | - Lars Egevad
- Section of Urology, Department of Surgical Science Karolinska Institutet, 17176, Stockholm, Sweden.
| | - Benedikt M Kessler
- Target Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7BN, Oxford, UK.
| | - Pernilla Wikström
- Department of Medical Biosciences, Pathology, Umeå University, 90185, Umeå, Sweden.
| | - Yuanjie Niu
- Tianjin Institute of Urology, Tianjin Medical University, 300211, Tianjin, China.
| | - Amilcar Flores-Morales
- The Novo Nordisk Foundation Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
| |
Collapse
|
188
|
Scott D, Oldham NJ, Strachan J, Searle MS, Layfield R. Ubiquitin-binding domains: mechanisms of ubiquitin recognition and use as tools to investigate ubiquitin-modified proteomes. Proteomics 2014; 15:844-61. [PMID: 25327553 DOI: 10.1002/pmic.201400341] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/05/2014] [Accepted: 10/13/2014] [Indexed: 12/17/2022]
Abstract
Ubiquitin-binding domains (UBDs) are modular units found within ubiquitin-binding proteins that mediate the non-covalent recognition of (poly)ubiquitin modifications. A variety of mechanisms are employed in vivo to achieve polyubiquitin linkage and chain length selectivity by UBDs, the structural basis of which have in some instances been determined. Here, we review current knowledge related to ubiquitin recognition mechanisms at the molecular level and explore how such information has been exploited in the design and application of UBDs in isolation or artificially arranged in tandem as tools to investigate ubiquitin-modified proteomes. Specifically, we focus on the use of UBDs to directly purify or detect (poly)ubiquitin-modified proteins and more broadly for the targeted manipulation of ubiquitin-mediated processes, highlighting insights into ubiquitin signalling that have been provided.
Collapse
Affiliation(s)
- Daniel Scott
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | | | | | | | | |
Collapse
|
189
|
Caruso R, Warner N, Inohara N, Núñez G. NOD1 and NOD2: signaling, host defense, and inflammatory disease. Immunity 2014; 41:898-908. [PMID: 25526305 DOI: 10.1016/j.immuni.2014.12.010] [Citation(s) in RCA: 593] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Indexed: 12/11/2022]
Abstract
The nucleotide-binding oligomerization domain (NOD) proteins NOD1 and NOD2, the founding members of the intracellular NOD-like receptor family, sense conserved motifs in bacterial peptidoglycan and induce proinflammatory and antimicrobial responses. Here, we discuss recent developments about the mechanisms by which NOD1 and NOD2 are activated by bacterial ligands, the regulation of their signaling pathways, and their role in host defense and inflammatory disease. Several routes for the entry of peptidoglycan ligands to the host cytosol to trigger activation of NOD1 and NOD2 have been elucidated. Furthermore, genetic screens and biochemical analyses have revealed mechanisms that regulate NOD1 and NOD2 signaling. Finally, recent studies have suggested several mechanisms to account for the link between NOD2 variants and susceptibility to Crohn's disease. Further understanding of NOD1 and NOD2 should provide new insight into the pathogenesis of disease and the development of new strategies to treat inflammatory and infectious disorders.
Collapse
Affiliation(s)
- Roberta Caruso
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Neil Warner
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Naohiro Inohara
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
190
|
TNFR1-activated NF-κB signal transduction: regulation by the ubiquitin/proteasome system. Curr Opin Chem Biol 2014; 23:71-7. [DOI: 10.1016/j.cbpa.2014.10.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/20/2014] [Accepted: 10/20/2014] [Indexed: 12/14/2022]
|
191
|
Abstract
Receptor Interacting Protein Kinase-1 (RIPK1), a key player in inflammation and cell death, assumes opposite functions depending on the cellular context and its posttranslational modifications. Genetic evidence supported by biochemical and cellular biology approaches sheds light on the circumstances in which RIPK1 promotes or inhibits these processes.
Collapse
Affiliation(s)
- Ricardo Weinlich
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
192
|
Pedersen J, LaCasse EC, Seidelin JB, Coskun M, Nielsen OH. Inhibitors of apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD) inflammation. Trends Mol Med 2014; 20:652-65. [PMID: 25282548 DOI: 10.1016/j.molmed.2014.09.006] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/12/2022]
Abstract
The inhibitor of apoptosis (IAP) family members, notably cIAP1, cIAP2, and XIAP, are critical and universal regulators of tumor necrosis factor (TNF) mediated survival, inflammatory, and death signaling pathways. Furthermore, IAPs mediate the signaling of nucleotide-binding oligomerization domain (NOD)1/NOD2 and other intracellular NOD-like receptors in response to bacterial pathogens. These pathways are important to the pathogenesis and treatment of inflammatory bowel disease (IBD). Inactivating mutations in the X-chromosome-linked IAP (XIAP) gene causes an immunodeficiency syndrome, X-linked lymphoproliferative disease type 2 (XLP2), in which 20% of patients develop severe intestinal inflammation. In addition, 4% of males with early-onset IBD also have inactivating mutations in XIAP. Therefore, the IAPs play a greater role in gut homeostasis, immunity and IBD development than previously suspected, and may have therapeutic potential.
Collapse
Affiliation(s)
- Jannie Pedersen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Eric C LaCasse
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, K1H 8L1, Canada.
| | - Jakob B Seidelin
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| | - Ole H Nielsen
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, DK-2730 Herlev, Denmark
| |
Collapse
|
193
|
Fiil BK, Gyrd-Hansen M. Met1-linked ubiquitination in immune signalling. FEBS J 2014; 281:4337-50. [PMID: 25060092 PMCID: PMC4286102 DOI: 10.1111/febs.12944] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/14/2014] [Accepted: 07/22/2014] [Indexed: 12/25/2022]
Abstract
N-terminal methionine-linked ubiquitin (Met1-Ub), or linear ubiquitin, has emerged as a central post-translational modification in innate immune signalling. The molecular machinery that assembles, senses and, more recently, disassembles Met1-Ub has been identified, and technical advances have enabled the identification of physiological substrates for Met1-Ub in response to activation of innate immune receptors. These discoveries have significantly advanced our understanding of how nondegradative ubiquitin modifications control proinflammatory responses mediated by nuclear factor-κB and mitogen-activated protein kinases. In this review, we discuss the current data on Met1-Ub function and regulation, and point to some of the questions that still remain unanswered.
Collapse
Affiliation(s)
- Berthe K Fiil
- Department of Disease Biology, Novo Nordisk Foundation Centre for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | |
Collapse
|
194
|
Immune diseases caused by mutations in kinases and components of the ubiquitin system. Nat Immunol 2014; 15:521-9. [PMID: 24840983 DOI: 10.1038/ni.2892] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 12/11/2022]
Abstract
The signaling networks that control the immune system are coordinated by a myriad of interconnecting phosphorylation and ubiquitylation events. This review provides an overview of mutations in human genes encoding these proteins that give rise to immune diseases. Analysis of the biological effects of these mutations has revealed the true physiological roles of particular signaling networks and promises to revolutionize the treatment of these diseases.
Collapse
|
195
|
|
196
|
Corn JE, Vucic D. Ubiquitin in inflammation: the right linkage makes all the difference. Nat Struct Mol Biol 2014; 21:297-300. [PMID: 24699077 DOI: 10.1038/nsmb.2808] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jacob E Corn
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California, USA
| | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, California, USA
| |
Collapse
|
197
|
Abstract
The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology.
Collapse
|
198
|
Elliott PR, Nielsen SV, Marco-Casanova P, Fiil BK, Keusekotten K, Mailand N, Freund SMV, Gyrd-Hansen M, Komander D. Molecular basis and regulation of OTULIN-LUBAC interaction. Mol Cell 2014; 54:335-48. [PMID: 24726323 PMCID: PMC4017264 DOI: 10.1016/j.molcel.2014.03.018] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/23/2014] [Accepted: 02/25/2014] [Indexed: 01/08/2023]
Abstract
The linear ubiquitin (Ub) chain assembly complex (LUBAC) generates Met1-linked “linear” Ub chains that regulate the activation of the nuclear factor κB (NFκB) transcription factor and other processes. We recently discovered OTULIN as a deubiquitinase that specifically cleaves Met1-linked polyUb. Now, we show that OTULIN binds via a conserved PUB-interacting motif (PIM) to the PUB domain of the LUBAC component HOIP. Crystal structures and nuclear magnetic resonance experiments reveal the molecular basis for the high-affinity interaction and explain why OTULIN binds the HOIP PUB domain specifically. Analysis of LUBAC-induced NFκB signaling suggests that OTULIN needs to be present on LUBAC in order to restrict Met1-polyUb signaling. Moreover, LUBAC-OTULIN complex formation is regulated by OTULIN phosphorylation in the PIM. Phosphorylation of OTULIN prevents HOIP binding, whereas unphosphorylated OTULIN is part of the endogenous LUBAC complex. Our work exemplifies how coordination of ubiquitin assembly and disassembly activities in protein complexes regulates individual Ub linkage types. OTULIN binds the HOIP PUB domain via a conserved N-terminal PUB-interacting motif Structural studies reveal specificity determinants for the binary interaction Loss of HOIP-OTULIN interaction causes deregulated accumulation of Met1-polyUb OTULIN binding to LUBAC is regulated by phosphorylation
Collapse
Affiliation(s)
- Paul R Elliott
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Sofie V Nielsen
- Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Paola Marco-Casanova
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Berthe Katrine Fiil
- Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kirstin Keusekotten
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Niels Mailand
- Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Stefan M V Freund
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Mads Gyrd-Hansen
- Department of Disease Biology, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David Komander
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
199
|
Schaeffer V, Akutsu M, Olma MH, Gomes LC, Kawasaki M, Dikic I. Binding of OTULIN to the PUB domain of HOIP controls NF-κB signaling. Mol Cell 2014; 54:349-61. [PMID: 24726327 DOI: 10.1016/j.molcel.2014.03.016] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/24/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
Abstract
Linear ubiquitin chains are implicated in the regulation of the NF-κB pathway, immunity, and inflammation. They are synthesized by the LUBAC complex containing the catalytic subunit HOIL-1-interacting protein (HOIP) and are disassembled by the linear ubiquitin-specific deubiquitinase OTULIN. Little is known about the regulation of these opposing activities. Here we demonstrate that HOIP and OTULIN interact and act as a bimolecular editing pair for linear ubiquitin signals in vivo. The HOIP PUB domain binds to the PUB interacting motif (PIM) of OTULIN and the chaperone VCP/p97. Structural studies revealed the basis of high-affinity interaction with the OTULIN PIM. The conserved Tyr56 of OTULIN makes critical contacts with the HOIP PUB domain, and its phosphorylation negatively regulates this interaction. Functionally, HOIP binding to OTULIN is required for the recruitment of OTULIN to the TNF receptor complex and to counteract HOIP-dependent activation of the NF-κB pathway.
Collapse
Affiliation(s)
- Veronique Schaeffer
- Institute of Biochemistry II, Goethe University Faculty of Medicine, 60590 Frankfurt am Main, Germany
| | - Masato Akutsu
- Institute of Biochemistry II, Goethe University Faculty of Medicine, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Michael H Olma
- Institute of Biochemistry II, Goethe University Faculty of Medicine, 60590 Frankfurt am Main, Germany
| | - Ligia C Gomes
- Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany
| | - Masato Kawasaki
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, 305-0801, Japan
| | - Ivan Dikic
- Institute of Biochemistry II, Goethe University Faculty of Medicine, 60590 Frankfurt am Main, Germany; Buchmann Institute for Molecular Life Sciences, Goethe University, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
200
|
Wolberger C. Mechanisms for regulating deubiquitinating enzymes. Protein Sci 2014; 23:344-53. [PMID: 24403057 DOI: 10.1002/pro.2415] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 12/23/2013] [Accepted: 12/23/2013] [Indexed: 12/26/2022]
Abstract
Ubiquitination is a reversible post-translational modification that plays a dynamic role in regulating most eukaryotic processes. Deubiquitinating enzymes (DUBs), which hydrolyze the isopeptide or peptide linkages joining ubiquitin to substrate lysines or N-termini, therefore play a key role in ubiquitin signaling. Cells employ multiple mechanisms to regulate DUB activity and thus ensure the appropriate biological response. Recent structural studies have shed light on several different mechanisms by which DUB activity and specificity is regulated.
Collapse
Affiliation(s)
- Cynthia Wolberger
- Department of Biophysics and Biophysical Chemistry and the Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| |
Collapse
|