151
|
Human RNase L tunes gene expression by selectively destabilizing the microRNA-regulated transcriptome. Proc Natl Acad Sci U S A 2015; 112:15916-21. [PMID: 26668391 DOI: 10.1073/pnas.1513034112] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Double-stranded RNA (dsRNA) activates the innate immune system of mammalian cells and triggers intracellular RNA decay by the pseudokinase and endoribonuclease RNase L. RNase L protects from pathogens and regulates cell growth and differentiation by destabilizing largely unknown mammalian RNA targets. We developed an approach for transcriptome-wide profiling of RNase L activity in human cells and identified hundreds of direct RNA targets and nontargets. We show that this RNase L-dependent decay selectively affects transcripts regulated by microRNA (miR)-17/miR-29/miR-200 and other miRs that function as suppressors of mammalian cell adhesion and proliferation. RNase L mimics the effects of these miRs and acts as a suppressor of proliferation and adhesion in mammalian cells. Our data suggest that RNase L-dependent decay serves to establish an antiproliferative state via destabilization of the miR-regulated transcriptome.
Collapse
|
152
|
Jones CI, Pashler AL, Towler BP, Robinson SR, Newbury SF. RNA-seq reveals post-transcriptional regulation of Drosophila insulin-like peptide dilp8 and the neuropeptide-like precursor Nplp2 by the exoribonuclease Pacman/XRN1. Nucleic Acids Res 2015; 44:267-80. [PMID: 26656493 PMCID: PMC4705666 DOI: 10.1093/nar/gkv1336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/17/2015] [Indexed: 11/28/2022] Open
Abstract
Ribonucleases are critically important in many cellular and developmental processes and defects in their expression are associated with human disease. Pacman/XRN1 is a highly conserved cytoplasmic exoribonuclease which degrades RNAs in a 5′-3′ direction. In Drosophila, null mutations in pacman result in small imaginal discs, a delay in onset of pupariation and lethality during the early pupal stage. In this paper, we have used RNA-seq in a genome-wide search for mRNAs misregulated in pacman null wing imaginal discs. Only 4.2% of genes are misregulated ±>2-fold in pacman null mutants compared to controls, in line with previous work showing that Pacman has specificity for particular mRNAs. Further analysis of the most upregulated mRNAs showed that Pacman post-transcriptionally regulates the expression of the secreted insulin-like peptide Dilp8. Dilp8 is related to human IGF-1, and has been shown to coordinate tissue growth with developmental timing in Drosophila. The increased expression of Dilp8 is consistent with the developmental delay seen in pacman null mutants. Our analysis, together with our previous results, show that the normal role of this exoribonuclease in imaginal discs is to suppress the expression of transcripts that are crucial in apoptosis and growth control during normal development.
Collapse
Affiliation(s)
- Christopher I Jones
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| | - Amy L Pashler
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| | - Benjamin P Towler
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| | - Sophie R Robinson
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| | - Sarah F Newbury
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK
| |
Collapse
|
153
|
Abstract
In this mini-review, we summarize our current knowledge about the cross-talk between the different levels of gene expression. We introduce the Ccr4 (carbon catabolite repressed 4)–Not (negative on TATA-less) complex as a candidate to be a master regulator that orchestrates between the different levels of gene expression. An integrated view of the findings about the Ccr4–Not complex suggests that it is involved in gene expression co-ordination. Since the discovery of the Not proteins in a selection for transcription regulators in yeast [Collart and Struhl (1994) Genes Dev. 8, 525–537], the Ccr4–Not complex has been connected to every step of the mRNA lifecycle. Moreover, it has been found to be relevant for appropriate protein folding and quaternary protein structure by being involved in co-translational protein complex assembly.
Collapse
|
154
|
Rege M, Subramanian V, Zhu C, Hsieh THS, Weiner A, Friedman N, Clauder-Münster S, Steinmetz LM, Rando OJ, Boyer LA, Peterson CL. Chromatin Dynamics and the RNA Exosome Function in Concert to Regulate Transcriptional Homeostasis. Cell Rep 2015; 13:1610-22. [PMID: 26586442 PMCID: PMC4662874 DOI: 10.1016/j.celrep.2015.10.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 09/02/2015] [Accepted: 10/09/2015] [Indexed: 12/12/2022] Open
Abstract
The histone variant H2A.Z is a hallmark of nucleosomes flanking promoters of protein-coding genes and is often found in nucleosomes that carry lysine 56-acetylated histone H3 (H3-K56Ac), a mark that promotes replication-independent nucleosome turnover. Here, we find that H3-K56Ac promotes RNA polymerase II occupancy at many protein-coding and noncoding loci, yet neither H3-K56Ac nor H2A.Z has a significant impact on steady-state mRNA levels in yeast. Instead, broad effects of H3-K56Ac or H2A.Z on RNA levels are revealed only in the absence of the nuclear RNA exosome. H2A.Z is also necessary for the expression of divergent, promoter-proximal non-coding RNAs (ncRNAs) in mouse embryonic stem cells. Finally, we show that H2A.Z functions with H3-K56Ac to facilitate formation of chromosome interaction domains (CIDs). Our study suggests that H2A.Z and H3-K56Ac work in concert with the RNA exosome to control mRNA and ncRNA expression, perhaps in part by regulating higher-order chromatin structures.
Collapse
Affiliation(s)
- Mayuri Rege
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Vidya Subramanian
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chenchen Zhu
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | - Tsung-Han S Hsieh
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Assaf Weiner
- School of Computer Science and Engineering, The Hebrew University, Jerusalem 91904, Israel; Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | - Nir Friedman
- School of Computer Science and Engineering, The Hebrew University, Jerusalem 91904, Israel; Alexander Silberman Institute of Life Sciences, The Hebrew University, Jerusalem 91904, Israel
| | | | - Lars M Steinmetz
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Oliver J Rando
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Laurie A Boyer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Craig L Peterson
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
155
|
Protein-RNA networks revealed through covalent RNA marks. Nat Methods 2015; 12:1163-70. [PMID: 26524240 PMCID: PMC4707952 DOI: 10.1038/nmeth.3651] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/05/2015] [Indexed: 12/29/2022]
Abstract
Protein-RNA networks are ubiquitous and central in biological control. We present an approach, termed “RNA Tagging,” that identifies protein-RNA interactions in vivo by analyzing purified cellular RNA, without protein purification or crosslinking. An RNA-binding protein of interest is fused to an enzyme that adds uridines to the end of RNA. RNA targets bound by the chimeric protein in vivo are covalently marked with uridines and subsequently identified from extracted RNA using high-throughput sequencing. We used this approach to identify hundreds of RNAs bound by a Saccharomyces cerevisiae PUF protein, Puf3p. The method revealed that while RNA-binding proteins productively bind specific RNAs to control their function, they also “sample” RNAs without exerting a regulatory effect. We exploited the method to uncover hundreds of new and likely regulated targets for a protein without canonical RNA-binding domains, Bfr1p. The RNA Tagging approach is well-suited to detect and analyze protein-RNA networks in vivo.
Collapse
|
156
|
Siwaszek A, Ukleja M, Dziembowski A. Proteins involved in the degradation of cytoplasmic mRNA in the major eukaryotic model systems. RNA Biol 2015; 11:1122-36. [PMID: 25483043 DOI: 10.4161/rna.34406] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The process of mRNA decay and surveillance is considered to be one of the main posttranscriptional gene expression regulation platforms in eukaryotes. The degradation of stable, protein-coding transcripts is normally initiated by removal of the poly(A) tail followed by 5'-cap hydrolysis and degradation of the remaining mRNA body by Xrn1. Alternatively, the exosome complex degrades mRNA in the 3'>5'direction. The newly discovered uridinylation-dependent pathway, which is present in many different organisms, also seems to play a role in bulk mRNA degradation. Simultaneously, to avoid the synthesis of incorrect proteins, special cellular machinery is responsible for the removal of faulty transcripts via nonsense-mediated, no-go, non-stop or non-functional 18S rRNA decay. This review is focused on the major eukaryotic cytoplasmic mRNA degradation pathways showing many similarities and pointing out main differences between the main model-species: yeast, Drosophila, plants and mammals.
Collapse
Affiliation(s)
- Aleksandra Siwaszek
- a Institute of Biochemistry and Biophysics ; Polish Academy of Sciences ; Warsaw , Poland
| | | | | |
Collapse
|
157
|
Schwarzl T, Higgins DG, Kolch W, Duffy DJ. Measuring Transcription Rate Changes via Time-Course 4-Thiouridine Pulse-Labelling Improves Transcriptional Target Identification. J Mol Biol 2015; 427:3368-74. [PMID: 26362006 DOI: 10.1016/j.jmb.2015.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
Abstract
Identifying changes in the transcriptional regulation of target genes from high-throughput studies is important for unravelling molecular mechanisms controlled by a given perturbation. When measuring global transcript levels only, the effect of the perturbation [e.g., transcription factor (TF) overexpression or drug treatment] on its target genes is often obscured by delayed feedback and secondary effects until the changes are fully propagated. As a proof of principle, we show that selective measuring of transcripts that are only synthesised after a perturbation [4-thiouridine (4sU) sequencing (4sU-seq)] is a more sensitive method to identify targets and time-dependent transcriptional responses than global transcript profiling. By metabolically labelling RNA in a time-course setup, we could vastly increase the sensitivity of MYCN target gene detection compared to traditional RNA sequencing. The validity of targets identified by 4sU-seq was demonstrated using chromatin immunoprecipitation sequencing and neuroblastoma microarray tumour data. Here, we describe the methodology, both molecular biology and computational aspects, required to successfully apply this 4sU-seq approach.
Collapse
Affiliation(s)
- Thomas Schwarzl
- Systems Biology Ireland, Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin Conway Institute, Belfield, Dublin 4, Ireland.
| | - Desmond G Higgins
- Systems Biology Ireland, Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin Conway Institute, Belfield, Dublin 4, Ireland
| | - Walter Kolch
- Systems Biology Ireland, Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin Conway Institute, Belfield, Dublin 4, Ireland
| | - David J Duffy
- Systems Biology Ireland, Conway Institute of Biomolecular and Biomedical Research and School of Medicine and Medical Science, University College Dublin Conway Institute, Belfield, Dublin 4, Ireland
| |
Collapse
|
158
|
Cytoplasmic Control of Sense-Antisense mRNA Pairs. Cell Rep 2015; 12:1853-64. [PMID: 26344770 DOI: 10.1016/j.celrep.2015.08.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 06/11/2015] [Accepted: 08/05/2015] [Indexed: 01/13/2023] Open
Abstract
Transcriptome analyses have revealed that convergent gene transcription can produce many 3'-overlapping mRNAs in diverse organisms. Few studies have examined the fate of 3'-complementary mRNAs in double-stranded RNA-dependent nuclear phenomena, and nothing is known about the cytoplasmic destiny of 3'-overlapping messengers or their impact on gene expression. Here, we demonstrate that the complementary tails of 3'-overlapping mRNAs can interact in the cytoplasm and promote post-transcriptional regulatory events including no-go decay (NGD) in Saccharomyces cerevisiae. Genome-wide experiments confirm that these messenger-interacting mRNAs (mimRNAs) form RNA duplexes in wild-type cells and thus have potential roles in modulating the mRNA levels of their convergent gene pattern under different growth conditions. We show that the post-transcriptional fate of hundreds of mimRNAs is controlled by Xrn1, revealing the extent to which this conserved 5'-3' cytoplasmic exoribonuclease plays an unexpected but key role in the post-transcriptional control of convergent gene expression.
Collapse
|
159
|
Harrison PF, Powell DR, Clancy JL, Preiss T, Boag PR, Traven A, Seemann T, Beilharz TH. PAT-seq: a method to study the integration of 3'-UTR dynamics with gene expression in the eukaryotic transcriptome. RNA (NEW YORK, N.Y.) 2015; 21:1502-10. [PMID: 26092945 PMCID: PMC4509939 DOI: 10.1261/rna.048355.114] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 04/20/2015] [Indexed: 05/21/2023]
Abstract
A major objective of systems biology is to quantitatively integrate multiple parameters from genome-wide measurements. To integrate gene expression with dynamics in poly(A) tail length and adenylation site, we developed a targeted next-generation sequencing approach, Poly(A)-Test RNA-sequencing. PAT-seq returns (i) digital gene expression, (ii) polyadenylation site/s, and (iii) the polyadenylation-state within and between eukaryotic transcriptomes. PAT-seq differs from previous 3' focused RNA-seq methods in that it depends strictly on 3' adenylation within total RNA samples and that the full-native poly(A) tail is included in the sequencing libraries. Here, total RNA samples from budding yeast cells were analyzed to identify the intersect between adenylation state and gene expression in response to loss of the major cytoplasmic deadenylase Ccr4. Furthermore, concordant changes to gene expression and adenylation-state were demonstrated in the classic Crabtree-Warburg metabolic shift. Because all polyadenylated RNA is interrogated by the approach, alternative adenylation sites, noncoding RNA and RNA-decay intermediates were also identified. Most important, the PAT-seq approach uses standard sequencing procedures, supports significant multiplexing, and thus replication and rigorous statistical analyses can for the first time be brought to the measure of 3'-UTR dynamics genome wide.
Collapse
Affiliation(s)
- Paul F Harrison
- Victorian Bioinformatics Consortium, Monash University, Clayton 3800, Australia Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton 3053, Australia Monash Bioinformatics Platform, Monash University, Clayton 3800, Australia
| | - David R Powell
- Victorian Bioinformatics Consortium, Monash University, Clayton 3800, Australia Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton 3053, Australia Monash Bioinformatics Platform, Monash University, Clayton 3800, Australia
| | - Jennifer L Clancy
- EMBL-Australia Collaborating Laboratory, Genome Biology Department, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra) 2601, Australian Capital Territory, Australia
| | - Thomas Preiss
- EMBL-Australia Collaborating Laboratory, Genome Biology Department, The John Curtin School of Medical Research (JCSMR), The Australian National University, Acton (Canberra) 2601, Australian Capital Territory, Australia Victor Chang Cardiac Research Institute, Darlinghurst (Sydney), New South Wales 2010, Australia
| | - Peter R Boag
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| | - Ana Traven
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| | - Torsten Seemann
- Victorian Bioinformatics Consortium, Monash University, Clayton 3800, Australia Life Sciences Computation Centre, Victorian Life Sciences Computation Initiative, Carlton 3053, Australia
| | - Traude H Beilharz
- Department of Biochemistry and Molecular Biology, Monash University, Clayton 3800, Australia
| |
Collapse
|
160
|
Abernathy E, Gilbertson S, Alla R, Glaunsinger B. Viral Nucleases Induce an mRNA Degradation-Transcription Feedback Loop in Mammalian Cells. Cell Host Microbe 2015. [PMID: 26211836 PMCID: PMC4538998 DOI: 10.1016/j.chom.2015.06.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gamma-herpesviruses encode a cytoplasmic mRNA-targeting endonuclease, SOX, that cleaves most cellular mRNAs. Cleaved fragments are subsequently degraded by the cellular 5′-3′ mRNA exonuclease Xrn1, thereby suppressing cellular gene expression and facilitating viral evasion of host defenses. We reveal that mammalian cells respond to this widespread cytoplasmic mRNA decay by altering RNA Polymerase II (RNAPII) transcription in the nucleus. Measuring RNAPII recruitment to promoters and nascent mRNA synthesis revealed that the majority of affected genes are transcriptionally repressed in SOX-expressing cells. The transcriptional feedback does not occur in response to the initial viral endonuclease-induced cleavage, but instead to degradation of the cleaved fragments by cellular exonucleases. In particular, Xrn1 catalytic activity is required for transcriptional repression. Notably, viral mRNA transcription escapes decay-induced repression, and this escape requires Xrn1. Collectively, these results indicate that mRNA decay rates impact transcription and that gamma-herpesviruses use this feedback mechanism to facilitate viral gene expression. Herpesvirus-induced cytoplasmic mRNA decay causes transcriptional alterations The mRNA decay-transcription feedback mechanism requires cellular decay factors Herpesviral genes escape mRNA degradation-induced transcriptional repression
Collapse
Affiliation(s)
- Emma Abernathy
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Sarah Gilbertson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Ravi Alla
- QB3 Computational Genomics Resource Laboratory, University of California, Berkeley, CA 94720, USA
| | - Britt Glaunsinger
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
161
|
Schmid M, Olszewski P, Pelechano V, Gupta I, Steinmetz LM, Jensen TH. The Nuclear PolyA-Binding Protein Nab2p Is Essential for mRNA Production. Cell Rep 2015; 12:128-139. [PMID: 26119729 DOI: 10.1016/j.celrep.2015.06.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 05/13/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022] Open
Abstract
Polyadenylation of mRNA is a key step in eukaryotic gene expression. However, despite the major impact of poly(A) tails on mRNA metabolism, the precise roles of poly(A)-binding proteins (PABPs) in nuclear mRNA biogenesis remain elusive. Here, we demonstrate that rapid nuclear depletion of the S. cerevisiae PABP Nab2p leads to a global loss of cellular mRNA, but not of RNA lacking poly(A) tails. Disappearance of mRNA is a nuclear event, but not due to decreased transcription. Instead, the absence of Nab2p results in robust nuclear mRNA decay by the ribonucleolytic RNA exosome in a polyadenylation-dependent process. We conclude that Nab2p is required to protect early mRNA and therefore constitutes a crucial nuclear mRNA biogenesis factor.
Collapse
Affiliation(s)
- Manfred Schmid
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, 8000 Aarhus C., Denmark.
| | - Pawel Olszewski
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, 8000 Aarhus C., Denmark
| | - Vicent Pelechano
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Ishaan Gupta
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany
| | - Lars M Steinmetz
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany; Stanford Genome Technology Center, Stanford University, Palo Alto, CA 94304, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, C.F. Møllers Alle 3, Building 1130, 8000 Aarhus C., Denmark.
| |
Collapse
|
162
|
de Nadal E, Posas F. Osmostress-induced gene expression--a model to understand how stress-activated protein kinases (SAPKs) regulate transcription. FEBS J 2015; 282:3275-85. [PMID: 25996081 PMCID: PMC4744689 DOI: 10.1111/febs.13323] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/27/2015] [Accepted: 05/18/2015] [Indexed: 01/18/2023]
Abstract
Adaptation is essential for maximizing cell survival and for cell fitness in response to sudden changes in the environment. Several aspects of cell physiology change during adaptation. Major changes in gene expression are associated with cell exposure to environmental changes, and several aspects of mRNA biogenesis appear to be targeted by signaling pathways upon stress. Exhaustive reviews have been written regarding adaptation to stress and regulation of gene expression. In this review, using osmostress in yeast as a prototypical case study, we highlight those aspects of regulation of gene induction that are general to various environmental stresses as well as mechanistic aspects that are potentially conserved from yeast to mammals.
Collapse
Affiliation(s)
- Eulàlia de Nadal
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| | - Francesc Posas
- Cell Signaling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
163
|
de Pretis S, Kress T, Morelli MJ, Melloni GEM, Riva L, Amati B, Pelizzola M. INSPEcT: a computational tool to infer mRNA synthesis, processing and degradation dynamics from RNA- and 4sU-seq time course experiments. Bioinformatics 2015; 31:2829-35. [PMID: 25957348 DOI: 10.1093/bioinformatics/btv288] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/03/2015] [Indexed: 11/15/2022] Open
Abstract
MOTIVATION Cellular mRNA levels originate from the combined action of multiple regulatory processes, which can be recapitulated by the rates of pre-mRNA synthesis, pre-mRNA processing and mRNA degradation. Recent experimental and computational advances set the basis to study these intertwined levels of regulation. Nevertheless, software for the comprehensive quantification of RNA dynamics is still lacking. RESULTS INSPEcT is an R package for the integrative analysis of RNA- and 4sU-seq data to study the dynamics of transcriptional regulation. INSPEcT provides gene-level quantification of these rates, and a modeling framework to identify which of these regulatory processes are most likely to explain the observed mRNA and pre-mRNA concentrations. Software performance is tested on a synthetic dataset, instrumental to guide the choice of the modeling parameters and the experimental design. AVAILABILITY AND IMPLEMENTATION INSPEcT is submitted to Bioconductor and is currently available as Supplementary Additional File S1. CONTACT mattia.pelizzola@iit.it SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Stefano de Pretis
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139, Milano, Italy and
| | - Theresia Kress
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139, Milano, Italy and
| | - Marco J Morelli
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139, Milano, Italy and
| | - Giorgio E M Melloni
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139, Milano, Italy and
| | - Laura Riva
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139, Milano, Italy and
| | - Bruno Amati
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139, Milano, Italy and Department of Experimental Oncology, European Institute of Oncology (IEO), 20139, Milano, Italy
| | - Mattia Pelizzola
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia (IIT), 20139, Milano, Italy and
| |
Collapse
|
164
|
Malabat C, Feuerbach F, Ma L, Saveanu C, Jacquier A. Quality control of transcription start site selection by nonsense-mediated-mRNA decay. eLife 2015; 4:e06722. [PMID: 25905671 PMCID: PMC4434318 DOI: 10.7554/elife.06722] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/22/2015] [Indexed: 01/01/2023] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a translation-dependent RNA quality-control pathway targeting transcripts such as messenger RNAs harboring premature stop-codons or short upstream open reading frame (uORFs). Our transcription start sites (TSSs) analysis of Saccharomyces cerevisiae cells deficient for RNA degradation pathways revealed that about half of the pervasive transcripts are degraded by NMD, which provides a fail-safe mechanism to remove spurious transcripts that escaped degradation in the nucleus. Moreover, we found that the low specificity of RNA polymerase II TSSs selection generates, for 47% of the expressed genes, NMD-sensitive transcript isoforms carrying uORFs or starting downstream of the ATG START codon. Despite the low abundance of this last category of isoforms, their presence seems to constrain genomic sequences, as suggested by the significant bias against in-frame ATGs specifically found at the beginning of the corresponding genes and reflected by a depletion of methionines in the N-terminus of the encoded proteins.
Collapse
Affiliation(s)
- Christophe Malabat
- Institut Pasteur, UMR3525, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, Paris, France
| | - Frank Feuerbach
- Institut Pasteur, UMR3525, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, Paris, France
| | - Laurence Ma
- Plate-Forme Génomique, Institut Pasteur, Paris, France
| | - Cosmin Saveanu
- Institut Pasteur, UMR3525, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, Paris, France
| | - Alain Jacquier
- Institut Pasteur, UMR3525, Génétique des Interactions Macromoléculaires, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
165
|
Moon SL, Blackinton JG, Anderson JR, Dozier MK, Dodd BJT, Keene JD, Wilusz CJ, Bradrick SS, Wilusz J. XRN1 stalling in the 5' UTR of Hepatitis C virus and Bovine Viral Diarrhea virus is associated with dysregulated host mRNA stability. PLoS Pathog 2015; 11:e1004708. [PMID: 25747802 PMCID: PMC4352041 DOI: 10.1371/journal.ppat.1004708] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/26/2015] [Indexed: 01/11/2023] Open
Abstract
We demonstrate that both Hepatitis C virus (HCV) and Bovine Viral Diarrhea virus (BVDV) contain regions in their 5’ UTRs that stall and repress the enzymatic activity of the cellular 5’-3’ exoribonuclease XRN1, resulting in dramatic changes in the stability of cellular mRNAs. We used biochemical assays, virus infections, and transfection of the HCV and BVDV 5’ untranslated regions in the absence of other viral gene products to directly demonstrate the existence and mechanism of this novel host-virus interaction. In the context of HCV infection, we observed globally increased stability of mRNAs resulting in significant increases in abundance of normally short-lived mRNAs encoding a variety of relevant oncogenes and angiogenesis factors. These findings suggest that non-coding regions from multiple genera of the Flaviviridae interfere with XRN1 and impact post-transcriptional processes, causing global dysregulation of cellular gene expression which may promote cell growth and pathogenesis. Understanding how a persistent virus like Hepatitis C Virus (HCV) interfaces with the cellular machinery during infection can provide significant insights into mechanisms of pathogenesis. We demonstrate that while trying to degrade HCV transcripts, a major cellular exonuclease called XRN1 stalls and gets repressed in the 5’ noncoding region of the viral mRNA. Interestingly, the region where XRN1 stalls in the 5’ UTR includes the viral IRES that is required for translation initiation, uncovering a novel, unexpected function for this well-studied region. Differential mRNA stability is a major regulator of gene expression in cells. Curiously, repression of the cellular XRN1 exonuclease is associated with a general repression of mRNA decay in general in HCV-infected cells. Thus numerous cellular mRNAs are stabilized and accumulate in a dysregulated fashion during HCV infection. Normally short-lived mRNAs are disproportionately affected—including mRNAs that encode immune regulators and oncogenes. Thus, this study suggests a novel role for the 5’ UTR of HCV in molecular pathogenesis—including hepatocellular carcinoma. Furthermore, the 5’ UTR of Bovine Viral Diarrhea virus also represses the XRN1 enzyme and stabilizes cellular mRNA. Therefore a strategy of 5’ UTR-mediated XRN1 repression appears to be conserved among the vector-independent members of the Flaviviridae.
Collapse
Affiliation(s)
- Stephanie L. Moon
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey G. Blackinton
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - John R. Anderson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mary K. Dozier
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Benjamin J. T. Dodd
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jack D. Keene
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Carol J. Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Shelton S. Bradrick
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
166
|
Abstract
Gene expression is controlled by diverse mechanisms before, during, and after transcription. Chromatin modification factors as well as transcriptional repressors, silencers, and enhancers all feed into how eukaryotes transcribe RNA in the nucleus. However, there is increasing evidence that post-transcriptional regulation of gene expression is as widespread as transcriptional control if not more so. Studies of specific transcripts in oocytes and embryos are at the core of our mechanistic understanding of many post-transcriptional events. Coupled with genome-wide and large-scale experimental approaches, research is bringing to light how these regulatory events function independently and in concert to regulate protein expression.
Collapse
|
167
|
Palumbo MC, Farina L, Paci P. Kinetics effects and modeling of mRNA turnover. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:327-36. [PMID: 25727049 DOI: 10.1002/wrna.1277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 12/12/2014] [Accepted: 01/09/2015] [Indexed: 01/08/2023]
Abstract
Broader comprehension of gene expression regulatory mechanisms can be gained from a global analysis of how transcription and degradation are coordinated to orchestrate complex cell responses. The role of messenger RNA (mRNA) turnover modulation in gene expression levels has become increasingly recognized. From such perspective, in this review we briefly illustrate how a simple but effective mathematical model of mRNA turnover and some experimental findings, may together shed light on the molecular mechanisms underpinning the major role of mRNA decay rates in shaping the kinetics of gene activation and repression.
Collapse
Affiliation(s)
- Maria Concetta Palumbo
- Institute for Computing Applications "Mauro Picone", National Research Council, Rome, Italy
| | | | | |
Collapse
|
168
|
Plaschka C, Larivière L, Wenzeck L, Seizl M, Hemann M, Tegunov D, Petrotchenko EV, Borchers CH, Baumeister W, Herzog F, Villa E, Cramer P. Architecture of the RNA polymerase II-Mediator core initiation complex. Nature 2015; 518:376-80. [PMID: 25652824 DOI: 10.1038/nature14229] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 01/14/2015] [Indexed: 12/12/2022]
Abstract
The conserved co-activator complex Mediator enables regulated transcription initiation by RNA polymerase (Pol) II. Here we reconstitute an active 15-subunit core Mediator (cMed) comprising all essential Mediator subunits from Saccharomyces cerevisiae. The cryo-electron microscopic structure of cMed bound to a core initiation complex was determined at 9.7 Å resolution. cMed binds Pol II around the Rpb4-Rpb7 stalk near the carboxy-terminal domain (CTD). The Mediator head module binds the Pol II dock and the TFIIB ribbon and stabilizes the initiation complex. The Mediator middle module extends to the Pol II foot with a 'plank' that may influence polymerase conformation. The Mediator subunit Med14 forms a 'beam' between the head and middle modules and connects to the tail module that is predicted to bind transcription activators located on upstream DNA. The Mediator 'arm' and 'hook' domains contribute to a 'cradle' that may position the CTD and TFIIH kinase to stimulate Pol II phosphorylation.
Collapse
Affiliation(s)
- C Plaschka
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - L Larivière
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - L Wenzeck
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - M Seizl
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - M Hemann
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - D Tegunov
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - E V Petrotchenko
- Department of Biochemistry and Microbiology, Genome British Columbia Protein Centre, University of Victoria, 3101-4464 Markham Street, Victoria, British Columbia V8Z7X8, Canada
| | - C H Borchers
- Department of Biochemistry and Microbiology, Genome British Columbia Protein Centre, University of Victoria, 3101-4464 Markham Street, Victoria, British Columbia V8Z7X8, Canada
| | - W Baumeister
- Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - F Herzog
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | - E Villa
- 1] Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany [2] Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - P Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
169
|
Wright DE, Kao CF. (Ubi)quitin' the h2bit: recent insights into the roles of H2B ubiquitylation in DNA replication and transcription. Epigenetics 2015; 10:122-6. [PMID: 25603102 DOI: 10.1080/15592294.2014.1003750] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The reversible ubiquitylation of histone H2B has long been known to regulate gene transcription, and is now understood to modulate DNA replication as well. In this review, we describe how recent, genome-wide analyses have demonstrated that this histone mark has further reaching effects on transcription and replication than once thought. We also consider the ongoing efforts to elucidate the molecular mechanisms by which H2B ubiquitylation affects processes on the DNA template, and outline the various hypothetical scenarios.
Collapse
Affiliation(s)
- Duncan E Wright
- a Institute of Cellular and Organismic Biology; Academia Sinica ; Taipei , Taiwan
| | | |
Collapse
|
170
|
Wolf E, Lin CY, Eilers M, Levens DL. Taming of the beast: shaping Myc-dependent amplification. Trends Cell Biol 2014; 25:241-8. [PMID: 25475704 DOI: 10.1016/j.tcb.2014.10.006] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 10/29/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
Abstract
Myc deregulation is a hallmark oncogenic event where overexpression of the transcription factor gives rise to numerous tumorigenic phenotypes. The complex consequences of Myc deregulation have prevented clear mechanistic interpretations of its function. A synthesis of recent experimental observations offers a consensus on the direct transcriptional function of Myc: when overexpressed, Myc broadly engages the established euchromatic cis-regulatory landscape of the cell, where the factor generally amplifies transcription. The level of Myc binding at target genes and the transcriptional output are differentially modulated by additional regulators, including Miz1. Targeting Myc oncogenic activity will require an understanding of whether amplification promotes tumorigenesis and the consequences of amplification in tumors adapted to oncogenic Myc.
Collapse
Affiliation(s)
- Elmar Wolf
- Theodor Boveri Institute, Biocenter, and Comprehensive Cancer Center, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Charles Y Lin
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Martin Eilers
- Theodor Boveri Institute, Biocenter, and Comprehensive Cancer Center, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - David L Levens
- Laboratory of Pathology, 10 Center Drive, Bethesda, MD 20892-1500, USA.
| |
Collapse
|
171
|
Hasan A, Cotobal C, Duncan CDS, Mata J. Systematic analysis of the role of RNA-binding proteins in the regulation of RNA stability. PLoS Genet 2014; 10:e1004684. [PMID: 25375137 PMCID: PMC4222612 DOI: 10.1371/journal.pgen.1004684] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/18/2014] [Indexed: 01/18/2023] Open
Abstract
mRNA half-lives are transcript-specific and vary over a range of more than 100-fold in eukaryotic cells. mRNA stabilities can be regulated by sequence-specific RNA-binding proteins (RBPs), which bind to regulatory sequence elements and modulate the interaction of the mRNA with the cellular RNA degradation machinery. However, it is unclear if this kind of regulation is sufficient to explain the large range of mRNA stabilities. To address this question, we examined the transcriptome of 74 Schizosaccharomyces pombe strains carrying deletions in non-essential genes encoding predicted RBPs (86% of all such genes). We identified 25 strains that displayed changes in the levels of between 4 and 104 mRNAs. The putative targets of these RBPs formed biologically coherent groups, defining regulons involved in cell separation, ribosome biogenesis, meiotic progression, stress responses and mitochondrial function. Moreover, mRNAs in these groups were enriched in specific sequence motifs in their coding sequences and untranslated regions, suggesting that they are coregulated at the posttranscriptional level. We performed genome-wide RNA stability measurements for several RBP mutants, and confirmed that the altered mRNA levels were caused by changes in their stabilities. Although RBPs regulate the decay rates of multiple regulons, only 16% of all S. pombe mRNAs were affected in any of the 74 deletion strains. This suggests that other players or mechanisms are required to generate the observed range of RNA half-lives of a eukaryotic transcriptome.
Collapse
Affiliation(s)
- Ayesha Hasan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Cristina Cotobal
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Caia D. S. Duncan
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
172
|
Babbarwal V, Fu J, Reese JC. The Rpb4/7 module of RNA polymerase II is required for carbon catabolite repressor protein 4-negative on TATA (Ccr4-not) complex to promote elongation. J Biol Chem 2014; 289:33125-30. [PMID: 25315781 DOI: 10.1074/jbc.c114.601088] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Gene expression relies on the balance between mRNA synthesis in the nucleus and decay in the cytoplasm, processes once thought to be separate. We now know that transcription and decay rates are coordinated, but the factors or molecular mechanisms are unclear. The Ccr4-Not complex regulates multiple stages of gene expression, from mRNA synthesis to protein destruction. One of its functions is to promote RNA polymerase II elongation by reactivating arrested elongation complexes. Here we explored the features of polymerase required for Ccr4-Not to promote elongation and found that the Rpb4/7 module is important for Ccr4-Not to associate with elongation complexes and stimulate elongation. Rpb4/7 has also been implicated in coordinating mRNA synthesis and decay, but its role in this process is controversial. The interplay between Ccr4-Not and Rpb4/7 described here suggests a mechanism for how the cell coordinates mRNA synthesis and decay.
Collapse
Affiliation(s)
- Vinod Babbarwal
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Penn State University, University Park, Pennsylvania 16802 and
| | - Jianhua Fu
- the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Joseph C Reese
- From the Department of Biochemistry and Molecular Biology, Center for Eukaryotic Gene Regulation, Penn State University, University Park, Pennsylvania 16802 and
| |
Collapse
|
173
|
Lukowski SW, Rothnagel JA, Trezise AEO. CFTR mRNA expression is regulated by an upstream open reading frame and RNA secondary structure in its 5' untranslated region. Hum Mol Genet 2014; 24:899-912. [PMID: 25274779 DOI: 10.1093/hmg/ddu501] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Post-transcriptional regulation of gene expression through 5' untranslated region (5'UTR)-encoded cis-acting elements is an important mechanism for the control of protein expression levels. Through controlling specific aspects of translation initiation, expression can be tightly regulated while remaining responsive to cellular requirements. With respect to cystic fibrosis (CF), the overexpression of cystic fibrosis transmembrane conductance regulator (CFTR) protein trafficking mutants, such as delta-F508, is of great biological and clinical interest. By understanding the post-transcriptional mechanisms that regulate CFTR expression, new procedures can be developed to enhance CFTR expression in homozygous delta-F508 CF patients. We have identified the key elements of a complex negative regulatory mechanism that is encoded within the human CFTR 5'UTR and show how these elements act in combination to restrict CFTR gene expression to a consistently low level in a transcript-specific manner. This study shows, for the first time, that endogenous human CFTR expression is post-transcriptionally regulated through a 5'UTR-mediated mechanism. We show that the very low levels of endogenous CFTR expression, compared with other low expression genes, are maintained through the co-operative inhibitory effects of an upstream open reading frame and a thermodynamically stable RNA secondary structure.
Collapse
Affiliation(s)
- Samuel W Lukowski
- School of Chemistry and Molecular Biosciences and Australian Equine Genetics Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Ann E O Trezise
- School of Chemistry and Molecular Biosciences and Australian Equine Genetics Research Centre, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
174
|
Wollschlaeger C, Trevijano-Contador N, Wang X, Legrand M, Zaragoza O, Heitman J, Janbon G. Distinct and redundant roles of exonucleases in Cryptococcus neoformans: implications for virulence and mating. Fungal Genet Biol 2014; 73:20-8. [PMID: 25267175 DOI: 10.1016/j.fgb.2014.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/17/2014] [Accepted: 09/22/2014] [Indexed: 01/26/2023]
Abstract
Opportunistic pathogens like Cryptococcus neoformans are constantly exposed to changing environments, in their natural habitat as well as when encountering a human host. This requires a coordinated program to regulate gene expression that can act at the levels of mRNA synthesis and also mRNA degradation. Here, we find that deletion of the gene encoding the major cytoplasmic 5'→3' exonuclease Xrn1p in C. neoformans has important consequences for virulence associated phenotypes such as growth at 37 °C, capsule and melanin. In an invertebrate model of cryptococcosis the alteration of these virulence properties corresponds to avirulence of the xrn1Δ mutant strains. Additionally, deletion of XRN1 impairs uni- and bisexual mating. On a molecular level, the absence of XRN1 is associated with the upregulation of other major exonuclease encoding genes (i.e. XRN2 and RRP44). Using inducible alleles of RRP44 and XRN2, we show that artificial overexpression of these genes alters LAC1 gene expression and mating. Our data thus suggest the existence of a complex interdependent regulation of exonuclease encoding genes that impact upon virulence and mating in C. neoformans.
Collapse
Affiliation(s)
- Carolin Wollschlaeger
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques - INRA USC2019, 75015 Paris, France
| | - Nuria Trevijano-Contador
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Xuying Wang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Mélanie Legrand
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques - INRA USC2019, 75015 Paris, France
| | - Oscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Guilhem Janbon
- Institut Pasteur, Unité Biologie et Pathogénicité Fongiques - INRA USC2019, 75015 Paris, France.
| |
Collapse
|
175
|
Abstract
What has been will be again, what has been done will be done again; there is nothing new under the sun. -Ecclesiastes 1:9 (New International Version) Posttranscriptional regulation of gene expression has an important role in defining the phenotypic characteristics of an organism. Well-defined steps in mRNA metabolism that occur in the nucleus-capping, splicing, and polyadenylation-are mechanistically linked to the process of transcription. Recent evidence suggests another link between RNA polymerase II (Pol II) and a posttranscriptional process that occurs in the cytoplasm-mRNA decay. This conclusion appears to represent a conundrum. How could mRNA synthesis in the nucleus and mRNA decay in the cytoplasm be mechanistically linked? After a brief overview of mRNA processing, we will review the recent evidence for transcription-coupled mRNA decay and the possible involvement of Snf1, the Saccharomyces cerevisiae ortholog of AMP-activated protein kinase, in this process.
Collapse
|
176
|
Marguerat S, Lawler K, Brazma A, Bähler J. Contributions of transcription and mRNA decay to gene expression dynamics of fission yeast in response to oxidative stress. RNA Biol 2014; 11:702-14. [PMID: 25007214 PMCID: PMC4156502 DOI: 10.4161/rna.29196] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cooperation of transcriptional and post-transcriptional levels of control to shape gene regulation is only partially understood. Here we show that a combination of two simple and non-invasive genomic techniques, coupled with kinetic mathematical modeling, afford insight into the intricate dynamics of RNA regulation in response to oxidative stress in the fission yeast Schizosaccharomyces pombe. This study reveals a dominant role of transcriptional regulation in response to stress, but also points to the first minutes after stress induction as a critical time when the coordinated control of mRNA turnover can support the control of transcription for rapid gene regulation. In addition, we uncover specialized gene expression strategies associated with distinct functional gene groups, such as simultaneous transcriptional repression and mRNA destabilization for genes encoding ribosomal proteins, delayed mRNA destabilization with varying contribution of transcription for ribosome biogenesis genes, dominant roles of mRNA stabilization for genes functioning in protein degradation, and adjustment of both transcription and mRNA turnover during the adaptation to stress. We also show that genes regulated independently of the bZIP transcription factor Atf1p are predominantly controlled by mRNA turnover, and identify putative cis-regulatory sequences that are associated with different gene expression strategies during the stress response. This study highlights the intricate and multi-faceted interplay between transcription and RNA turnover during the dynamic regulatory response to stress.
Collapse
Affiliation(s)
- Samuel Marguerat
- Department of Genetics, Evolution & Environment and UCL Cancer Institute; University College London; London, UK
| | - Katherine Lawler
- European Molecular Biology Laboratory; EMBL-EBI; Wellcome Trust Genome Campus; Hinxton, UK
| | - Alvis Brazma
- European Molecular Biology Laboratory; EMBL-EBI; Wellcome Trust Genome Campus; Hinxton, UK
| | - Jürg Bähler
- Department of Genetics, Evolution & Environment and UCL Cancer Institute; University College London; London, UK
| |
Collapse
|
177
|
Braun KA, Vaga S, Dombek KM, Fang F, Palmisano S, Aebersold R, Young ET. Phosphoproteomic analysis identifies proteins involved in transcription-coupled mRNA decay as targets of Snf1 signaling. Sci Signal 2014; 7:ra64. [PMID: 25005228 DOI: 10.1126/scisignal.2005000] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stresses, such as glucose depletion, activate Snf1, the Saccharomyces cerevisiae ortholog of adenosine monophosphate-activated protein kinase (AMPK), enabling adaptive cellular responses. In addition to affecting transcription, Snf1 may also promote mRNA stability in a gene-specific manner. To understand Snf1-mediated signaling, we used quantitative mass spectrometry to identify proteins that were phosphorylated in a Snf1-dependent manner. We identified 210 Snf1-dependent phosphopeptides in 145 proteins. Thirteen of these proteins are involved in mRNA metabolism. Of these, we found that Ccr4 (the major cytoplasmic deadenylase), Dhh1 (an RNA helicase), and Xrn1 (an exoribonuclease) were required for the glucose-induced decay of Snf1-dependent mRNAs that were activated by glucose depletion. Unexpectedly, deletion of XRN1 reduced the accumulation of Snf1-dependent transcripts that were synthesized during glucose depletion. Deletion of SNF1 rescued the synthetic lethality of simultaneous deletion of XRN1 and REG1, which encodes a regulatory subunit of a phosphatase that inhibits Snf1. Mutation of three Snf1-dependent phosphorylation sites in Xrn1 reduced glucose-induced mRNA decay. Thus, Xrn1 is required for Snf1-dependent mRNA homeostasis in response to nutrient availability.
Collapse
Affiliation(s)
- Katherine A Braun
- Department of Biochemistry, University of Washington, 1705 Northeast Pacific Street, Seattle, WA 98195-7350, USA
| | - Stefania Vaga
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, CH-8057 Zurich, Switzerland
| | - Kenneth M Dombek
- Department of Biochemistry, University of Washington, 1705 Northeast Pacific Street, Seattle, WA 98195-7350, USA
| | - Fang Fang
- Department of Biochemistry, University of Washington, 1705 Northeast Pacific Street, Seattle, WA 98195-7350, USA
| | - Salvator Palmisano
- Department of Biochemistry, University of Washington, 1705 Northeast Pacific Street, Seattle, WA 98195-7350, USA
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, CH-8057 Zurich, Switzerland. Faculty of Science, University of Zurich, CH-8057 Zurich, Switzerland
| | - Elton T Young
- Department of Biochemistry, University of Washington, 1705 Northeast Pacific Street, Seattle, WA 98195-7350, USA.
| |
Collapse
|
178
|
Young ET, VanHook AM. Science Signaling
Podcast: 8 July 2014. Sci Signal 2014. [DOI: 10.1126/scisignal.2005595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A nutrient-sensing kinase inhibits the decay of transcripts encoding proteins that allow cells to utilize nonglucose carbon sources.
Collapse
Affiliation(s)
- Elton T. Young
- Department of Biochemistry, University of Washington, 1705 NE Pacific St., Seattle WA 98195–7350, USA
| | - Annalisa M. VanHook
- Web Editor, Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, NW, Washington, DC 20005, USA
| |
Collapse
|
179
|
Chak LL, Okamura K. Argonaute-dependent small RNAs derived from single-stranded, non-structured precursors. Front Genet 2014; 5:172. [PMID: 24959173 PMCID: PMC4050365 DOI: 10.3389/fgene.2014.00172] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/22/2014] [Indexed: 12/31/2022] Open
Abstract
A general feature of Argonaute-dependent small RNAs is their base-paired precursor structures, and precursor duplex structures are often required for confident annotation of miRNA genes. However, this rule has been broken by discoveries of functional small RNA species whose precursors lack a predictable double-stranded (ds-) RNA structure, arguing that duplex structures are not prerequisite for small RNA loading to Argonautes. The biological significance of single-stranded (ss-) RNA loading has been recognized particularly in systems where active small RNA amplification mechanisms are involved, because even a small amount of RNA molecules can trigger the production of abundant RNA species leading to profound biological effects. However, even in the absence of small RNA amplification mechanisms, recent studies have demonstrated that potent gene silencing can be achieved using chemically modified synthetic ssRNAs that are resistant to RNases in mice. Therefore, such ssRNA-mediated gene regulation may have broader roles than previously recognized, and the findings have opened the door for further research to optimize the design of ss-siRNAs toward future pharmaceutical and biomedical applications of gene silencing technologies. In this review, we will summarize studies about endogenous ssRNA species that are bound by Argonaute proteins and how ssRNA precursors are recognized by various small RNA pathways.
Collapse
Affiliation(s)
- Li-Ling Chak
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore Singapore, Singapore
| | - Katsutomo Okamura
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore Singapore, Singapore ; School of Biological Sciences, Nanyang Technological University Singapore, Singapore
| |
Collapse
|
180
|
Transcriptional and posttranscriptional regulation of cytokine gene expression in HIV-1 antigen-specific CD8+ T cells that mediate virus inhibition. J Virol 2014; 88:9514-28. [PMID: 24899193 DOI: 10.1128/jvi.00802-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
UNLABELLED The ability of CD8+ T cells to effectively limit HIV-1 replication and block HIV-1 acquisition is determined by the capacity to rapidly respond to HIV-1 antigens. Understanding both the functional properties and regulation of an effective CD8+ response would enable better evaluation of T cell-directed vaccine strategies and may inform the design of new therapies. We assessed the antigen specificity, cytokine signature, and mechanisms that regulate antiviral gene expression in CD8+ T cells from a cohort of HIV-1-infected virus controllers (VCs) (<5,000 HIV-1 RNA copies/ml and CD4+ lymphocyte counts of >400 cells/μl) capable of soluble inhibition of HIV-1. Gag p24 and Nef CD8+ T cell-specific soluble virus inhibition was common among the VCs and correlated with substantial increases in the abundance of mRNAs encoding the antiviral cytokines macrophage inflammatory proteins MIP-1α, MIP-1αP (CCL3L1), and MIP-1β; granulocyte-macrophage colony-stimulating factor (GM-CSF); lymphotactin (XCL1); tumor necrosis factor receptor superfamily member 9 (TNFRSF9); and gamma interferon (IFN-γ). The induction of several of these mRNAs was driven through a coordinated response of both increased transcription and stabilization of mRNA, which together accounted for the observed increase in mRNA abundance. This coordinated response allows rapid and robust induction of mRNA messages that can enhance the CD8+ T cells' ability to inhibit virus upon antigen encounter. IMPORTANCE We show that mRNA stability, in addition to transcription, is key in regulating the direct anti-HIV-1 function of antigen-specific memory CD8+ T cells. Regulation at the level of RNA helps enable rapid recall of memory CD8+ T cell effector functions for HIV-1 inhibition. By uncovering and understanding the mechanisms employed by CD8+ T cell subsets with antigen-specific anti-HIV-1 activity, we can identify new strategies for comprehensive identification of other important antiviral genes. This will, in turn, enhance our ability to inhibit virus replication by informing both cure strategies and HIV-1 vaccine designs that aim to reduce transmission and can aid in blocking HIV-1 acquisition.
Collapse
|
181
|
Abstract
Comparative genome analyses reveal that organismal complexity scales not with gene number but with gene regulation. Recent efforts indicate that the human genome likely contains hundreds of thousands of enhancers, with a typical gene embedded in a milieu of tens of enhancers. Proliferation of cis-regulatory DNAs is accompanied by increased complexity and functional diversification of transcriptional machineries recognizing distal enhancers and core promoters and by the high-order spatial organization of genetic elements. We review progress in unraveling one of the outstanding mysteries of modern biology: the dynamic communication of remote enhancers with target promoters in the specification of cellular identity.
Collapse
|
182
|
Schäfer IB, Rode M, Bonneau F, Schüssler S, Conti E. The structure of the Pan2-Pan3 core complex reveals cross-talk between deadenylase and pseudokinase. Nat Struct Mol Biol 2014; 21:591-8. [PMID: 24880344 DOI: 10.1038/nsmb.2834] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/02/2014] [Indexed: 01/21/2023]
Abstract
Pan2-Pan3 is a conserved complex involved in the shortening of mRNA poly(A) tails, the initial step in eukaryotic mRNA turnover. We show that recombinant Saccharomyces cerevisiae Pan2-Pan3 can deadenylate RNAs in vitro without needing the poly(A)-binding protein Pab1. The crystal structure of an active ~200-kDa core complex reveals that Pan2 and Pan3 interact with an unusual 1:2 stoichiometry imparted by the asymmetric nature of the Pan3 homodimer. An extended region of Pan2 wraps around Pan3 and provides a major anchoring point for complex assembly. A Pan2 module formed by the pseudoubiquitin-hydrolase and RNase domains latches onto the Pan3 pseudokinase with intertwined interactions that orient the deadenylase active site toward the A-binding site of the interacting Pan3. The molecular architecture of Pan2-Pan3 suggests how the nuclease and its pseudokinase regulator act in synergy to promote deadenylation.
Collapse
Affiliation(s)
- Ingmar B Schäfer
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Michaela Rode
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Fabien Bonneau
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Steffen Schüssler
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Elena Conti
- Structural Cell Biology Department, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
183
|
Wolf J, Valkov E, Allen MD, Meineke B, Gordiyenko Y, McLaughlin SH, Olsen TM, Robinson CV, Bycroft M, Stewart M, Passmore LA. Structural basis for Pan3 binding to Pan2 and its function in mRNA recruitment and deadenylation. EMBO J 2014; 33:1514-26. [PMID: 24872509 PMCID: PMC4158885 DOI: 10.15252/embj.201488373] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The conserved eukaryotic Pan2–Pan3 deadenylation complex shortens cytoplasmic mRNA 3′ polyA tails to regulate mRNA stability. Although the exonuclease activity resides in Pan2, efficient deadenylation requires Pan3. The mechanistic role of Pan3 is unclear. Here, we show that Pan3 binds RNA directly both through its pseudokinase/C-terminal domain and via an N-terminal zinc finger that binds polyA RNA specifically. In contrast, isolated Pan2 is unable to bind RNA. Pan3 binds to the region of Pan2 that links its N-terminal WD40 domain to the C-terminal part that contains the exonuclease, with a 2:1 stoichiometry. The crystal structure of the Pan2 linker region bound to a Pan3 homodimer shows how the unusual structural asymmetry of the Pan3 dimer is used to form an extensive high-affinity interaction. This binding allows Pan3 to supply Pan2 with substrate polyA RNA, facilitating efficient mRNA deadenylation by the intact Pan2–Pan3 complex.
Collapse
Affiliation(s)
- Jana Wolf
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Eugene Valkov
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Mark D Allen
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Birthe Meineke
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Tayla M Olsen
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | | | - Mark Bycroft
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Murray Stewart
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| | - Lori A Passmore
- Medical Research Council (MRC) Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
184
|
Schulz D, Pirkl N, Lehmann E, Cramer P. Rpb4 subunit functions mainly in mRNA synthesis by RNA polymerase II. J Biol Chem 2014; 289:17446-52. [PMID: 24802753 DOI: 10.1074/jbc.m114.568014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RNA polymerase II (Pol II) is the central enzyme that carries out eukaryotic mRNA transcription and consists of a 10-subunit catalytic core and a subcomplex of subunits Rpb4 and Rpb7 (Rpb4/7). Rpb4/7 has been proposed to dissociate from Pol II, enter the cytoplasm, and function there in mRNA translation and degradation. Here we provide evidence that Rpb4 mainly functions in nuclear mRNA synthesis by Pol II, as well as evidence arguing against an important cytoplasmic role in mRNA degradation. We used metabolic RNA labeling and comparative Dynamic Transcriptome Analysis to show that Rpb4 deletion in Saccharomyces cerevisiae causes a drastic defect in mRNA synthesis that is compensated by down-regulation of mRNA degradation, resulting in mRNA level buffering. Deletion of Rpb4 can be rescued by covalent fusion of Rpb4 to the Pol II core subunit Rpb2, which largely restores mRNA synthesis and degradation defects caused by Rpb4 deletion. Thus, Rpb4 is a bona fide Pol II core subunit that functions mainly in mRNA synthesis.
Collapse
Affiliation(s)
- Daniel Schulz
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich and
| | - Nicole Pirkl
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich and
| | - Elisabeth Lehmann
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich and
| | - Patrick Cramer
- From the Gene Center Munich and Department of Biochemistry, Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich and the Department of Molecular Biology, Max-Planck-Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
185
|
Geisberg JV, Moqtaderi Z, Fan X, Ozsolak F, Struhl K. Global analysis of mRNA isoform half-lives reveals stabilizing and destabilizing elements in yeast. Cell 2014; 156:812-24. [PMID: 24529382 DOI: 10.1016/j.cell.2013.12.026] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/05/2013] [Accepted: 12/13/2013] [Indexed: 12/01/2022]
Abstract
We measured half-lives of 21,248 mRNA 3' isoforms in yeast by rapidly depleting RNA polymerase II from the nucleus and performing direct RNA sequencing throughout the decay process. Interestingly, half-lives of mRNA isoforms from the same gene, including nearly identical isoforms, often vary widely. Based on clusters of isoforms with different half-lives, we identify hundreds of sequences conferring stabilization or destabilization upon mRNAs terminating downstream. One class of stabilizing element is a polyU sequence that can interact with poly(A) tails, inhibit the association of poly(A)-binding protein, and confer increased stability upon introduction into ectopic transcripts. More generally, destabilizing and stabilizing elements are linked to the propensity of the poly(A) tail to engage in double-stranded structures. Isoforms engineered to fold into 3' stem-loop structures not involving the poly(A) tail exhibit even longer half-lives. We suggest that double-stranded structures at 3' ends are a major determinant of mRNA stability.
Collapse
Affiliation(s)
- Joseph V Geisberg
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Zarmik Moqtaderi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Xiaochun Fan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Fatih Ozsolak
- Helicos BioSciences Corporation, 1 Kendall Square, Cambridge, MA 02139, USA
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
186
|
In vivo determination of direct targets of the nonsense-mediated decay pathway in Drosophila. G3-GENES GENOMES GENETICS 2014; 4:485-96. [PMID: 24429422 PMCID: PMC3962487 DOI: 10.1534/g3.113.009357] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Nonsense-mediated messenger RNA (mRNA) decay (NMD) is a mRNA degradation pathway that regulates a significant portion of the transcriptome. The expression levels of numerous genes are known to be altered in NMD mutants, but it is not known which of these transcripts is a direct pathway target. Here, we present the first genome-wide analysis of direct NMD targeting in an intact animal. By using rapid reactivation of the NMD pathway in a Drosophila melanogaster NMD mutant and globally monitoring of changes in mRNA expression levels, we can distinguish between primary and secondary effects of NMD on gene expression. Using this procedure, we identified 168 candidate direct NMD targets in vivo. Remarkably, we found that 81% of direct target genes do not show increased expression levels in an NMD mutant, presumably due to feedback regulation. Because most previous studies have used up-regulation of mRNA expression as the only means to identify NMD-regulated transcripts, our results provide new directions for understanding the roles of the NMD pathway in endogenous gene regulation during animal development and physiology. For instance, we show clearly that direct target genes have longer 3′ untranslated regions compared with nontargets, suggesting long 3′ untranslated regions target mRNAs for NMD in vivo. In addition, we investigated the role of NMD in suppressing transcriptional noise and found that although the transposable element Copia is up-regulated in NMD mutants, this effect appears to be indirect.
Collapse
|
187
|
Collart MA, Reese JC. Gene expression as a circular process: cross-talk between transcription and mRNA degradation in eukaryotes; International University of Andalusia (UNIA) Baeza, Spain. RNA Biol 2014; 11:320-3. [PMID: 24646520 DOI: 10.4161/rna.28037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Studies on the regulation of gene expression in eukaryotes in the past 20 years have consistently revealed increasing levels of complexity. Thirty years ago it seemed that we had understood the basic principles of gene regulation in eukaryotes. It was thought that regulation of transcription was the first and most important stage at which gene expression was regulated, and transcriptional regulation was considered to be very simple, with DNA-binding activators and repressors talking to the basic transcription machinery. This simple model was overthrown when it became clear that other stages of gene expression are also highly regulated. More recently, other dogmas have started to collapse. In particular, the idea that a linkage between the different steps in gene expression is restricted to processes ongoing in the same compartment has fallen out of favor. It is now evident that functional and physical linkage occurs in eukaryotes. We know that factors contributing to transcription in the nucleus can be found in the cytoplasm, and that RNA binding proteins that contribute to RNA decay in the cytoplasm are present in the nucleus. However, shuttling of such factors between nucleus and cytoplasm has traditionally been thought to serve a simple regulatory purpose, for instance, to avoid untimely activation of a transcription factor in the nucleus. Alternatively, it was thought to be necessary to recruit RNA binding proteins to the relevant RNAs. The notion that is now emerging is that factors thought to have evolved to specialize in regulating a single step of gene regulation in one cellular compartment may be contributing to the regulation of mRNAs at multiple steps along the lifecycle of an mRNA.
Collapse
Affiliation(s)
- Martine A Collart
- Department of Microbiology and Molecular Medicine; University of Geneva; Faculty of Medicine; Institute of Genetics and Genomics Geneva; CMU; 1211 Geneva 4, Switzerland
| | - Joseph C Reese
- Department of Biochemistry and Molecular Biology; Center for Eukaryotic Gene Regulation; Center for RNA Molecular Biology; Penn State University; University Park, PA USA
| |
Collapse
|
188
|
Medina DA, Jordán-Pla A, Millán-Zambrano G, Chávez S, Choder M, Pérez-Ortín JE. Cytoplasmic 5'-3' exonuclease Xrn1p is also a genome-wide transcription factor in yeast. Front Genet 2014; 5:1. [PMID: 24567736 PMCID: PMC3915102 DOI: 10.3389/fgene.2014.00001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/03/2014] [Indexed: 12/21/2022] Open
Abstract
The 5′ to 3′ exoribonuclease Xrn1 is a large protein involved in cytoplasmatic mRNA degradation as a critical component of the major decaysome. Its deletion in the yeast Saccharomyces cerevisiae is not lethal, but it has multiple physiological effects. In a previous study, our group showed that deletion of all tested components of the yeast major decaysome, including XRN1, results in a decrease in the synthetic rate and an increase in half-life of most mRNAs in a compensatory manner. Furthermore, the same study showed that the all tested decaysome components are also nuclear proteins that bind to the 5′ region of a number of genes. In the present work, we show that disruption of Xrn1 activity preferentially affects both the synthesis and decay of a distinct subpopulation of mRNAs. The most affected mRNAs are the transcripts of the highly transcribed genes, mainly those encoding ribosome biogenesis and translation factors. Previously, we proposed that synthegradases play a key role in regulating both mRNA synthesis and degradation. Evidently, Xrn1 functions as a synthegradase, whose selectivity might help coordinating the expression of the protein synthetic machinery. We propose to name the most affected genes “Xrn1 synthegradon.”
Collapse
Affiliation(s)
- Daniel A Medina
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Universitat de València Burjassot, Spain
| | - Antonio Jordán-Pla
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Universitat de València Burjassot, Spain
| | - Gonzalo Millán-Zambrano
- Departamento de Genética and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain
| | - Sebastián Chávez
- Departamento de Genética and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla Seville, Spain
| | - Mordechai Choder
- Faculty of Medicine, Department of Molecular Microbiology, Technion-Israel Institute of Technology Haifa, Israel
| | - José E Pérez-Ortín
- Departamento de Bioquímica y Biología Molecular and ERI Biotecmed, Universitat de València Burjassot, Spain
| |
Collapse
|
189
|
Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 2014; 508:66-71. [PMID: 24476825 PMCID: PMC4086860 DOI: 10.1038/nature13007] [Citation(s) in RCA: 488] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/23/2013] [Indexed: 12/16/2022]
Abstract
Poly(A) tails enhance the stability and translation of most eukaryotic
mRNAs, but difficulties in globally measuring poly(A)-tail lengths have impeded
greater understanding of poly(A)-tail function. Here, we describe poly(A)-tail
length profiling by sequencing (PAL-seq) and apply it to measure tail lengths of
millions of individual RNAs isolated from yeasts, cell lines,
Arabidopsis leaves, mouse liver, and zebrafish and frog
embryos. Poly(A)-tail lengths were conserved between orthologous mRNAs, with
mRNAs encoding ribosomal proteins and other “housekeeping”
proteins tending to have shorter tails. As expected, tail lengths were coupled
to translational efficiency in early zebrafish and frog embryos. However, this
strong coupling diminished at gastrulation and was absent in non-embryonic
samples, indicating a rapid developmental switch in the nature of translational
control. This switch complements an earlier switch to zygotic transcriptional
control and explains why the predominant effect of microRNA-mediated
deadenylation concurrently shifts from translational repression to mRNA
destabilization.
Collapse
|