151
|
Flamant F, Gauthier K, Richard S. Genetic Investigation of Thyroid Hormone Receptor Function in the Developing and Adult Brain. Curr Top Dev Biol 2017; 125:303-335. [PMID: 28527576 DOI: 10.1016/bs.ctdb.2017.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thyroid hormones exert a broad influence on brain development and function, which has been extensively studied over the years. Mouse genetics has brought an important contribution, allowing precise analysis of the interplay between TRα1 and TRβ1 nuclear receptors in neural cells. However, the exact contribution of each receptor, the possible intervention of nongenomic signaling, and the nature of the genetic program that is controlled by the receptors remain poorly understood.
Collapse
Affiliation(s)
- Frédéric Flamant
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon cedex, France.
| | - Karine Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon cedex, France
| | - Sabine Richard
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS UMR 5242, INRA USC 1370, Ecole Normale Supérieure de Lyon, Lyon cedex, France
| |
Collapse
|
152
|
Liu Y, Zheng Y. Bach1 siRNA attenuates bleomycin-induced pulmonary fibrosis by modulating oxidative stress in mice. Int J Mol Med 2016; 39:91-100. [PMID: 27959382 PMCID: PMC5179191 DOI: 10.3892/ijmm.2016.2823] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 12/02/2016] [Indexed: 01/08/2023] Open
Abstract
Oxidative stress plays an essential role in inflammation and fibrosis. Bach1 is an important transcriptional repressor that acts by modulating oxidative stress and represents a potential target in the treatment of pulmonary fibrosis (PF). In this study, we knocked down Bach1 using adenovirus-mediated small interfering RNA (siRNA) to determine whether the use of Bach1 siRNA is an effective therapeutic strategy in mice with bleomycin (BLM)‑induced PF. Mouse lung fibroblasts (MLFs) were incubated with transforming growth factor (TGF)-β1 (5 ng/ml) and subsequently infected with recombined adenovirus-like Bach1 siRNA1 and Bach1 siRNA2, while an empty adenovirus vector was used as the negative control. The selected Bach1 siRNA with higher interference efficiency was used for the animal experiments. A mouse model of BLM-induced PF was established, and Bach1 siRNA (1x109 pfu) was administered to the mice via the tail vein. The results revealed that the Bach1 mRNA and protein levels were significantly downregulated by Bach1 siRNA. Furthermore, the MLFs infected with Bach1 siRNA exhibited increased mRNA and protein expression levels of heme oxygenase-1 and glutathione peroxidase 1, but decreased levels of TGF-β1 and interleukin-6 in the cell supernatants compared with the cells exposed to TGF-β1 alone. Bach1 knockdown by siRNA also enhanced the expression of antioxidant factors, but suppressed that of fibrosis‑related cytokines in mice compared with the BLM group. Finally, the inflammatory infiltration of alveolar and interstitial cells and the destruction of lung structure were significantly attenuated in the mide administered Bach1 siRNA compared with those in the BLM group. On the whole, our findings demonstrate that Bach1 siRNA exerts protective effects against BLM-induced PF in mice. Our data may provide the basis for the development of novel targeted therapeutic strategies for PF.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Rheumatology and Immunology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Yi Zheng
- Department of Rheumatology and Immunology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
153
|
Regulation of Sirt1/Nrf2/TNF-α signaling pathway by luteolin is critical to attenuate acute mercuric chloride exposure induced hepatotoxicity. Sci Rep 2016; 6:37157. [PMID: 27853236 PMCID: PMC5112569 DOI: 10.1038/srep37157] [Citation(s) in RCA: 136] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 10/25/2016] [Indexed: 01/15/2023] Open
Abstract
Inorganic mercury, though a key component of pediatric vaccines, is an environmental toxicant threatening human health via accumulating oxidative stress in part. Luteolin has been of great interest because of its antiinflammatory, anticarcinogenic and antioxidative effects. Here we hypothesized that luteolin would attenuate hepatotoxicity induced by acute inorganic mercury exposure. Kunming mice were treated with luteolin (100 mg/kg) 24 h after administration of 4 mg/kg mercuric chloride (HgCl2). The results showed that luteolin ameliorated HgCl2 induced anemia and hepatotoxicity, regulating radical oxygen species (ROS) production and hepatocyte viability in vitro and oxidative stress and apoptosis in vivo. Furthermore, luteolin reversed the changes in levels of inflammation- and apoptosis-related proteins involving NF-κB, TNF-α, Sirt1, mTOR, Bax, p53, and Bcl-2, and inhibited p38 MAPK activation. Luteolin enhanced antioxidant defense system based on Keap1, Nrf2, HO-1, NQO1, and KLF9. Moreover, luteolin did not affect miRNA-146a expression. Collectively, our findings, for the first time, elucidate a precise mechanism for attenuation of HgCl2-induced liver dysfunction by dietary luteolin via regulating Sirt1/Nrf2/TNF-α signaling pathway, and provide a foundation for further study of luteolin as a novel therapeutic agent against inorganic mercury poisoning.
Collapse
|
154
|
Gao Y, Cao Z, Yang X, Abdelmegeed MA, Sun J, Chen S, Beger RD, Davis K, Salminen WF, Song BJ, Mendrick DL, Yu LR. Proteomic analysis of acetaminophen-induced hepatotoxicity and identification of heme oxygenase 1 as a potential plasma biomarker of liver injury. Proteomics Clin Appl 2016; 11. [PMID: 27634590 DOI: 10.1002/prca.201600123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE Overdose of acetaminophen (APAP) is a major cause of acute liver failure. This study was aimed to identify pathways related to hepatotoxicity and potential biomarkers of liver injury. EXPERIMENTAL DESIGN Rats were treated with low (100 mg/kg) and high (1250 mg/kg) doses of APAP, and liver tissues at 6 and 24 h post-treatment were analyzed using a proteomic approach of 16O/18O labeling and 2D-LC-MS/MS. RESULTS Molecular pathways evolved progressively from scattered and less significant perturbations to more focused and significant alterations in a dose- and time-dependent manner upon APAP treatment. Imbalanced expression of hemeoxygenase 1 (HMOX1) and biliverdin reductase A (BLVRA) was associated with hepatotoxicity. Protein abundance changes of a total of 31 proteins were uniquely correlated to liver damage, among which a dramatic increase of HMOX1 levels in plasma was observed. Liver injury-associated significant elevation of plasma HMOX1 was further validated in mice treated with APAP. CONCLUSIONS AND CLINICAL RELEVANCE This study unveiled molecular changes associated with APAP-induced liver toxicity at the pathway levels and identified HMOX1 as a potential plasma biomarker of liver injury.
Collapse
Affiliation(s)
- Yuan Gao
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Zhijun Cao
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Xi Yang
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Mohamed A Abdelmegeed
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Jinchun Sun
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kelly Davis
- Toxicologic Pathology Associates, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - William F Salminen
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Byoung-Joon Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Donna L Mendrick
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Li-Rong Yu
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
155
|
Bell CG, Xia Y, Yuan W, Gao F, Ward K, Roos L, Mangino M, Hysi PG, Bell J, Wang J, Spector TD. Novel regional age-associated DNA methylation changes within human common disease-associated loci. Genome Biol 2016; 17:193. [PMID: 27663977 PMCID: PMC5034469 DOI: 10.1186/s13059-016-1051-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/31/2016] [Indexed: 12/19/2022] Open
Abstract
Background Advancing age progressively impacts on risk and severity of chronic disease. It also modifies the epigenome, with changes in DNA methylation, due to both random drift and variation within specific functional loci. Results In a discovery set of 2238 peripheral-blood genome-wide DNA methylomes aged 19–82 years, we identify 71 age-associated differentially methylated regions within the linkage disequilibrium blocks of the single nucleotide polymorphisms from the NIH genome-wide association study catalogue. This included 52 novel regions, 29 within loci not covered by 450 k or 27 k Illumina array, and with enrichment for DNase-I Hypersensitivity sites across the full range of tissues. These age-associated differentially methylated regions also show marked enrichment for enhancers and poised promoters across multiple cell types. In a replication set of 2084 DNA methylomes, 95.7 % of the age-associated differentially methylated regions showed the same direction of ageing effect, with 80.3 % and 53.5 % replicated to p < 0.05 and p < 1.85 × 10–8, respectively. Conclusion By analysing the functionally enriched disease and trait-associated regions of the human genome, we identify novel epigenetic ageing changes, which could be useful biomarkers or provide mechanistic insights into age-related common diseases. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-1051-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christopher G Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK. .,MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK. .,Human Development and Health Academic Unit, Institute of Developmental Sciences, University of Southampton, Southampton, UK. .,Epigenomic Medicine, Biological Sciences, Faculty of Environmental and Natural Sciences, University of Southampton, Southampton, UK.
| | | | - Wei Yuan
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK.,Institute of Cancer Research, Sutton, UK
| | - Fei Gao
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Kirsten Ward
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Leonie Roos
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Pirro G Hysi
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Jordana Bell
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Timothy D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| |
Collapse
|
156
|
Retta SF, Glading AJ. Oxidative stress and inflammation in cerebral cavernous malformation disease pathogenesis: Two sides of the same coin. Int J Biochem Cell Biol 2016; 81:254-270. [PMID: 27639680 PMCID: PMC5155701 DOI: 10.1016/j.biocel.2016.09.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/08/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022]
Abstract
CCM proteins play pleiotropic roles in various redox-sensitive signaling pathways. CCM proteins modulate the crosstalk between redox signaling and autophagy that govern cell homeostasis and stress responses. Oxidative stress and inflammation are emerging as key focal determinants of CCM lesion formation, progression and severity. The pleiotropic functions of CCM proteins may prevent vascular dysfunctions triggered by local oxidative stress and inflammatory events. The distinct therapeutic compounds proposed so far for CCM disease share the ability to modulate redox signaling and autophagy.
Cerebral Cavernous Malformation (CCM) is a vascular disease of proven genetic origin, which may arise sporadically or is inherited as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. CCM lesions exhibit a range of different phenotypes, including wide inter-individual differences in lesion number, size, and susceptibility to intracerebral hemorrhage (ICH). Lesions may remain asymptomatic or result in pathological conditions of various type and severity at any age, with symptoms ranging from recurrent headaches to severe neurological deficits, seizures, and stroke. To date there are no direct therapeutic approaches for CCM disease besides the surgical removal of accessible lesions. Novel pharmacological strategies are particularly needed to limit disease progression and severity and prevent de novo formation of CCM lesions in susceptible individuals. Useful insights into innovative approaches for CCM disease prevention and treatment are emerging from a growing understanding of the biological functions of the three known CCM proteins, CCM1/KRIT1, CCM2 and CCM3/PDCD10. In particular, accumulating evidence indicates that these proteins play major roles in distinct signaling pathways, including those involved in cellular responses to oxidative stress, inflammation and angiogenesis, pointing to pathophysiological mechanisms whereby the function of CCM proteins may be relevant in preventing vascular dysfunctions triggered by these events. Indeed, emerging findings demonstrate that the pleiotropic roles of CCM proteins reflect their critical capacity to modulate the fine-tuned crosstalk between redox signaling and autophagy that govern cell homeostasis and stress responses, providing a novel mechanistic scenario that reconciles both the multiple signaling pathways linked to CCM proteins and the distinct therapeutic approaches proposed so far. In addition, recent studies in CCM patient cohorts suggest that genetic susceptibility factors related to differences in vascular sensitivity to oxidative stress and inflammation contribute to inter-individual differences in CCM disease susceptibility and severity. This review discusses recent progress into the understanding of the molecular basis and mechanisms of CCM disease pathogenesis, with specific emphasis on the potential contribution of altered cell responses to oxidative stress and inflammatory events occurring locally in the microvascular environment, and consequent implications for the development of novel, safe, and effective preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Saverio Francesco Retta
- Department of Clinical and Biological Sciences, School of Medicine and Surgery, University of Torino, Regione Gonzole 10, 10043 Orbassano, Torino, Italy; CCM Italia Research Network(1).
| | - Angela J Glading
- University of Rochester Medical Center, School of Medicine and Dentistry, 601 Elmwood Ave, 14642 Rochester, NY, USA.
| |
Collapse
|
157
|
Richter K, Kietzmann T. Reactive oxygen species and fibrosis: further evidence of a significant liaison. Cell Tissue Res 2016; 365:591-605. [PMID: 27345301 PMCID: PMC5010605 DOI: 10.1007/s00441-016-2445-3] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/02/2016] [Indexed: 02/06/2023]
Abstract
Age-related diseases such as obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease and cardiomyopathy are frequently associated with fibrosis. Work within the last decade has improved our understanding of the pathophysiological mechanisms contributing to fibrosis development. In particular, oxidative stress and the antioxidant system appear to be crucial modulators of processes such as transforming growth factor-β1 (TGF-β1) signalling, metabolic homeostasis and chronic low-grade inflammation, all of which play important roles in fibrosis development and persistence. In the current review, we discuss the connections between reactive oxygen species, antioxidant enzymes and TGF-β1 signalling, together with functional consequences, reflecting a concept of redox-fibrosis that can be targeted in future therapies. ᅟ ![]()
Collapse
Affiliation(s)
- Kati Richter
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90230, Oulu, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine and Biocenter Oulu, University of Oulu, Aapistie 7A, FI-90230, Oulu, Finland.
| |
Collapse
|
158
|
Kurundkar A, Thannickal VJ. Redox mechanisms in age-related lung fibrosis. Redox Biol 2016; 9:67-76. [PMID: 27394680 PMCID: PMC4943089 DOI: 10.1016/j.redox.2016.06.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022] Open
Abstract
Redox signaling and oxidative stress are associated with tissue fibrosis and aging. Aging is recognized as a major risk factor for fibrotic diseases involving multiple organ systems, including that of the lung. A number of oxidant generating enzymes are upregulated while antioxidant defenses are deficient with aging and cellular senescence, leading to redox imbalance and oxidative stress. However, the precise mechanisms by which redox signaling and oxidative stress contribute to the pathogenesis of lung fibrosis are not well understood. Tissue repair is a highly regulated process that involves the interactions of several cell types, including epithelial cells, fibroblasts and inflammatory cells. Fibrosis may develop when these interactions are dysregulated with the acquisition of pro-fibrotic cellular phenotypes. In this review, we explore the roles of redox mechanisms that promote and perpetuate fibrosis in the context of cellular senescence and aging.
Collapse
Affiliation(s)
- Ashish Kurundkar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
159
|
Zhang W, Li Y, Ding H, Du Y, Wang L. Hydrogen peroxide prevents vascular calcification induced ROS production by regulating Nrf-2 pathway. Ren Fail 2016; 38:1099-106. [PMID: 27300444 DOI: 10.1080/0886022x.2016.1194143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Although vascular calcification in end-stage renal disease (ESRD) represents a ubiquitous human health problem, effective therapies with limited side effects are still lacking, and the precise mechanisms are not fully understood. The Nrf-2/ARE pathway is a pivotal to regulate anti-oxidative responses in vascular calcification upon ESRD. Although Nrf-2 plays a crucial role in atherosclerosis, pulmonary fibrosis, and brain ischemia, the effect of Nrf-2 and oxidative stress on vascular calcification in ESRD patients is still unclear. The aim of this research was to study the protective role of hydrogen peroxide in vascular calcification and the mechanism of Nrf-2 and oxidative stress on vascular calcification. MATERIALS AND METHODS Here we used the rat vascular smooth muscle cell model of β-glycerophosphate-induced calcification resembling vascular calcification in ESRD to investigate the therapeutic effect of 0.01 mM hydrogen peroxide on vascular calcification and further explores the possible underlying mechanisms. RESULTS Our current report shows the in vitro role of 0.01 mM hydrogen peroxide in protecting against intracellular ROS accumulation upon vascular calcification. Both hydrogen peroxide and sulforaphane pretreatment reduced ROS production, increased the expression of Nrf-2, and decreased the expression of Runx2 following calcification. CONCLUSION Our study demonstrates that 0.01 mM hydrogen peroxide can effectively protect rat aortic vascular smooth muscle cells against oxidative stress by preventing vascular calcification induced ROS production through Nrf-2 pathway. These data might define an antioxidant role of hydrogen peroxide in vascular calcification upon ESRD.
Collapse
Affiliation(s)
- Wensong Zhang
- a Department of Nephrology , University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital , Chengdu , China
| | - Yi Li
- a Department of Nephrology , University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital , Chengdu , China
| | - Hanlu Ding
- a Department of Nephrology , University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital , Chengdu , China
| | - Yaqin Du
- a Department of Nephrology , University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital , Chengdu , China
| | - Li Wang
- a Department of Nephrology , University of Electronic Science and Technology, Sichuan Academy of Sciences & Sichuan Provincial People's Hospital , Chengdu , China
| |
Collapse
|
160
|
Huang BK, Langford TF, Sikes HD. Using Sensors and Generators of H2O2 to Elucidate the Toxicity Mechanism of Piperlongumine and Phenethyl Isothiocyanate. Antioxid Redox Signal 2016; 24:924-38. [PMID: 26905788 PMCID: PMC4900193 DOI: 10.1089/ars.2015.6482] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 02/02/2016] [Accepted: 02/21/2016] [Indexed: 01/23/2023]
Abstract
AIMS Chemotherapeutics target vital functions that ensure survival of cancer cells, including their increased reliance on defense mechanisms against oxidative stress compared to normal cells. Many chemotherapeutics exploit this vulnerability to oxidative stress by elevating the levels of intracellular reactive oxygen species (ROS). A quantitative understanding of the oxidants generated and how they induce toxicity will be important for effective implementation and design of future chemotherapeutics. Molecular tools that facilitate measurement and manipulation of individual chemical species within the context of the larger intracellular redox network present a means to develop this understanding. In this work, we demonstrate the use of such tools to elucidate the roles of H2O2 and glutathione (GSH) in the toxicity mechanism of two ROS-based chemotherapeutics, piperlongumine and phenethyl isothiocyanate. RESULTS Depletion of GSH as a result of treatment with these compounds is not an important part of the toxicity mechanisms of these drugs and does not lead to an increase in the intracellular H2O2 level. Measuring peroxiredoxin-2 (Prx-2) oxidation as evidence of increased H2O2, only piperlongumine treatment shows elevation and it is GSH independent. Using a combination of a sensor (HyPer) along with a generator (D-amino acid oxidase) to monitor and mimic the drug-induced H2O2 production, it is determined that H2O2 produced during piperlongumine treatment acts synergistically with the compound to cause enhanced cysteine oxidation and subsequent toxicity. The importance of H2O2 elevation in the mechanism of piperlongumine promotes a hypothesis of why certain cells, such as A549, are more resistant to the drug than others. INNOVATION AND CONCLUSION The approach described herein sheds new light on the previously proposed mechanism of these two ROS-based chemotherapeutics and advocates for the use of both sensors and generators of specific oxidants to isolate their effects. Antioxid. Redox Signal. 24, 924-938.
Collapse
Affiliation(s)
- Beijing K. Huang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Troy F. Langford
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Hadley D. Sikes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
161
|
Yang C, Tan YX, Yang GZ, Zhang J, Pan YF, Liu C, Fu J, Chen Y, Ding ZW, Dong LW, Wang HY. Gankyrin has an antioxidative role through the feedback regulation of Nrf2 in hepatocellular carcinoma. J Exp Med 2016; 213:859-75. [PMID: 27091842 PMCID: PMC4854728 DOI: 10.1084/jem.20151208] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 03/22/2016] [Indexed: 12/21/2022] Open
Abstract
Yang et al. identify a feedback loop between gankyrin, an oncoprotein overexpressed in human hepatocellular carcinoma (HCC), and Nrf2. The positive feedback modulates a series of antioxidant enzymes that lower intracellular reactive oxygen species to confer protection from mitochondrial damage and cell death. Oxidative stress status has a key role in hepatocellular carcinoma (HCC) development and progression. Normally, reactive oxygen species (ROS) levels are tightly controlled by an inducible antioxidant program that responds to cellular stressors. How HCC cells respond to excessive oxidative stress remains elusive. Here, we identified a feedback loop between gankyrin, an oncoprotein overexpressed in human HCC, and Nrf2 maintaining the homeostasis in HCC cells. Mechanistically, gankyrin was found to interact with the Kelch domain of Keap1 and effectively competed with Nrf2 for Keap1 binding. Increased expression of gankyrin in HCC cells blocked the binding between Nrf2 and Keap1, inhibiting the degradation of Nrf2 by proteasome. Interestingly, accumulation and translocation of Nrf2 increased the transcription of gankyrin through binding to the ARE elements in the promoter of gankyrin. The positive feedback regulation involving gankyrin and Nrf2 modulates a series of antioxidant enzymes, thereby lowering intracellular ROS and conferring a steadier intracellular environment, which prevents mitochondrial damage and cell death induced by excessive oxidative stress. Our results indicate that gankyrin is a regulator of cellular redox homeostasis and provide a link between oxidative stress and the development of HCC.
Collapse
Affiliation(s)
- Chun Yang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, 200433 Shanghai, China National Center for Liver Cancer, 200032 Shanghai, China
| | - Ye-Xiong Tan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, 200433 Shanghai, China National Center for Liver Cancer, 200032 Shanghai, China
| | - Guang-Zhen Yang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, 200433 Shanghai, China
| | - Jian Zhang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, 200433 Shanghai, China National Center for Liver Cancer, 200032 Shanghai, China
| | - Yu-Fei Pan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, 200433 Shanghai, China National Center for Liver Cancer, 200032 Shanghai, China
| | - Chen Liu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, 200433 Shanghai, China National Center for Liver Cancer, 200032 Shanghai, China
| | - Jing Fu
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, 200433 Shanghai, China National Center for Liver Cancer, 200032 Shanghai, China
| | - Yao Chen
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, 200433 Shanghai, China National Center for Liver Cancer, 200032 Shanghai, China
| | - Zhi-Wen Ding
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, 200433 Shanghai, China National Center for Liver Cancer, 200032 Shanghai, China
| | - Li-Wei Dong
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, 200433 Shanghai, China National Center for Liver Cancer, 200032 Shanghai, China
| | - Hong-Yang Wang
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, the Second Military Medical University, 200433 Shanghai, China National Center for Liver Cancer, 200032 Shanghai, China State Key Laboratory of Oncogenes and related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 200240 Shanghai, China
| |
Collapse
|
162
|
Lipchick BC, Fink EE, Nikiforov MA. Oxidative stress and proteasome inhibitors in multiple myeloma. Pharmacol Res 2016; 105:210-5. [PMID: 26827824 PMCID: PMC5044866 DOI: 10.1016/j.phrs.2016.01.029] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 11/23/2022]
Abstract
Multiple myeloma is a form of plasma cell neoplasm that accounts for approximately 10% of all hematological malignancies. Recently, several novel drugs have been discovered that almost doubled the overall survival of multiple myeloma patients. One of these drugs, the first-in-class proteasome inhibitor bortezomib (Velcade) has demonstrated remarkable response rates in multiple myeloma patients, and yet, currently this disease remains incurable. The major factor undermining the success of multiple myeloma treatment is a rapidly emerging resistance to the available therapy. Thus, the development of stand-alone or adjuvant anti-myeloma agents becomes of paramount importance. Overproduction of intracellular reactive oxygen species (ROS) often accompanies malignant transformation due to oncogene activation and/or enhanced metabolism in tumor cells. As a result, these cells possess higher levels of ROS and lower levels of antioxidant molecules compared to their normal counterparts. Unbalanced production of ROS leads to oxidative stress which, if left unchecked, could be toxic for the cell. In multiple myeloma cells where high rates of immunoglobulin synthesis is an additional factor contributing to overproduction of ROS, further induction of oxidative stress can be an effective strategy to cope with this disease. Here we will review the available data on the role of oxidative stress in the cytotoxicity of proteasome inhibitors and the use of ROS-inducing compounds as anti-myeloma agents.
Collapse
Affiliation(s)
- Brittany C Lipchick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA.
| | - Emily E Fink
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Mikhail A Nikiforov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
163
|
Tung MC, Lin PL, Wang YC, He TY, Lee MC, Yeh SD, Chen CY, Lee H. Mutant p53 confers chemoresistance in non-small cell lung cancer by upregulating Nrf2. Oncotarget 2015; 6:41692-705. [PMID: 26497680 PMCID: PMC4747182 DOI: 10.18632/oncotarget.6150] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/30/2015] [Indexed: 12/13/2022] Open
Abstract
Nrf2 is a key transcription factor for genes coding for antioxidants, detoxification enzymes, and multiple drug resistance and it also confers resistance to anticancer drugs. Here, we hypothesized that mutant p53 could upregulate Nrf2 expression at the transcriptional level, thereby conferring cisplatin resistance in non-small cell lung cancer (NSCLC). Luciferase reporter assays and real-time PCR analysis indicated that the Nrf2 promoter activity and its mRNA levels were markedly suppressed by wild-type p53, but not by mutant p53. Chromatin immunoprecipitation (ChIP) further confirmed that wild-type p53 binds at the p53 putative binding site to block Sp1 binding to the Nrf2 promoter and consequently to suppress the Nrf2 promoter activity. The MTT assay indicated that an increase in Nrf2 expression by mutant p53 is responsible for cisplatin resistance. Among the Nrf2 downstream genes, Bcl-2 and Bcl-xL contribute more strongly to Nrf2-mediated cisplatin resistance when compared with heme oxygenase 1 (HO-1). Cox regression analysis showed that patients with high-Nrf2, high-Bcl-2, high-Bcl-xL mRNA tumors were more commonly occurred unfavorable response to cisplatin-based chemotherapy than their counterparts. The prognostic significance of Nrf2 mRNA levels on OS and RFS was also observed in patients who have received cisplatin-based chemotherapy, particularly in p53-mutant patients. Collectively, mutant p53 may confer cisplatin resistance via upregulation of Nrf2 expression, and Nrf2 mRNA level may predict chemotherapeutic response and outcomes in NSCLC.
Collapse
MESH Headings
- Aged
- Antineoplastic Agents/therapeutic use
- Binding Sites
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/mortality
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Line, Tumor
- Cisplatin/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/mortality
- Lung Neoplasms/pathology
- Male
- Middle Aged
- Mutation
- NF-E2-Related Factor 2/genetics
- NF-E2-Related Factor 2/metabolism
- Promoter Regions, Genetic
- Proportional Hazards Models
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sp1 Transcription Factor/metabolism
- Transfection
- Treatment Outcome
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Up-Regulation
- bcl-X Protein/genetics
- bcl-X Protein/metabolism
Collapse
Affiliation(s)
- Min-Che Tung
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, Tungs' Taichung MetroHarbor Hospital, Taichung, Taiwan
| | - Po-Lin Lin
- Institute of Medicine, Department of Surgery, Chung Shan Medical University, Taichung, Taiwan
| | - Yao-Chen Wang
- Division of Chest Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Tsung-Ying He
- Institute of Medicine, Department of Surgery, Chung Shan Medical University, Taichung, Taiwan
| | - Ming-Ching Lee
- Department of Thoracic Surgery, Taichung Veteran General Hospital, Taichung, Taiwan
| | - Sauh-Der Yeh
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Yi Chen
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University, Taichung, Taiwan
| | - Huei Lee
- Graduate Institute of Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
164
|
Richter K, Konzack A, Pihlajaniemi T, Heljasvaara R, Kietzmann T. Redox-fibrosis: Impact of TGFβ1 on ROS generators, mediators and functional consequences. Redox Biol 2015; 6:344-352. [PMID: 26335400 PMCID: PMC4565043 DOI: 10.1016/j.redox.2015.08.015] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/19/2015] [Accepted: 08/25/2015] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is one of the most prevalent features of age-related diseases like obesity, diabetes, non-alcoholic fatty liver disease, chronic kidney disease, or cardiomyopathy and affects millions of people in all countries. Although the understanding about the pathophysiology of fibrosis has improved a lot during the recent years, a number of mechanisms still remain unknown. Although TGF-β1 signaling, loss of metabolic homeostasis and chronic low-grade inflammation appear to play important roles in the pathogenesis of fibrosis, recent evidence indicates that oxidative stress and the antioxidant system may also be crucial for fibrosis development and persistence. These findings point to a concept of a redox-fibrosis where the cellular oxidant and antioxidant system could be potential therapeutic targets. The current review aims to summarize the existing links between TGF-β1 signaling, generation and action of reactive oxygen species, expression of antioxidative enzymes, and functional consequences including epigenetic redox-mediated responses during fibrosis.
Collapse
Affiliation(s)
- Kati Richter
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Anja Konzack
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland
| | - Taina Pihlajaniemi
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland; Center of Excellence in Cell-Extracellular Matrix Research, Finland
| | - Ritva Heljasvaara
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland; Center of Excellence in Cell-Extracellular Matrix Research, Finland
| | - Thomas Kietzmann
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
165
|
Li K, Gao B, Li J, Chen H, Li Y, Wei Y, Gong D, Gao J, Zhang J, Tan W, Wen T, Zhang L, Huang L, Xiang R, Lin P, Wei Y. ZNF32 protects against oxidative stress-induced apoptosis by modulating C1QBP transcription. Oncotarget 2015; 6:38107-26. [PMID: 26497555 PMCID: PMC4741987 DOI: 10.18632/oncotarget.5646] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/06/2015] [Indexed: 02/05/2023] Open
Abstract
Reactive oxygen species (ROS)-driven oxidative stress has been recognized as a critical inducer of cancer cell death in response to therapeutic agents. Our previous studies have demonstrated that zinc finger protein (ZNF)32 is key to cell survival upon oxidant stimulation. However, the mechanisms by which ZNF32 mediates cell death remain unclear. Here, we show that at moderate levels of ROS, Sp1 directly binds to two GC boxes within the ZNF32 promoter to activate ZNF32 transcription. Alternatively, at cytotoxic ROS concentrations, ZNF32 expression is repressed due to decreased binding activity of Sp1. ZNF32 overexpression maintains mitochondrial membrane potential and enhances the antioxidant capacity of cells to detoxify ROS, and these effects promote cell survival upon pro-oxidant agent treatment. Alternatively, ZNF32-deficient cells are more sensitive and vulnerable to oxidative stress-induced cell injury. Mechanistically, we demonstrate that complement 1q-binding protein (C1QBP) is a direct target gene of ZNF32 that inactivates the p38 MAPK pathway, thereby exerting the protective effects of ZNF32 on oxidative stress-induced apoptosis. Taken together, our findings indicate a novel mechanism by which the Sp1-ZNF32-C1QBP axis protects against oxidative stress and implicate a promising strategy that ZNF32 inhibition combined with pro-oxidant anticancer agents for hepatocellular carcinoma treatment.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antioxidants/pharmacology
- Apoptosis/drug effects
- Binding Sites
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Dose-Response Relationship, Drug
- Female
- Gene Expression Regulation, Neoplastic
- HEK293 Cells
- Hep G2 Cells
- Humans
- Kruppel-Like Transcription Factors/genetics
- Kruppel-Like Transcription Factors/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Male
- Membrane Potential, Mitochondrial
- Mice, Inbred BALB C
- Mice, Nude
- Middle Aged
- Mitochondrial Proteins/genetics
- Mitochondrial Proteins/metabolism
- Oxidants/pharmacology
- Oxidative Stress/drug effects
- Promoter Regions, Genetic
- RNA Interference
- Reactive Oxygen Species/metabolism
- Signal Transduction
- Sp1 Transcription Factor/metabolism
- Time Factors
- Transcription, Genetic/drug effects
- Transcriptional Activation
- Transfection
- Xenograft Model Antitumor Assays
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Kai Li
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Bo Gao
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- Department of Pathology, College of Clinical Medicine, Dali University, Dali, China
| | - Jun Li
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Haining Chen
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yanyan Li
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yuyan Wei
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Di Gong
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Junping Gao
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jie Zhang
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Weiwei Tan
- Department Biorepository, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Tianfu Wen
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Le Zhang
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Lugang Huang
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Xiang
- Department of Clinical Medicine, School of Medicine, Nankai University, and Collaborative Innovation Center for Biotherapy, Tianjin, China
| | - Ping Lin
- Department of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yuquan Wei
- Department of Cancer Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
166
|
Tebay LE, Robertson H, Durant ST, Vitale SR, Penning TM, Dinkova-Kostova AT, Hayes JD. Mechanisms of activation of the transcription factor Nrf2 by redox stressors, nutrient cues, and energy status and the pathways through which it attenuates degenerative disease. Free Radic Biol Med 2015; 88:108-146. [PMID: 26122708 PMCID: PMC4659505 DOI: 10.1016/j.freeradbiomed.2015.06.021] [Citation(s) in RCA: 635] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/09/2015] [Accepted: 06/10/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Nuclear factor-erythroid 2 p45-related factor 2 (Nrf2) regulates the basal and stress-inducible expression of a battery of genes encoding key components of the glutathione-based and thioredoxin-based antioxidant systems, as well as aldo-keto reductase, glutathione S-transferase, and NAD(P)H quinone oxidoreductase-1 drug-metabolizing isoenzymes along with multidrug-resistance-associated efflux pumps. It therefore plays a pivotal role in both intrinsic resistance and cellular adaptation to reactive oxygen species (ROS) and xenobiotics. Activation of Nrf2 can, however, serve as a double-edged sword because some of the genes it induces may contribute to chemical carcinogenesis by promoting futile redox cycling of polycyclic aromatic hydrocarbon metabolites or confer resistance to chemotherapeutic drugs by increasing the expression of efflux pumps, suggesting its cytoprotective effects will vary in a context-specific fashion. In addition to cytoprotection, Nrf2 also controls genes involved in intermediary metabolism, positively regulating those involved in NADPH generation, purine biosynthesis, and the β-oxidation of fatty acids, while suppressing those involved in lipogenesis and gluconeogenesis. Nrf2 is subject to regulation at multiple levels. Its ability to orchestrate adaptation to oxidants and electrophiles is due principally to stress-stimulated modification of thiols within one of its repressors, the Kelch-like ECH-associated protein 1 (Keap1), which is present in the cullin-3 RING ubiquitin ligase (CRL) complex CRLKeap1. Thus modification of Cys residues in Keap1 blocks CRLKeap1 activity, allowing newly translated Nrf2 to accumulate rapidly and induce its target genes. The ability of Keap1 to repress Nrf2 can be attenuated by p62/sequestosome-1 in a mechanistic target of rapamycin complex 1 (mTORC1)-dependent manner, thereby allowing refeeding after fasting to increase Nrf2-target gene expression. In parallel with repression by Keap1, Nrf2 is also repressed by β-transducin repeat-containing protein (β-TrCP), present in the Skp1-cullin-1-F-box protein (SCF) ubiquitin ligase complex SCFβ-TrCP. The ability of SCFβ-TrCP to suppress Nrf2 activity is itself enhanced by prior phosphorylation of the transcription factor by glycogen synthase kinase-3 (GSK-3) through formation of a DSGIS-containing phosphodegron. However, formation of the phosphodegron in Nrf2 by GSK-3 is inhibited by stimuli that activate protein kinase B (PKB)/Akt. In particular, PKB/Akt activity can be increased by phosphoinositide 3-kinase and mTORC2, thereby providing an explanation of why antioxidant-responsive element-driven genes are induced by growth factors and nutrients. Thus Nrf2 activity is tightly controlled via CRLKeap1 and SCFβ-TrCP by oxidative stress and energy-based signals, allowing it to mediate adaptive responses that restore redox homeostasis and modulate intermediary metabolism. Based on the fact that Nrf2 influences multiple biochemical pathways in both positive and negative ways, it is likely its dose-response curve, in terms of susceptibility to certain degenerative disease, is U-shaped. Specifically, too little Nrf2 activity will lead to loss of cytoprotection, diminished antioxidant capacity, and lowered β-oxidation of fatty acids, while conversely also exhibiting heightened sensitivity to ROS-based signaling that involves receptor tyrosine kinases and apoptosis signal-regulating kinase-1. By contrast, too much Nrf2 activity disturbs the homeostatic balance in favor of reduction, and so may have deleterious consequences including overproduction of reduced glutathione and NADPH, the blunting of ROS-based signal transduction, epithelial cell hyperplasia, and failure of certain cell types to differentiate correctly. We discuss the basis of a putative U-shaped Nrf2 dose-response curve in terms of potentially competing processes relevant to different stages of tumorigenesis.
Collapse
Affiliation(s)
- Lauren E Tebay
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Holly Robertson
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - Stephen T Durant
- AstraZeneca Oncology Innovative Medicines, Bioscience, 33F197 Mereside, Alderley Park, Cheshire SK10 4TG, UK
| | - Steven R Vitale
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | - John D Hayes
- Jacqui Wood Cancer Centre, Division of Cancer Research, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK.
| |
Collapse
|
167
|
Antioxidant therapy for treatment of inflammatory bowel disease: Does it work? Redox Biol 2015; 6:617-639. [PMID: 26520808 PMCID: PMC4637335 DOI: 10.1016/j.redox.2015.10.006] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/18/2015] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
Oxidative stress (OS) is considered as one of the etiologic factors involved in several signals and symptoms of inflammatory bowel diseases (IBD) that include diarrhea, toxic megacolon and abdominal pain. This systematic review discusses approaches, challenges and perspectives into the use of nontraditional antioxidant therapy on IBD, including natural and synthetic compounds in both human and animal models. One hundred and thirty four papers were identified, of which only four were evaluated in humans. Some of the challenges identified in this review can shed light on this fact: lack of standardization of OS biomarkers, absence of safety data and clinical trials for the chemicals and biological molecules, as well as the fact that most of the compounds were not repeatedly tested in several situations, including acute and chronic colitis. This review hopes to stimulate researchers to become more involved in this fruitful area, to warrant investigation of novel, alternative and efficacious antioxidant-based therapies. Major biomarkers used for evaluation of antioxidant therapy were MPO, TBARS/MDA and glutathione levels. Challenges were identified for the yet poor use of antioxidant therapy in IBD. This review stimulates the investigation of alternative and efficacious antioxidant therapies.
Collapse
|
168
|
Hu M, Zou Y, Nambiar SM, Lee J, Yang Y, Dai G. Keap1 modulates the redox cycle and hepatocyte cell cycle in regenerating liver. Cell Cycle 2015; 13:2349-58. [PMID: 25483186 DOI: 10.4161/cc.29298] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Keap1 negatively controls the activity of transcription factor Nrf2. This Keap1/Nrf2 pathway plays a critical role in combating oxidative stress. We aimed at determining whether and how Keap1 modulates the cell cycle of replicating hepatocytes during liver regeneration. Two-thirds partial hepatectomy (PH) was performed on wild-type mice and Keap1+/- (Keap1 knockdown) mice. We found that, following PH, Keap1 knockdown resulted in a delay in S-phase entry, disruption of S-phase progression, and loss of mitotic rhythm of replicating hepatocytes. These events are associated with dysregulation of c-Met, EGFR, Akt1, p70S6K, Cyclin A2, and Cyclin B1 in regenerating livers. Astonishingly, normal regenerating livers exhibited the redox fluctuation coupled with hepatocyte cell cycle progression, while keeping Nrf2 quiescent. Keap1 knockdown caused severe disruption in both the redox cycle and the cell cycle of replicating hepatocytes. Thus, we demonstrate that Keap1 is a potent regulator of hepatic redox cycle and hepatocyte cell cycle during liver regeneration.
Collapse
Affiliation(s)
- Min Hu
- a Department of Pharmacology; Anhui Medical University; Hefei, China
| | | | | | | | | | | |
Collapse
|
169
|
Cell type-specific Nrf2 expression in multiple sclerosis lesions. Acta Neuropathol 2015; 130:263-77. [PMID: 26087903 PMCID: PMC4503875 DOI: 10.1007/s00401-015-1452-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 06/10/2015] [Accepted: 06/10/2015] [Indexed: 12/17/2022]
Abstract
Oxidative injury appears to play a major role in the propagation of demyelination and neurodegeneration in multiple sclerosis (MS). It has been suggested that endogenous anti-oxidant defense mechanisms within MS lesions are insufficient to prevent spreading of damage. Thus, current therapeutic approaches (e.g., fumarate treatment) target to up-regulate the expression of a key regulator of anti-oxidative defense, the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). In this study, we show that Nrf2 is already strongly up-regulated in active MS lesions. Nuclear Nrf2 expression was particularly observed in oligodendrocytes and its functional activity is indicated by the expression of one of its downstream targets (heme oxygenase 1) in the same cells. In contrast, only a minor number of Nrf2-positive neurons were detected, even in highly inflammatory cortical lesions presenting with extensive oxidative injury. Overall, the most pronounced Nrf2 expression was found in degenerating cells, which showed signs of apoptotic or necrotic cell death. Via whole-genome microarray analyses of MS lesions, we observed a differential expression of numerous Nrf2-responsive genes, also involved in the defense against oxidative stress, predominantly in areas of initial myelin destruction within actively demyelinating white matter lesions. Furthermore, the expression patterns of Nrf2-induced genes differed between the white matter and cortical gray matter. Our study shows that in the MS brain, Nrf2 expression varies in different cell types and is associated with active demyelination in the lesions.
Collapse
|
170
|
Abstract
The Nrf2 transcription factor is a master regulator of the cellular defense against oxidative and electrophilic stress. An increase in Nrf2 protein levels and an accumulation of Nrf2 in the nucleus are key parts of the Nrf2 activation mechanism. The western blot technique remains the most widely used method to assess these changes. A well-characterized, specific antibody that is commercially available would greatly enhance these studies in the field. Here, an apparently highly specific Nrf2 monoclonal antibody, EP1808Y from Abcam, is compared with the most widely used Nrf2 antibodies, H-300 and C-20, both from Santa Cruz Biotechnology, in a panel of human cell lines. In addition to detecting Nrf2, EP1808Y avidly detects another protein present in two of the three cell lines tested. This protein can be mistaken for Nrf2 as it co-migrates with verified Nrf2 on two different polyacrylamide gel types. However, unlike Nrf2, its levels and cytoplasmic localization are unaffected by treatment with Nrf2 activators. The possibility that this band corresponds to a form of Nrf2 was excluded by siRNA and immunodepletion experiments. Finally, the monoclonal antibody D1Z9C from Cell Signaling was found to detect Nrf2 with the highest specificity of these four antibodies.
Collapse
Affiliation(s)
- Zachary A Kemmerer
- Department of Chemistry, Villanova University, Villanova, PA, United States
| | - Nicholas R Ader
- Department of Chemistry, Villanova University, Villanova, PA, United States
| | - Sarah S Mulroy
- Department of Chemistry, Villanova University, Villanova, PA, United States
| | - Aimee L Eggler
- Department of Chemistry, Villanova University, Villanova, PA, United States.
| |
Collapse
|
171
|
Brown AR, Simmen RCM, Raj VR, Van TT, MacLeod SL, Simmen FA. Krüppel-like factor 9 (KLF9) prevents colorectal cancer through inhibition of interferon-related signaling. Carcinogenesis 2015. [PMID: 26210742 DOI: 10.1093/carcin/bgv104] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
UNLABELLED Expression of the transcription factor Krüppel-like factor 9 (KLF9) is frequently reduced in colorectal cancers, although a tumor suppressive role has not been established. To determine if KLF9 suppresses intestinal adenoma formation, we generated mice of distinct Klf9 genotypes in the background of the Apc (Min/+) mouse and compared their adenoma burdens at 16 weeks of age. While small intestine adenoma burden remained unchanged among Klf9 genotypes, male and female Apc(Min/+)/Klf9(-/-) and Apc(Min/+)/Klf9(+/-) mice exhibited significantly more colon adenomas than their Apc(Min/+)/Klf9(+/+) counterparts. Microarray analysis showed significant increases in the expression of interferon-induced genes in the colon mucosa of female Apc (Min/+)/Klf9(+/-) and Apc(Min/+)/Klf9(-/-) compared to Apc(Min/+)/Klf9(+/+) mice, prior to overt adenoma occurrence. Gene upregulation was confirmed by qPCR of colon mucosa and by siRNA knockdown of KLF9 in human HT29 colorectal cancer cells. Increases in expression of these genes were further augmented by supplementation with Interferon β1. Circulating levels of the cytokine, interferon-stimulated gene 15 (ISG15) were increased in Apc(Min/+)/Klf9(+/-) and Apc(Min/+)/Klf9(-/-) mice relative to Apc(Min/+)/Klf9(+/+). Additionally, colon mucosal levels of ISG15 were increased in Apc(Min/+)/Klf9(+/-) mice. Chromatin immunoprecipitation demonstrated KLF9 recruitment to the ISG15 promoter. Lastly, treatment with ISG15 suppressed apoptosis in HT29 cells, in the presence and absence of 5-fluorouracil (5FU). Results show KLF9 to be a haploinsufficient suppressor of colon tumorigenesis in Apc(Min/+) mice in part, by repression of ISG15 and the latter's antiapoptotic function. SUMMARY Krüppel-like factor 9 (KLF9) is a haploinsufficient tumor suppressor in the ApcMin/+ mouse colon by suppressing expression of ISG15, an apoptosis-inhibiting cytokine.
Collapse
Affiliation(s)
- Adam R Brown
- Interdisciplinary Biomedical Sciences Program, Department of Physiology and Biophysics
| | - Rosalia C M Simmen
- Interdisciplinary Biomedical Sciences Program, Department of Physiology and Biophysics
| | | | - Trang T Van
- Interdisciplinary Biomedical Sciences Program
| | - Stewart L MacLeod
- Department of Pediatrics, University of Arkansas for Medical Sciences, Slot #505, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Frank A Simmen
- Interdisciplinary Biomedical Sciences Program, Department of Physiology and Biophysics,
| |
Collapse
|
172
|
Mitochondrial thioredoxin reductase regulates major cytotoxicity pathways of proteasome inhibitors in multiple myeloma cells. Leukemia 2015. [PMID: 26205085 DOI: 10.1038/leu.2015.190] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It is generally accepted that intracellular oxidative stress induced by proteasome inhibitors is a byproduct of endoplasmic reticulum (ER) stress. Here we report a mechanism underlying the ability of proteasome inhibitors bortezomib (BTZ) and carfilzomib (CFZ) to directly induce oxidative and ER stresses in multiple myeloma (MM) cells via transcriptional repression of a gene encoding mitochondrial thioredoxin reductase (TXNRD2). TXNRD2 is critical for maintenance of intracellular red-ox status and detoxification of reactive oxygen species. Depletion of TXNRD2 to the levels detected in BTZ- or CFZ-treated cells causes oxidative stress, ER stress and death similar to those induced by proteasome inhibitors. Reciprocally, restoration of near-wildtype TXNRD2 amounts in MM cells treated with proteasome inhibitors reduces oxidative stress, ER stress and cell death by ~46%, ~35% and ~50%, respectively, compared with cells with unrestored TXNRD2 levels. Moreover, cells from three MM cell lines selected for resistance to BTZ demonstrate elevated levels of TXNRD2, indirectly confirming its functional role in BTZ resistance. Accordingly, ectopic expression of TXNRD2 in MM cell xenografts in immunocompromised mice blunts therapeutic effects of BTZ. Our data identify TXNRD2 as a potentially clinically relevant target, inhibition of which is critical for proteasome inhibitor-dependent cytotoxicity, oxidative stress and ER stress.
Collapse
|
173
|
Ni S, Wang D, Qiu X, Pang L, Song Z, Guo K. Bone marrow mesenchymal stem cells protect against bleomycin-induced pulmonary fibrosis in rat by activating Nrf2 signaling. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:7752-7761. [PMID: 26339340 PMCID: PMC4555668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/23/2015] [Indexed: 06/05/2023]
Abstract
UNLABELLED Pulmonary fibrosis is a progressive and lethal disorder. Although the precise mechanisms of pulmonary fibrosis are not fully understood, oxidant/antioxidant may play an important role in many of the processes of inflammation and fibrosis. Keap1-Nrf2-ARE pathway represents one of the most important cellular defense mechanisms against oxidative stress. Mesenchymal stem cells (MSC) are in clinical trials for widespread indications including musculoskeletal, neurological, cardiac and haematological disorders. One emerging concept is that MSCs may have paracrine, rather than a functional, roles in lung injury repair and regeneration. In the present study, we investigated bone marrow mesenchymal stem cells (BMSCs) for the treatment of bleomycin-induced pulmonary fibrosis. Our results showed that BMSCs administration significantly ameliorated the bleomycin mediated histological alterations and blocked collagen deposition with parallel reduction in the hydroxyproline level. The gene expression levels of NAD(P)H quinine oxidoreductase 1 (NQO1), gama-glutamylcysteine synthetase (γ-GCS), heme oxygenase-1 (HO-1) and nuclear factor erythroid 2-related factor 2 (Nrf2), attenuated by bleomycin, were increased up to basal levels after BMSCs transplantation. BMSCs significantly increased superoxide dismutase (SOD) activity and inhibited malondialdehyde (MDA) production in the injured lung. The present study provides evidence that BMSCs may be a potential therapeutic reagent for the treatment of lung fibrosis.
Collapse
Affiliation(s)
- Shirong Ni
- Department of Hematology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
- Department of Pathophysiology, Wenzhou Medical UniversityWenzhou, Zhejiang Province, China
| | - Dexuan Wang
- Department of Pediatrics, The Second Affiliated & Yuying Children’s Hospital of Wenzhou Medical UniversityWenzhou, Zhejiang Province, China
| | - Xiaoxiao Qiu
- Department of Pathophysiology, Wenzhou Medical UniversityWenzhou, Zhejiang Province, China
| | - Lingxia Pang
- Teaching Center of Medical Functional Experiment, Wenzhou Medical UniversityWenzhou, Zhejiang Province, China
| | - Zhangjuan Song
- Department of Pathophysiology, Wenzhou Medical UniversityWenzhou, Zhejiang Province, China
| | - Kunyuan Guo
- Department of Hematology, Zhujiang Hospital, Southern Medical UniversityGuangzhou, China
| |
Collapse
|
174
|
Martinovich GG, Martinovich IV, Zenkov NK, Menshchikova EB, Kandalintseva NV, Cherenkevich SN. Phenolic antioxidant TS-13 regulating ARE-driven genes induces tumor cell death by a mitochondria-dependent pathway. Biophysics (Nagoya-shi) 2015. [DOI: 10.1134/s0006350915010194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
175
|
Leonurine ameliorates kidney fibrosis via suppressing TGF-β and NF-κB signaling pathway in UUO mice. Int Immunopharmacol 2015; 25:406-15. [DOI: 10.1016/j.intimp.2015.02.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/09/2015] [Accepted: 02/12/2015] [Indexed: 12/29/2022]
|
176
|
Wolf DA. Is reliance on mitochondrial respiration a "chink in the armor" of therapy-resistant cancer? Cancer Cell 2014; 26:788-795. [PMID: 25490445 PMCID: PMC4761590 DOI: 10.1016/j.ccell.2014.10.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Revised: 08/29/2014] [Accepted: 10/02/2014] [Indexed: 12/19/2022]
Abstract
A series of recent reports has suggested PGC1α-driven upregulation of mitochondrial oxidative phosphorylation as a selective vulnerability of drug-resistant cancers. Accordingly, chemical inhibitors of respiration led to selective eradication of such cancer cells due to their preferential sensitivity to mitochondrial production of reactive oxygen species. These insights create a timely opportunity for a biomarker guided application of already existing and newly emerging mitochondrial inhibitors in recurrent drug-resistant cancer, including lymphomas, melanomas, and other malignant diseases marked by increased mitochondrial respiration.
Collapse
Affiliation(s)
- Dieter A Wolf
- Tumor Initiation & Maintenance Program, Degenerative Disease Program, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
177
|
Luna–López A, González-Puertos VY, López-Diazguerrero NE, Königsberg M. New considerations on hormetic response against oxidative stress. J Cell Commun Signal 2014; 8:323-31. [PMID: 25284448 PMCID: PMC4390794 DOI: 10.1007/s12079-014-0248-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 09/30/2014] [Indexed: 01/06/2023] Open
Abstract
In order to survive living organisms have developed multiple mechanisms to deal with tough environmental conditions. Hormesis is defined as a process in which exposure to a low dose of a chemical agent or environmental factor that is damaging at higher doses induces an adaptive beneficial effect on the cell or organism. In this paper, we examine several ideas that might be taken into consideration before using hormesis as a therapeutic tool to improve health and life span, and hopefully will open the discussion for new and interesting debates regard hormesis. The first one is to understand that the same stressor or inductor can activate different pathways in a parallel or dual response, which might lead to diverse outcomes. Another idea is related to the mechanisms involved in activating Nrf2, which might be different and have diverse hormetic effects.Last, we discuss mild oxidative stress in association to low-grade chronic inflammation as a stimulating avenue to be explored and the unexpected effects proposed by the obesity paradox theory. All the previous might help to clarify the reasons why centenarians are able to reach the extreme limits of human life span, which could probably be related to the way they deal with homeostasis maintenance, providing an opportunity for hormesis to intervene significantly.
Collapse
Affiliation(s)
| | - Viridiana Y. González-Puertos
- />Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P 09340 México, D.F Mexico
| | - Norma E. López-Diazguerrero
- />Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P 09340 México, D.F Mexico
| | - Mina Königsberg
- />Departamento de Ciencias de la Salud, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-535, C.P 09340 México, D.F Mexico
| |
Collapse
|
178
|
Sterclova M, Vasakova M. Promising new treatment targets in patients with fibrosing lung disorders. World J Clin Cases 2014; 2:668-675. [PMID: 25405190 PMCID: PMC4233418 DOI: 10.12998/wjcc.v2.i11.668] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/21/2014] [Accepted: 09/10/2014] [Indexed: 02/05/2023] Open
Abstract
The processes of lung fibrogenesis and fibrotic healing are common to a number of conditions with different etiologies. The lungs are the only affected organ in some cases, whereas in others, several organ systems are involved. Therapeutic options can be discussed from various perspectives. In this review, we address the localization of therapeutic targets with regard to cell compartments, including secreted ligands, cell surface, plasma membrane-cytosol interplay, cytosol and nucleus. Complex approach using stem cell therapy is also discussed. As the prognosis of patients with these disorders remains grim, treatment combinations targeting different molecules within the cell should sometimes be considered. It is reasonable to assume that blocking specific pathways will more likely lead to disease stabilization, while stem cell-based treatments could potentially restore lung architecture. Gene therapy could be a candidate for preventive care in families with proven specific gene polymorphisms and documented familial lung fibrosis. Chronobiology, that takes into account effect of circadian rhythm on cell biology, has demonstrated that timed drug administration can improve treatment outcomes. However, the specific recommendations for optimal approaches are still under debate. A multifaceted approach to interstitial lung disorders, including cooperation between those doing basic research and clinical doctors as well as tailoring research and treatment strategies toward (until now) unmet medical needs, could improve our understanding of the diseases and, above all, provide benefits for our patients.
Collapse
|
179
|
Sun J, Wang B, Liu Y, Zhang L, Ma A, Yang Z, Ji Y, Liu Y. Transcription factor KLF9 suppresses the growth of hepatocellular carcinoma cells in vivo and positively regulates p53 expression. Cancer Lett 2014; 355:25-33. [PMID: 25242357 DOI: 10.1016/j.canlet.2014.09.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 02/06/2023]
Abstract
Krüppel-like factor 9 (KLF9) is known to be a tumor suppressor gene in colorectal tumors and glioblastoma; however, the functional status and significance of KLF9 in hepatocellular carcinoma (HCC) is unclear. We report here that KLF9 is downregulated in HCC tissues. Restoration of KLF9 significantly inhibited growth and caused apoptosis in SK-Hep1 and HepG2 cells. We found that KLF9 positively regulated p53 levels by directly binding to GC boxes within the proximal region of the p53 promoter. Moreover, in the presence of cycloheximide, KLF9 significantly increased p53 stability in HCC cells. Remarkably, ectopic expression of KLF9 was sufficient to delay the onset of tumors and to promote regression of the established tumors in vivo, suggesting that KLF9 plays a critical role in HCC development and that pharmacological or genetic activation of KLF9 may have potential in the treatment of HCC.
Collapse
Affiliation(s)
- Jiabin Sun
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Boshi Wang
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yun Liu
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Li Zhang
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aihui Ma
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaojuan Yang
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuhua Ji
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yongzhong Liu
- State Key laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
180
|
Stefanson AL, Bakovic M. Dietary regulation of Keap1/Nrf2/ARE pathway: focus on plant-derived compounds and trace minerals. Nutrients 2014; 6:3777-801. [PMID: 25244368 PMCID: PMC4179188 DOI: 10.3390/nu6093777] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 01/10/2023] Open
Abstract
It has become increasingly evident that chronic inflammation underpins the development of many chronic diseases including cancer, cardiovascular disease and type 2 diabetes. Oxidative stress is inherently a biochemical dysregulation of the redox status of the intracellular environment, which under homeostatic conditions is a reducing environment, whereas inflammation is the biological response to oxidative stress in that the cell initiates the production of proteins, enzymes, and other compounds to restore homeostasis. At the center of the day-to-day biological response to oxidative stress is the Keap1/Nrf2/ARE pathway, which regulates the transcription of many antioxidant genes that preserve cellular homeostasis and detoxification genes that process and eliminate carcinogens and toxins before they can cause damage. The Keap1/Nrf2/ARE pathway plays a major role in health resilience and can be made more robust and responsive by certain dietary factors. Transient activation of Nrf2 by dietary electrophilic phytochemicals can upregulate antioxidant and chemopreventive enzymes in the absence of actual oxidative stress inducers. Priming the Keap1/Nrf2/ARE pathway by upregulating these enzymes prior to oxidative stress or xenobiotic encounter increases cellular fitness to respond more robustly to oxidative assaults without activating more intense inflammatory NFκB-mediated responses.
Collapse
Affiliation(s)
- Amanda L Stefanson
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, Canada N1G 2W1.
| | - Marica Bakovic
- Department of Human Health and Nutritional Sciences, University of Guelph, 50 Stone Road E, Guelph, Ontario, Canada N1G 2W1.
| |
Collapse
|
181
|
|
182
|
High glucose alters retinal astrocytes phenotype through increased production of inflammatory cytokines and oxidative stress. PLoS One 2014; 9:e103148. [PMID: 25068294 PMCID: PMC4113377 DOI: 10.1371/journal.pone.0103148] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 06/26/2014] [Indexed: 01/05/2023] Open
Abstract
Astrocytes are macroglial cells that have a crucial role in development of the retinal vasculature and maintenance of the blood-retina-barrier (BRB). Diabetes affects the physiology and function of retinal vascular cells including astrocytes (AC) leading to breakdown of BRB. However, the detailed cellular mechanisms leading to retinal AC dysfunction under high glucose conditions remain unclear. Here we show that high glucose conditions did not induce the apoptosis of retinal AC, but instead increased their rate of DNA synthesis and adhesion to extracellular matrix proteins. These alterations were associated with changes in intracellular signaling pathways involved in cell survival, migration and proliferation. High glucose conditions also affected the expression of inflammatory cytokines in retinal AC, activated NF-κB, and prevented their network formation on Matrigel. In addition, we showed that the attenuation of retinal AC migration under high glucose conditions, and capillary morphogenesis of retinal endothelial cells on Matrigel, was mediated through increased oxidative stress. Antioxidant proteins including heme oxygenase-1 and peroxiredoxin-2 levels were also increased in retinal AC under high glucose conditions through nuclear localization of transcription factor nuclear factor-erythroid 2-related factor-2. Together our results demonstrated that high glucose conditions alter the function of retinal AC by increased production of inflammatory cytokines and oxidative stress with significant impact on their proliferation, adhesion, and migration.
Collapse
|
183
|
Sabzichi M, Hamishehkar H, Ramezani F, Sharifi S, Tabasinezhad M, Pirouzpanah M, Ghanbari P, Samadi N. Luteolin-loaded Phytosomes Sensitize Human Breast Carcinoma MDA-MB 231 Cells to Doxorubicin by Suppressing Nrf2 Mediated Signalling. Asian Pac J Cancer Prev 2014; 15:5311-6. [DOI: 10.7314/apjcp.2014.15.13.5311] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|